
Generalized Gradient Norm Clipping
& Non-Euclidean (L0, L1)-Smoothness

Thomas Pethick∗
EPFL (LIONS)

thomas.pethick@epfl.ch

Wanyun Xie∗
EPFL (LIONS)

wanyun.xie@epfl.ch

Mete Erdogan
EPFL (LIONS)

mete.erdogan@epfl.ch

Kimon Antonakopoulos
EPFL (LIONS)

kimon.antonakopoulos@epfl.ch

Antonio Silveti-Falls
Université Paris-Saclay (CVN)
tonys.falls@gmail.com

Volkan Cevher
EPFL (LIONS)

volkan.cevher@epfl.ch

Abstract

This work introduces a hybrid non-Euclidean optimization method which gen-
eralizes gradient norm clipping by combining steepest descent and conditional
gradient approaches. The method achieves the best of both worlds by establishing
a descent property under a generalized notion of (L0,L1)-smoothness. Weight
decay is incorporated in a principled manner by identifying a connection to the
Frank-Wolfe short step. In the stochastic case, we show an order optimal O(n−1/4)
convergence rate by leveraging a momentum based gradient estimator. We discuss
how to instantiate the algorithms for deep learning, which we dub Clipped Scion,
and demonstrate their properties on image classification and language modeling.
The code is available at https://github.com/LIONS-EPFL/ClippedScion.

1 Introduction
Recent work [Pethick et al., 2025] has shown that conditional gradient methods2, traditionally used for
constrained optimization, can also solve unconstrained problems—offering an alternative to steepest
descent. From their analysis it becomes apparent that the two methods have distinct properties:
whereas steepest descent requires the stepsize γ for L-smooth objectives to be taken as γ < 2/L,
conditional gradient methods have no such requirement, thus allowing for large stepsizes, while
remaining stable.

The price to pay for the stability is that conditional gradient based methods are not descent methods
and thus eventually needs a diminishing stepsize to converge, even in the deterministic case. The
problem becomes very apparent if the iterates are close to the solution, since the iterates always move
by a fixed magnitude and are thus pushed away from the solution. Steepest descent does not suffer
from the same problem since the effective stepsize automatically becomes smaller as the iterates
approach a solution. This observation naturally raises the following question:

∗Equal contribution.
2By conditional gradient based methods, we mean those methods which leverage a linear minimization oracle

lmo(d) = arg min
x∈D

⟨d, x⟩ when updating their parameters with an open-loop stepsize.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/LIONS-EPFL/ClippedScion

Table 1: Special instantiations of Algorithm 1 according to different choices of norm. Control on the
norm of the parameters is guaranteed by the constrained variant of the method (Algorithm 2).

Method Norm type Norm ball lmo(d) ∥d∥∗ Reference

Clipped GD Vector Euclidean ∥ · ∥2-ball − d
∥d∥2

∥d∥2 [Mikolov et al., 2012]
Clipped Sign Vector Max-norm ∥ · ∥∞-ball − sign(d) ∥d∥1 This paper
Clipped Spectral Matrix Spectral norm ∥ · ∥S∞ -ball −UV⊤1 − tr(lmo(d)⊤d) This paper
Clipped Scion (Algorithms 3 and 4) Product Max-norm ball over layers {rl lmo∥·∥Wl

(dl)}l∈[D] −
∑

l ⟨rl lmo(dl), dl⟩ This paper
1 The reduced SVD is given as d = U diag(σ)V⊤.

Can we combine the two methods and get the best of both worlds? That is, does a stable method exist
which takes large steps initially but adapts the stepsize when near a solution?

In this paper we answer the above in the affirmative by considering a hybrid method that combines a
conditional gradient method with steepest descent. The proposed method generalizes gradient norm
clipping [Mikolov et al., 2012] beyond the Euclidean case. In practice, gradient norm clipping has
been widely adopted to stabilize training of recurrent neural networks (RNNs), Transformers and
diffusion models, especially in large-scale settings. Theoretically, a precise characterization of the
benefits has emerged under the (L0, L1)-smoothness assumption [Zhang et al., 2019, 2020, Koloskova
et al., 2023]. Expanding on this, we show that these benefits of clipping can be made compatible
with non-Euclidean methods. Besides clipping, we provide a novel analysis of conditional gradient
methods without clipping under these same smoothness assumptions.

