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Abstract
Recent advances in parameter-efficient fine-001
tuning have established Low-Rank Adaptation002
(LoRA) as a commonly used technique for003
adapting large language models (LLMs) to004
downstream tasks. Building on LoRA’s mod-005
ularity and low resource requirements, com-006
posing multiple LoRA modules has emerged007
as a promising approach to enhance cross-task008
generalization. However, in label-free scenar-009
ios, two major challenges hinder effective un-010
supervised LoRA composition: (1) the lack of011
principled criteria for selecting relevant mod-012
ules in the absence of task-specific informa-013
tion for unseen tasks, and (2) the reliance on014
training with task-specific examples to opti-015
mize module integration coefficients. To tackle016
these issues, we propose a two-stage method017
for stability- and confidence-aware LoRA com-018
position, aimed at enhancing label-free cross-019
task generalization. In the first stage, we020
assess module robustness via stability analy-021
sis—introducing controlled noise during gen-022
eration and identifying modules whose outputs023
remain confident and consistent. In the sec-024
ond stage, we generate pseudo-training data025
from selected modules and perform confidence-026
guided filtering to ensure high-quality supervi-027
sion for model adaptation. Empirical results028
on seven diverse evaluation tasks demonstrate029
that our approach improves average ROUGE-030
L scores and outperforms existing label-free031
merging baselines on 42% of tasks, showcas-032
ing its effectiveness in generalizing to unseen033
settings without labeled data. Our code is034
available at https://github.com/8k2aax0e/035
new-LoRA-Composition-method.036

1 Introduction037

In recent years, LLMs such as GPT-3 (Brown038

et al., 2020), Qwen (Bai et al., 2023) and DeepSeek039

R1(DeepSeek-AI et al., 2025), have significantly040

advanced the automation of natural language un-041

derstanding and generation tasks. Despite their im-042

pressive capabilities, LLMs still face limitations043
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Figure 1: Supervised cross-task generalization enables
the construction of task-specific models via module se-
lection and fusion coefficient computation. In contrast,
unsupervised cross-task generalization lacks module in-
formation and task training data, making it impractical
to select appropriate modules or compute their fusion
coefficients.

when adapting to unseen tasks without labeled 044

data. While full fine-tuning offers a direct solu- 045

tion to adapt models to new tasks, it comes with 046

prohibitive computational and storage costs, espe- 047

cially for large-scale models. 048

To mitigate this issue, parameter-efficient fine- 049

tuning (PEFT) methods have been proposed, which 050

allow only a small subset of parameters to be up- 051

dated. Among these, LoRA (Hu et al., 2022) has 052

gained significant popularity for its simplicity and 053

effectiveness. By injecting lightweight trainable 054

matrices into existing model layers, LoRA en- 055

ables efficient adaptation without modifying the 056

full model. The increasing adoption of LoRA has 057

led to a growing collection of task-specific LoRA 058

modules, many of which are publicly available. 059

Given the widespread adoption of LoRA in the 060

community, a large number of pre-trained LoRA 061

modules tailored for various tasks are now publicly 062

available. For known tasks, these modules can of- 063
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ten be directly reused without retraining. More064

