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Abstract

Recent advances in parameter-efficient fine-
tuning have established Low-Rank Adaptation
(LoRA) as a commonly used technique for
adapting large language models (LLMs) to
downstream tasks. Building on LoRA’s mod-
ularity and low resource requirements, com-
posing multiple LORA modules has emerged
as a promising approach to enhance cross-task
generalization. However, in label-free scenar-
ios, two major challenges hinder effective un-
supervised LoRA composition: (1) the lack of
principled criteria for selecting relevant mod-
ules in the absence of task-specific informa-
tion for unseen tasks, and (2) the reliance on
training with task-specific examples to opti-
mize module integration coefficients. To tackle
these issues, we propose a two-stage method
for stability- and confidence-aware LoRA com-
position, aimed at enhancing label-free cross-
task generalization. In the first stage, we
assess module robustness via stability analy-
sis—introducing controlled noise during gen-
eration and identifying modules whose outputs
remain confident and consistent. In the sec-
ond stage, we generate pseudo-training data
from selected modules and perform confidence-
guided filtering to ensure high-quality supervi-
sion for model adaptation. Empirical results
on seven diverse evaluation tasks demonstrate
that our approach improves average ROUGE-
L scores and outperforms existing label-free
merging baselines on 42% of tasks, showcas-
ing its effectiveness in generalizing to unseen
settings without labeled data. Our code is
available at https://github.com/8k2aax0e/
new-LoRA-Composition-method.

1 Introduction

In recent years, LLMs such as GPT-3 (Brown
etal., 2020), Qwen (Bai et al., 2023) and DeepSeek
R1(DeepSeek-Al et al., 2025), have significantly
advanced the automation of natural language un-
derstanding and generation tasks. Despite their im-
pressive capabilities, LLMs still face limitations
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Figure 1: Supervised cross-task generalization enables
the construction of task-specific models via module se-
lection and fusion coefficient computation. In contrast,
unsupervised cross-task generalization lacks module in-
formation and task training data, making it impractical
to select appropriate modules or compute their fusion
coefficients.

when adapting to unseen tasks without labeled
data. While full fine-tuning offers a direct solu-
tion to adapt models to new tasks, it comes with
prohibitive computational and storage costs, espe-
cially for large-scale models.

To mitigate this issue, parameter-efficient fine-
tuning (PEFT) methods have been proposed, which
allow only a small subset of parameters to be up-
dated. Among these, LoRA (Hu et al., 2022) has
gained significant popularity for its simplicity and
effectiveness. By injecting lightweight trainable
matrices into existing model layers, LoRA en-
ables efficient adaptation without modifying the
full model. The increasing adoption of LoRA has
led to a growing collection of task-specific LoORA
modules, many of which are publicly available.

Given the widespread adoption of LoRA in the
community, a large number of pre-trained LoRA
modules tailored for various tasks are now publicly
available. For known tasks, these modules can of-
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ten be directly reused without retraining. More
recently, a promising direction has emerged: com-
posing multiple LoRA modules to enhance cross-
task generalization.

However, in unseen task settings—where no ex-
isting module has been explicitly trained—direct
reuse becomes insufficient, and compositional
adaptation is required. Some prior work, such as
LoRAHub (Huang et al., 2024), attempts to ad-
dress this by selecting relevant modules based on
performance over probing examples. Yet this ap-
proach assumes access to labeled data or training
loss, which is often unavailable. Moreover, many
publicly shared LoRA modules lack detailed meta-
data, and unseen tasks frequently come without
any adaptation examples. Consequently, label-free
LoRA composition faces two key challenges: (1)
the absence of principled, data-free criteria for se-
lecting unlabeled modules relevant to an unseen
task; and (2) the reliance on task-specific examples
to optimize module integration coefficients, which
undermines generalization when such examples are
unavailable.

To address these challenges, we propose a two-
stage framework for stability and confidence-
aware LoRA composition to enhance label-free
cross-task generalization. In the first stage, we
perform stability-aware module selection by intro-
ducing controlled noise during response genera-
tion and analyzing output variations. Modules that
consistently produce confident and robust outputs
under perturbation are selected for composition.
In the second stage, we synthesize pseudo-training
data by generating responses with the selected mod-
ules. Then, we apply confidence-guided filtering
based on perplexity voting among all modules to
identify high-quality pseudo-labels, which are used
to adapt the composed model.

