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Abstract

Despite remarkable progress in driving world models, their potential for au-
tonomous systems remains largely untapped: the world models are mostly learned
for world simulation and decoupled from trajectory planning. While recent efforts
aim to unify world modeling and planning in a single framework, the synergistic
facilitation mechanism of world modeling for planning still requires further explo-
ration. In this work, we introduce a new driving paradigm named Policy World
Model (PWM), which not only integrates world modeling and trajectory planning
within a unified architecture, but is also able to benefit planning using the learned
world knowledge through the proposed action-free future state forecasting scheme.
Through collaborative state-action prediction, PWM can mimic the human-like
anticipatory perception, yielding more reliable planning performance. To facilitate
the efficiency of video forecasting, we further introduce a parallel token generation
mechanism, equipped with a context-guided tokenizer and an adaptive dynamic fo-
cal loss. Despite utilizing only front camera input, our method matches or exceeds
state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code
will be released at https://github.com/6550Zhao/Policy-World-Model.

1 Introduction

Driving world models have recently garnered growing research interest, due to their capacity to
simulate future environmental states, enabling autonomous systems to anticipate complex traffic
dynamics and enhance decision-making safety [ 1, 2]. This trend is particularly evident in video-based
paradigms, driven by the accessibility of large-scale video datasets and the breakthroughs of the
video generation technique [3—5]. Despite remarkable progress having been achieved, existing world
model based autonomous driving methods [6—10] mostly operate in a decoupled manner (Figure 1
(a)), i.e., the world models aim to predict the next state and the associated reward but cannot directly
perform trajectory planning. A separate policy model is still required for perceiving and planning. As
a result, the full potential of the world model in autonomous driving is largely restricted [11].

Several concurrent works have made the initial attempt towards integrating both world modeling
and planning in a unified autoregressive model [12, 1 1], where interleaved image and action token
sequences are generated through the next-token prediction manner. Although the two tasks are
jointly learned in these works, they are still independently conducted (Figure 1 (b)), where world
modeling prioritizes high-fidelity next frame prediction with photo-realistic details conditioned on
input actions, and trajectory planning is performed through an end-to-end mapping from the visual
observation to output actions without explicitly leveraging the learned world model. As such, the
world modeling and trajectory planning are only unified in terms of model architecture and prediction
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Figure 1: Comparison of video world models for autonomous driving (a) Conventional video world
models [6—10] typically serve as data engines for stimulation in pixel space. (b) Unified world
models [11-13] perform video generation and planning as separate tasks. (c) Our proposed policy
world model performs planning based on the learned world knowledge.

manner, while their synergistic mechanism remains under-explored. It is still unknown whether and
how this unification can further benefit autonomous driving.

In light of the above observations, we propose a new driving world model which not only unifies
world modeling and trajectory planning in a cohesive architecture, but is also able to leverage the
learned world knowledge to enhance planning efficacy (Figure 1 (c)). Therefore, we name our
model the Policy World Model (PWM). When human drivers plan, they frequently imagine possible
future environment states to anticipate potential hazards. To mimic this "Anticipatory Perception”
maneuver, PWM performs trajectory planning with an action-free future forecasting framework.
Specifically, PWM is pre-trained to acquire world modeling ability through auto-regressive video
generation on unlabeled video sequences. During fine-tuning and inference, given current and
historical video frames, it first generates textual description to understand the current environment
and then rolls out plausible future states via video generation based on the learned world knowledge.
The current action is finally predicted by considering the generated description and forecasted
future states as multi-modal rationales. The above procedure is implemented by an end-to-end auto-
regressive Transformer, ensuring seamless collaboration between perception, prediction, and planning.
Compared to conventional world models, PWM acting as a driving policy can fully unleash its world
knowledge to directly perform decision-making, rather than relying on model-based policy searching.
In addition, the action-free video forecasting framework eliminates dependency on action-labeled
data, not only ensuring training scalability but also allowing more flexible future state rolling out.

To improve the efficiency of video forecasting, we enable parallel generation of all tokens within a
single frame, which allows video synthesis through next-frame prediction and substantially accelerates
the forecasting process. For this purpose, we employ a compact image token representation (28 tokens
per image via context-guided compression and decoding), ensuring both efficiency and coherent visual
generation. To ensure video generation quality, we design a novel dynamic focal loss for training
PMW to focus on temporally varying image regions. The combination of the above innovations
allows PWM to generate high-quality future video frames at a reasonable computational overhead.

We evaluate PWM on the popular benchmarks including nuScenes [14], NAVSIM [15]. Notably, our
approach achieves strong performance and significantly reduces the average collision rate compared
to state-of-the-art methods on nuScenes. Additionally, using only camera inputs, we achieve PDMS
performance comparable to state-of-the-art methods that utilize both camera and LiDAR data on the
NAVSIM benchmark. These findings both enhance autonomous driving safety and underscore the
potential of learning from video-based environmental representations.

The main contributions of this work can be summarized as follows:

* We propose Policy World Model, which unifies world modeling and trajectory planning, and
more importantly, is able to benefit planning by unleashing the learned world knowledge
through action-free future forecasting.

* We develop a parallel video forecasting approach that accelerates prediction while preserving
visual coherence, supported by a context-guided tokenizer for compact representation and a
dynamic focal loss for emphasizing temporally varying regions.



* Our method, relying solely on front camera input, performs on par with or even surpasses
state-of-the-art multi-view and multi-modal driving approaches on widely used benchmarks,
while achieving efficient visual generation results, supporting safe and efficient planning.

