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ABSTRACT

Quantum Monte Carlo coupled with neural network wavefunctions has shown
success in computing ground states of quantum many-body systems. Existing op-
timization approaches compute the energy by sampling local energy from an ex-
plicit probability distribution given by the wavefunction. In this work, we provide
a new optimization framework for obtaining properties of quantum many-body
ground states using score-based neural networks. Our new framework does not
require explicit probability distribution and performs the sampling via Langevin
dynamics. Our method is based on the key observation that the local energy is
directly related to scores, defined as the gradient of the logarithmic wavefunc-
tion. Inspired by the score matching and diffusion Monte Carlo methods, we
derive a weighted score matching objective to guide our score-based models to
converge correctly to ground states. We first evaluate our approach with exper-
iments on quantum harmonic traps, and results show that it can accurately learn
ground states of atomic systems. By implicitly modeling high-dimensional data
distributions, our work paves the way toward a more efficient representation of
quantum systems.

1 INTRODUCTION

Understanding the properties of quantum systems lies at the core of many scientific disciplines, such
as condensed matter physics, material science, and quantum chemistry. A quantum system is char-
acterized by its ground state wavefunction, formally obtained by solving the Schrödinger equation.
However, directly solving the Schrödinger equation for quantum systems with many particles is im-
practical due to the exponentially large Hilbert space. Owning to its strong dimension reduction
capabilities, deep learning methods have been used as a strong candidate to approximately solve the
Schrödinger equation and extract properties of quantum systems with the desired accuracy. For ex-
ample, under the supervised learning setting, deep learning methods have been successfully applied
to predict the quantum properties of molecular systems based on training data generated from den-
sity functional theory (DFT) calculation (Schütt et al., 2017; Gasteiger et al., 2020; Liu et al., 2022;
Wang et al., 2022). However, supervised methods rely on expensive computational simulations to
generate a large amount of training data, and the accuracy of these methods is fundamentally limited
by the data quality. Furthermore, DFT calculations involve various approximations and are not guar-
anteed to reach true ground states. A common scheme for approximately solving the Schrödinger
equation is the variational principle, which optimizes a trial wavefunction to reach the ground state
by minimizing its energy as much as possible via quantum Monte Carlo (QMC). Such a method
is called variational Monte Carlo, whose accuracy relies on the expressive power of the trial wave-
function. Recently, deep learning methods coupled with variational Monte Carlo have unleashed the
potential of both methods (Carleo & Troyer, 2017; Hermann et al., 2022). Powered by the efficient
sampling and optimization framework of quantum Monte Carlo and the universal approximation
capability of deep neural networks, neural wavefunctions can accurately model quantum states, and
dramatic improvements have been achieved (Pfau et al., 2020; Hermann et al., 2020).

Modeling a wavefunction is conceptually similar to modeling a probability density. Existing meth-
ods model the wavefunction explicitly by training a neural network to directly output the wavefunc-
tion values. However, numerous examples in machine learning have shown that implicitly modeling
data distributions provides better representations (Kingma & Welling, 2014; Goodfellow et al., 2014;
Ho et al., 2020). As our direct reference, score-based methods have demonstrated their strong suc-
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cess in generative modeling (Song & Ermon, 2019; Song et al., 2020). A score is defined as the
gradient of the log probability. For example, realistic images can be generated from random noise
by following dynamics defined by scores. In this paper, we show that the quantum wavefunction can
be represented by score models and be optimized within the QMC framework.

Our motivation to relate score-based models with QMC is based on an interesting connection be-
tween energy computations and score-based formulations. In QMC, the energy of a system is av-
eraged over local energy of plausible quantum states. Our observation is that local energy only
involves gradients of the logarithmic wavefunction, which we define as the score of the wavefunc-
tion. As a result, to minimize energy, the score must be explicitly computed. On the other hand, the
actual wavefunction values are only used for sampling and optimization. To this end, we propose a
new optimization framework for QMC where sampling and optimization are also achieved by using
score functions alone, eliminating the need to explicitly compute the wavefunction value. In our
proposed score-based framework, the sampling is done via Langevin dynamics and optimization is
done through a new loss function inspired by diffusion Monte Carlo.

Our score-based method enables the possibility of performing QMC computation with only score
functions, which is infeasible in existing optimization frameworks. A direct benefit is that, by pre-
dicting gradients, we avoid the need to recompute it from the wavefunction. Moreover, score func-
tions can be interpreted as the force of quantum systems, by implicitly modeling distributions with
score functions, the dynamics of quantum systems could be better captured. Our experimental re-
sults show that with our score-based optimization framework, ground states of quantum systems can
be accurately learned.

