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Abstract

Novel view synthesis is an important problem with many applications, including
AR/VR, gaming, and robotic simulations. With the recent rapid development of
Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) methods, it is
becoming difficult to keep track of the current state of the art (SoTA) due to methods
using different evaluation protocols, codebases being difficult to install and use, and
methods not generalizing well to novel 3D scenes. In our experiments, we show that
even tiny differences in the evaluation protocols of various methods can artificially
boost the performance of these methods. This raises questions about the validity of
quantitative comparisons performed in the literature. To address these questions,
we propose NerfBaselines, an evaluation framework which provides consistent
benchmarking tools, ensures reproducibility, and simplifies the installation and use
of various methods. We validate our implementation experimentally by reproducing
the numbers reported in the original papers. For improved accessibility, we release
a web platform that compares commonly used methods on standard benchmarks.
We strongly believe NerfBaselines is a valuable contribution to the community as it
ensures that quantitative results are comparable and thus truly measure progress in
the field of novel view synthesis. Web: https://nerfbaselines.github.io

1 Introduction

Benchmarks such as ImageNet [12], KITTI [19], COCO [35], Middlebury [55] etc. are a major
driving force behind computer vision research. In particular, using community-wide accepted
evaluation protocols has accelerated research as fair comparisons have been made much easier (no
need to reimplement, tune parameters, etc.). It has also made it easier to measure and follow progress
on tasks (such as object detection or localization). Measuring progress by comparing numbers is only
possible if everyone follows exactly the same evaluation protocol down to the last detail. Without
this great attention to detail, numbers in tables might only create the illusion of a fair comparison,
as small changes in the evaluation protocol can severely impact the ranking of methods. This is
illustrated in Figure 1 in the area of novel view synthesis, where a seemingly innocuous change in the
evaluation protocol (manually downscaling larger images instead of using the provided downscaled
JPEGs) can significantly boost the numbers of a middling approach. In other words, without a
standardized evaluation protocol, numbers in tables potentially only create the illusion of progress, as
better numbers might also be a product of changes in the evaluation protocol made by a set of authors
(as published work typically does not describe the evaluation setup in too much detail). At the same
time, it opens the door for malicious actors to tune the protocol rather than making actual progress, as
the former might be easier than the latter.

The field of photorealistic 3D reconstruction has seen explosive growth recently, first based on
NeRFs [44], later on 3DGS [23], with multiple papers published on arXiv per day. Unfortunately,
there hasn’t been time to establish common evaluation protocols that are followed by everyone.
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Figure 1: Impact of altering evaluation protocol. By changing how images were downscaled,
Gsplat [71] increased its rank by 3 places in PSNR on the Mip-NeRF 360 dataset [3].

The differences in evaluation protocols may include: using different downscaling strategies (as
demonstrated in Figure 1), or different image resolutions, whether images are undistorted, which
type of LPIPS [79] and which version was used, which background color was used when blending
semi-transparent images, whether images are rounded to the uint8 range, image range normalization
prior to metrics computation, etc.

There are efforts to create unified development environments for NeRFs and 3DGS, etc. (eg. Nerf-
Studio [60], SDFStudio [74]). These development environments are designed to make it easier to
develop new methods by providing common building blocks such as layers, losses, data loaders,
etc. This typically includes evaluation protocols. While these frameworks offer re-implementations
of popular methods, these re-implementations do not always faithfully reproduce the results of the
original implementations (cf. Tab. 1 for the case of NerfStudio). Another issue is that methods
have to be implemented within the development environment, which is time-consuming and makes
wide-scale adoption difficult. In addition, as development frameworks change over time, third-party
contributions of baselines might become unusable if they are not constantly adapted to the changes in
the framework, including technical details such as updating libraries on which the software depends.
As a result, such development frameworks are not a real solution to the problem of reliable and
consistent benchmarking of methods for novel view synthesis.

This paper aims to provide a framework for consistent and reproducible evaluation of novel synthesis
methods. To this end, we present a software framework that makes it easy to: 1) add new methods
by providing a simple API for adding them while also providing encapsulation that allows us to
easily install the original software with all its (by now potentially outdated) libraries by careful
curation. Our framework, NerfBaselines, already implements many of the most popular approaches
for various different subproblems (in-the-wild [40], underwater [33], etc.). 2) add new datasets and
evaluate existing methods on additional datasets by providing a unified dataset representation. At the
same time, the framework integrates many of the most popular datasets (Blender [44], LLFF [43],
Mip-NeRF 360 [3], Photo Tourism [58], Tanks and Temples [28], SeaThru-NeRF [33], NeRF On-the-
go [54], NerfStudio [60]). 3) provides a single evaluation protocol per supported dataset, enabling
fair comparisons between different methods. 4) in addition, we contribute a website that collects
results under the evaluation protocol, including visualization and rendering capabilities.

The development of NerfBaselines was a significant engineering effort – designing a software
framework that is compatible with the most popular development frameworks, and integrating existing
approaches into our framework (a significant effort since in most cases, the original installation
instructions were not valid anymore and it required identifying library versions still compatible with
the software), developing visualization and other tools, etc.. As with any good evaluation framework,
the exact implementation and design choices will be of little interest to most researchers.1 As such,
this paper only briefly summarizes the NerfBaselines framework. Rather, the focus of this paper is on
demonstrating the usefulness and value of NerfBaselines. We believe that the insights presented in
the paper are of interest and value to the community. Our main insights are:

1Arguably, the purpose of evaluation frameworks and benchmarks is to remove the need for the researchers
to become intimately familiar with design choices and implementation details. Part of the purpose of evaluation
frameworks such as NerfBaselines is that the effort spent in developing them removes the need for other
researchers to invest time to get baselines to run and to investigate source codes to ensure fair comparisons.
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1. We show that the published results of most of the popular methods can be (closely) repro-
duced by NerfBaselines. This shows that malicious authors trying to boost the performance
of their methods by gaming the evaluation protocol are so far not a major issue and that the
numbers reported in published papers can be (largely) trusted.

2. We show that there are exceptions where certain design choices significantly impact the
reported performance. While the method ranking is largely unchanged when switching from
one protocol to another, the differences in performance of the same method under different
protocols can exceed the difference between methods under the same protocol. This shows
that one can create the illusion of better performance by using a slightly different evaluation
protocol than others. This result clearly demonstrates the need for a consistent and fair
evaluation that NerfBaselines offers to the community.