2 Related Work

End-to-end Autonomous Driving. End-to-end autonomous driving has advanced remarkably rapidly.
Modern systems [ 16—19] map raw sensor inputs directly to control actions, thereby simplifying the
traditional perception-to-control pipeline. Early methods [20, 21] used structured bird’s-eye view
(BEV) representations, while later work adopted dense 3D occupancy grids [22, 23] or sparse
queries [24, 25] for richer, more efficient scene understanding, though handcrafted intermediate
representations can limit generalization. More recently, autonomous driving research has begun
to incorporate large language models (LLMs) [26, 27] and multimodal LLMs (MLLMs) [28-30]:
driving scenes can be encoded as text for reasoning, achieving strong results in simulators [31-33],
while video-based approaches leverage them to predict actions and answer queries [34—37].

Generative World Models. World models enable agents to understand and predict future environ-
ments from experience [38—44]. In autonomous driving, various approaches have been proposed for
world model construction. Bevworld [45] and WoTE [46] operate in the BEV latent space, while
Drive-OccWorld [10] predicts future occupancy states to interact with planning modules. For video
generation, generative world models synthesize controllable and high-quality driving scenes, typically
through large-scale pretraining. These models fall into two main categories: diffusion-based and
autoregressive.Diffusion-based methods include DriveDreamer [4] for controllable video genera-
tion, Vista [8] for large-scale conditional synthesis, GLAD [47] for arbitrary-length videos, and
DriveDreamer-2 [5] as well as Drive-WM [48] for multi-view generation. Autoregressive models
such as GAIA-1/2 [7, 49] unify frames, text, and actions into a single sequence for multi-condition
control and long-horizon prediction, while InfinityDrive [50] and DrivingWorld [5 1] extend to longer
and continuous videos. However, token-by-token prediction makes these models computationally
expensive and significantly less practical for efficiency-critical downstream tasks.

Unified Generation and Understanding Models. Building on the rapid progress of LLMs and
MLLMs, recent research increasingly emphasizes unifying both visual understanding and generative
capabilities within a single MLLM [52-54], often by carefully aligning the representations from large
pretrained visual encoders with the embedding space of LLMs. Pioneering unified multimodal models
(UMMs) [55-57] further extend this integration through powerful autoregressive or diffusion-based
modeling paradigms. Such holistic unification provides a more principled and scalable framework
to externalize the implicit world knowledge encoded in pretrained MLLMs, thereby significantly
enhancing their potential for comprehensive world modeling and downstream reasoning.

3 Method

We present Policy World Model (PWM), a unified model that integrates both world modeling and
trajectory planning under a cohesive framework. Given historical video frames, PWM is able to
stimulate future states by generating plausible future video frames in an action-free manner. Serving
as a policy model, PWM can leverage its learned world knowledge to explicitly benefit planning via a
state-action collaborative prediction scheme. We implement PWM using an end-to-end Transformer
with an image tokenizer (See Figure 2), where the tokenizer is responsible for encoding input frames
into a compressed token space with context guidance, and the Transformer learns to jointly represent
the world and perform planning through auto-regressive prediction. In the following, we present the
model and training details of the tokenizer as well as PWM in Sec. 3.1 and Sce. 3.2, respectively.

3.1 Image Tokenizer with Context-Guided Compression and Decoding

Most driving world models [11, 7, 49] prioritize the quality of the video generation. In order to
capture high-resolution details, they typically adopt a long sequence of tokens to represent a single
image, leading to significant computational and memory overhead during autoregressive generation.
In contrast, PWM focuses on using the learned world representation to benefit planning rather than
pursuing photo-realistic details. To achieve a balance between generation quality and efficiency, we
employ a new image tokenizer with context-guided compression and decoding.
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Figure 2: Policy World Model for Unified Forecasting and Planning. (a) PWM leverages its
pre-trained world modeling to generate future frames, enabling seamless collaboration between
perception, prediction, and planning.(b) Future video frames ;. are compressed into compact latent

representations guided by initial frame I and ilz N represents the reconstructed frames.

Given a video clip I, containing N frames, we aim to tokenize them into a compressed latent
space by exploring their temporal consistency. To this end, we design the tokenizer as a two-branch
encoder-decoder structure as depicted in Figure 2 (b). To capture high-fidelity visual content, the
high-resolution branch ), (blue blocks) takes as input the initial frame I; with a full resolution.
The encoder maps the initial frame into a sequence of L tokens Z; = {z},z?,..., z¥}, which is
further decoded back into the image space by the decoder. The encoder and decoder also produce
a hierarchy of multi-scale intermediate feature maps F. and F, respectively, which are used as
guidance to facilitate token compression. In-parallel to the high-resolution branch, the low-resolution
branch @); (orange blocks) will take all the downsampled frames in a batch as input and performs
tokenization and reconstruction for each frame independently. For frame I;, a compressed token
sequence Dy = {d},d2,...,dL"} will be generated by the encoder, with L’ << L. To transfer
guidance information F, and F; from the high-res to low-res branch, the encoder and decoder of
the two branches are laterally connected via cross-attention layers. With the help of these guidance,
the low-resolution branch is able to effectively represent and reconstruct the input frames using a
significantly reduced number of image tokens.