2 BACKGROUND AND RELATED WORK

2.1 QUANTUM MANY-BODY WAVEFUNCTION IN CONTINUOUS SPACE

We use x ∈ RN×d to denote the coordinates of N particles in d-dimension. The quantum state of a
system is defined by its wavefunction ψ : RN×d → R. By definition ψ is normalized (

∫
x
|ψ(x)|2 =

1) and |ψ(x)|2 gives the probability density of observing x. Any wavefunctionψ can be expressed as
linear combination of eigenfunctions ψn, which are solutions to the time-independent Schrödinger
equation Ĥψn(x) = Enψn(x), where Ĥ is an linear operator known as the Hamiltonian, and En is
a scalar giving the energy of the n-th eigen state. The Hamiltonian is defined as

Ĥψ(x) = −1

2

∑
i

∇2
iψ(x) + V (x)ψ(x), (1)

where the index i runs over all of the N × d dimensions in the summation. The first term in
the Hamiltonian takes the sum of the second-order partial derivatives of the wavefunction and is
related to the kinetic energy of the system. The second term in the Hamiltonian multiplies the
wavefunction by a scalar value and is related to the potential energy of the system. The kinetic
term is intrinsic to the Schrödinger equation and always takes the same form, whereas the potential
function V : RN×d → R varies for different physics problems. Note that although a wavefunction
can be complex-valued in general, we can let ψ be real-valued because Ĥ is real.

Our objective is to find the ground state ψ0, which is the eigen state associated with the lowest
energy E0. In our notation, the coordinates x can be either viewed as N d-dimensional vectors or
as a flattened N · d dimensional vector. In the rest of this paper, depending on the context, we may
use bold xi to denote the i-th particle or use the regular font xi to denote the i-th scalar component
of the flattened vector.

2.2 VARIATIONAL MONTE CARLO

The variational Monte Carlo (VMC) method uses a parameterized function ψθ : RN×d → R (called
the Ansatz) to model a wavefunction, where θ denotes the parameters to be optimized. The normal-
ization of ψθ is not required. The energy expectation of ψθ is computed as:

L(θ) =
∫
ψθ(x)Ĥψθ(x)dx∫
ψθ(x)ψθ(x)dx

=

∫
ψθ(x)

2 Ĥψθ(x)
ψθ(x)

dx∫
ψθ(x)2dx

= Ex∼ψ2
θ

∫
ψ2

θ
EL(x;θ), (2)
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where EL(x;θ) =
Ĥψθ(x)
ψθ(x)

is called the local energy of x. The expectation is evaluated numerically
on sparse samples. Markov Chain Monte Carlo (MCMC) sampling is employed to drive sample
distribution to converge to the target density ψ2

θ/
∫
ψ2
θ.

We can approach ground state wavefunctions by minimizing the energy expectation with gradient
descent. The unbiased gradient of L(θ) w.r.t. parameters θ is given by:

∇θL(x) = 2Ex∼ψ2
θ/

∫
ψ2

θ

[(
EL(x;θ)− Ex∼ψ2

θ/
∫
ψ2

θ
[EL(x;θ)]

)
∇θ log |ψθ(x)|

]
, (3)

where expectations are evaluated by average over samples. The derivation of this loss makes use of
the fact that Ĥ is Hermitian (Ceperley et al., 1977). A detailed derivation can be found in Appendix
E of Lin et al. (2021). The optimized energy expectation value gives the approximated ground state
energy, and the eigenvalue formulation ensures the estimation to be variational, that is, the energy
expectation defined by the Ansatz is always above the true ground state energy. Other properties of
quantum systems can also be estimated by taking expectations over corresponding operators.

2.3 RELATED WORK

Neural quantum state based on the restrictive Boltzmann machine was initially studied for simple
quantum spin models on lattices (Carleo & Troyer, 2017). More complicated neural network archi-
tectures, such as convolutional neural network and graph neural network are then extended to more
complicated spin systems to capture frustration due to the lattice structure and next nearest neigh-
boring interaction (Kochkov et al., 2021; Fu et al., 2022). Similar ideas are also studied for ab-initio
simulation in quantum chemistry (Han et al., 2019) to study properties of small molecules. Recently,
FermiNet Pfau et al. (2020) and PauliNet Hermann et al. (2020) greatly improve the accuracy of neu-
ral wavefunction and apply to larger molecular systems. Follow-up works contribute to improved
performance (Gerard et al., 2022), joint training for multiple geometries (Gao & Günnemann, 2021;
Scherbela et al., 2022; Gao & Günnemann, 2022) or solving for excited state (Entwistle et al., 2022).
All of the existing methods use neural networks to explicitly model the wavefunction, while in this
work we propose to implicitly model the quantum state using the score function.