Furthermore, we show that it is easy to evaluate existing methods on more datasets by integrating
these datasets into NerfBaselines. As a service to the community, we provide more complete results
on some datasets that are used by some but not all popular methods. We also demonstrate the value of
visualizing tools (the viewer and the camera trajectory editor included in NerfBaselines) by showing
how various methods behave differently as the camera moves further from the training trajectory.

2 Related work

In recent years, progress in novel view synthesis has enabled real-time photo-realistic rendering of
images from novel camera viewpoints. There has been a surge of interest, first with the advent of
neural radiance field methods (NeRFs) [44, 36, 2, 3, 78, 18, 52, 16, 59, 69, 29, 8, 17, 53, 46, 4, 64,
48, 51, 40, 5, 49, 25, 27, 62, 21, 63, 65, 70, 11, 50, 73, 7] which enabled photo-realistic results and a
wide range of applications. The second wave of attention came with the introduction of 3D Gaussian
Splatting (3DGS) [23, 15, 81, 75, 37, 24, 47, 22, 72, 76, 14, 41, 67, 38, 80, 9], matching NeRFs in
terms of the rendering quality while enabling real-time rendering.

2.1 Existing codebases

NerfStudio [60]
Tetra-NeRF [30], Instruct-NeRF2NeRF [21], LERF [25], Splatfacto [71]

Multi-NeRF [3, 2]
Zip-NeRF, Mip-NeRF [2], RawNeRF [45]
MipNeRF-360 [3]

SeaThru-NeRF [33], NeRF on-the-go [54]
Gaussian Splatting (INRIA) [23]

Mip-Splatting [75]
Gaussian Opacity Fields [76]

WildGaussians [31], GS-W [77], ScaffoldGS [37], 3DGS-MCMC [26]
2D Gaussian Splatting [22], AbsGS [72], Taming-3DGS [39]

NeRF-W (PL reimplementation) [44], NeRF [44], Instant-NGP [46]
K-Planes [17], TensoRF [8], gsplat [71], Plenoxels [16]

Figure 2: Existing codebases. Integrated methods are bold
green.

Most current methods are based on
a few core repositories: NerfStu-
dio [60], Multi-NeRF [2, 3], Instant-
NGP [46] for NeRFs, and Gaussian
Splatting [23] for 3DGS, typically
with moderate modifications. There-
fore, in NerfBaselines, we focused
on integrating these core reposito-
ries, as it simplifies the subsequent
integration of derivative works. In
Figure 2, we illustrate the relation-
ships between popular repositories
and highlight those currently inte-
grated with NerfBaselines.

NerfStudio is a popular framework
that introduced the modular separa-
tion of NeRFs into components such as ray samplers, radiance field heads, etc. It supports various
dataloaders, camera types, and export formats.

Multi-NeRF is fully implemented in JAX and does not have custom CUDA kernels (unlike Instant-
NGP or NerfStudio), making it easy to install, but slower. Early versions based on Mip-NeRF360
supported only a single camera per dataset and a single image size; therefore, in NerfBaselines, we
have extended these methods to handle more complex datasets.

Instant-NGP is a highly optimized implementation that has inspired numerous follow-up works
[4, 60, 25, 27]. However, it is a less popular choice as a codebase due to its C++ training code being
more difficult to extend.
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Method (Scene) Paper Public NerfStudio NerfBaselines
TensoRF (lego) 36.46 36.54 33.09 36.49
3DGS (garden) 27.41 27.39 27.17 27.34
Instant-NGP (lego) 36.39∗ 36.09∗ 15.24 35.65
SeaThru-NeRF (Panama) 27.89 27.85 31.28 27.82
Zip-NeRF (garden) 28.20 28.22 – 28.19

Table 1: Implementations reproducibility. We compare the PSNR reported in the paper with the
PSNR of the official implementation, the PSNR of NerfStudio’s implementation, and NerfBaselines’s
integration of the same method. ∗Instant-NGP uses black background (NerfBaselines white).

Gaussian Splatting (INRIA) is the most popular choice for 3DGS methods, primarily because (until
recently) it was unmatched in performance. The repository only supports pinhole cameras with their
centre of projection being in the centre of the image. We have extended it to work with arbitrary
camera models, performing undistortion/distortion for more complicated camera models.

2.2 Benchmarking frameworks

There exist some works proposing a unified platform for various methods to be implemented [60, 74,
20]. Out of these, NerfStudio [60] is perhaps the closest to our framework in that it offers unified data
loading and evaluation tools for multiple novel view synthesis methods. It is meant to provide building
blocks when developing new NeRF methods (it implements various ray samplers, radiance field heads,
etc.). However, each method needs to be implemented from scratch to be able to use NerfStudio.
Currently, the NerfStudio-reimplemented methods have performance different from the original
implementation as can be seen in Table 1. In contrast, in NerfBaselines, the integrated methods
still use the original released source code, and only a small interface is written to interface with the
codebase. Another difference is that while NerfStudio is more focussed on practical applications and
fast development, NerfBaselines focuses on fair, reproducible, and consistent evaluation. Therefore,
the design choices differ. Finally, we also provide a web benchmark platform where new methods are
constantly being added and can be compared.

3 NerfBaselines framework

When designing the evaluation framework, we followed these constraints: 1) Easy integration of
new methods, to ensure the platform can grow and remain useful. 2) Matching official results, so
reported numbers are consistent. 3) Support for new data/scenarios. Many official implementations
only work with specific datasets or assumptions (eg., identical intrinsics). NerfBaselines removes
such limitations. 4) Stability and reproducibility over time. Methods should remain installable and
yield consistent results long after their release. To simplify integration, NerfBaselines uses official
implementations without reimplementation. Each method wraps the original code using a common
API, making it easier to preserve official behavior and apply methods to new datasets. The API
separates model logic from data loading and evaluation, enabling reuse and consistent evaluation. For
long-term stability, we freeze code and dependencies for each method and use isolated environments
(Docker, Apptainer, or Conda) to ensure reproducible installations. Retraining every method is
inefficient and resource-heavy. Instead, we provide an online benchmark2 with reported results,
downloadable checkpoints and predictions, and 3D reconstructions. See the video in supp. mat.