Unlike prior approaches such as Lo-
RAHub (Huang et al., 2024), which rely on
probing examples or access to training loss, our
method requires no supervised data or internal
module metadata. Compared to unsupervised
merging methods like AdaMerging (Yang et al.,
2024), which are often limited to classification
tasks, our approach is designed for broader
applicability across diverse NLP settings. We
validate our approach on seven evaluation tasks and
show that it not only improves average ROUGE-L
scores but also achieves the best performance on
42% of the tasks, demonstrating the effectiveness
of our strategy for label-free, cross-task model

generalization.
Our contributions can be summarized as follows:

* We propose a novel stability-aware LoRA se-
lection method that identifies robust modules
without relying on any external supervision or
training task datasets.

* We introduce a confidence-aware pseudo-data
generation and filtering mechanism that en-
ables effective adaptation of composed LoRA
modules in a fully unsupervised manner.

* Our method improves label-free generaliza-
tion and outperforms existing unsupervised
LoRA composition baselines across a range
of NLP tasks.

2 Related work
2.1 Model Composition

Model composition in this context includes both
full model composition and LoRA module compo-
sition. Most model composition methods can be
applied to LoRA fusion as well. Depending on the
complexity, composition methods can be broadly
categorized into three types. The first category
consists of simple and intuitive parameter manipu-
lation techniques, such as Task Arithmetic (Ilharco
et al., 2023) , TIES-Merging (Yadav et al., 2024),
Arrow (Ostapenko et al., 2024), Channel Merg-
ing(Zhang et al., 2024) and DARE (Yu et al., 2024).
Although these methods are simple and effective in
most cases, their primary approach is weight disen-
tangling (Ortiz-Jimenez et al., 2023). As a result,
they may not show significant improvements when
adapting to tasks with strong structural regulari-
ties. The second category involves static composi-
tion methods that train parameters based on tasks
for adaptation, such as AWD (Xiong et al., 2024)
and LoRAHub (Huang et al., 2024). The most
complex category includes methods that use gating
mechanisms, like LoORAMOE (Dou et al., 2024) and
LoRA-Flow (Wang et al., 2024). Whether using
static methods or gating-based approaches, these
techniques typically require labeled data to func-
tion effectively, making them unsuitable for unsu-
pervised settings. Here’s the refined version:
There have been attempts to adapt methods for
unsupervised tasks, such as AdaMerging (Yang
et al., 2024), which uses Shannon entropy in place
of cross-entropy. However, this approach is primar-
ily suited for classification tasks. When applied



to natural language generation tasks, it struggles
due to the large search space for possible answers,
limiting its effectiveness. Our method, through
pseudo-data generation and selection, addresses
the challenges faced by AdaMerging, offering a
more suitable solution for unsupervised adaptation.

2.2 Pseudo-data Generation & Filtering

Pseudo-data generation is widely adopted to ad-
dress data scarcity, enhancing model generalization
through synthetic data (Lee et al., 2013). Common
methods include knowledge distillation (Hinton
et al., 2015), where a larger model generates data
for training a smaller one, and back-translation
(Edunov et al., 2018), which enriches parallel cor-
pora by translating monolingual data. Self-instruct
(Wang et al., 2022a) extracts instruction-tuning
data from a model’s own outputs, while LawGPT
(Zhou et al., 2024) generates legal texts using task-
specific prompts. However, pseudo-data often suf-
fers from quality issues and inherent biases, neces-
sitating effective filtering mechanisms.

Filtering strategies aim to mitigate these biases.
Manual filtering, as in InstructGPT (Ouyang et al.,
2022), relies on human annotations but is resource-
intensive. Single-model self-validation methods,
such as SelfCheckGPT (Manakul et al., 2023), de-
tect hallucinations through consistency checks but
are limited by the model’s inherent biases. Multi-
model comparison approaches, like LM vs. LM
(Cohen et al., 2023), validate data through cross-
checking but demand significant computational re-
sources. Dedicated scoring models, such as RAFT
(Dong et al., 2023), rank data using external reward
models but lack cross-task adaptability.

In contrast, our method leverages multiple LoRA
modules, addressing the limitations of single-
model and multi-model approaches. By evaluat-
ing confidence across LoRA modules, we reduce
computational overhead and mitigate biases with-
out relying on external models, offering a more
efficient and generalizable solution.