Diffusion Monte Carlo (DMC) (Toulouse et al., 2016; Ceperley, 2004) employs score-based diffu-
sion to improve upon VMC. In VMC, the quality of approximations is limited by the capacity of
Ansatz. DMC additionally assigns a weight for each sample in a way that the weighted distribution
gives a better approximation of ground state. In DMC’s formulation, each sample is defined by a
walker, and each walker is assigned a weight. In importance-sampled DMC, a trial function ψT is
used. At each iteration, the walkers randomly diffuse by following score of the trial function and
the weights are updated according to the imaginary time evolution so that the repeated diffusing
and weighting procedure projects out ground states from the trial wavefunction. At convergence,
the ground state energy is estimated by the weighted average of local energies. Ceperley & Alder
(1980) applies DMC to electonic gas. Ren et al. (2022) and Wilson et al. (2021) apply fixed-node
DMC starting from the optimized FermiNet Ansatz.

Score-based methods have shown great success in generative modeling (Song & Ermon, 2019; Song
et al., 2020). The effectiveness of implicit density modeling has also been demonstrated by other
successful generative models, such as VAEs (Kingma & Welling, 2014), GANs (Goodfellow et al.,
2014; Brock et al., 2018), and diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020).

3 METHOD

For the Hamiltonian Ĥ defined in Equation 1 the local energy can be expressed in terms of the
logarithmic wavefunction as:

EL(x;θ) = −1

2

∑
i

(
∂2 log |ψθ(x)|

∂x2i
+

(
∂ log |ψθ(x)|

∂xi

)2
)

+ V (x). (4)

One can easily prove this expression by using the fact that ∂ log |ψθ(x)|
∂xi

= 1
xi

∂ψθ(x)
∂xi

. If we take a
closer look at this expression, we can notice that the local energy depends only on the gradient of
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Figure 1: Comparison between the pipeline of VMC and our proposed DiffVMC. In VMC, the
wavefunction is explicitly modeled with a neural network, who directly outputs the wavefunction
value. The sampling is carried out with MCMC and the optimization is achieved by minimizing
the energy loss. In the proposed DiffVMC we instead model the score of the wavefunction. The
samples are generated via Langevin dynamics and the proposed weighted score matching objective
is employed to optimize the score neural network.

the logarithmic wavefunction. In fact, if we define the function sθ : RN×d → RN×d such that
sθ(x)i =

∂ log |ψθ(x)|
∂xi

, we can rewrite the local energy as:

EL(x;θ) = −1

2

(
tr(∇xsθ(x)) + ∥sθ(x)∥2

)
+ V (x). (5)

The function sθ is called the quantum force or the drift in quantum Monte Carlo. Here we follow
the convention from the machine learning community and call it the score. This direct connection
between local energies and scores motivates us to ask the question: can we represent quantum states
using only sθ? As a direct benefit, this can avoid recomputing the first-order derivatives in evaluating
the local energy and consequently provide a more succinct representation. It is true that we will lose
access to the unnormalized wavefunction. However, in practice, our primary goal is to estimate
observables, such as kinetic energy or density, which can be estimated from sample distributions.

To this end, our score-based optimization framework follows the gradient descent formulation in
VMC, and we design a new loss function inspired by DMC. As we mix the flavors of these two
methods, we call our new optimization framework the Diffusion Variational Monte Carlo (Dif-
fVMC). The pipelines of VMC and DiffVMC are shown in Figure 1.

Please note that the original score (Hyvärinen & Dayan, 2005) is defined in terms of probability
densities, so we have soriginal(x) = ∇x log p(x) = ∇x logψ(x)2 = 2∇x log |ψ(x)|, which is twice
of the score in our definition. By abuse of notation we define our score in terms of wavefunctions.
We do this for two reasons. First, wavefunctions are more natural to deal with in quantum mechanics.
Second, as we will show later, in addition to moving samples locally, we also use sθ(x) to describe
distributions, which shares the same physical meaning as the original score definition.

3.1 SCORE-BASED NEURAL WAVEFUNCTION ANSATZ

We use a parameterized score function to implicitly model the wavefunction. Formally, for sys-
tems with N particles in d dimension, its score function sθ : RN×d → RN×d maps a set of input
coordinates to a set of output scores, which are vectors having the same dimensions as inputs. In-
tuitively, after training, the output score should tell the particles the direction toward regions with
higher density.

In our case, we are dealing with indistinguishable particles in quantum mechanics. So ex-
changing two particles will not change the probability density: ψ(. . . ,xi, . . . ,xj , . . . )

2 =
ψ(. . . ,xj , . . . ,xi, . . . )

2. As a result, the score, which is the gradient of a logarithmic wavefunction,
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is permutation equivariant. Formally,

∇xi log |ψ(. . . ,xi, . . . ,xj , . . . )| = ∇xj log |ψ(. . . ,xj , . . . ,xi, . . . )|. (6)

Essentially the equivariance means that if two input particles exchange their positions, their cor-
responding output score vectors will also exchange positions. The proof is straightforward (Ap-
pendix B). We parameterize the score function with a neural network. The equivariance can be
easily achieved by considering the input coordinates as a set (Zaheer et al., 2017; Qi et al., 2017).