Unified API. Existing codebases [60, 3, 23, 8, 23] typically consist of: model implementation,
which optimizes the scene and renders views; dataloader, for parsing datasets; and evaluation code,
for computing metrics. Unfortunately, these parts are often tightly coupled and vary in structure,
making reuse difficult and comparison inconsistent.

In NerfBaselines, we isolate the model implementation and use standardized components for loading
and evaluation. This allows us to apply any method to any dataset (with a shared structure) and
ensures all methods follow the same evaluation protocol. We identified a shared structure across
both raycasting-based methods [60, 3, 23, 8, 68] and rasterization-based methods [23, 24, 75, 76, 71].

2https://nerfbaselines.github.io/
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Each method defines a method class with functions like train_iteration for performing one
training step and render for rendering single frame. Methods with appearance conditioning [40, 60]
also implement appearance embedding extraction. The interface allows methods to be integrated via a
thin wrapper calling the original code, ensuring correctness and minimal effort The interface (details
in the supp. mat.) was chosen to make it easy to integrate the methods as one needs to write only a
thin wrapper that calls the official code rather than reimplementing the method within NerfBaselines.
This also makes it easy to ensure the integrated method matches the official code as the official code
is called by the wrapper.

Figure 3: The NerfBaselines Viewer enables interactive ren-
dering, shows train/test cameras, and input point cloud. The
figure shows trajectory editor used to for rendering custom
camera trajectories.

Environment isolation. Another re-
quirement of an evaluation framework
is long-term stability. Methods of-
ten have many dependencies that are
poorly specified, making installation
impossible over time due to version
conflicts or missing packages. When
designing NerfBaselines, we found
that 12 out of 19 methods could not
be installed using the official instruc-
tions, often due to unspecified or out-
dated dependencies. Additionally,
codebases change: 1) released check-
points may become incompatible with
newer code, or 2) reported numbers
may no longer match. To ensure sta-
bility and reproducibility, we freeze
both the source code and dependen-
cies for each method. Each method is
installed in its own isolated environ-
ment, avoiding conflicts and keeping
the user’s setup clean. Communication with these environments is done via interprocess communica-
tion. NerfBaselines handles dependency installation the first time a method is run. We support three
levels of isolation: Conda [1], Docker [42], and Apptainer [32]. Users can choose the backend that
best fits their system and isolation needs (e.g., HPC setups)

Viewer & camera trajectory rendering. In novel view synthesis, the evaluation is often conducted
on a set of test images, typically a subsequence of the training views. Unfortunately, this approach
does not adequately demonstrate the method’s robustness and multiview consistency in capturing the
3D scene [34]. Rendering a video from a custom trajectory from truly novel viewpoints farther away
from the training images often provides an insightful evaluation. While the unified interface presented
in Section 3 ‘Unified API’ significantly simplifies the process of rendering such trajectories, we
further enhance this capability by providing an interactive viewer. This viewer allows users to inspect
method’s performance outside the training camera distribution. It also includes a camera trajectory
editor for designing custom trajectories and video rendering. The editor is shown in Figure 3.

Web platform. Finally, it would be costly and environmentally unfriendly to have to retrain all
methods whenever researchers want to compare with other methods. Therefore, we release an online
benchmark, where the methods can be compared on different datasets. The web platform allows
researchers to download the rendered images or the checkpoints that reproduce the numbers. For
selected methods, the web platform can visualize the reconstructed 3D scene online. We show the
web platform in the supp. mat.

4 Evaluation protocols
To ensure a fair evaluation of various methods, it is important to use the same evaluation protocol.
Otherwise, as we show in the experimental section, even small deviations from the evaluation protocol
can lead to changes in the reported numbers. This often renders the comparisons unfair. As stated in
the previous section, the main objective of NerfBaselines is to standardize the evaluation protocols
such that researchers can safely compare with other methods without a) risk of an unfair evaluation,
and b) without having to spend a lot of time and effort on matching the details of the evaluation
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protocols. While the details of the evaluation protocols are standardized in the NerfBaselines code,
here we describe them in detail and motivate the design choices.
1) Images are evaluated in the uint8 range. The reason for this is reproducibility: every published
method should store and publish its predictions on the test set. This allows the results to be verified
and enables future computation of new metrics as well as qualitative comparisons, etc. These
predictions are stored in uint8, which is sufficient for most datasets (considering that uint8 images
were used for training), while fp32 images would require significantly more memory. Furthermore,
almost all publications have released either no predictions or only uint8 image predictions, and
evaluation protocols should therefore be compatible with this design choice in order to use this data
and allow comparison with existing methods. Consequently, NerfBaselines rounds the predictions
to the uint8 range during evaluation. In our experiments, this can cause a small but noticeable
difference (approximately ±0.02 PSNR).
2) LPIPS details. A common issue in literature is not to specify the details of the LPIPS metric.
Older papers mainly use VGG, while some recent ones opt for AlexNet-based LPIPS. The benefit is
that AlexNet is more lightweight and faster to evaluate. Therefore, we use AlexNet by default, but
for older datasets we use VGG. In NerfBaselines, we use the torch-based implementation with the
checkpoint version 0.1.
3) Using pre-downscaled images. We argue for the use of pre-downscaled released images, because
the default downscaling algorithms differ for different platforms and libraries. Loading larger images
and downscaling them before evaluation could yield different results depending on platform - which
is exactly what the unified evaluation protocol should avoid.
4) PSNR & SSIM details. Again, many choices are possible and we just need to make sure the
exact same code and parameters are used. This is not the case with some existing libraries (e.g.,
dm-pix [10], scikit-image [61], torchmetrics [13]), where the SSIM defaults can differ. Our choice
(default for skimage) is predominantly used in the literature, hence we follow the same practice. In
order to compute the metrics, we convert the images to float32, [0, 1] range. PSNR is then computed
using the following formula: −10 · log10

(∑
i(xi − yi)

2
)
. Note, in some implementations [13], the

data is first normalized to from [mini xi,maxi xi] to [0, 1]. This is not done in NerfBaselines. To
compute SSIM [6], we use the following parameters: kernel size = 11, σ = 1.5, k1 = 0.01, k2 = 0.03.
Again, we assume that the data are in the [0, 1] range and do not perform normalization. The SSIM is
averaged over the image and over channels (equivalent to multichannel in scikit-image [61]).