recently, a promising direction has emerged: com-065

posing multiple LoRA modules to enhance cross-066

task generalization.067

However, in unseen task settings—where no ex-068

isting module has been explicitly trained—direct069

reuse becomes insufficient, and compositional070

adaptation is required. Some prior work, such as071

LoRAHub (Huang et al., 2024), attempts to ad-072

dress this by selecting relevant modules based on073

performance over probing examples. Yet this ap-074

proach assumes access to labeled data or training075

loss, which is often unavailable. Moreover, many076

publicly shared LoRA modules lack detailed meta-077

data, and unseen tasks frequently come without078

any adaptation examples. Consequently, label-free079

LoRA composition faces two key challenges: (1)080

the absence of principled, data-free criteria for se-081

lecting unlabeled modules relevant to an unseen082

task; and (2) the reliance on task-specific examples083

to optimize module integration coefficients, which084

undermines generalization when such examples are085

unavailable.086

To address these challenges, we propose a two-087

stage framework for stability and confidence-088

aware LoRA composition to enhance label-free089

cross-task generalization. In the first stage, we090

perform stability-aware module selection by intro-091

ducing controlled noise during response genera-092

tion and analyzing output variations. Modules that093

consistently produce confident and robust outputs094

under perturbation are selected for composition.095

In the second stage, we synthesize pseudo-training096

data by generating responses with the selected mod-097

ules. Then, we apply confidence-guided filtering098

based on perplexity voting among all modules to099

identify high-quality pseudo-labels, which are used100

to adapt the composed model.101

Unlike prior approaches such as Lo-102

RAHub (Huang et al., 2024), which rely on103

probing examples or access to training loss, our104

method requires no supervised data or internal105

module metadata. Compared to unsupervised106

merging methods like AdaMerging (Yang et al.,107

2024), which are often limited to classification108

tasks, our approach is designed for broader109

applicability across diverse NLP settings. We110

validate our approach on seven evaluation tasks and111

show that it not only improves average ROUGE-L112

scores but also achieves the best performance on113

42% of the tasks, demonstrating the effectiveness114

of our strategy for label-free, cross-task model115

generalization. 116

Our contributions can be summarized as follows: 117

• We propose a novel stability-aware LoRA se- 118

lection method that identifies robust modules 119

without relying on any external supervision or 120

training task datasets. 121

• We introduce a confidence-aware pseudo-data 122

generation and filtering mechanism that en- 123

ables effective adaptation of composed LoRA 124

modules in a fully unsupervised manner. 125

• Our method improves label-free generaliza- 126

tion and outperforms existing unsupervised 127

LoRA composition baselines across a range 128

of NLP tasks. 129

2 Related work 130

2.1 Model Composition 131

Model composition in this context includes both 132

full model composition and LoRA module compo- 133

sition. Most model composition methods can be 134

applied to LoRA fusion as well. Depending on the 135

complexity, composition methods can be broadly 136

categorized into three types. The first category 137

consists of simple and intuitive parameter manipu- 138

lation techniques, such as Task Arithmetic (Ilharco 139

et al., 2023) , TIES-Merging (Yadav et al., 2024), 140

Arrow (Ostapenko et al., 2024), Channel Merg- 141

ing(Zhang et al., 2024) and DARE (Yu et al., 2024). 142

Although these methods are simple and effective in 143

most cases, their primary approach is weight disen- 144

tangling (Ortiz-Jimenez et al., 2023). As a result, 145

they may not show significant improvements when 146

adapting to tasks with strong structural regulari- 147

ties. The second category involves static composi- 148

tion methods that train parameters based on tasks 149

for adaptation, such as AWD (Xiong et al., 2024) 150

and LoRAHub (Huang et al., 2024). The most 151

complex category includes methods that use gating 152

mechanisms, like LoRAMoE (Dou et al., 2024) and 153

LoRA-Flow (Wang et al., 2024). Whether using 154

static methods or gating-based approaches, these 155

techniques typically require labeled data to func- 156

tion effectively, making them unsuitable for unsu- 157

pervised settings. Here’s the refined version: 158

There have been attempts to adapt methods for 159

unsupervised tasks, such as AdaMerging (Yang 160

et al., 2024), which uses Shannon entropy in place 161

of cross-entropy. However, this approach is primar- 162

ily suited for classification tasks. When applied 163
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to natural language generation tasks, it struggles164