3 Method

This section outlines our method for adapting a
base model to unseen tasks using LoRA and its
composition, without relying on labeled data. We
begin by identifying the most stable and robust
LoRA modules based on their performance and
consistency with task-specific data. Next, we de-
scribe how pseudo-data is selected for adaptation

using a confidence-based approach. Finally, we
explain the layer-level fusion of selected LoRA
modules to fine-tune the model, enabling effective
generalization to the target task.

3.1 Preliminaries

LoRA (Hu et al., 2022) is a PEFT method that
adapts LLMs by introducing low-rank parameteri-
zations, while keeping the original weight matrix
Wy € R™*4 frozen. It adds two trainable low-rank
matrices: A € R"*? and B € R™*", and learns
only the update AW. The modified weight matrix
is:

MW (1)

LoRA Composition refers to the concept of com-
bining multiple LoRA modules to adapt the model
to unseen tasks. This is typically achieved by us-
ing a set of weights Weomp = {A1, ..., A}, where
each LoRA weight A;, B; is scaled by a factor \;
and fused into a single weight matrix AW.

N
AW = " \iBiA; )
=1

3.2 Framework

Our objective is to adapt base LLM My,s. to a
novel, unseen task T using a pool of pre-trained
LoRA modules L,00 = {L1,...,L;}, where
each LoRA module L is a fine-tuned LoRA mod-
ule. The task T consists of an unlabeled dataset
T = {x1,...,z,}, where each x represents a
query from 7'. Our approach enables generalization
to new tasks without task-specific supervision by
strategically selecting and combining the most rel-
evant LoRA modules through a two-step process:
First, we randomly select j task examples
T, = {z1,...,x;} where T, C T to represent
the task. Each LoRA model M, composed of
the base model My, and LoRA modules L;,
processes’, to generatea set of response pairs
Dr, = {(z1,7), .., (zk, Yr)}, where each g; is
the response of x; from M7, . We then introduce
perturbations to each x; using text attack method
(Morris et al., 2020), replacing random words in
the query with their synonyms to obtain a perturbed
variantZ; , and re-evaluate the response pairs Dto
assess the stability of each LoRA module with re-
spect to 1" . Based on this stability measure, we se-
lect the top/Nmost stable LoORA modules to form a
task-specific fusion group Lgwble = { L1, ..., Ly}
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Figure 2: The workflow diagram illustrates two key stages:

LoRA selection and pseudo-data acquisition. During the

LoRA selection stage, we combine the pseudo-label generated by each LoORA module with a perturbed version of
the input question, and then use the same LoRA module to recompute the confidence score. The difference between
the original and recomputed confidence scores is defined as the module’s stability, which serves as the criterion
for selecting LoRA modules. In the pseudo-data selection stage, the generated pseudo-data are passed through all
LoRA modules to compute their confidence scores, and the sum of these scores is used to identify high-quality

pseudo-data.

Next, using the selected example set T, we
sample pseudo-data points from a chosen LoRA
module L; in the selected modules pool Lgple

These pseudo-data points are then evaluated
by the other LoRA modules in Lg,pe for confi-
dence scoring. This process is repeated N times,
and all pseudo-data along with their confidence
scores are aggregated. From this pool, we se-
lect the top K highest-scoring data, denoted as
Deonfident = {(.731, Z)l)y RN (xK, 3}[{)} and we uti-
lize Lgtaple and Deonfident to fine-tune and adapt the
LoRA modules for the target task. This approach
ensures a effective adaptation process, even in the
absence of labeled data.

The following provides a more detailed descrip-
tion of the method.