Dataset specific details. For the Blender [44] dataset, we use VGG-based LPIPS as it was used in the
original publication [44]. We blend the transparent images with white background. In Mip-NeRF [3],
we use the original 4× downscaled JPG images for outdoor and the original 2× downscaled JPG
images for indoor scenes. We also use VGG-based LPIPS. For the LLFF dataset [43], we also use
VGG-based LPIPS. For the Photo Tourism dataset [58], we use the NeRF-W [40] evaluation protocol,
where (after the training is finished) image appearance embeddings are optimized on the left half
(rounded up) of the images and the metrics are computed on the right half (rounded down).

5 Experiments

In our experiments, we 1) motivate the need for standardized evaluation protocols by showing how
small differences can lead to inconsistent results and erroneous conclusions, we then 2) verify that the
integrated methods match the original metrics, 3) demonstrate transferability to novel datasets, and 4)
show an application of NerfBaselines to qualitatively compare methods outside training trajectories.
All our experiments used NVIDIA A100 GPUs. A single GPU was used for all but Mip-NeRF
360 [3], which used four GPUs.

5.1 Importance of unified evaluation protocol

We motivate the need for our benchmarking framework by showing how small differences in evaluat-
ing protocols can lead to differences in the presented results. We specifically pick differences in the
evaluation protocols used by some methods. We show the difference on three datasets: Mip-NeRF
360 [3], Blender [44], and Photo Tourism [58]. For all datasets, we report the performance under
the official NerfBaselines evaluation protocol (P1), an alternative evaluation protocol (P2), and the
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P1

PSNR
P1

rank
P2

PSNR
P2

rank
P2

one-in
P1

one-in

Zip-NeRF [4] 28.55±0.01 1 28.84±0.01 1 1 1
Scaffold-GS [37] 27.71±0.01 2 28.01±0.02 2 2 4
Mip-Splatting [4] 27.49±0.03 3 27.78±0.04 3 2 6
Gaussian Splatting [23] 27.43±0.02 4 27.68±0.03 5 3 6
GOF [76] 27.42±0.03 5 27.71±0.02 4 2 6
Gsplat [71] 27.41±0.02 6 27.68 ±0.02 5 3 6
2DGS [22] 26.81±0.03 7 27.11±0.03 7 7 7
NerfStudio [60] 26.39±0.03 8 26.57±0.01 8 8 8
Instant-NGP [46] 25.51±0.04 9 25.75±0.03 9 9 9

Table 2: Mip-NeRF 360 evaluation protocol differences. We report PSNR (± standard deviation)
under protocols P1 (official), and P2 (manual downscaling). Changes in ranking denoted in bold.

P1

PSNR
P1

rank
P2

PSNR
P2

rank
P2

one-in
P1

one-in

GOF [76] 33.45 1 33.76 2 1 4
Mip Splatting [75] 33.33 2 33.85 1 1 4
Gaussian Splatting [23] 33.31 3 33.76 2 1 4
Scaffold-GS [37] 33.08 4 33.48 4 1 4
Instant-NGP [46] 32.20 5 32.70 5 5 5

Table 3: Blender evaluation protocols comparison. We report PSNR under protocols P1 (official),
and P2 (black background). Bold numbers denote changes in ranking.

ordering under both protocols. We further show P2 (P1) ‘one-in’ results, where we show the rank of
the method as if it was the only one using P2 (P1), while all other methods used P1 (P2).

Mip-NeRF 360 dataset. The Mip-NeRF 360 dataset comes with the original large-scale images
and the images which were downscaled by the authors and saved as JPGs. While original NeRF
methods used the downscaled images, in the official source code of 3D Gaussian Splatting [23], the
default loader uses the large-scale images that are downscaled on the fly. The authors report both
numbers for manually scaled images and when using the released downscaled images, however, some
follow-up works [75, 76, 22] already use the manual downscaling only when comparing with prior
work. In Table 2, we show the PSNR averaged over all scenes of the Mip-NeRF 360 dataset under
protocols P1 (official NerfBaselines one), and P2 (when manually downscaling the large images). We
also report the standard deviation computed over four independent trainings of each method. As can
be seen from the results, while the ranking is consistent for NeRF-based methods, for 3DGS-based
methods the ranking changes when changing the evaluation protocol. Furthermore, suppose one of
the 3DGS-based methods chooses a different evaluation protocol. In that case, it can become better
than other 3DGS-based methods and similarly, all 3DGS-based methods except for Scaffold-GS [37]
can become the worst by following the ‘official’ evaluation protocol if all other methods use P2.

Blender dataset. The Blender dataset [44] contains RGBA images with a transparent background. In
the original NeRF paper, authors used white color as the background (P1), however, in Instant-NGP,
a black background color was used (P2). In Table 3, we show the PSNR averaged over all Blender
scenes. The results show, that if any 3DGS-based method (by accident) uses P2, it would seem like it
outperforms all 3DGS-based methods. Even the relative ordering under P1 changes under P2.

Photo Tourism dataset. Since the dataset contains images with varying appearances, it is important
to adapt to the appearance of the test images at test time. Therefore, in the NeRF-W [40] paper, the
evaluation protocol was standardized as using the left half of each test image to optimize the image’s
appearance embedding, and to compute the metrics on the (previously unseen) right part. However,
some methods use a different evaluation protocol where they optimize the representation on the full
test images [77, 66]. In Table 4, we show the PSNR averaged over scenes Trevi Fountain, Brandenburg
Gate, and Sacre Coeur of the Photo Tourism dataset [58]. Protocol P1 is the official NerfBaselines
one (NeRF-W [40]), and P2 uses full test images when optimizing appearance embeddings. As
expected, this protocol change has a large impact when only one method uses P2. Interestingly, the
order changes when all methods use P2.
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P1

PSNR
P1

rank
P2

PSNR
P2

rank
P2

one-in
P1

one-in

WildGaussians [31] 24.56 1 25.96 3 1 4
Gsplat [71] 23.66 2 26.28 1 1 5
Scaffold-GS [37] 23.50 3 25.97 2 1 6
NeRF-W re. [40] 21.75 4 25.61 4 1 6
GS-W [77] 21.38 5 23.55 6 3 6
K-Planes [17] 21.10 6 23.98 5 2 6

Table 4: Photo Tourism evaluation protocols comparison. We report PSNR under protocols P1

(NeRF-W), and P2 (full test images). Bold numbers denote changes in ranking.
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Figure 4: Mip-NeRF 360 [3] and Blender [44] results comparing PSNRs obtained via NerfBaselines
with those reported in the original papers. We show the difference in PSNR. In most cases, the
difference is < 1%. Instant-NGP [46] and Mip Splatting [75] are consistently underperforming
because different evaluation protocols were used in the papers.