due to the large search space for possible answers,165

limiting its effectiveness. Our method, through166

pseudo-data generation and selection, addresses167

the challenges faced by AdaMerging, offering a168

more suitable solution for unsupervised adaptation.169

2.2 Pseudo-data Generation & Filtering170

Pseudo-data generation is widely adopted to ad-171

dress data scarcity, enhancing model generalization172

through synthetic data (Lee et al., 2013). Common173

methods include knowledge distillation (Hinton174

et al., 2015), where a larger model generates data175

for training a smaller one, and back-translation176

(Edunov et al., 2018), which enriches parallel cor-177

pora by translating monolingual data. Self-instruct178

(Wang et al., 2022a) extracts instruction-tuning179

data from a model’s own outputs, while LawGPT180

(Zhou et al., 2024) generates legal texts using task-181

specific prompts. However, pseudo-data often suf-182

fers from quality issues and inherent biases, neces-183

sitating effective filtering mechanisms.184

Filtering strategies aim to mitigate these biases.185

Manual filtering, as in InstructGPT (Ouyang et al.,186

2022), relies on human annotations but is resource-187

intensive. Single-model self-validation methods,188

such as SelfCheckGPT (Manakul et al., 2023), de-189

tect hallucinations through consistency checks but190

are limited by the model’s inherent biases. Multi-191

model comparison approaches, like LM vs. LM192

(Cohen et al., 2023), validate data through cross-193

checking but demand significant computational re-194

sources. Dedicated scoring models, such as RAFT195

(Dong et al., 2023), rank data using external reward196

models but lack cross-task adaptability.197

In contrast, our method leverages multiple LoRA198

modules, addressing the limitations of single-199

model and multi-model approaches. By evaluat-200

ing confidence across LoRA modules, we reduce201

computational overhead and mitigate biases with-202

out relying on external models, offering a more203

efficient and generalizable solution.204

3 Method205

This section outlines our method for adapting a206

base model to unseen tasks using LoRA and its207

composition, without relying on labeled data. We208

begin by identifying the most stable and robust209

LoRA modules based on their performance and210

consistency with task-specific data. Next, we de-211

scribe how pseudo-data is selected for adaptation212

using a confidence-based approach. Finally, we 213

explain the layer-level fusion of selected LoRA 214

modules to fine-tune the model, enabling effective 215

generalization to the target task. 216

3.1 Preliminaries 217

LoRA (Hu et al., 2022) is a PEFT method that 218

adapts LLMs by introducing low-rank parameteri- 219

zations, while keeping the original weight matrix 220

W0 ∈ Rm×d frozen. It adds two trainable low-rank 221

matrices: A ∈ Rr×d and B ∈ Rm×r, and learns 222

only the update ∆W . The modified weight matrix 223

is: 224

M←W (1) 225

LoRA Composition refers to the concept of com- 226

bining multiple LoRA modules to adapt the model 227

to unseen tasks. This is typically achieved by us- 228

ing a set of weights Wcomp = {λ1, ..., λn}, where 229

each LoRA weight Ai, Bi is scaled by a factor λi 230

and fused into a single weight matrix ∆W . 231

∆W =
N∑
i=1

λiBiAi (2) 232

3.2 Framework 233

Our objective is to adapt base LLM Mbase to a 234

novel, unseen task T using a pool of pre-trained 235

LoRA modules Lpool = {L1, . . . , Li}, where 236

each LoRA module L is a fine-tuned LoRA mod- 237

ule. The task T consists of an unlabeled dataset 238

T = {x1, . . . , xn}, where each x represents a 239

query from T . Our approach enables generalization 240

to new tasks without task-specific supervision by 241

strategically selecting and combining the most rel- 242

evant LoRA modules through a two-step process: 243

First, we randomly select j task examples 244

Te = {x1, ..., xj} where Te ⊆ T to represent 245

the task. Each LoRA model MLi composed of 246

the base model Mbase and LoRA modules Li, 247

processesTe to generatea set of response pairs 248

DLi = {(x1, ŷ1), . . . , (xk, ŷk)}, where each ŷi is 249

the response of xi fromMLi . We then introduce 250

perturbations to each xi using text attack method 251

(Morris et al., 2020), replacing random words in 252

the query with their synonyms to obtain a perturbed 253

variantx̃i , and re-evaluate the response pairs D̃to 254

assess the stability of each LoRA module with re- 255

spect to T . Based on this stability measure, we se- 256

lect the topNmost stable LoRA modules to form a 257

task-specific fusion group Lstable = {L1, ..., LN}. 258
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Figure 2: The workflow diagram illustrates two key stages: LoRA selection and pseudo-data acquisition. During the
LoRA selection stage, we combine the pseudo-label generated by each LoRA module with a perturbed version of
the input question, and then use the same LoRA module to recompute the confidence score. The difference between
the original and recomputed confidence scores is defined as the module’s stability, which serves as the criterion
for selecting LoRA modules. In the pseudo-data selection stage, the generated pseudo-data are passed through all
LoRA modules to compute their confidence scores, and the sum of these scores is used to identify high-quality
pseudo-data.