3.3 Noise Injection and Stability-Based LoRA
Selection

To select the most robust LoRA modules in
Lyoor for task T, we evaluate each z € T
and apply a greedy search to generate the most
confident response § for each LoRA adapted
Model My, which composed by L; € L.
The confidence of My, for (z,y) is given
by: P((x,9)|9<®, Mp.), where (z,7<®) repre-
sents the preceding tokens of (x,7), defined as:
(z,5<W) = {x(l), Y A1 I ,g(t)}_

To quantify model confidence, we compute the
average conditional probability of (x, y) given its
preceding tokens across all time steps t:

t

LS P y)ly<®, M),

ot
k=1
3)
Next, we introduce noise into the input by ap-
plying the existing perturbation method noise(x)
(Morris et al., 2020), replacing a certain proportion
of words in x with their synonyms. This process
generates IV perturbed version " = noise(x).
To assess the stability of each LoRA module,
we compute the absolute difference in confidence
between the original and perturbed inputs:

d(a:, 4, MLZ) = C(‘Ta ¥, MLz) - C(*%a 9, MLZ)

“)

We then compute the average confidence change
across all perturbations:

C(x’ Y, MLZ)

N
-1
d:NZd(:v,fck, j, My, 5)
k=0
The stability score, denoted as scoresLt;blg, is de-

fined as the mean absolute deviation from d

L;

SCOTCaple

N
1 o )
k=0



Finally, after multiple noise samplings and averag-
ing the resulting stability scores, we select the N
LoRA modules with the smallest stability scores.
The selected set of robust modules is denoted as:

'Cstable = {le v 7LN}-

3.4 Pseudo-Data Generation and
Confidence-Based Selection

To generate high-quality pseudo-data for task adap-
tation, we employ a sampling-and-filtering ap-
proach. For each x € T, we perform N diverse
random samplings using the model M, gener-
ated by LoRA module L;, resulting in a pseudo-
dataset Dp, = {(z1,91), (x1,93), .- -, (0, 52)}.
We then compute the confidence score for each
(x,9) € D, scoregﬁr’g) using other LORA modules
L; € Lgaple, given by the following formula:

) T
scorelpnf) = = > Cla g, My)) (D)
j=0 t=0
where L; # L;. After sampling across

all modules in Lgape, we select the top-K
pseudo-data pairs of (z,7) as a set Deonfident =
{(.’I}l,ﬁl), e (I‘l,Z)K), R (.’I}N,:QK)} with the
highest scorecopr as training data, and use them
to adapt Lgaple-

3.5 LoRA Module Composition and
Adaptation

At this point, we have Lggpe and Deonfident-
Next, we construct a weight matrix Weomp €
RlayernumxLoRAnum £or |aver_level model fusion, re-
sulting in the composed model Momp. The adapta-
tion process can be expressed as follows:

N

Wcomp = argmax {E(Mcompu)conﬁdent)} (8)

comp

where the likelihood loss function is defined as:

N
»C(Mcomp|Dconﬁdent) - Z P(yi’Mcomp) (9)

i=1
Wcomp is the final adapted model for task 7.

4 [Experiments

In this section, we first describe the experimen-
tal setup, including the training and evaluation
datasets, along with the classification of evalua-
tion categories used in the main results. We then
detail the experimental process, covering LoRA

module training, selection, and the hyperparame-
ters for pseudo-data generation and filtering. Next,
we introduce the baseline methods used for compar-
ison to highlight the effectiveness of our approach.
Finally, we present the main results and ablation
studies.

4.1 Experimental Setup
4.1.1 Datasets and Task Partitions

The Super-NaturalInstructions (SNI) dataset (Wang
et al., 2022b) includes 76 distinct task categories
and 1,616 fine-grained task instances, each guided
by specific instructions. It serves as a strong bench-
mark for evaluating cross-task generalization. In
our experiments, we split the dataset into training
and testing sets: 56 categories (about 75%) are
used for training, and the remaining 20 categories
(25%) are reserved for evaluating performance on
unseen tasks.

For each training category, we train a separate
LoRA module using 10,000 randomly sampled in-
stances to ensure broad task coverage. During
evaluation, up to 2,000 instances are sampled per
category from the evaluation set to measure task-
specific performance efficiently. We use ROUGE-L
as the primary evaluation metric across all tasks.

For clarity, the 20 evaluation categories are
grouped into 7 broader tasks. Performance is av-
eraged across categories within each task, and the
overall average is also computed at the category
level.

4.1.2 Implementation Details

Base Model Configuration. We employ LLaMA-
7B (Touvron et al., 2023) as the base model in our
experiments. This open-source foundation model
is widely recognized for its strong performance
across a broad range of benchmarks, making it an
ideal starting point for our adaptation approach.
LoRA Training. To implement LoRA, we apply it
to all linear projection layers within the attention
mechanism, specifically targeting the query (q), key
(k), value (v) layers, as well as the feed-forward
layers of the attention mechanism. The adaptation
rank is set to 16, and a dropout rate of 0.01 is
used to prevent overfitting. We optimize the model
using the AdamW optimizer with a learning rate
and a batch size of 16, balancing computational
efficiency and training stability. Due to hardware
limitations, we restrict the maximum context length
to 1024 tokens.