5.2 Reproducing published results

To verify that our framework can reproduce the results from the papers, we reevaluate important
methods on the standard benchmark datasets: Mip-NeRF 360 [3] and Blender [44]. We use the same
evaluation protocol for all methods. The results are compared to the original numbers as published in
the papers in Figure 4, with detailed numbers given in the supp. mat. Note, that we only compare
with methods that released their numbers on the datasets in the corresponding publications.

Mip-NeRF 360 results. As shown in Figure 4, NerfBaselines reproduces the original results with a
deviation of less than 1% for most scenes. For Mip-Splatting [75] and 3DGS [23], the difference in
the numbers was caused by the different evaluation protocols used as discussed in Section 5.1. In
the case of NerfStudio [60] and Tetra-NeRF [30], the codebase evolved since the time of the release
which is likely the cause of the difference.

Blender results. From the results, the discrepancy is again small for most methods. However, for
the Instant-NGP method [46], we can notice larger differences in PSNR, especially for ‘drums’, and
‘ficus’. Note, that Instant-NGP [46] uses a black background for training and evaluation which was
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Instant NGP [46] 25.90 21.72 22.85 21.65 23.33 20.01 20.67 21.62 19.44 15.19 19.09 17.84
NerfStudio [60] 26.40 21.71 23.37 20.85 24.69 20.43 20.77 22.68 20.24 17.84 17.68 17.06
Zip-NeRF [4] 29.26 23.94 25.09 23.07 27.13 22.19 24.52 25.45 22.17 19.34 19.11 20.58
Gaussian Splatting [23] 27.51 23.38 24.25 22.11 25.37 21.67 24.13 24.07 23.12 20.92 19.63 20.85
Mip-Splatting [75] 27.75 23.42 24.36 22.25 25.87 21.82 24.41 24.15 23.00 20.88 19.63 20.55
Gaussian Opacity Fields [76] 25.72 21.78 22.33 21.80 23.89 19.69 23.20 22.84 21.15 19.92 16.46 20.29

Table 5: Tanks & Temples [28] results. We show the PSNR of various implemented methods. The
first , second , and third values are highlighted.
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Figure 5: Qualitative results. We compare methods on views close and far from the training
trajectory. Top: MipNeRF360/stump scene, bottom: T&T/Auditorium.

shown in the previous section to cause the difference. Since Tetra-NeRF [30] uses NerfStudio [60]
and the codebase evolved since the time of the release, we can notice a slight drop in the performance.

5.3 Tanks & Temples evaluation

To demonstrate how NerfBaseline simplifies the transfer of existing methods to new datasets, we
evaluate various integrated methods on the Tanks and Temples [28] dataset. For the dataset, we
run COLMAP reconstruction [56, 57] with a simple radial camera model shared for all images.
Afterward, we undistorted and downscaled the images by a factor of 2. For NerfStudio [60], we run
the Mip-NeRF 360 configuration (which from our experiments performs better on the dataset than
the default configuration). The results are given in Table 5. As we can see, for easier scenes, the
reconstructions are dominated by Zip-NeRF [4]. For ‘Advanced’, there is no single best-performing
method. We believe this is caused by NeRFs, with its fixed capacity, not scaling as well to larger
scenes as 3DGS, where the capacity is adaptively increased.

5.4 Off-trajectory qualitative comparison

While test-set metrics enable an effective way of comparing different methods, they are insufficient
to fully evaluate the perceived quality [34]. Rendering images from poses with varying distances
from the training camera’s trajectory provides a lot of insight into the robustness of the learned
representations. Therefore, NerfBaselines provides a viewer and a renderer to enable visualising
methods and rendering images/videos outside the train trajectory. In Figure 5, we compare various
methods by rendering trained scenes both close to the training camera trajectory and far from it.
Notice how in the second row Instant-NGP [46], and 3DGS methods [23, 75] cannot fill the sparsely
observed sky, while NerfStudio [60] and Zip-NeRF [4] can achieve it thanks to space contraction.
Also, notice how 3DGS methods [23, 75] are more blurred in less observed regions.

6 Conclusion

In this paper, we demonstrated how tiny differences in evaluation protocols used in novel view
synthesis methods, e.g. NeRFs and 3DGS, can lead to large differences in results, possibly changing
the ranking of the methods on public benchmarks. We show that most published numbers of popular
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methods can be trusted, but there are exceptions (using different downscaling, background color,
etc.) which cause sizeable difference in performance. To address the problem, we standardized the
evaluation protocols and proposed an evaluation framework, called NerfBaselines, that ensures a
fair and consistent evaluation. We validated our framework by showing that the integrated methods
reproduce numbers from papers, and showed how it can be used to easily evaluate on new datasets.
We strongly believe NerfBaselines is a valuable contribution to the community as it ensures that
quantitative results are comparable and thus truly measure progress in the field of novel view synthesis.

Limitations. A major concern for each evaluation framework (including ours) is if it will be adopted
by the research community. To this end, we made it easy to integrate new methods and datasets by
designing the API and using isolated environments, created extensive documentation, and pledge to
continuously support and extend the platform.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and introduction state the claims and contributions made in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a Limitations section at the end of the paper discussing the
limitations of our method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all information needed to reproduce the experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The paper releases code at a link given in the main paper. The usage is further
discussed in supp. mat.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper gives detailed information on the experimental setting. More details
are given in supp. mat.and in the attached code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

k

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to limited computational budget, the paper only includes estimated
standard deviations for one of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper discusses used computational resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms to the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We aren’t aware of any potential misuse of our method. We discuss broader
impact in supp. mat.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no risks of misuse that we are aware of.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Licenses of all data and code is clearly credited and explicitly mentioned in
supp. mat.and the attached code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We only release code as part of our submission. We discuss detailed usage and
licenses in supp. mat.and the attached code. We include a documentation website including
interactive examples.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

In this Supplementary Material, we extend Section 3 from the main paper by providing the full
Method API in Section A.1. We attach a video showing the web platform, the interactive viewer, and
showing qualitative results on the Tanks and Temples dataset [28]. We describe the attached video in
Section A.2. In Section 5.1 in the main paper, we showed how changing the evaluation protocols
impacts performance in terms of PSNR. Sec. A.3 expands the results to also show SSIM, and LPIPS.
We extend the reproducibility comparison from Section 5 of the main paper in Section A.4 by giving
the exact numbers for the already integrated methods. As an addition to the video, we also show
screenshots from the web platform in Section A.5. Finally, we provide a brief introduction on how to
use NerfBaselines and reproduce the results in Section A.6.