Next, using the selected example set Te, we259

sample pseudo-data points from a chosen LoRA260

module Li in the selected modules pool Lstable261

. These pseudo-data points are then evaluated262

by the other LoRA modules in Lstable for confi-263

dence scoring. This process is repeated N times,264

and all pseudo-data along with their confidence265

scores are aggregated. From this pool, we se-266

lect the top K highest-scoring data, denoted as267

Dconfident = {(x1, ŷ1), . . . , (xK , ŷK)}. and we uti-268

lize Lstable and Dconfident to fine-tune and adapt the269

LoRA modules for the target task. This approach270

ensures a effective adaptation process, even in the271

absence of labeled data.272

The following provides a more detailed descrip-273

tion of the method.274

3.3 Noise Injection and Stability-Based LoRA275

Selection276

To select the most robust LoRA modules in277

Lpool for task T , we evaluate each x ∈ Te278

and apply a greedy search to generate the most279

confident response ŷ for each LoRA adapted280

Model MLi which composed by Li ∈ Lpool.281

The confidence of MLi for (x, ŷ) is given282

by: P ((x, ŷ)|ŷ<(t),MLi), where (x, ŷ<(t)) repre-283

sents the preceding tokens of (x, ŷ), defined as:284

(x, ŷ<(t)) = {x(1), . . . , x(n), ŷ(1), . . . , ŷ(t)}.285

To quantify model confidence, we compute the 286

average conditional probability of (x, y) given its 287

preceding tokens across all time steps t: 288

C(x, y,MLi) =
1

t

t∑
k=1

P ((x, y)|y<(k),MLi).

(3) 289

Next, we introduce noise into the input by ap- 290

plying the existing perturbation method noise(x) 291

(Morris et al., 2020), replacing a certain proportion 292

of words in x with their synonyms. This process 293

generates N perturbed version x̃n = noise(x). 294

To assess the stability of each LoRA module, 295

we compute the absolute difference in confidence 296

between the original and perturbed inputs: 297

d(x, x̃, ŷ,MLi) = C(x, ŷ,MLi)− C(x̃, ŷ,MLi)
(4) 298

We then compute the average confidence change 299

across all perturbations: 300

d̄ =
1

N

N∑
k=0

d(x, x̃k, ŷ,MLi) (5) 301

The stability score, denoted as scoreLi
stable, is de- 302

fined as the mean absolute deviation from d̄ 303

scoreLi
stable =

1

N

N∑
k=0

|d(x, x̃k, ŷ,M)− d̄| (6) 304
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Finally, after multiple noise samplings and averag-305

ing the resulting stability scores, we select the N306

LoRA modules with the smallest stability scores.307

The selected set of robust modules is denoted as:308

Lstable = {L1, . . . , LN}.309

3.4 Pseudo-Data Generation and310

Confidence-Based Selection311

To generate high-quality pseudo-data for task adap-312

tation, we employ a sampling-and-filtering ap-313

proach. For each x ∈ Te, we perform N diverse314

random samplings using the model MLi gener-315

ated by LoRA module Li, resulting in a pseudo-316

data set DLi = {(x1, ŷ11), (x1, ŷ21), . . . , (xn, ŷNn )}.317

We then compute the confidence score for each318

(x, ŷ) ∈ DLi score(x,ŷ)conf using other LoRA modules319

Lj ∈ Lstable, given by the following formula:320

score(x,ŷ)conf =
1

T

N∑
j=0

T∑
t=0

C(x, ŷ(t),MLj ) (7)321

where Lj ̸= Li. After sampling across322

all modules in Lstable, we select the top-K323

pseudo-data pairs of (x, ŷ) as a set Dconfident =324

{(x1, ŷ1), . . . , (x1, ŷK), . . . , (xN , ŷK)} with the325

highest scoreconf as training data, and use them326

to adapt Lstable.327

3.5 LoRA Module Composition and328

Adaptation329

At this point, we have Lstable and Dconfident.330

Next, we construct a weight matrix Wcomp ∈331

Rlayernum×LoRAnum for layer-level model fusion, re-332

sulting in the composed model Mcomp. The adapta-333

tion process can be expressed as follows:334

Ŵcomp = argmax
Wcomp

{
L(Mcomp|Dconfident)