LoRA Data Veri.  Quez.

Gen. Ana. Inter. Logi. ClIs. Avg.

empty zero-shot 734 2308 1061 626 729 787 7.27 10.23
all TA(Ilharco et al., 2023) | 34.94 23.15 2133 1743 32.06 9.88 31.08 245
random 38.58 1795 17.58 18.38 31.79 9.63 3041 23.53

all 3648 1953 1641 1733 31.17 10.04 29.53 2292

random  TA(Ilharco et al., 2023) | 393 1546
AM(Yang et al., 2024) | 39.0 14.36

18.82 182 3279 851 29.15 2339
185 18.6 3428 845 2849 2333

confidence 3898 17.74 1849 18.08 3195 95 3032 23.69
random 39.0 1436 185 18.6 3428 845 2849 2333
all 29.53 1846 1592 1194 29.89 10.28 28.0 2048

entropy  TA(Ilharco et al., 2023) | 25.24 15.04
AM(Yang et al., 2024) | 26.56 13.89

16.61 10.68 2893 981 29.7 19.26
172 105 309 852 29.89 19.56

confidence 28.38 15.61 17.07 11.52 30.64 9.76 29.86 20.3
random 3898 17.74 1849 18.08 3195 95 3032 23.69
all 37.87 2272 1954 119 34.05 7.48 3495 24.13

stability TA(Ilharco et al., 2023) | 37.44 21.07
AM(Yang et al., 2024) | 35.94 19.62
confidence 4092 2232

2024 1192 30.13 10.21 30.75 23.23
19.8 10.19 26.68 6.77 30.7 21.57
20.26 12.01 34.58 837 359 2495

Table 1: Performance Comparison of Different Methods

. The first two columns represent the LoRA selection

method and the pseudo-data selection method, respectively, and the last column represents the average performance

across 20 categories.

Token Replacement and Module Selection. To
select the most stable LoRA modules, we eval-
uate each candidate using five randomly chosen
queries. Stability is assessed by replacing 40% of
the tokens with synonyms using the TextAttack
framework (Morris et al., 2020) and measuring the
change in output confidence. The top 10 modules
with the smallest confidence drop are selected for
composition.

During data synthesis, each selected module gen-
erates 10 pseudo-training examples per query, re-
sulting in a final dataset of 1,000 examples from 10
different queries.

Pseudo-Data Acquisition.To encourage diversity,
we use sampling instead of beam search, setting
the temperature to 0.3 and applying a repetition
penalty of 2 (Keskar et al., 2019). This setup helps
generate varied and non-repetitive responses.
Model Merging and Adaptation. we set the learn-
ing rate to 5 x 104, with the number of epochs
set to 5 and a batch size of 10. This configuration
ensures that the adaptation process is completed
within 5 minutes on a single A100 80GB GPU.

4.2 Baselines

LoRA Module Selection. We compare our
stability-based selection with three alternatives:
random selection, minimum Shannon entropy se-
lection inspired by AdaMerging (Yang et al., 2024),

and a no-selection baseline.

Pseudo-Data Selection and Task Adaptation. We
evaluate our method against several baselines, in-
cluding zero-shot reasoning, Task Arithmetic (TA)
(Ilharco et al., 2023), and hierarchical AdaMerging
(AM). Additionally, we report results for variants
using random selection and no selection to provide
further comparison.

For Task Arithmetic, we set the combination
coefficient to %, where N is the number of LoRA
modules. In hierarchical AdaMerging, the learning
rate for learning combination coefficients is set
to 5 x 1074, To ensure fair comparison, we fix
the number of training epochs to 50, matching the
training steps used in our proposed method.