In our experiment, we adopt a pre-trained image tokenizer [55] as the high-resolution branch @y,
which is freezed during training. The low-resolution branch (); implements a learnable adaptation
network mirroring the structure of @)y, augmented with additional random initialized cross-attention
and downsampling blocks. The encoder of (); is able to tokenize an input frame of 128 x 224
resolution into a compact feature map of 4 x 7, giving rise to L’ = 28 tokens per frame. We follow
the standard VQ-GAN optimization strategy [58] to train the tokenizer. More implementation details
are provided in the supplementary material.

3.2 Policy World Model

Most existing driving world models either solely focus on world simulation [48, 6] or perform world
representation and trajectory planning as two separate tasks with a single model [1 1—13]. In contrast,
our PWM serves as a more cohesive paradigm, which not only integrates future state forecasting and
planning within unified architecture, but also ensures the learned world modeling and forecasting
ability can explicitly benefit trajectory planning via a collaborative state-action prediction scheme.
This is achieved by the following two unique techniques.

Learning World Modeling from Action-Free Video Generation. Most previous autonomous
driving methods learn the video world model via action-conditioned video generation, which is highly
dependent on labeled training data. More importantly, they fail to perform any forecasting before
the action is predicted. Therefore, when the world model is integrated with the policy model in a
unified structure [ 1 1—13], their future forecasting ability cannot be fully explored to benefit planning.
To circumvent this issue, we propose to pretrain PWM on action-free video generation (Figure 3
(a)). Formally, given a video clip 1., we first transform it into image tokens {Z1,D1.y } using the
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Figure 3: Pipeline for video world modeling. (a) World modeling is conducted on action-free,
highly compressed video data using dynamically enhanced parallel prediction. (b) Comparison of
token prediction formats and attention interactions.

tokenizer in Sec. 3.1, where Z; = {z},z?,...,2}} denotes the contextual tokens of the initial frame,

and D, = {d},d?,...,d}"} denote the compressed tokens of the ¢-th frame. PWM is then trained
to generate these video token sequence in an autoregressive manner. Thanks to the token compression
scheme, PWM can simultaneously generate all the tokens of a image in-parallel, allowing us to
replace the conventional next-token generation with the more efficient next-frame generation scheme
(See Figure 3 (b)):

N
P(D1.n;Z1) = [ [ Po(DiDes; Z1), (1)
t=2
where 6 denotes the PWM parameters. To better model the spatial relationship between tokens of
the same frame, we employ the bi-directional attention within one frame, with the attention mask
illustrated in Figure 3 (b).

During training, we empirically observed that a significant proportion (up to 50%) of the frame tokens
are unchanged across adjacent frames, which makes the model tend to predict static tokens, impeding
its temporal dynamic modeling ability. To alleviate this issue, we introduce a Dynamic Focal Loss
(DFL) that emphasize temporally varying image regions through spatial weighting. Specifically,
we define a dynamic weighting function w(d¢, d?_,) that measures the contribution of each token
prediction based on its temporal change:

w( 1’ ifl):aﬂ[di#difl] +Bﬂ[di: %71}7 a>57 (2)
where I[-] is the indicator function and «, 8 are hyperparameters that control the relative importance
of dynamic versus static token predictions. The overall DFL for the ¢-th frame is then formulated as:

L'

LprL = *Zw(dia i_1) log Py(d} | Dey; Zy), 3
i=1

This design encourages the model to allocate more attention to dynamic regions, thereby enhancing
its ability to capture meaningful spatio-temporal variations across frames.

End-to-End Planning with Future State Forecasting. In order to explicitly benefit planning with
the attained world modeling ability, PWM is further fine-tuned for end-to-end planning in an auto-
regressive manner. To this end, each data sample for fine-tuning is prepared as a multimodal sequence
{D1.t,E¢, X4, Dt i1:44n, A1:m . As shown in Figure 2, the inputs to PWM include the image tokens
of observed frames D;.; and the current navigation command with ego status E;. It then learns to
autoregressively predict the textual tokens X, describing the current scenario and plausible future
frame tokens Dy 1.1y, using its pre-trained world modeling ability as Eq.(3). Subsequently, m
learnable action tokens are fed into PWM, and interact with the predicted latent features of the textual
description and future forecasts. Their outputs are decoded into trajectory coordinates A;.,, by a
lightweight action head. For training, X; and Dy 1.;4,, are supervised with cross-entropy loss, and



A ., with L1 loss. Through the above collaborative state-action prediction scheme, PWM is able to
explicitly leverage the forecasted future states, yielding more reliable trajectory planning.

Discussion of Collaborative State-action Prediction. Our use of collaborative denotes a causal and
knowledge-sharing relationship within PWM, leveraging learned world knowledge to better facilitate
action prediction. This differs from prior methods that build world model P, (D 1.4+ |D1.¢) and
policy model Py(A.,,|D1.+) seperately. This is also disinct from recent attempts that integrate both
world modeling and planning in a unified architecture Py(-|D.;), where future frames and actions
are still predicted independently via Py(Dyy1.445|D1.t) and Pg(A1.,|D1.¢) in downstream tasks,
and knowledge is not explicitly shared between the two processes. In comparison, our PWM not
only integrates world modeling and planning in a unified model 6, but also unleashes the learned
world knowledge through the proposed planning with future state forecasting scheme which can be
expressed as:

PO(DtJrl:tJrnlDl:t) . PG(AI:m|D1:t+n) — P@(Dt+1:t+nA1:m‘D1:t) (4)

As shown in Eq.(4), world modeling and planning are not performed independently but in a collabo-
rative manner, allowing the PWM to mimic the human-like anticipatory ability based on the learned
world knowledge and perform more reliable planning.