}
(8)335

where the likelihood loss function is defined as:336

L(Mcomp|Dconfident) =

N∑
i=1

P (yi|Mcomp) (9)337

Ŵcomp is the final adapted model for task T .338

4 Experiments339

In this section, we first describe the experimen-340

tal setup, including the training and evaluation341

datasets, along with the classification of evalua-342

tion categories used in the main results. We then343

detail the experimental process, covering LoRA344

module training, selection, and the hyperparame- 345

ters for pseudo-data generation and filtering. Next, 346

we introduce the baseline methods used for compar- 347

ison to highlight the effectiveness of our approach. 348

Finally, we present the main results and ablation 349

studies. 350

4.1 Experimental Setup 351

4.1.1 Datasets and Task Partitions 352

The Super-NaturalInstructions (SNI) dataset (Wang 353

et al., 2022b) includes 76 distinct task categories 354

and 1,616 fine-grained task instances, each guided 355

by specific instructions. It serves as a strong bench- 356

mark for evaluating cross-task generalization. In 357

our experiments, we split the dataset into training 358

and testing sets: 56 categories (about 75%) are 359

used for training, and the remaining 20 categories 360

(25%) are reserved for evaluating performance on 361

unseen tasks. 362

For each training category, we train a separate 363

LoRA module using 10,000 randomly sampled in- 364

stances to ensure broad task coverage. During 365

evaluation, up to 2,000 instances are sampled per 366

category from the evaluation set to measure task- 367

specific performance efficiently. We use ROUGE-L 368

as the primary evaluation metric across all tasks. 369

For clarity, the 20 evaluation categories are 370

grouped into 7 broader tasks. Performance is av- 371

eraged across categories within each task, and the 372

overall average is also computed at the category 373

level. 374

4.1.2 Implementation Details 375

Base Model Configuration. We employ LLaMA- 376

7B (Touvron et al., 2023) as the base model in our 377

experiments. This open-source foundation model 378

is widely recognized for its strong performance 379

across a broad range of benchmarks, making it an 380

ideal starting point for our adaptation approach. 381

LoRA Training. To implement LoRA, we apply it 382

to all linear projection layers within the attention 383

mechanism, specifically targeting the query (q), key 384

(k), value (v) layers, as well as the feed-forward 385

layers of the attention mechanism. The adaptation 386

rank is set to 16, and a dropout rate of 0.01 is 387

used to prevent overfitting. We optimize the model 388

using the AdamW optimizer with a learning rate 389

and a batch size of 16, balancing computational 390

efficiency and training stability. Due to hardware 391

limitations, we restrict the maximum context length 392

to 1024 tokens. 393
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LoRA Data Veri. Quez. Gen. Ana. Inter. Logi. Cls. Avg.
empty zero-shot 7.34 23.08 10.61 6.26 7.29 7.87 7.27 10.23

all TA(Ilharco et al., 2023) 34.94 23.15 21.33 17.43 32.06 9.88 31.08 24.5
random 38.58 17.95 17.58 18.38 31.79 9.63 30.41 23.53

all 36.48 19.53 16.41 17.33 31.17 10.04 29.53 22.92
random TA(Ilharco et al., 2023) 39.3 15.46 18.82 18.2 32.79 8.51 29.15 23.39