Concretely, we make the following contributions:

(i) We introduce a hybrid method between a conditional gradient method and steepest descent
(Algorithm 1), which in the Euclidean case recovers gradient norm clipping. The benefit
of the hybrid method is made precise by showing a descent property under a generalized
(L0, L1)-smoothness condition.

(ii) In the stochastic case we show an order optimal O(n−1/4) rate by leveraging a momentum
estimator. Convergence for a clipped algorithm with stochastic feedback appears to be new
even in the Euclidean case.

(iii) We establish a connection between clipping and the short step from the Frank-Wolfe
literature, which similarly enjoys a descent property. The connection enables us to combine
clipping with weight decay in a principled manner that maintains convergence guarantees.
We propose a stochastic variant of the short step (Algorithm 2) and establish a O(n−1/4) rate.

(iv) We explicitly instantiate the algorithms for deep learning through a product norm over
layers (Algorithms 3 and 4) and demonstrate their properties through experiments on image
classification and language modeling.

2 Preliminaries
Given a continuously differentiable objective function f : X → R, the classical gradient descent
method (GD) with a stepsize γ > 0 can be written as

xk+1 = arg min
x∈X

γ⟨∇ f (xk), x⟩ + 1
2 ∥x − xk∥22 = xk − γ∇ f (xk). (GD)

The normalized gradient descent method with radius ρ > 0 is, in comparison, defined as follows

xk+1 = arg min
∥x−xk∥2≤ρ

γ⟨∇ f (xk), x⟩ = xk + ρ arg min
∥x∥2≤1

γ⟨∇ f (xk), x⟩ = xk − γ
[
ρ ∇ f (xk)
∥∇ f (xk)∥2

]
. (Normalized GD)

A hybrid variant is much more popular in practice,

xk+1 = arg min
∥x−xk∥2≤ρ

γ⟨∇ f (xk), x⟩ + 1
2 ∥x − xk∥22 = xk − γmin{1, ρ

∥∇ f (xk)∥2
}∇ f (xk), (Clipped GD)

which we notice can be rewritten by combining GD and Normalized GD. Indeed, all three of these
algorithms correspond to minimizing

γ⟨∇ f (xk), x⟩ + R(x)

2

for different choices of R. For GD, R(x) = 1
2∥x − xk∥22 while for Normalized GD, R(x) = ιρD(x − xk),

the indicator function for Euclidean ball D = {x : ∥x∥2 ≤ 1} scaled by the radius ρ; Clipped GD
combines both by taking R(x) = 1

2∥x − xk∥22 + ιρD(x − xk). This results in the iterates of Clipped GD
being generated by the update in Normalized GD if ∥∇ f (xk)∥2 is large, but reducing to the update in
GD when ∥∇ f (xk)∥2 is small enough.

Observation I Our first observation is that both GD and Normalized GD can be generalized to the
non-Euclidean case. Define the sharp-operator [Nesterov, 2012, Kelner et al., 2014],

d♯ ∈ arg max
x∈X

{⟨d, x⟩ − 1
2∥x∥

2}.

Then, we can write the (possibly non-Euclidean) steepest descent method (SD) as follows

xk+1 = xk − γ[∇ f (xk)]♯ (SD)

Observe that we recover GD when choosing the Euclidean ℓ2 norm.

Generalizing Normalized GD to non-Euclidean norms is possible by noticing that the normalization
can be written in terms of the linear minimization oracle (lmo)

lmo(d) ∈ arg min
x∈D

⟨d, x⟩

where the constraint is a (now assumed to be non-Euclidean) norm-ball D := {x | ∥x∥ ≤ 1}. By
choosing the ℓ2-norm ball, Normalized GD can be seen as an instance of the so-called unconstrained
conditional gradient method (uCG) [Pethick et al., 2025],

xk+1 = xk + γρ lmo(∇ f (xk)). (uCG)

Observation II Our second central observation is that uCG can in general be considered a normal-
ized version of steepest descent. This relationship follows from noticing that the sharp operator and
lmo can be defined in terms of each other. Specifically, we have that

lmo(d) = − d♯
∥d∥∗

or, equivalently, d♯ = −∥d∥∗ lmo(d). (1)

In the following section we use this observation to generalize Clipped GD to the non-Euclidean case.