4 Experiment

4.1 Experimental Setups

Datasets. We adopt OpenDV-YouTube dataset [3], nuScenes [14], and NAVSIM [15] as main training
datasets. OpenDV-YouTube contains 1747 hours of front-camera video at 10 Hz from 244 cities with
scene description generated by BLIP2 [59]. nuScenes includes 1000 scenes (5.5 hours in total) with
six camera views per scene, and is annotated with six 3-second waypoints and text descriptions [60].
NAVSIM is built upon OpenScene [61], including 103k training and 12k test samples. We train the
tokenizer on the the OpenDV-YouTube. The PWM model is pretrained on OpenDV-YouTube for
action-free video generation and then finetuned on nuScenes and NAVSIM for planning. We use only
front-view camera video, with 10 Hz for OpenDV-YouTube and NAVSIM, and 12 Hz for nuScenes.

Metrics. To assess the quality and consistency of future video generation, we employ three standard
video synthesis metrics: FVD [62], LPIPS [63], and PSNR [64]. For the planning tasks, we use L2
error (m) and collision rate (%) on nuScenes, and Predictive Driver Model Score (PDMS) on NAVSIM.
PDMS is a composite metric designed to better align with closed-loop behavior, which combines five
sub-scores: no-at-fault collisions (NC), drivable area compliance (DAC), time-to-collision (TTC),
comfort (Comf.), and ego progress (EP).

Implementation Details. Our model is initialized from Show-o [55]. During tokenizer training,
the frozen branch processes 256 x 448 images to produce 448 tokens per frame, while the trainable
branch uses 128 x 224 images, generating 28 tokens. Each branch has a separate codebook of size
8192. We sample non-overlapping clips from the OpenDV-YouTube dataset, using 1% for validation
and the rest for training. Training runs for 8 x 10° steps using AdamW on 6 NVIDIA A800 GPUs
with a learning rate of 2 x 10~*. After training, the tokenizer is frozen. Next, we pre-train the
autoregressive world model on OpenDV-YouTube for 3 x 10° steps using AdamW with a learning rate
of 1 x 10™%. To prevent catastrophic forgetting, we also conduct auxiliary training on CC12M [65]
and FineWeb [60] for image captioning and text generation. For downstream tasks, we fine-tune the
model using only the front-view camera. On nuScenes, we condition on 1 second of history to predict
11 frames and 6 waypoints over 3 seconds. Training runs for 16 epochs on 2 A800 GPUs with batch
size 8 and learning rate 3 x 1075, On NAVSIM, we use 2 seconds of history to predict 10 frames and
8 waypoints across 4 seconds, training for 20 epochs with batch size 14. Dynamic Focal Loss is used
throughout. No data augmentation is applied. More details are provided in the Appendix A.

4.2 Overall Comparison

On the nuScenes dataset, the relatively simple driving scenarios tend to induce an over-reliance on
the vehicle’s ego status [68, 74]. Therefore, in Table 1, we compare planning performance both
without and with access to ego status across several popular methods. PWM achieves the lowest
average collision rates (%) of 0.07 and 0.04 across two settings, respectively, surpassing previous



Table 1: Comparison on the nuScenes validation split. Metrics are computed following the same
protocol as [67]. For a fair comparison, results are reported separately for settings without and with
ego status (marked with “1”); results for UniAD and VAD are reproduced from BEV-Planner [68].
The best results are bolded.

L2(m)J Collision(%).,
Method Is 2s 3s | Avg Is 2s 35 | Avg
ST-P3 [20] 1.59 2.64 3.73 2.65 0.69 3.62 8.39 4.23
UniAD [21] 0.59 1.01 1.48 1.03 0.16 0.51 1.64 0.77
VAD-Base [67] 0.69 1.22 1.83 1.25 0.06 0.68 2.52 1.09
BEV-Planner [68] 0.30 0.52 0.83 0.55 0.10 0.37 1.30 0.59
Omni-Q [60] 1.15 1.96 2.84 1.98 0.80 3.12 7.46 3.79
LAW [69] 0.24 0.46 0.76 0.49 0.08 0.10 0.39 0.19
Drive-OccWorld [10] 0.25 0.44 0.72 0.47 0.03 0.08 0.22 0.11
PWM(Ours) 0.41 0.75 1.17 0.78 0.01 0.01 0.18 0.07
UniAD{ [21] 0.20 0.42 0.75 0.46 0.02 0.25 0.84 0.37
VAD-Basef [67] 0.17 0.34 0.60 0.37 0.04 0.27 0.67 0.33
BEV-Plannert [68] 0.16 0.32 0.57 0.35 0.00 0.29 0.73 0.34
OccWorld-Df [23] 0.39 0.73 1.18 0.77 0.11 0.19 0.67 0.32
Omni-QT [60] 0.14 0.29 0.55 0.33 0.00 0.13 0.78 0.30
RDA-Driverf [70] 0.17 0.37 0.69 0.41 0.01 0.05 0.26 0.11
DiffusionDrivet [17] 0.27 0.54 0.90 0.57 0.03 0.05 0.16 0.08
PWM(Ours)f 0.20 0.38 0.65 0.41 0.01 0.02 0.09 0.04