AM(Yang et al., 2024) 39.0 14.36 18.5 18.6 34.28 8.45 28.49 23.33
confidence 38.98 17.74 18.49 18.08 31.95 9.5 30.32 23.69

random 39.0 14.36 18.5 18.6 34.28 8.45 28.49 23.33
all 29.53 18.46 15.92 11.94 29.89 10.28 28.0 20.48

entropy TA(Ilharco et al., 2023) 25.24 15.04 16.61 10.68 28.93 9.81 29.7 19.26
AM(Yang et al., 2024) 26.56 13.89 17.2 10.5 30.9 8.52 29.89 19.56

confidence 28.38 15.61 17.07 11.52 30.64 9.76 29.86 20.3
random 38.98 17.74 18.49 18.08 31.95 9.5 30.32 23.69

all 37.87 22.72 19.54 11.9 34.05 7.48 34.95 24.13
stability TA(Ilharco et al., 2023) 37.44 21.07 20.24 11.92 30.13 10.21 30.75 23.23

AM(Yang et al., 2024) 35.94 19.62 19.8 10.19 26.68 6.77 30.7 21.57
confidence 40.92 22.32 20.26 12.01 34.58 8.37 35.9 24.95

Table 1: Performance Comparison of Different Methods. The first two columns represent the LoRA selection
method and the pseudo-data selection method, respectively, and the last column represents the average performance
across 20 categories.

Token Replacement and Module Selection. To394

select the most stable LoRA modules, we eval-395

uate each candidate using five randomly chosen396

queries. Stability is assessed by replacing 40% of397

the tokens with synonyms using the TextAttack398

framework (Morris et al., 2020) and measuring the399

change in output confidence. The top 10 modules400

with the smallest confidence drop are selected for401

composition.402

During data synthesis, each selected module gen-403

erates 10 pseudo-training examples per query, re-404

sulting in a final dataset of 1,000 examples from 10405

different queries.406

Pseudo-Data Acquisition.To encourage diversity,407

we use sampling instead of beam search, setting408

the temperature to 0.3 and applying a repetition409

penalty of 2 (Keskar et al., 2019). This setup helps410

generate varied and non-repetitive responses.411

Model Merging and Adaptation. we set the learn-412

ing rate to 5 × 10−4, with the number of epochs413

set to 5 and a batch size of 10. This configuration414

ensures that the adaptation process is completed415

within 5 minutes on a single A100 80GB GPU.416

4.2 Baselines417

LoRA Module Selection. We compare our418

stability-based selection with three alternatives:419

random selection, minimum Shannon entropy se-420

lection inspired by AdaMerging (Yang et al., 2024),421

and a no-selection baseline. 422

Pseudo-Data Selection and Task Adaptation. We 423

evaluate our method against several baselines, in- 424

cluding zero-shot reasoning, Task Arithmetic (TA) 425

(Ilharco et al., 2023), and hierarchical AdaMerging 426

(AM). Additionally, we report results for variants 427

using random selection and no selection to provide 428

further comparison. 429

For Task Arithmetic, we set the combination 430

coefficient to 1
N , where N is the number of LoRA 431

modules. In hierarchical AdaMerging, the learning 432

rate for learning combination coefficients is set 433

to 5 × 10−4. To ensure fair comparison, we fix 434

the number of training epochs to 50, matching the 435

training steps used in our proposed method. 436

4.3 Main Results 437

Our main results, presented in Table 1, demonstrate 438

that the two-stage approach—combining stability- 439

based LoRA selection with confidence-based data 440

selection—achieves state-of-the-art performance, 441

reaching an average accuracy of 24.95% across all 442

tasks. This marks a 144% relative improvement 443

over the zero-shot baseline (10.23% → 24.95%). 444

Our method consistently outperforms existing fu- 445

sion techniques, delivering absolute gains of 6.7% 446

over Task Arithmetic (23.39%) and 15.7% over 447

AdaMerging (21.57%). Notably, it sets new state- 448

of-the-art results in Verification(40.92%, +1.6%) 449
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and Classification (35.9%, +5.8% over full-data450