4.3 Main Results

Our main results, presented in Table 1, demonstrate
that the two-stage approach—combining stability-
based LoRA selection with confidence-based data
selection—achieves state-of-the-art performance,
reaching an average accuracy of 24.95% across all
tasks. This marks a 144% relative improvement
over the zero-shot baseline (10.23% — 24.95%).
Our method consistently outperforms existing fu-
sion techniques, delivering absolute gains of 6.7%
over Task Arithmetic (23.39%) and 15.7% over
AdaMerging (21.57%). Notably, it sets new state-
of-the-art results in Verification(40.92%, +1.6%)



and Classification (35.9%, +5.8% over full-data
baselines). Moreover, it surpasses Task Arithmetic
in 5 out of 7 tasks, with substantial improvements
of 3.8% in Verification and 6.8% in Classification.
While our method consistently outperforms zero-
shot learning across all tasks, Logic remains par-
ticularly challenging, with all approaches scoring
below 10.28%.

4.4 Ablation Studies
4.4.1 The Efficiency of LoRA selection

selection method

m= random

== entropy
stability

average rank

LoRA count

Figure 3: Average rank for selection methods

To better demonstrate the effectiveness of LoORA
selection, we evaluate 54 trained LoRA modules
across 20 categories per test. For each task, we
measure the performance of each LoRA module
(detailed in the Appendix Figure ??) and rank them
in descending order based on their performance.
The average rankings are presented in Figure 3.
The results clearly show that, compared to random
selection and entropy-based selection, our stability-
based method consistently selects LoRA modules
with higher average ranks, highlighting its effec-
tiveness.

5 Analyze and Discussion

In this section, we analyze how different LORA
module selection strategies impact final model per-
formance and investigate the underlying reasons for
the observed variations. We also provide a detailed
account of our pseudo-data generation process and
discuss why the performance of generated pseudo-
data often differs significantly from that of the final
adapted models.

5.1 The Efficiency of Pseudo-data selection

Table 1 shows that among the three LoRA selec-
tion methods, our confidence-based pseudo-data
selection outperforms Task Arithmetic in 12 out of
14 tasks, except for random LoRA selection. Addi-
tionally, it achieves a higher overall average in two

of the three methods. Within the stability-based ap-
proach, our method surpasses other data selection
methods in 4 out of 7 tasks, further validating the
effectiveness of our pseudo-data selection method.

5.2 Stability-Driven LoRA Selection and
Task-Specific Capabilities
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Figure 4: Average rank variance for selection methods

To explore the link between model stability and
task performance, we analyzed the variance in av-
erage rankings across different LoRA fusion set-
tings (5, 10, 15, and 20 modules), as shown in
Figure 4. Together with Figure 3, the results show
that our stability-based selection method tends to
yield higher variance. This indicates that the se-
lected modules are often more extreme in quality,
as stability alone does not always reflect actual per-
formance. While some low-confidence modules
may be selected, stronger models typically show
greater stability and confidence, making them more
reliable and robust for task adaptation.

5.3 Results from the Synergistic Effects

We argue that using stability-based module se-
lection or confidence-based pseudo-data filtering
alone is not sufficient for optimal results. Stability-
based selection often includes both strong and weak
modules, which can degrade adaptation if used
without filtering. However, this diversity enables
the generation of more varied pseudo-data—some
very good, some poor. By applying multi-module
confidence filtering, we can effectively discard the
low-quality examples and retain the high-quality
ones. This combination leads to better overall per-
formance and outperforms baseline methods.

5.4 Pseudo-Data Selection Effectiveness and
Performance Gap After Adaptation

As shown in Figure 5a, our confidence-based
method consistently outperforms both random se-
lection and no selection across all four LoRA
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Figure 5: The line charts illustrate the performance evaluation results using stability-based LoRA selection with 5,

10, 15, and 20 LoRA modules.

counts. However, comparing the confidence-based
results in Figure 5a with those in Figure 5b reveals
a significant performance gap: while the pseudo-
data alone yields a score of only 3.86, the final
adapted model (e.g., LORA count = 10) achieves
an average of 24.54. We attribute this to the impor-
tance of restoring the effectiveness of individual
LoRA modules during adaptation. Proper pseudo-
data adaptation helps fully leverage each merged
module. Importantly, our confidence-based method
selects data that better aligns with the target task.
However, as shown by the trends for LoRA counts
of 10, 15, and 20, excessive training can lead to
overfitting, causing performance to decline over
time.