3.2 SAMPLING VIA LANGEVIN DYNAMICS

To generate samples that follow the distribution implicitly defined by the score, we use Langevin
dynamics, which is similar in the score-based generative models (Song & Ermon, 2019). Given the
samples at the current time step xt, the coordinates for the new samples are computed as:

xt+1 = xt +
√
αϵ+ αsθ(xt), (7)

where α is an hyperparameter defining the step size, and ϵ ∼ N (0, INd) is a random vector sampled
from the standard multivariate Gaussian distribution. The process is the same as in DMC and can be
understood as first doing a random diffusion, then drifting by following scores. We can prove that
when α is small, the distribution converges to the distribution defined by the score function.

In Langevin dynamics, similar to the Metropolis-Hasting rejection step in MCMC, an accept/reject
procedure can be employed to alleviate the finite time error. Although omitted in the context of
generative modeling Song & Ermon (2019), this is a standard step in DMC. The original rejection
step computes the ratio

P acc =
exp

(
− 1

2α∥x− x′ − sθ(x
′)α)∥2

)
ψθ(x

′)2

exp
(
− 1

2α∥x′ − x− sθ(x)α∥2
)
ψθ(x)2

. (8)

After each Langevin dynamics move, we decide whether to accept or reject the move based on the
P acc. Concretly, we first sample a random number uniformly between 0 and 1. The move is accepted
if P acc is larger than the random number and is rejected otherwise. However, the expression of P acc
involves the wavefunction values ψθ(x) and ψθ(x

′), which are generally not available in our score-
based framework. To still be able to use the rejection step, we propose an approximated estimation
of P acc which involves only the score function. This is achieved by approximating log |ψθ(x

′)|
|ψθ(x)| =

log |ψθ(x
′)|−log |ψθ(x)| using the average gradient 1

2 (∇x log |ψθ(x)|+∇x log |ψθ(x
′))|, then we

can show that the ratio can be approximated only in terms of the score as (derivation in Appendix C):

P acc ≈ exp
(α
2
(∥sθ(x)∥2 − ∥sθ(x′)∥2)

)
. (9)

3.3 NEURAL WAVEFUNCTION OPTIMIZATION

The energy loss in VMC (Equation 3) depends explicitly on wavefunctions. The expression of the
energy loss only in terms of scores is unknown. So we need to find a new loss to optimize scores
towards ground states. We motivate our new loss from the imaginary time evolution in DMC.

The imaginary time evolution operator e−τĤ projects out ground states when τ → ∞. At short τ ,
by Taylor expansion, e−τĤψ(x) ≈ ψ(x) − τĤψ(x) = ψ(x)(1 − τ Ĥψ(x)

ψ(x) ) ≈ e−τEL(x)ψ(x).
Thus, evolving ψ(x) in imaginary time for a short time τ can be approximated as:

ψ(x) 7→ ψ′(x) = e−τEL(x)ψ(x). (10)

ψ′ is closer to the ground state than ψ because higher energy eigenstates decays exponentially faster
than the ground state. Therefore, for our score-based model, we can minimize energies by letting
sθ(x) approach the evolved score ∇x log |ψ′(x)|. We achieve this via score matching.

Score matching (Hyvärinen & Dayan, 2005) provides a way to make sθ converge to the true score
of the sample distribution. Assume at current step the samples follow ψ2/

∫
ψ2 and sθ(x) =

∇x log |ψ(x)|, we can make sθ(x) converge to ∇x log |ψ′(x)| by minimizing the implicit score
matching (ISM) objective:

ISM(θ) = 2Ex∼ψ′2/
∫
ψ′2
[
tr(∇xsθ(x)) + ∥sθ(x)∥2

]
. (11)
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The problem is that we do not have samples following ψ′2/
∫
ψ′2. We can solve this by transforming

the ISM into a weighted version based on current samples:

ISM(θ) =
2
∫
ψ′2(x)

[
tr(∇xsθ(x)) + ∥sθ(x)∥2

]
dx∫

ψ′2(x)dx
(12)

=
2
∫
ψ2(x)e−2τEL(x)

[
tr(∇xsθ(x)) + ∥sθ(x)∥2

]
dx∫

ψ2(x)dx

∫
ψ2(x)dx∫
ψ′2(x)dx

(13)

= 2Ex∼ψ2/
∫
ψ2 exp(−2τEL(x))

[
tr(∇xsθ(x)) + ∥sθ(x)∥2

]
dx · C, (14)

where C =
∫
ψ2(x)dx∫
ψ′2(x)dx

=
∫
ψ(x)2dx∫

exp(−2τEL(x))ψ(x)2
=
(
Ex∼ψ2/

∫
ψ2 exp(−2τEL(x))