baselines). Moreover, it surpasses Task Arithmetic451

in 5 out of 7 tasks, with substantial improvements452

of 3.8% in Verification and 6.8% in Classification.453

While our method consistently outperforms zero-454

shot learning across all tasks, Logic remains par-455

ticularly challenging, with all approaches scoring456

below 10.28%.457

4.4 Ablation Studies458

4.4.1 The Efficiency of LoRA selection459

Figure 3: Average rank for selection methods

To better demonstrate the effectiveness of LoRA460

selection, we evaluate 54 trained LoRA modules461

across 20 categories per test. For each task, we462

measure the performance of each LoRA module463

(detailed in the Appendix Figure ??) and rank them464

in descending order based on their performance.465

The average rankings are presented in Figure 3.466

The results clearly show that, compared to random467

selection and entropy-based selection, our stability-468

based method consistently selects LoRA modules469

with higher average ranks, highlighting its effec-470

tiveness.471

5 Analyze and Discussion472

In this section, we analyze how different LoRA473

module selection strategies impact final model per-474

formance and investigate the underlying reasons for475

the observed variations. We also provide a detailed476

account of our pseudo-data generation process and477

discuss why the performance of generated pseudo-478

data often differs significantly from that of the final479

adapted models.480

5.1 The Efficiency of Pseudo-data selection481

Table 1 shows that among the three LoRA selec-482

tion methods, our confidence-based pseudo-data483

selection outperforms Task Arithmetic in 12 out of484

14 tasks, except for random LoRA selection. Addi-485

tionally, it achieves a higher overall average in two486

of the three methods. Within the stability-based ap- 487

proach, our method surpasses other data selection 488

methods in 4 out of 7 tasks, further validating the 489

effectiveness of our pseudo-data selection method. 490

5.2 Stability-Driven LoRA Selection and 491

Task-Specific Capabilities 492

Figure 4: Average rank variance for selection methods

To explore the link between model stability and 493

task performance, we analyzed the variance in av- 494

erage rankings across different LoRA fusion set- 495

tings (5, 10, 15, and 20 modules), as shown in 496

Figure 4. Together with Figure 3, the results show 497

that our stability-based selection method tends to 498

yield higher variance. This indicates that the se- 499

lected modules are often more extreme in quality, 500

as stability alone does not always reflect actual per- 501

formance. While some low-confidence modules 502

may be selected, stronger models typically show 503

greater stability and confidence, making them more 504

reliable and robust for task adaptation. 505

5.3 Results from the Synergistic Effects 506

We argue that using stability-based module se- 507

lection or confidence-based pseudo-data filtering 508

alone is not sufficient for optimal results. Stability- 509

based selection often includes both strong and weak 510

modules, which can degrade adaptation if used 511

without filtering. However, this diversity enables 512

the generation of more varied pseudo-data—some 513

very good, some poor. By applying multi-module 514

confidence filtering, we can effectively discard the 515

low-quality examples and retain the high-quality 516

ones. This combination leads to better overall per- 517

formance and outperforms baseline methods. 518

5.4 Pseudo-Data Selection Effectiveness and 519

Performance Gap After Adaptation 520

As shown in Figure 5a, our confidence-based 521

method consistently outperforms both random se- 522

lection and no selection across all four LoRA 523
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(a) An evaluation of generated pseudo-data performance across
various data selection methods and differing LoRA count.

(b) The impact of training epochs on the performance of differ-
ent LoRA count.

Figure 5: The line charts illustrate the performance evaluation results using stability-based LoRA selection with 5,
10, 15, and 20 LoRA modules.