Table 2: NAVSIM NavTest split comparison. Overall Predictive Driver Model Score (PDMS) and
sub-scores reflecting closed-loop performance. C: multi-view camera; SC: single-view camera; C&L:

multi-view camera + LiDAR; "-": no visual input. The best results are bolded.
Method | Input | NCt  DACt EPt  TTCt  Comft | PDMSt
Human | = | 100.0 100.0 87.5 100.0 99.9 | 94.8
Constant Velocity - 69.9 58.8 493 493 100.0 21.6
Ego Status MLP - 93.0 77.3 62.8 83.6 100.0 65.6
VADV2 [18] C&L 97.2 89.1 76.0 91.6 100.0 80.9
TransFuser [71] C&L 97.7 92.8 79.2 92.8 100.0 84.0
DRAMA [72] C&L 98.0 93.1 80.1 94.8 100.0 85.5
Hydra-MDP [19] C&L 98.3 96.0 78.7 94.6 100.0 86.5
DiffusionDrive [17] C&L 98.2 96.2 82.2 94.7 100.0 88.1
UniAD [21] C 97.8 91.9 78.8 92.9 100.0 83.4
LTF[71] C 97.4 92.8 79.0 92.4 100.0 83.8
PARA-Drive [73] C 97.9 92.4 79.3 93.0 99.8 84.0
LAW [69] C 96.4 95.4 81.7 88.7 99.9 84.6
DrivingGPT [11] SC 98.9 90.7 79.7 94.9 95.6 82.4
PWM(Ours) SC 98.6 95.9 81.8 95.4 100.0 88.1

state-of-the-art models including Drive-OccWorld [10] and DiffusionDrive [17], with the former
adopting a decoupled world modeling paradigm. On the more challenging NAVSIM dataset, as shown
in Table 2, PWM delivers obvious superiority. Although we rely on only a single front camera view,
our framework significantly outperforms all prior camera-based models, including world modeling
methods such as DrivingGPT and LAW. It achieves a PDMS score of 88.1, comparable to the state-
of-the-art method DiffusionDrive, which uses both camera and LiDAR inputs. Meanwhile, our model
achieves a higher time-to-collision (TTC) score of 95.4 and a no-at-fault collision (NC) score of 98.6.

4.3 Ablation Study

Impact of Action-free Video World Knowledge. We investigate the influence of learning from
large-scale videos on planning performance in Table 3a and 3b. The first rows of the two tables
show the results without pre-training, where models are fine-tuned on the downstream task using the
base model’s weights [55]. All subsequent rows report the results after pre-training. It shows that
without pre-training, the model struggles to capture and predict dynamic scene changes and yields



Table 3: Impact of world modeling and dynamic focal loss on nuScenes and NAVSIM. "Pre-
train" indicates training on Open-Youtube video."Fine-tune" indicates training on downstreaming
benchmarks. "Lprr-p" and "Lprr" indicate whether Dynamic Focal loss (DFL) was used in Pre-train
and Fine-tune, respectively. The video metrics and planning scores are reported.

(a) Ablation study on nuScenes Dataset.

Pre-train £ r Visual Forecast Quality Planning Metrics
DFt-p  ~DFLT | 1 PIPS| PSNRf FVD| | Avg.L2(m)| Avg.Col(%)|
X X X 0.27 21.07  826.15 3.34 1.51
v X X 0.24 22.16  239.13 2.29 1.05
v X v 0.24 2224  96.53 1.23 0.56
v v X 0.22 22.88  96.99 1.04 0.26
v v v 0.22 23.07 67.13 0.78 0.07

(b) Ablation study on NAVSIM Dataset.

Visual Forecast Quality Planning Metrics

Pre-train  Lorp Lot | [ppg|  PSNRT FVD) | NCf DACt EPt TTC Comfit | PDMST

X X X 0.27 199 43147 | 973  89.7 69.1 922 100.0 77.8
4 X X 0.25 2071 199.79 | 97.7 908 726 93.7 99.9 80.7
4 X v 0.24 21.06 11485 | 983 945 734 951 100.0 83.5
4 4 X 0.23 2122 11095 | 983 945 804 944 100.0 86.3
4 4 4 0.23 21.57 8595 | 986 959 81.8 954 100.0 88.1

7 t=2 t=4 t=6 t=8 t=10 BEV Trajectory

Figure 4: Decoded future-frame forecasting and corresponding BEV trajectory visualizations on
NVASIM (green: GT, orange: prediction).

the worst prediction and planning metrics. After pre-training on action-free video generation, the
model significantly improves its ability to predict future frames and achieves substantial gains in the
planning task. In Table 5, we further compare the model’s performance under different scales of video
data on nuScenes. Without pre-training, adding the future-frame prediction task actually harms the
model’s planning capability, resulting in much worse performance than directly outputting trajectory
waypoints. As the model is exposed to more data, from 0% to 50% and then to 100%), it progressively
learns spatiotemporal modeling from driving videos, and the performance gap gradually narrows.

Effectiveness of Dynamic Focal Loss. We introduce a Dynamic Focal Loss to enhance the model’s
capability in capturing temporal dynamics for both video-frame prediction and planning. Tables 3a
and 3b investigate the impact of applying this loss on prediction and planning performance for the
nuScenes and NAVSIM datasets. Compared to omitting dynamic weight in both stages, applying it
in either pre-training or fine-tuning yields clear improvements in three generation metrics as well
as planning metrics. Notably, only using it during pre-training achieves stronger results on LPIPS
and PSNR than fine-tuning alone, indicating more effective spatiotemporal modeling from large-
scale video. This also translates into improved planning. Applying the loss in both stages yields
the strongest improvements in video prediction and planning, confirming that bolstering temporal
dynamics synergistically enhances both capabilities. Additional evaluation metrics on the OpenDV-
YouTube are reported in Table 6. In Figure 4, we provide a qualitative visualization of the decoded
future-frame predictions alongside the planned trajectories, illustrating their clear alignment.