)−1

is a constant
independent of θ. In practice, using small τ makes the loss too small, we thus replace 2τ with a
hyperparameter β. We also subtract the sample mean of local energies to improve numerical stabil-
ity. Put everything together, given a batch of M samples, we define the weighted score matching
(WSM) objective as:

EL(x) = −1

2

(
tr(∇xsθ(x)) + ∥sθ(x)∥2

)
+ V (x) (15)

Ediff(xi) = EL(xi)− ⟨EL⟩ = EL(xi)−
1

M

M∑
i=1

EL(xi) (16)

WSM(θ) = 2

M∑
i=1

exp
(
−βEdiff(xi)

)∑M
i=1 exp

(
−βEdiff(xi)

) [tr(∇xsθ(xi)) + ∥sθ(xi)∥2
]

(17)

= 2

M∑
i=1

softmax
(
−βEdiff(xi)

)
i︸ ︷︷ ︸

Does not differentiate w.r.t. θ

[
tr(∇xsθ(xi)) + ∥sθ(xi)∥2

]︸ ︷︷ ︸
Differentiate w.r.t. θ

, (18)

where softmax(a)i = exp(ai)∑
i exp(ai)

. Note that the weighting terms are treated as constant when
differentiating the loss w.r.t. the parameters θ. Only the ISM terms require computing gradient
during back-propagation. This weighting scheme is similar to the attention mechanism in machine
learning where the attention scores are based on the local energies and β plays a similar role to the
temperature variable in the Gumbel softmax (Jang et al., 2016). As a interesting observation, the
ISM (Equation 11) is -4 times the kinetic part in local energy. So we only need to compute one of
them and reuse the computation.

We can prove that WSM is unbiased by using the zero-variance property of ground states. At ground
states we have Ĥψ0(x) = E0ψ0(x). Hence EL(x) = Ĥψ0(x)

ψ0(x)
= E0. Consequently, the WSM

weights will be identical at ground states and equal to 1 due to softmax. As a result, the WSM loss
reduces to the regular ISM loss at the ground state. Moreover, thanks to Langevin dynamics, every
state is a local minimum of the ISM loss because the estimated score is the same with the true score
of the sample distribution. Hence the ground state is a local minimum of the WSM loss.

Also due to the zero-variance property, when close to ground states, the weights should be close
to 1. We can create more imbalanced weights by further normalizing Ediff by dividing its standard
deviation. We thus have the Scaled-WSM defined as:

Scaled-WSM(θ) = 2

M∑
i=1

softmax

(
−β Ediff(xi)

std
(
Ediff

))
i

[
tr(∇xsθ(xi)) + ∥sθ(xi)∥2

]
. (19)

As in VMC, we update θ according to the loss for one step, then we run Langevin dynamics for
several steps to make samples follow the updated score. In our experiments, we use β ∼ 1. So
the short time approximation from imaginary time evolution does not hold strictly. However, since
each time we only update parameters for a small step size and that the target wavefunction ψ′ is
constantly updated, the approximation may still be valid to some extend. But this should be more as
an intuition than as an proof. To have further intuition for the convergence behavior, we can compare
the WSM loss to the energy gradient 3. In fact, in both cases, we try to increase the probability
density for regions with smaller local energies and decrease the probability density for regions with
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larger local energies. However, by far we do not have a rigorous proof for the convergence property.
Nevertheless, in our experiments, systems converge to ground states consistently with the proposed
WSM loss.

3.4 THE DIFFUSION VARIATIONAL MONTE CARLO ALGORITHM

The overall procedure is similar to VMC. We first perform several steps of Langevin dynamics
to equilibrate the sampling. Then we compute the weighted score matching loss and update the
network parameters via gradient descent. The algorithm is summarized in Algorithm 1.

Algorithm 1 Diffusion Variational Monte Carlo (DiffVMC)

Input: Randomly initialized sample x, score network sθ, step size α, number of iterations T ,
number of Langevin dynamics step Nld

Output: New sample x, optimized score network sθ
for t = 1 to T do

for i = 1 to Nld do
x′ = x+

√
αϵ+ αsθ(x), ϵ ∼ N (0, I) ▷ Langevin dynamics (Section 3.2)

P acc = exp
(
α
2 (∥sθ(x)∥

2 − ∥sθ(x′)∥2)
)

Sample z ∼ U(0, 1)
if P acc > z then

x = x′ ▷ Accept the move
end if

end for
loss = Scaled-WSM(θ) ▷ Weighted score matching objective (Section 3.3)
Update θ via gradient descent to minimize the loss.

end for

4 EXPERIMENTS

We first show that our score-based method correctly finds the ground state by solving the harmonic
trap. Then we showcase the applicability of our method on simple atomic systems, i.e., interacting
fermions with coulomb potential. We will release our code after the review process.