A.1 Method API

Every method implements the following interface:

• constructor(train_dataset?, checkpoint?, config_overrides?): The constructor
takes as its inputs the (optional) training dataset instance (a set of images and camera parameters)
or the (optional) checkpoint. At least one of the two has to be provided. Also, it optionally takes
as an argument a subset of hyperparameters overriding the method’s default hyperparameters.

• train_iteration: Performs one training step (using the train dataset), updating the parameters.
• save(path): Saves the current checkpoint.
• render(camera, options?): Renders the 3D scene using the camera parameters with an

optional rendering configuration (e.g., including camera appearance embedding).
• get_info and get_method_info: Returns information about the trained model and the base

method, respectively.
• (optional) optimize_embedding(dataset, embedding?): Optimizes the appearance embed-

ding on the single-image dataset (if the method supports it), optionally using embedding argument
as the starting point.

• (optional) export_mesh(path, options?): Exports the reconstruction as a mesh.

A.2 Video

The video included in this Supplementary Material 3 is split into several parts:

Online benchmark. A core part of NerfBaselines is a web page that evaluates and compares
the methods integrated inot NerfBaselines on various datasets. This part of the video shows the
functionality of the website: For each method, the numbers on all scenes as well as the averaged
numbers are shown. We further show the numbers reported in the original paper and explain
discrepancies in evaluation protocols. For every method on every dataset/scene a checkpoint can be
downloaded (reproducing the numbers) as well as the set of predictions on the test set. Finally, for
some methods, we implement an online viewer where the reconstruction can be visualized – running
in the web browser.

Interactive viewer. Our interactive viewer is based on viser [60] and enables visualizing trained
model. It has a trajectory editor which can be used to create a camera trajectory and render a video.

Mip-NeRF 360 and Tanks and Temples results. Finally, we qualitatively compare Gaussian
Splatting [23], Mip-Splatting [75], Zip-NeRF [4], Instant-NGP [46], and NerfStudio [60] on custom
camera trajectories. We generate trajectories such that we start from regions close to the training
trajectory, next we move further away from the scene center, and finally, move close to the scene
geometry. The purpose is to visualize how different methods handle these viewpoint changes. We
show the results on two scenes from the Mip-NeRF 360 dataset [3] (stump and kitchen), and two
scenes from the Tanks and Temples dataset [28] (temple and lighthouse). Notice, how 3DGS behaves
well close to the training trajectory but has blank spots outside (where the geometry is missing). On
the other hand, NeRFs (especially NerfStudio [60]) is better able to extrapolate to less visible regions
further from the scene center.

3https://nerfbaselines.github.io/video.html
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A.3 Differences in evaluation protocols – extended results

In the main paper in Tables 2, 3, and 4, we showed how changing the evaluation protocols impact the
PSNR. In this section, we further show the impact on SSIM and LPIPS.

Mip-NeRF 360 dataset. For the Mip-NeRF 360 dataset, we suggested changing the way images are
downscaled which yields different results (cf. Section 5.1 ‘Importance of unified evaluation protocol’
in the main paper). We showed that by using the original large-scale images and downscaling them
manually, the PSNR can improve such that if only a subset of methods use it, the ranking would
change. In Table 6, we show the SSIM [6] and LPIPS [79] (VGG) averaged over all scenes of the
Mip-NeRF 360 dataset under protocols P1 (official NerfBaselines one), and P2 (when manually
downscaling the large images). The results are similar as for the PSNR, but we can see that LPIPS is
more robust to the change. The relative order is the same within each evaluation protocol and the
results do not change as much as in PSNR or SSIM cases. This can be attributed to LPIPS processing
higher-level features instead of working on a pixel level.

SSIM LPIPS (VGG)
P1

SSIM
P1

rank
P2

SSIM
P2

rank
P2

one-in
P1

one-in
P1

LPIPS
P1

rank
P2

LPIPS
P2

rank
P2

one-in
P1

one-in

Zip-NeRF [4] 0.829 1 0.839 1 1 2 0.218 1 0.206 1 1 1
Scaffold-GS [37] 0.813 6 0.824 5 3 6 0.262 6 0.248 6 3 6
Mip-Splatting [75] 0.815 3 0.826 3 2 6 0.258 5 0.245 5 3 6
Gaussian Splatting [23] 0.814 5 0.824 5 3 6 0.257 4 0.244 4 3 6
Gaussian Opacity Fields [76] 0.826 2 0.836 2 1 2 0.234 2 0.222 2 2 2
gsplat [71] 0.815 3 0.825 4 3 6 0.256 3 0.243 3 3 6
2D Gaussian Splatting [22] 0.796 7 0.807 7 7 7 0.297 7 0.284 7 7 7
NerfStudio [60] 0.731 8 0.744 8 8 8 0.343 8 0.331 8 8 8
Instant-NGP [46] 0.684 9 0.703 9 9 9 0.398 9 0.380 9 9 9

Table 6: Mip-NeRF 360 evaluation protocol differences. We report SSIM and LPIPS under
protocols P1 (official), and P2 (manual downscaling). Bold numbers denote changes in ranking.

Blender dataset. The Blender dataset [44] contains RGBA images with a transparent background.
In the original NeRF paper, the authors used white color as the background (P1). However, in
Instant-NGP, a black background color was used (P2). In Table 3 in the main paper, we showed the
PSNR averaged over all Blender scenes. Here, in Table 7, we also show the SSIM [6] and LPIPS [79]
(VGG). For these metrics, the results are very saturated and robust to the change of background.
There are only tiny differences under the different protocols and the ranking is mostly kept the same.