3 Method
We propose the generalized gradient norm clipping method (GGNC)

xk+1 = xk − γτk[dk]♯ with τk := min{1, ρ
∥dk∥∗
}. (GGNC)

There is freedom in how to compute the dual norm ∥dk∥∗ due to the following equivalence property
for the sharp operator, ∥s∥2∗ = ∥s

♯∥2 = ⟨s, s♯⟩. This form is useful, e.g., in the Euclidean case where
the sharp-operator is readily available, since then [dk]♯ = dk.

For norm choices where the lmo is more naturally available we can equivalently write GGNC as

xk+1 = xk + γηk lmo(dk) with ηk := min{ρ, ∥dk∥∗}.

We have that ∥dk∥∗ = − ⟨dk, lmo(dk)⟩ due to the definition of the dual norm and the optimality of
lmo(dk). So, provided that lmo has been computed, we can obtain ∥dk∥∗ with very little overhead.
From this rewriting we also see that ρ can also be interpreted as the radius of the norm-ball constraint
over which we compute the lmo.

The GGNC update rule can be seen as the solution to the following optimization problem:

xk+1 ∈ arg min
∥x−xk∥≤ρ

γ ⟨dk, x − xk⟩ + 1
2 ∥x − xk∥2

The objective is the same quadratic approximation that gives rise to SD, but the iterates are further
constrained to a trust-region of radius ρ in the chosen norm, as in uCG.

3

Algorithm 1 Generalized Gradient Norm Clipping (GGNC)
Input: Horizon n, init. x1 ∈ X, d0 = 0, momentum αk ∈ (0, 1], stepsize γ ∈ (0, 1)

1: for k = 1, . . . , n do
2: Sample ξk ∼ P
3: dk ← αk∇ f (xk, ξk) + (1 − αk)dk−1

4: vk ← − lmo(dk)
5: ηk ← min{ρ, ⟨dk, vk⟩}

6: xk+1 ← xk − γηkvk

7: Choose x̄n uniformly at random from {x1, . . . , xn}

Return x̄n

Equivalently to step 4-6: xk+1 ← xk − γτkvk with τk = min{1, ρ

⟨dk ,vk⟩
1/2 } and vk = [dk]♯.

Algorithm 2 Stochastic Short Step Conditional Gradient (S3CG)
Input: Horizon n, init. x1 ∈ βD = {x ∈ X : ∥x∥ ≤ β}, d0 = 0, momentum αk ∈ (0, 1], stepsize
γ ∈ (0, 1], ball radius β > 0

1: for k = 1, . . . , n do
2: Sample ξk ∼ P
3: dk ← αk∇ f (xk, ξk) + (1 − αk)dk−1

4: vk ← xk − β lmo(dk)
5: Variant 1: ηk ← min{ρ, ⟨d

k ,vk⟩

∥vk∥2
}

6: Variant 2: ηk ← min{ρ, ⟨d
k ,vk⟩

4β2 }

7: xk+1 ← xk − γηkvk

8: Choose x̄n uniformly at random from {x1, . . . , xn}

Return x̄n

Stochastic case In the deterministic case we can simply take the direction to be dk = ∇ f (xk). In
the stochastic case, one has to proceed with more care, since lmo(dk) can be biased even when dk is
unbiased, due to its potential nonlinearity. With αk ∈ (0, 1], we define the momentum based gradient
estimator

dk = (1 − αk)dk−1 + αk∇ f (xk, ξk).

The final algorithm involving the momentum based gradient estimator is presented in Algorithm 1.

Weight decay & constrained problems Weight decay is a very popular technique, both as a
regularizer to avoid overfitting and for ensuring numerical stability. A precise characterization exists
for weight decay when combined with the conditional gradient based schemes like uCG, since the
resulting update reduces to the classical conditional gradient method (a.k.a. Frank-Wolfe) designed
for solving constrained problems [Chen et al., 2023, D’Angelo et al., 2023, Xie and Li, 2024, Pethick
et al., 2025],

xk+1 = (1 − γk)xk + γkβ lmo(∇ f (xk)), (CG)

where β > 0 is the radius of norm-ball constraint and γk > 0 is some stepsize to be defined. The
simplicial combination ensures that the iterates remain within the constraint set βD and, as a result,
ensure that ∥xk∥ ≤ β for all k.

The CG method is not necessarily a descent method. For the classical open-loop stepsize choice
γk = 2/k+2, it is possible to step too far in the direction given by the lmo, since the stepsize does not
decrease near a critical point. Naively adopting the adaptive stepsize choice from GGNC does not
seem appropriate in the constrained case, since ∥dk∥∗ might not necessarily be zero at a solution.
Instead, we will argue that the correct analog of clipping in the constrained setting corresponds to
a clipped version of the Frank-Wolfe short step. Like GGNC, this stepsize ensures an analogous
descent property.