4.1 WAVEFUNCTION ANSATZ FOR BOSONS AND FERMIONS

Since the unnormalized density ψ2(·) is invariant under exchange of particle positions (Section 3.1),
there are two cases for wavefunction values. The first case is that the wavefunction does not
change its sign, i.e., ψ(. . . ,xi, . . . ,xj , . . . ) = ψ(. . . ,xj , . . . ,xi, . . . ), such particles are called
bosons. The second case is that the wavefunction change its sign, i.e., ψ(. . . ,xi, . . . ,xj , . . . ) =
−ψ(. . . ,xj , . . . ,xi, . . . ), such particles are called fermions. These different symmetries will funda-
mentally change ground states. The fermion ground state must consider the antisymmetric constraint
and has higher ground state energy than the boson ground state.

Bosons. We use a feed-forward neural network (Figure 3a) composed of multi-layer perceptrons
(MLPs) which satisfies the permutation equivariance (Zaheer et al., 2017; Qi et al., 2017). Input
features are coordinates and distances to the center. Each particle is simultaneously transformed
into two feature vectors with two different MLPs. We perform average pooling for the first feature
vector over all particles and obtain a global feature. The global feature is then concatenated with
the second feature vector. A final MLP is used to predict the score of each particle. All MLPs are
shared among different particles.

Fermions. The antisymmetric property of fermions is very challenging to model (Ceperley, 1991).
Different from bosons, due to the change of sign, the fermion wavefunction has both positive regions
and negative regions. The region where the wavefunction equals zero is called the nodal surface (or
the node). In 1-d, the nodal surface is exactly the set where two particles coincide. However, for
higher dimension the nodal surface can be arbitrary. The fermion sign structure gives rise some
intrinsic difficulties to parametrize the score function.The score function diverges inversely propor-
tionally to the distance away from the nodal surface (Umrigar et al., 1993). Since neural networks
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(a) Bosons (b) Fermions

Figure 2: Train energies for bosons and fermions in 2d quantum harmonic trap. N is the number of
particles. All runs converge correctly to ground states, despite slight fluctuations for fermions.

essentially models continuous functions, using feed-forward neural networks to model the score
function is prohibitive. In fact, even the networks manage to approximately model the discontinuity,
in order to compute the local energy we also requires the derivatives of the score to be accurate,
which is more difficult.

Nevertheless, we are still able to illustrate how our score-based framework works with fermions. We
can do so by modeling the score as the gradient of an antisymmetric wavefunction Ansatz. We use
the score computed from FermiNet (Pfau et al., 2020), where Slater determinants are employed to
ensure the antisymmetry. We call it ∇xFermiNet (Figure 3b). Although by doing so the wavefunc-
tion value is practically computed, our goal is to evaluate the our method in this more challenging
fermion setting. Currently this stands as the only feasible option to overcome fermion sign problem.
More generally we can model scores for fermions as the sum of the gradient of an antisymmetric
wavefunction and a symmetric wavefunction:

sFermion(x) = ∇xfθ1
(x) + gθ2

(x)− x. (20)

In our setting, fθ1
is FermiNet and we can model gθ2

using a feed-forward network (FFN). In our
experiment, FFN uses FermiNet encoder to get a feature vector for each particle, which is then
mapped to score via a linear layer. The output of FermiNet score and FFN score are summed
together to get the final score. We call it ∇xFermiNet+FFN (Figure 3c). We do −x to ensure
density vanishes at boundary.

4.2 2D QUANTUM HARMONIC TRAP

The Schrödinger equation with harmonic potential

VQHO(x) =
1

2
∥x∥2. (21)

describes a quantum harmonic oscillator, one of the most famous quantum systems that is solv-
able. The energy levels and eigenstates are known analytically. In particular, for n bosons in
the d dimensional harmonic potential, the ground state energy and wavefunction are E = nd

2 ,
|ψ⟩ = 1

2nd/2 exp(− 1
2∥x∥

2). Therefore, the quantum harmonic oscillator provides an analytical
benchmark for our numerical method. Furthermore, despite its simplicity, the quantum harmonic
oscillator is of important experimental relevance and can be realized in cold atom systems by
trapping atoms using lasers (Dalfovo et al., 1999). Ground states for fermions are more com-
plex due to the antisymmetry constraint. The ground state energies are En =

∑n
i=1 ei where

e = 1, 2, 2, 3, 3, 3, 4 . . . and the ground state wavefunctions are Slater determinants of Hermite
polynomials. ∇xFermiNet+FFN is used here. We conduct simulation with various number of parti-
cles. The results are shown in Figure 2. All runs converge correctly to ground states.
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4.3 ATOMIC SYSTEMS