Table 4: Ablation study on visual forcasting on nuScenes and NAVSIM benchmark.

nuScenes NAVSIM
AvgL2(m)|  Avg.Col(%)) | Latency NCt DACt EPt TTCt Comf.t | PDMST | Latency

Forecast Horizon (Frames)

0 0.80 0.13 0.88s 98.0 951 824 941 99.9 87.3 0.57s

5 0.82 0.10 1.01(+0.13)s | 984 954 815 948 100.0 87.7 0.69(+0.12)s
10 0.78 0.07 1.13(+0.25)s | 986 959 818 954 100.0 88.1 0.85(+0.28)s
15 0.80 0.09 126(+0.38)s | 98.7 958 814 954 100.0 88.0 0.97(+0.40)s

Table 5: Impact of different data scales of pre-training Table 6: Effect of dynamic focal

on nuScenes benchmark. loss on pre-training.
Data Usage Forecasted Frames = 10 ‘ Forecasted Frames = 0 Lo Visual Forecast Quality
Avg.L2(m)] Avg.Col(%)| | Avg.L2(m)| Avg.Col(%)] P | LPIPS| PSNRT FVDJ
0% 2.95 126 1.62 0.90 x 0.23 2029 21126
50% 0.85 0.14 0.88 0.21 v 022 2032 11807
100% 0.78 0.07 0.80 0.13 i . i

w DFL

GT

w DFL

Figure 5: Visualzation. Comparison of future frame predictions with and without Dynamic Focal
Loss (DFL). The first row shows ground truth frames, the second row shows predictions without
DFL, and the third row shows predictions with DFL. Sampled frames at t=2, 4, 6, 8, 10 are shown.

To further illustrate the impact of DFL, we also provide a visual comparison in Figure 5. Each row
corresponds to a specific model configuration: the first row shows ground truth future frames, the
second row presents prediction results without DFL, and the third row shows results with DFL. These
visualizations demonstrate that the use of DFL helps the model better capture and represent dynamic
scene elements over time, resulting in more accurate and temporally coherent predictions.

Influence of Video Forcasting on Planning. We evaluate the impact of forecasting and efficiency
on downstream planning performance under different number of predicted future frames in Table 4.
Predicting 10 future frames achieves the best performance across both datasets. We speculate that
shorter horizons capture insufficient temporal dynamics, resulting in weaker planning. In contrast,
longer horizons degrade prediction quality and may introduce hallucinations, especially given the
limited perception from a single front-view camera, ultimately impairing decision-making. We
evaluate frame token forecasting efficiency on a single NVIDIA A800 GPU (batch size 1). As shown
in Table 4, the additional latency over the zero-horizon baseline is marginal, and the model achieves
about 40 FPS without pixel-space decoding.



Real observation Predicted future t=10 Planning w forcasting Planning w/o forcasting

Figure 6: Comparison of planning results with and without incorporating future prediction during
training (green: GT, orange: prediction).

On the nuScenes benchmark, introducing future-frame prediction yields a substantial reduction in
average collision rate. On the more challenging NAVSIM dataset, we observe a complementary
trade-off: (i) when the model is trained without future prediction, it achieves a higher EP score,
indicating that its planned trajectories advance farther along the route within the allotted horizon.
By contrast, (ii) when the model does predict future frames during fine-tuning, it attains higher NC
and TTC scores, demonstrating more effective avoidance of potential collisions, and a higher DAC
score, showing that its trajectories remain better confined to drivable areas. Furthermore, in Figure 6
we present a qualitative analysis of how future-frame prediction affects planning on challenging
NAVSIM. The first column shows the current observation, the second shows the model’s tenth-frame
prediction under forecasting fine-tuning, and the third and fourth columns respectively overlay the
planned trajectories from the “with” and “without” prediction variants. From these findings, we
infer that future-frame forcasting can induce a more conservative planning strategy, sacrificing some
progress (EP) in order to secure higher safety margins (NC and TTC). As a result, the model favors
lower-risk routes rather than maximizing forward progress.

5 Conclusion

In this paper, we propose the Policy World Model (PWM), a unified framework that integrates
world modeling and trajectory planning for autonomous driving. By introducing action-free video
generation and multi-modal reasoning, PWM can forecast future scenes and make informed decisions
without relying on action-labeled data. Our design significantly improves planning performance and
efficiency, achieving competitive results using only monocular camera input. This work highlights the
potential of using compact, anticipatory video-based representations to drive safer and more scalable
autonomous systems.

Limitations and Future Work. Although video-based PWM demonstrates strong performance,
relying solely on single-view inputs can compromise robustness under poor visibility conditions.
Furthermore, its short planning horizon limits its applicability in long-horizon scenarios. In future
work, we aim to further explore efficient integration of multi-view inputs and enhance long-term
forecasting capabilities to improve generalization and real-world readiness.
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information to enable readers to reproduce our method, and
the code will also be provided.
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* The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide full implementation information as well as code and metadata to
faithfully reproduce our method and experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have detailed all the training and test details required to understand the
results in our paper.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we have reported appropriate information about the statistical significance of
the experiments.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided detailed computational resource requirements to reproduce
the experiment.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All aspects of the article comply with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The potential social impacts are discussed in our paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The methods and datasets in our paper do not involve the risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have mentioned and cited the models and datasets used in the article.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the article have sufficient documentation and are
provided together with the assets, which will be made public later.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not include any crowdsourcing experiments or research with
human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not include any crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core methods proposed in our paper does not use LLM.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material Overview

This supplementary material provides additional implementation details, experimental setups, and
extended results to complement the main paper.