5.5 Variance-Induced Performance Decline
and Adaptive Mitigation in LoRA
Configurations

In Figure 5b, we observe that the performance for
LoRA count =5 is noticeably lower than for other
counts. We propose several possible explanations.
As shown in Figure 4, the performance variance
for LoRA count = 5 is high, suggesting that the
stability-based selection method may have included
both strong and weak LoRA modules. With only
five modules, each one has a significant impact,
so a poorly performing module can greatly reduce
the overall performance of the merged model. This
also explains the unique trend in Figure 5b: as train-
ing progresses, the influence of the weaker module
diminishes, resulting in a steady performance im-
provement across epochs.

5.6 Impact of LoORA Count and Epochs on
Task Performance

As shown in Figure 5b, the best performance is
achieved when the LoRA count is 10. However, in
Figure 5a, the pseudo-data performance for LoRA
count = 10 is relatively poor. This suggests that
pseudo-data selection alone is not the sole factor
determining the performance of the merged model.
Effective adaptation also requires selecting suffi-
ciently strong LoRA modules to enhance perfor-
mance, choosing an appropriate number of LoRA
modules to mitigate the impact of poorly perform-
ing ones, and setting a suitable number of training
epochs to properly adapt different LoRA modules.

6 Conclusion

In this paper, we introduced an unsupervised LoRA
composition method to improve cross-task general-
ization without labeled data. Our approach selects
robust LoORA modules based on stability, generates
pseudo-data, and applies confidence-based filtering
using other modules in the selected pool. A new
model is then composed and adapted specifically
for the target task. We evaluated our method on the
SNI dataset, grouping 20 categories into 7 broader
tasks. Through extensive analysis, including abla-
tions and case-specific insights, we demonstrated
that our approach outperforms baseline methods on
3 out of 7 tasks, highlighting its effectiveness for
generalizing to unseen tasks in a label-free setting.



Limitation

Performance limitations. Our proposed module
integration method is designed for fully label-free
task settings, where the integration coefficients are
trained solely based on pseudo-labels generated by
the model itself. As a result, the learned coeffi-
cients primarily serve to align and combine mod-
ules, offering limited performance gains. In con-
trast, integration methods that utilize labeled data
can typically achieve a significantly higher perfor-
mance ceiling.

Requirement for module uniformity. In the cur-
rent implementation, all LoRA modules to be in-
tegrated must share the same rank. Modules with
differing ranks cannot be fused, which imposes a
constraint on module compatibility and limits flexi-
bility in practical deployment.

Instability induced by stability-based selection.
This stability-based selection criterion may lead
to the inclusion of both consistently helpful and
consistently detrimental modules, potentially un-
dermining task performance. Therefore, it cannot
be used as a standalone module selection strategy
and must be combined with our confidence-aware
pseudo-data selection method.
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A Evaluate Category List and Its
Classification

To facilitate evaluation, we divided the 20 test cate-
gories into 7 tasks based on specific principles. For
details, see Table 2.

B knowledge Base LoRA performance

We evaluated the performance of the LoORA mod-
ules trained on 54 categories against the test cate-
gories. As shown in Figure 6, some tasks exhibit
relatively lower performance, while a number of
isolated high-performance spots are also observed.
This indicates that there are notable differences in
performance among the LoRA modules trained on
different categories.
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Figure 6: Heatmap of the trained LoRA module‘s rouge
score of evaluation tasks. The x-axis represents evalua-
tion tasks, while the y-axis corresponds to trained LoORA
modules.
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Task Sign Category
. . . fact verification, stereotype detection, stance detection
Verification | Veri. . .
Verify factual accuracy or detect bias.
.. uestion rewriting, question understanding , question answerin
Questioning | Quez. d &4 . £ q‘ &
Process, rewrite, or answer questions.
. title generation, dialogue generation, text matching, fill in the blank
Generation Gen. . .
Generate or optimize text for specific goals.
. os tagging, word semantics, word analo
Analysis Ana. P £8 .g .. . gy
Analyze linguistic structure and semantics.
. speaker identification, negotiation strategy detection, intent identification
Interaction Inter. . - .
Manage dialogue and negotiation strategies.
Loic Logi sentence ordering, text to code
£ gl Handle structured reasoning tasks.
. . text categorization, text quality evaluation
Classification | Cls. & quatity

Categorize or evaluate text quality.

Table 2: The table describes the classification of categories and their core tasks.
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