For atoms, we work in the Born-Oppenheimer where we assume the atoms are fixed in space and
only the electrons are allowed to move. Hence, our inputs are the coordinates of the electrons. The
potential due to the Coulomb interactions is:

VAtom(x) =
∑
i>j

1

∥xi − xj∥
−
∑
i

Z

∥xi∥
, (22)

where Z is the atom charge. As mentioned above, we compute the score by taking the gradient of
FermiNet (Pfau et al., 2020). Following Lin et al. (2021), four atoms are tested, including Boron,
Carbon, Nitrogen and Oxygen. To show the effect of step size, We trained and tested the score
network with α=1e-3 and α=1e-2. We and optimize for 200k iterations for all systems. We use
β=2 for Oxygen and β=1 for all other atoms. We do Langevin dynamics for 20 steps between
two parameter update. The norm of the score is clipped at 20 to increase numerical stability. The
complete hyperparameters are in Appendix D.

∇xFermiNet
α=1e-3

∇xFermiNet
α=1e-2

∇xFermiNet+FFN
α=1e-3 FermiNet HF Reference

B -24.64893(22) -24.65233(3) -24.63537(46) -24.65370(3) -24.53316 -24.65391
C -37.84414(13) -37.83445(5) -37.83736(43) -37.84471(5) -37.6938 -37.8450
N -54.58171(29) -54.53580(12) -54.58221(28) -54.58882(6) -54.4047 -54.5892
O -75.06587(63) -74.94880(709) -75.06410(53) -75.06655(7) -74.8192 -75.0673

Table 1: Experimental results on Atoms in Hartree (Eh). Underline denotes our results within
chemical accuracy. References taken from Lin et al. (2021).

The results are summarized on Table 1. The chemical accuracy is defined as 1.594 mEh (Pfau et al.,
2020). Except for the Nitrogen atom, all atoms can enter the chemical accuracy under one setting,
although the effect of step size is mixed. In many cases a higher level of variance is observed. The
reason may be due to the difficulty in optimizing the gradient network. Moreover, FermiNet works
with the second order optimizer KFAC (Martens & Grosse, 2015), which is adapted for wavefunction
outputs and may not be suitable for our socre-based optimization. Nevertheless, our framework has
demonstrated the correct convergence behaviour for the challenging electronic potential. The results
for N are improved with FFN. For other atoms the results are not improved but are comparable. With
this setting we show that in terms of network architectures we can go beyond the FermiNet score.

5 COMPARISON TO VMC AND DMC

Compared to DMC, DiffVMC is closer to VMC’s paradigm where Ansatz is optimized by estimating
loss based on samples following Ansatz distribution. With DiffVMC we are able to directly model
scores, which are more fundamental to the optimization problem and could be more expressive
than modeling wavefunctions. On the other hand, DiffVMC and DMC both use scores to update
samples. DMC starts with an optimized trial wavefunction Ansatz. Energy minimization is achieved
by constantly adjusting weights of walkers. However, the walkers are always guided by the trial
function’s score and the parameters of the trial Ansatz cannot be updated in DMC. In contrast,
DiffVMC is able to update the guiding score function directly. Nevertheless, there is no conflict
between DiffVMC and DMC. DMC walkers can be guided with a score optimized with DiffVMC
and further project toward ground state through weighting.

6 CONCLUSION

Inspired by the connection between the score-based formulation of local energy, we explore the
possibility to implicitly model the quantum wavefunction. With the weighted score matching objec-
tive, the proposed DiffVMC enables the possibility to optimize the score network toward the ground
state. Experiments show that our proposed method can accurately find the ground state for both
bosons and fermions.
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A COMPUTATIONAL COMPLEXITY

Compared to VMC, DiffVMC avoids recomputing gradient of wavefunctions during energy evalu-
ation, but the loss is more complicated. So the overall computational cost should be similar with
VMC. In our experiments with FermiNet, DiffVMC is slower than VMC because we need to back-
propagate through the gradient network. However, this should be mitigated with more adapted net-
work architectures. In general, the major computation bottleneck of QMC is evaluating tr(∇xs(x))
which cannot be paralleled efficiently. This is a common problem for all QMC methods. However,
by noticing the connection between kinetic energy and score matching, we might be able to accel-
erate this computation via more efficient score matching techniques (Song & Ermon, 2019; Song
et al., 2020; Pang et al., 2020).