* Section A describes architecture and training details of our image tokenizer and policy
world model, including both pre-training and fine-tuning stages.

» Section B presents additional experiments on the nuScenes.

 Section C provides visualizations of the latent predictions and qualitative comparisons.

A Implementation and Experimental Details

A.1 Image Tokenizer

Architecture details. We adopt a dual-branch architecture to map input images of different resolutions
into a shared latent space. The trainable branch, denoted as (J;, is initialized with the same structure
as the frozen high-resolution branch @);,. To enhance its modeling capacity, we insert additional
self-attention layers after the multi-level downsampling stages in both the encoder and decoder. These
layers are designed to better capture spatial relationships within the feature maps. Furthermore,
we incorporate cross-attention layers to enable ), to guide the learning of Q;. This alleviates the
burden on @); to extract contextual information, allowing it to focus more on modeling temporal
variations and dynamic changes. Specifically, multi-scale features from @; are used as queries, while
the corresponding features from (Q;, serve as keys and values. The attention is applied independently
across scales. In the encoder of ();, self-attention and cross-attention is applied at resolutions of
8 x 14; in the decoder of @)y, it is applied at 8 x 14, 16 x 28. Additionally, we introduce a lightweight
MLP layer to perform 4x downsampling and upsampling of latent token sequence length from Q);
in the encoder and decoder, respectively. This serves to further compress and reconstruct the latent
representations efficiently.

More training details. We sample the original Open-Youtube dataset into non-overlapping clips,
each containing 40 frames spanning 4 seconds. During training, each sample randomly selects a
continuous 30-frame segment, from which 2 frames are randomly chosen as high-resolution context
frames. Subsequently, 8 future frames are randomly sampled as low-resolution video inputs. We
optimize the model using the AdamW optimizer with 500 warm-up steps. Image reconstruction is
supervised using the L1 loss. Since pixel-wise differences between future frames and initial context
frames tend to increase over time, we apply a time-dependent weighting to the reconstruction loss,
assigning greater emphasis to later frames to reflect their higher prediction difficulty and encourage
better long-term modeling. We assign a weight of 2.0 to the perceptual loss and a weight of 1.0 to the
discriminator loss to balance perceptual quality and realism during optimization.

A.2 Policy World Model

A.2.1 Pre-training setup

Although we sample two consecutive high-resolution initial frames for the tokenizer, only one high-
resolution frame is actually fed into the model per second without supervision. This strategy does not
significantly affect the model performance, while effectively reducing the input token sequence length
and improving training efficiency. Each video clip is randomly cropped into a 24-frame continuous
segment from the original 40-frame clip to define the prediction horizon. As shown in Figure 1(a),
we mark the beginning and end of each high-resolution frame sequence using two special tokens,
"<Isoil>" and "<leoil>", following the Show-o convention. For the compressed low-resolution frames,
we introduce two additional special tokens, "<Isodl>" and "<leodl>", to indicate the start and end
positions of the low-resolution frames.

During training, the video autoregressive prediction task serves as the primary objective, while
image-text captioning and pure language modeling tasks are incorporated to preserve the model’s
capability in understanding and generating language. These three tasks are mixed in a batch ratio of
3:1:1, respectively. The loss weights are set to 1.0 for the video task and 0.5 for both the captioning
and text-only tasks. The warm-up steps are set to 1000.
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Figure 1: Detailed structure of input sequences. (a) illustrates the format of high-resolution and
low-resolution video frames. (b) depicts the input configuration used for trajectory prediction.

A.2.2 Fine-tuning setup.

Details on nuScenes. We consider two configurations to investigate the influence of ego status on
planning performance. Structurally, when ego status is included as input, we use a two-layer MLP
with SiLU activation to project the ego state into the model’s latent space. For navigation commands,
we randomly initialize three learnable embeddings to represent "Go Straight,” "Turn Left," and "Turn
Right." The "<lactl>" token is used to prompt trajectory prediction, as illustrated in Figure 1(b).
The action head is implemented as an MLP with SiLU activation. Our framework is designed to
seamlessly support multi-modal outputs, including both video and language. Given that nuScenes is
one of the most widely used open-loop datasets and that several prior works have proposed textual
annotations based on it, we adopt a simplified setting where the action description serves as the target
for language generation, using fixed prompts. For example: "/n this quiet nighttime driving situation,
the vehicle should maintain a moderate speed and continue straight, adhering to lane discipline."
This setup demonstrates the flexibility of our framework and lays the groundwork for future research
to explore more expressive and diverse multi-modal outputs.

During training and evaluation, the last one second of each scene lacks future frames, which makes it
unsuitable for future frame prediction. Therefore, in the training set, we manually exclude these final
segments to ensure supervision consistency. For the validation set, we also discard the last one second
of each scene when evaluating video generation metrics. However, to ensure a fair comparison with
previous works on planning, we retain these segments when computing planning-related metrics.