4

The short step is almost an immediate consequence of the L-smoothness descent lemma, from which
we have

f (xk+1) ≤ f (xk) − γk ⟨∇ f (xk), xk − β lmo(∇ f (xk))⟩ + γ2
k

L
2 ∥x

k − β lmo(∇ f (xk)∥2 (2)

≤ f (xk) − γk ⟨∇ f (xk), xk − β lmo(∇ f (xk))⟩ + 2γ2
k Lβ2. (3)

By optimizing this bound with respect to γk, we arrive at two variants of the short step

γk
(2)
= min{1, ⟨∇ f (xk),xk−β lmo(∇ f (xk))⟩

L∥xk−β lmo(∇ f (xk)∥2 } or γk
(3)
= min{1, ⟨∇ f (xk),xk−β lmo(∇ f (xk))⟩

4Lβ2 }

where the second variant is useful when the norm ∥ · ∥ is expensive to compute. What is particularly
noteworthy of these stepsize choices is that they lead to descent, i.e., f (xk+1) ≤ f (xk), by construction.
We extend these stepsize choices to the stochastic case with Algorithm 2, where we propose a slightly
different parameterization given by

ηk = min{ρ, ⟨d
k ,xk−β lmo(dk)⟩
∥xk−β lmo(dk)∥2 } or ηk = min{ρ, ⟨d

k ,xk−β lmo(dk)⟩
4β2 }.

A careful reader might have noticed the similarity between the short step in Algorithm 2 and gradient
clipping in Algorithm 1. These schemes are indeed equivalent when vk is appropriately modified
in Algorithm 2 to be −β lmo(dk). This connection motivates our parameterization of the updates in
Algorithm 2, which are scaled by βγηk, so that the following holds

βγηk = βγmin{ρ, −⟨d
k ,β lmo(dk)⟩
∥β lmo(dk)∥2 } = βγmin{ρ, β∥dk∥∗

∥β lmo(dk)∥2 } = βγmin{ρ, β∥d
k∥∗
β2 } = γmin{ρ, ∥dk∥∗}.

The modified Step 7 of Algorithm 2 then becomes

xk+1 = xk + γmin{ρ, ∥dk∥∗} lmo(dk)

which is exactly what is used in GGNC.

3.1 Norm choices

Algorithm 1 and Algorithm 2 crucially generalize beyond the Euclidean case of Clipped GD. The
following section focuses on the unconstrained variant (Algorithm 1) for simplicity, but its constrained
counterpart follows in a straightforward way through Algorithm 2.
Sign A simple non-Euclidean example is the ℓ∞ vector norm for which GGNC reduces to a
sign-based update

xk+1 = xk − γηk sign(dk) (Clipped Sign)
where ηk := min{ρ, ∥dk∥1}. The update is dense in the sense that each coordinate undergoes the same
magnitude change.
Spectral The matrix analog of the ℓ∞ norm is the Schatten-∞ matrix norm, a.k.a. the spectral norm,
which induces the following update

xk+1 = xk − γηkUk(Vk)⊤ (Clipped Spectral)

where the reduced singular value decomposition (SVD) is given as dk = Uk diag(σk)(Vk)⊤. The
dual norm can be computed given the lmo as ∥σk∥1 = ∥dk∥S1 = − ⟨d

k, lmo(dk)⟩ = − tr(lmo(dk)⊤dk) =
−flatten(lmo(dk))⊤ flatten(dk), where ∥ · ∥S1 is the Schatten-1 norm, a.k.a. the nuclear norm. This
scheme is a clipped variant of the stochastic spectral descent method [Carlson et al., 2015b,a].
Product norm The neural networks in deep learning consist of multiple layers and it will therefore
be useful to consider what we will call a product norm. Consider x = (W1, ...,WD). A norm of x can
be composed using norms on {Wl}l∈[D]:

∥x∥ = ∥(1
r1
∥W1∥W1 , ...,

1
rD
∥WD∥WD)∥X

for radius parameters rl > 0. Notable choices of ∥ · ∥X include the ℓ1-norm [Flynn, 2017] and the
ℓ∞-norm choice made by the modular norm [Large et al., 2024]. Interestingly, if ∥·∥X is the max-norm,
∥ · ∥X = ∥ · ∥∞, then:

(i) The lmos can be computed separately as lmoX(x) = {r1 lmoW1 (W1), ..., rD lmoWD (WD)}

(ii) The dual norm requires summing over all l elements, i.e., ∥x∥∗ =
∑D

l=1
1
rl
∥Wl∥Wl,∗ .