SSIM LPIPS (VGG)
P1

SSIM
P1

rank
P2

SSIM
P2

rank
P2

one-in
P1

one-in
P1

LPIPS
P1

rank
P2

LPIPS
P2

rank
P2

one-in
P1

one-in

Gaussian Opacity Fields [76] 0.969 1 0.970 1 1 1 0.038 2 0.037 1 1 1
Mip-Splatting [75] 0.969 1 0.969 2 1 2 0.039 3 0.039 3 3 3
Gaussian Splatting [23] 0.969 1 0.969 2 1 2 0.037 1 0.038 2 1 1
Scaffold-GS [37] 0.966 4 0.966 4 4 4 0.048 4 0.042 4 4 4
Instant-NGP [46] 0.959 5 0.959 5 5 5 0.055 5 0.054 5 5 5

Table 7: Blender evaluation protocols comparison. We report SSIM and LPIPS (VGG) under
protocols P1 (official), and P2 (black background). Bold numbers denote changes in ranking.

Photo Tourism dataset. In the NeRF-W [40] paper, the evaluation protocol uses the left half of
each test image to optimize the image’s appearance embedding and to compute the metrics on the
(previously unseen) right part. In Section 5.1 in the main paper (cf. Table 4), we compare this to a
protocol where the appearance embedding of the test image is optimized on the full image [77, 66]. In
Table 8, we show the SSIM and LPIPS (AlexNet) averaged over scenes Trevi Fountain, Brandenburg
Gate, and Sacre Coeur of the Photo Tourism dataset [58]. Protocol P1 is the official NerfBaselines
one (NeRF-W [40]), and P2 uses full test images when optimizing appearance embeddings. We can
see, that both SSIM and LPIPS are more robust to the change of the protocol, where only the first
three places are permuted for SSIM, and in the LPIPS case, everything is kept the same.
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SSIM LPIPS (AlexNet)
P1

SSIM
P1

rank
P2

SSIM
P2

rank
P2

one-in
P1

one-in
P1

LPIPS
P1

rank
P2

LPIPS
P2

rank
P2

one-in
P1

one-in

WildGaussians [31] 0.851 3 0.855 3 2 3 0.179 3 0.177 3 3 3
gsplat [71] 0.857 1 0.872 1 1 2 0.162 1 0.156 1 1 1
Scaffold-GS [37] 0.854 2 0.862 2 1 3 0.170 2 0.164 2 2 2
NeRF-W re. [40] 0.790 5 0.806 5 5 5 0.268 5 0.251 5 5 5
GS-W [77] 0.817 4 0.830 4 4 4 0.213 4 0.200 4 4 4
K-Planes [17] 0.761 6 0.778 6 6 6 0.313 6 0.292 6 6 6

Table 8: Photo Tourism evaluation protocol differences. We report SSIM, LPIPS (AlexNet) under
protocols P1 (NeRF-W), and P2 (full test images). Bold numbers denote changes in ranking.

A.4 Extended results on integrated methods

We extend the results from Fig. 3 and 6 to give exact numbers on all datasets: Mip-NeRF 360 [3],
Blender [44], and [28].

NerfBaselines Paper Runtime
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Time GPU mem.

Zip-NeRF [4] 28.553 0.829 0.218 28.54 0.828 0.189 5h 30m 20s 26.8 GB
Scaffold-GS [37] 27.714 0.813 0.262 – – – 23m 28s 8.7 GB
Mip-NeRF 360 [3] 27.681 0.792 0.272 27.69 0.792 0.237 30h 14m 36s 33.6 GB
3DGS-MCMC [26] 27.571 0.798 0.281 – – – 35m 8s 21.6 GB
Mip-Splatting [75] 27.492 0.815 0.258 27.79∗ 0.827∗ 0.203∗ 25m 37s 11.0 GB
Gaussian Splatting [23] 27.434 0.814 0.257 27.20 0.815 0.214 23m 25s 11.1 GB
Gaussian Opacity Fields [76] 27.421 0.826 0.234 – – – 1h 3m 54s 28.4 GB
gsplat [71] 27.412 0.815 0.256 – – – 29m 19s 8.3 GB
2D Gaussian Splatting [22] 26.815 0.796 0.297 27.04∗ 0.805∗ – 31m 10s 13.2 GB
NerfStudio [60] 26.388 0.731 0.343 – – – 19m 30s 5.9 GB
Instant NGP [46] 25.507 0.684 0.398 – – – 3m 54s 7.8 GB
COLMAP [57] 16.670 0.445 0.590 – – – 2h 52m 55s –

Table 9: Mip-NeRF 360 [3] results. We show the PSNR, SSIM [6], and LPIPS [79] (VGG) of various
implemented methods averaged over all Mip-NeRF 360 [3] scenes. We also report the numbers from
the papers. ∗ methods used a different image downscaling method (cf. Section 5.1 in the main paper).
The first , second , and third values are highlighted.

NerfBaselines Paper Runtime
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Time GPU mem.

Zip-NeRF [4] 33.670 0.973 0.036 33.09 0.971 0.031 5h 21m 57s 26.2 GB
Gaussian Opacity Fields [76] 33.451 0.969 0.038 – – – 18m 26s 3.1 GB
Mip-Splatting [75] 33.330 0.969 0.039 – – – 6m 49s 2.7 GB
Gaussian Splatting [23] 33.308 0.969 0.037 33.31 – 6m 6s 3.1 GB
TensoRF [8] 33.172 0.963 0.051 33.14 0.963 0.047 10m 47s 16.4 GB
Scaffold-GS [37] 33.080 0.966 0.048 33.68 – – 7m 4s 3.7 GB
3DGS-MCMC [26] 33.068 0.969 0.040 33.80† 0.970† – 6m 13s 3.9 GB
K-Planes [17] 32.265 0.961 0.062 – – – 23m 58s 4.6 GB
Instant NGP [46] 32.198 0.959 0.055 31.18∗ – – 2m 23s 2.6 GB
Tetra-NeRF [30] 31.951 0.957 0.056 31.52 0.982 – 6h 53m 20s 29.6 GB
gsplat [71] 31.471 0.966 0.054 – – – 14m 45s 2.8 GB
Mip-NeRF 360 [3] 30.345 0.951 0.060 – – – 3h 29m 39s 114.8 GB
NerfStudio [60] 29.191 0.941 0.095 – – – 9m 38s 3.6 GB
COLMAP [57] 12.123 0.766 0.214 – – – 1h 20m 34s –

Table 10: Blender [44] results. We show the PSNR, SSIM [6], and LPIPS [79] (VGG) of various
implemented methods averaged over all Blender [44] scenes. We also report the numbers from
the papers. † black background was used for blending instead of white; ∗ exact hyperparameters
for the dataset were not released at the time of writing. The first , second , and third values are
highlighted.