Details on NAVSIM. We follow the official practice by concatenating the ego status and navigation
command into a single vector, which is then projected into the model space via an MLP layer. Since
this dataset does not provide textual descriptions, we do not include any language modeling tasks
during training or inference. Additionally, some video frames required for prediction are not included
in the NAVSIM dataset. To address this, we resample the missing frames from the original nuPlan
dataset. Other aspects of the training procedure remain largely consistent with that of nuScenes.

B More experiments

B.1 Set up in Dynamic Focal Loss

To effectively improve the video modeling and generation capability of the Policy World Model, we
propose a Dynamic Focal Loss (DFL) that emphasizes temporally varying image regions through
spatial weighting. We conduct an ablation study on the key hyperparameters « and 8 on nuScenes,
where « controls the weight for spatial tokens that change over time, and 5 controls the weight for
those that remain unchanged across consecutive frames. As shown in Table 1, we fix « to 1.0 and
vary 3 to explore their relative influence.

We observe that when o < 3 and (3 is set to a small value (e.g., 8 = 0.1), the large disparity in task
weights leads to overfitting in the future frame prediction task during training, while the planning
task has not yet fully converged. This imbalance ultimately results in degraded overall performance,
indicating the need to better coordinate the training progress of the two tasks for more effective joint
optimization. On the other hand, when @ < 3, the Dynamic Focal Loss mechanism tends to fail,
leading to a significant drop in the quality of future frame prediction, which in turn negatively impacts
the performance of the downstream planning task.
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Table 1: Ablation study on the hyperparameters in the Dynamic Focal Loss. The dynamic weight
« is fixed to 1.0 across all experimental settings.

Visual Forecast Quality Planning Metrics
B LPIPS| PSNR1 FVD] Avg.L2(m)] Avg.Col(%)]
0.1 0.23 22.69 65.07 0.82 0.12
0.4 0.22 23.07 67.13 0.78 0.07
0.7 0.22 23.11 71.84 0.84 0.09
1.0 0.22 22.88 96.99 1.04 0.26
2.0 0.22 22.65 93.83 1.27 0.27

Table 2: Impact of the Textual Generation Task on nuScenes validation split. We also conduct
an ablation study to evaluate the impact of the textual generation task on planning performance.
Specifically, we compare different settings: (1) "None": without incorporating any text generation
task, (2)"Scene": with scene description prediction, and (3) "Action": with action description
prediction.

Text Task Tvpe Visual Forecast Quality Planning Metrics
JP LPIPS, PSNRT FVD| | Avgl2(m),  Avg.Col(%))
None 0.22 23.12 65.45 0.77 0.09
Scene 0.22 22.97 67.52 0.77 0.08
Action 0.22 23.07 67.13 0.78 0.07

B.2 Visualization and Analysis of Temporal Representations in Predicted Video Frames.

As shown in Figure 2, we visualize the 2D UMAP projection of forecasted latent video frames over
time on the nuScenes validation split. Specifically, we extract future predicted driving latents from
each 20-second-long scene and concatenate all samples across scenes. Each predicted frame is then
projected into a 2D coordinate point according to its temporal order. Different colors are used to
indicate the temporal progression from Os to 20s.

We observe that, although the future representations are generated independently for each sample and
conditioned on different input frames, the resulting projected embeddings consistently exhibit smooth
and coherent temporal dynamics across the full prediction horizon. This phenomenon suggests
that our Policy World Model is capable of learning a robust internal representation of the temporal
evolution of driving scenes. Importantly, it also demonstrates that the model can effectively decouple
the dynamics from specific visual content in the input, capturing underlying motion patterns that are
consistent and semantically meaningful, regardless of the particular observation used as guidance.

B.3 Impact of the Textual Generation Task on Planning Performance.

To isolate the impact of different types of text prediction on planning performance of nuScenes, we
design three settings. The first setting excludes any text prediction task, which also serves as the
baseline in the NAVSIM dataset. The second setting provides a detailed description of the scene
environment, while the third offers a brief prediction of the ego vehicle’s future behavior. For action
descriptions, we filter out information related to multi-view perspectives and retain only a brief
summary for supervision. As shown in Table 2, In our model, incorporating scene- or action-level
textual generation tasks does not lead to significant improvements in future frame forecasting or
downstream planning metrics, suggesting a limited effect in our specific setting.

C Visualizations

C.1 Comparison visualization
In Figures 3 and 4, we provide additional qualitative results to compare planning with and without

future frame prediction. On the left, we show a sequence of video frames where the red-bordered
frame indicates the current observation, and the unframed ones are predicted future frames. We
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Figure 2: The UMAP projection reveals temporal changes in frame-level latent representations,
highlighting the model’s ability to capture scene dynamics across different environments.

Real observation Predicted future Result w forecasting Result w/o forecasting

Figure 3: More comparison of planning results with and without incorporating future prediction
during training (green: GT, orange: prediction).

uniformly sample three future frames for visualization. On the right, we present the corresponding
BEV (bird’s-eye view) planning outcomes. These comparisons highlight how incorporating future
frame prediction can enhance planning quality by enabling better anticipation of dynamic scene
changes. In Figure 5, we show additional visual comparisons illustrating the effect of Dynamic Focal
Loss on future frame prediction.
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Figure 4: Visualzation. More comparison of planning results with and without incorporating future
prediction during training (green: GT, orange: prediction).
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Figure 5: Visualzation. More comparison of future frame predictions with and without Dynamic
Focal Loss (DFL). The first row shows ground truth frames, the second row shows predictions without
DFL, and the third row shows predictions with DFL. Sampled frames at t=2, 4, 6, 8, 10 are shown.
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