B PROOF FOR EQUIVARIANCE

We show it for two 1-d particles:

∂1 log |ψ(x1, x2)| = lim
∆x→0

log |ψ(x1 +∆x, x2)| − log |ψ(x1, x2)|
∆x

(23)

= lim
∆x→0

log |ψ(x2, x1 +∆x)| − log |ψ(x2, x1)|
∆x

= ∂2 log |ψ(x2, x1)|. (24)

C DERIVATION OF THE APPROXIMATED DETAILED BALANCING

The original detailed balancing in Langevin Monte Carlo is

P acc(x
′|x) =

exp
(
− 1

2α∥x− x′ − sθ(x
′)α)∥2

)
ψθ(x

′)2

exp
(
− 1

2α∥x′ − x− sθ(x)α∥2
)
ψθ(x)2

(25)

In our score-based framework, we generally do not have access to wavefunction value. So our goal
here is to get rid of the explicit dependencies on ψθ(x

′) and ψθ(x). We can do so by assuming the
score is constant between x and x′. We first transform into the log domain:

logP acc = − 1

2α
(∥x− x′ − sθ(x

′)α∥2 − ∥x′ − x− sθ(x)α∥2)︸ ︷︷ ︸
A

+2(log |ψθ(x
′)| − log |ψθ(x)|)︸ ︷︷ ︸
B

(26)

where we use A and B to denote the two components and logP acc = A+B.

We first simplify A. By expanding the norms as ∥x − x′ − sθ(x
′)α∥2 = ∥x − x′∥2 − 2⟨x −

x′, sθ(x
′)⟩α + ∥sθ(x′)∥2α2 and ∥x′ − x − sθ(x)α∥2 = ∥x′ − x∥2 − 2⟨x′ − x, sθ(x)⟩α +

∥sθ(x)∥2α2, we obtain:
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A = ⟨x− x′, sθ(x
′) + sθ(x)⟩+

α

2
(∥sθ(x)∥2 − ∥sθ(x′)∥2) (27)

To simplify B, we use the approximation:

log |ψθ(x
′)| − log |ψθ(x)| ≈

〈
1

2
(∇x log |ψθ(x

′)|+∇x log |ψθ(x)|) ,x′ − x

〉
(28)

=
1

2
⟨sθ(x′) + sθ(x),x

′ − x⟩ (29)

Such approximation is commonly employed in finite difference methods. The approximation should
be valid since x and x′ are close in space. With this approximation, we have:

B = 2(log |ψθ(x
′)| − log |ψθ(x)|) ≈ −⟨x− x′, sθ(x

′) + sθ(x)⟩ (30)
Finally,

logP acc = A+B ≈ α

2
(∥sθ(x)∥2 − ∥sθ(x′)∥2) (31)

D COMPUTATIONAL SETTINGS

We implement DiffVMC in Pytorch (Paszke et al., 2017) for experiments with Bosons and in
Jax (Bradbury et al., 2018) for experiments with Fermions. All gradient computation is done with
automatic differentiation from the respective libraries. For experiments with FermiNet, we adapt
based on the official implementation of FermiNet (James S. Spencer & Contributors, 2020).

Network Hidden dim 32
# MLP layers 3

Optimization

Optimizer Adam
Batch size 256
Learning rate 5e-4
Optimization steps 2000
Clip local energy 5 × std
WSM - β 1

Langevin dynamics

Langevin dynamics steps 20
Metroplis Hasting rejection Approximate (Equation 9)
Step size α 0.01
Score norm clip 20

Table 2: Hyperparameters for Bosons
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FermiNet

# determinants 16 (for atoms) or 1 (for QHO)
Single layer hidden dim 256
Double layer hidden dim 32
# embedding layers 4

Side network (FFN)
Single layer hidden dim 64
Double layer hidden dim 8
# embedding layers 4

Optimization

Pertraining steps 500 (for B, C) or 1000 (for N, O)
Batch size 256 (for B, C) or 512 (for N, O)
Optimizer Kfac
Kfac - damping 0.001
Kfac - norm constraint 0.001
Initial learning rate 5e-2
Learning rate decay lrinit × (1 + t/10000)−1

Clip local energy 5 × std
WSM - β 1 or 2

Langevin dynamics

Langevin dynamics steps 20
Metroplis Hasting rejection Approximate (Equation 9)
Step size α 0.001 or 0.01
Optimization steps 200,000
Score norm clip 20

Table 3: Hyperparameters for Fermions

Linear
SiLU

Linear
SiLU

Linear

Concat

MLP =

𝒙, 𝒙 ∈ ℝ!×($%&)

MLP 1

MLP 2

MLP 3

Mean pool

Broadcast

𝒔 ∈ ℝ!×$

(a) Network for Bosons

∇!

FermiNet

𝒔 ∈ ℝ"×$

𝒙 ∈ ℝ"×$

(b) ∇xFermiNet

FermiNet
Encoding

∇! Linear

⊕

𝒔 ∈ ℝ"×$

FermiNet

𝒙 ∈ ℝ"×$

(c) ∇xFermiNet+FFN

Figure 3: Network architectures. For simplicity, −x is omitted in ∇xFermiNet+FFN.
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