counts. However, comparing the confidence-based524

results in Figure 5a with those in Figure 5b reveals525

a significant performance gap: while the pseudo-526

data alone yields a score of only 3.86, the final527

adapted model (e.g., LoRA count = 10) achieves528

an average of 24.54. We attribute this to the impor-529

tance of restoring the effectiveness of individual530

LoRA modules during adaptation. Proper pseudo-531

data adaptation helps fully leverage each merged532

module. Importantly, our confidence-based method533

selects data that better aligns with the target task.534

However, as shown by the trends for LoRA counts535

of 10, 15, and 20, excessive training can lead to536

overfitting, causing performance to decline over537

time.538

5.5 Variance-Induced Performance Decline539

and Adaptive Mitigation in LoRA540

Configurations541

In Figure 5b, we observe that the performance for542

LoRA count = 5 is noticeably lower than for other543

counts. We propose several possible explanations.544

As shown in Figure 4, the performance variance545

for LoRA count = 5 is high, suggesting that the546

stability-based selection method may have included547

both strong and weak LoRA modules. With only548

five modules, each one has a significant impact,549

so a poorly performing module can greatly reduce550

the overall performance of the merged model. This551

also explains the unique trend in Figure 5b: as train-552

ing progresses, the influence of the weaker module553

diminishes, resulting in a steady performance im-554

provement across epochs.555

5.6 Impact of LoRA Count and Epochs on 556

Task Performance 557

As shown in Figure 5b, the best performance is 558

achieved when the LoRA count is 10. However, in 559

Figure 5a, the pseudo-data performance for LoRA 560

count = 10 is relatively poor. This suggests that 561

pseudo-data selection alone is not the sole factor 562

determining the performance of the merged model. 563

Effective adaptation also requires selecting suffi- 564

ciently strong LoRA modules to enhance perfor- 565

mance, choosing an appropriate number of LoRA 566

modules to mitigate the impact of poorly perform- 567

ing ones, and setting a suitable number of training 568

epochs to properly adapt different LoRA modules. 569

6 Conclusion 570

In this paper, we introduced an unsupervised LoRA 571

composition method to improve cross-task general- 572

ization without labeled data. Our approach selects 573

robust LoRA modules based on stability, generates 574

pseudo-data, and applies confidence-based filtering 575

using other modules in the selected pool. A new 576

model is then composed and adapted specifically 577

for the target task. We evaluated our method on the 578

SNI dataset, grouping 20 categories into 7 broader 579

tasks. Through extensive analysis, including abla- 580

tions and case-specific insights, we demonstrated 581

that our approach outperforms baseline methods on 582

3 out of 7 tasks, highlighting its effectiveness for 583

generalizing to unseen tasks in a label-free setting. 584
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Limitation585

Performance limitations. Our proposed module586

integration method is designed for fully label-free587

task settings, where the integration coefficients are588

trained solely based on pseudo-labels generated by589

the model itself. As a result, the learned coeffi-590

cients primarily serve to align and combine mod-591

ules, offering limited performance gains. In con-592

trast, integration methods that utilize labeled data593

can typically achieve a significantly higher perfor-594

mance ceiling.595

Requirement for module uniformity. In the cur-596

rent implementation, all LoRA modules to be in-597

tegrated must share the same rank. Modules with598

differing ranks cannot be fused, which imposes a599

constraint on module compatibility and limits flexi-600

bility in practical deployment.601

Instability induced by stability-based selection.602

This stability-based selection criterion may lead603

to the inclusion of both consistently helpful and604

consistently detrimental modules, potentially un-605

dermining task performance. Therefore, it cannot606

be used as a standalone module selection strategy607

and must be combined with our confidence-aware608

pseudo-data selection method.609
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A Evaluate Category List and Its831

Classification832

To facilitate evaluation, we divided the 20 test cate-833

gories into 7 tasks based on specific principles. For834

details, see Table 2.835

B knowledge Base LoRA performance836

We evaluated the performance of the LoRA mod-837

ules trained on 54 categories against the test cate-838

gories. As shown in Figure 6, some tasks exhibit839

relatively lower performance, while a number of840

isolated high-performance spots are also observed.841

This indicates that there are notable differences in842

performance among the LoRA modules trained on843

different categories.844

Figure 6: Heatmap of the trained LoRA module‘s rouge
score of evaluation tasks. The x-axis represents evalua-
tion tasks, while the y-axis corresponds to trained LoRA
modules.
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Task Sign Category
fact verification, stereotype detection, stance detection

Verification Veri.
Verify factual accuracy or detect bias.

question rewriting, question understanding , question answering
Questioning Quez.

Process, rewrite, or answer questions.
title generation, dialogue generation, text matching, fill in the blank

Generation Gen.
Generate or optimize text for specific goals.
pos tagging, word semantics, word analogy

Analysis Ana.
Analyze linguistic structure and semantics.

speaker identification, negotiation strategy detection, intent identification
Interaction Inter.

Manage dialogue and negotiation strategies.
sentence ordering, text to code

Logic Logi.
Handle structured reasoning tasks.

text categorization, text quality evaluation
Classification Cls.

Categorize or evaluate text quality.

Table 2: The table describes the classification of categories and their core tasks.
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