Mip-NeRF 360 [3]. First, we show the full results on the Mip-NeRF 360 [3] dataset. We show the
PSNR, SSIM [6], LPIPS [79] (VGG), and the total NVIDIA A100 GPU memory used, as well as the
total training time. The results, averaged over all scenes, are given in Table 9.
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SSIM↑ Training Data Intermediate Advanced

Instant NGP [46] 0.772 0.633 0.770 0.765 0.696 0.657 0.761 0.652 0.640 0.471 0.668 0.689
NerfStudio [60] 0.794 0.666 0.797 0.768 0.755 0.693 0.771 0.705 0.673 0.648 0.640 0.678
Zip-NeRF [4] 0.884 0.802 0.864 0.849 0.880 0.814 0.877 0.835 0.790 0.746 0.718 0.805
Gaussian Splatting [23] 0.852 0.791 0.853 0.843 0.848 0.791 0.871 0.824 0.790 0.764 0.736 0.806
Mip-Splatting [75] 0.855 0.790 0.857 0.844 0.861 0.795 0.872 0.826 0.791 0.768 0.731 0.805
Gaussian Opacity Fields [76] 0.866 0.791 0.860 0.833 0.869 0.796 0.871 0.818 0.781 0.761 0.683 0.794

LPIPS↑

Instant NGP [46] 0.271 0.360 0.216 0.281 0.343 0.334 0.429 0.352 0.448 0.606 0.440 0.424
NerfStudio [60] 0.215 0.302 0.167 0.245 0.249 0.261 0.330 0.261 0.336 0.311 0.452 0.392
Zip-NeRF [4] 0.083 0.152 0.081 0.131 0.095 0.119 0.153 0.113 0.153 0.159 0.317 0.183
Gaussian Splatting [23] 0.160 0.190 0.108 0.156 0.170 0.171 0.193 0.101 0.165 0.160 0.350 0.222
Mip-Splatting [75] 0.161 0.197 0.109 0.159 0.155 0.172 0.196 0.098 0.165 0.158 0.354 0.226
Gaussian Opacity Fields [76] 0.140 0.187 0.099 0.181 0.142 0.164 0.194 0.107 0.168 0.152 0.443 0.234

Table 11: Tanks & Temples [28] results. We show the SSIM [6], and LPIPS [79] (AlexNet) of
various implemented methods. The first , second , and third values are highlighted.

Extended results on Blender [44] Similarly, we show the full results on the Blender [44] dataset.
We show the PSNR, SSIM [6], LPIPS [79] (VGG), and the total NVIDIA A100 GPU memory used,
as well as the total training time. The results, averaged over all scenes, are given in Table 10.

Extended results on Tanks and Temples [28] In the main paper (cf. Section 5.3), we show the
PSNR for the Tanks and Temples dataset [28] for various methods. Here we also show the SSIM [6],
and LPIPS [79] (AlexNet). The results are given in Table 11.

A.5 Web platform

a) Dataset results view a) Method results view

Figure 7: Web platform. Shows the ranking of the current set of integrated methods. It enables
downloading of the checkpoints and predictions, and for some methods, it provides an online viewer.

To keep track of the current state of the art (SoTA), we release a web platform. The web platform
shows results on all individual scenes for all methods, enables comparing methods, and allows users to
download checkpoints and predictions for the datasets. Example screenshots can be seen in Figure 7.

A.6 Use instructions

Before installing NerfBaselines, Python 3.7+ must be installed on the host system. We recommend
using either conda or venv to separate NerfBaselines from system packages. After Python is
ready, install the nerfbaselines pip package on your host system by running: pip install
nerfbaselines. Now, nerfbaselines CLI (command line interface) can be used to interact with
NerfBaselines. However, at least one supported backend must be installed before any method can be
used. At the moment there are the following backends implemented:

• docker: Offers good isolation, requires docker (with NVIDIA container toolkit) to be
installed and the user to have access to it (being in the docker user group). In order to install
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it, please follow the instructions at https://github.com/NVIDIA/nvidia-container-
toolkit

• apptainer: Similar level of isolation as docker, but does not require the user to have
privileged access. To install the backend, please follow instructions at https://apptainer.
org/docs/admin/main/installation.html.

• conda (default): Does not require docker/apptainer to be installed, but does not offer the
same level of isolation and some methods require additional dependencies to be installed.
Also, some methods are not implemented for this backend because they rely on dependencies
not found on conda. To install conda, we recommend following instructions at https://
github.com/conda-forge/miniforge to install the miniforge distribution of conda.

• python: Will run everything directly in the current environment. Everything needs to be
installed in the environment for this backend to work.

Additionally, all backends require NVIDIA GPU drivers to be installed to access the GPUs. For
NerfBaselines commands, the backend can be set either via the --backend <backend> argument
or using the NERFBASELINES_BACKEND environment variable.

Training. To start the training, use the following command: nerfbaselines train --method
<method> --data external://<dataset>/<scene>, where <method> can be e.g., nerfacto,
zipnerf, instant-ngp, ... (for the full list, run nerfbaselines train --help). The
<dataset> can be one of the following: mipnerf360, blender, tanksandtemples, etc.. Similarly,
<scene> is the scene name in lowercase. The training script will automatically download the dataset
and start the training. The training will also run the evaluation and output the metrics computed on
the test set.

Other commands. The resulting checkpoint can be used in the viewer (nerfbaselines
viewer --checkpoint <checkpoint> --data external://<dataset>/<scene>), to
rerun the rendering (nerfbaselines render --checkpoint <checkpoint> --data
external://<dataset>/<scene>), or to render a camera trajectory (nerfbaselines
render-trajectory --checkpoint <checkpoint> --trajectory <trajectory>
--output <output>.mp4). The full list of available commands can be seen by running
nerfbaselines --help.
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