5

As a particular example, consider the LARS optimizer [You et al., 2017], which performs normalized
SGD layer-wise. The update rule can be written in terms of the lmo-based scheme uCG with the
norm choice ∥x∥ = maxl ∥Wl∥F . Writing the analog sharp-operator based scheme (i.e., SD), we see
that it does not correspond to simply removing the normalization as for the ℓ2 norm. Instead, using
the relationship (1), we see that the correct form for the hybrid GGNC method is

Wk+1
l = Wk

l − γmin{ρ,
∑

i ∥dk
i ∥F)} dk

l

∥dk
l ∥F

∀l ∈ [D]

where dk = {dk
1, ..., d

k
D} and γ > 0 is the stepsize. Through this duality, we see that while the lmo only

requires local information, the dual norm computation (and consequently also the sharp-operator in
SD) requires global information.

In Algorithms 3 and 4 of the appendix we specialize Algorithms 1 and 2 to the particular case where
∥ · ∥X is the max-norm. The resulting algorithms can be seen as clipped variants of the (unconstrained)
Scion algorithm [Pethick et al., 2025] so we refer to them as (unconstrained) ClippedScion.

4 Analysis
Why might it be useful to consider a hybrid of SD and uCG? As we will see, the convergence
properties of the two methods are complementary.

One can show for SD under L-smoothness that

f (xk+1) ≤ f (xk) − γ(1 − γL/2)∥∇ f (xk)∥2∗.

In other words, SD is a descent method in the sense that it decreases the function value f (xk) at every
iteration. The price we pay for this descent is that the stepsize needs to be taken sufficiently small,
specifically as γ < 2/L.

On the other hand, under the same L-smoothness assumption, uCG instead satisfies

f (xk+1) ≤ f (xk) − γρ∥∇ f (xk)∥∗ +
Lγ2ρ2

2 .

Notice that this is not a descent method, due to the positive contribution of Lγ2ρ2

2 . However, there
are no restrictions on the stepsize, and we can in fact show a fast rate of O(1/k) for the norm of the
gradient with a constant stepsize (as opposed to O(1/

√
k) of SD), albeit only to a neighborhood whose

radius is proportional to γρ, as we formalize in the following result.
Proposition 4.1. Suppose f is L-smooth with respect to ∥ · ∥∗ and denote f ⋆ = infx∈X f (x). Then, the
iterates {xk}k∈N∗ of uCG satisfy, for all n ∈ N∗,

min
1≤k≤n

∥∇ f (xk)∥∗ ≤ 1
n
∑n

k=1 ∥∇ f (xk)∥∗ ≤
f (x1)− f ⋆

γρn +
Lγρ

2 .

Recall that GGNC reduces to uCG when the gradient norm is large, so we can expect in the early
phase GGNC will converge rapidly to a neighborhood of size Lγρ

2 . If the gradient norm is small in
this region, then GGNC reduces to SD, which converges to an exact critical point even with constant
stepsize and which can adapt to the loss landscape through the gradient norm.

We can make this intuition precise by analyzing these algorithms under the following generalization
of (L0, L1)-smoothness to arbitrary norms.
Assumption 4.2. The gradient ∇ f is said to be (L0,L1)-smooth with L0, L1 ∈ [0,∞) if, for all x, y ∈ X
with ∥x − y∥ ≤ 1

L1
, it holds

∥∇ f (x) − ∇ f (y)∥∗ ≤ (L0 + L1∥∇ f (x)∥∗)∥x − y∥. (4)

4.1 Deterministic case

We now proceed to generalizing Koloskova et al. [2023, Thm. 2.1] in the deterministic case. The
main argument relies on establishing that GGNC (Algorithm 1) is a descent method even under
the generalized (L0, L1)-smoothness assumption, which enables the scheme to converge even for
a fixed, horizon-independent stepsize γ. For the remainder of the paper, we will always denote
f ⋆ := infx∈X f (x) (where it is understood this infimum is taken over βD for constrained problems)
and ∆ := f (x1) − f ⋆.

6

Theorem 4.3. Suppose Assumption 4.2 holds and let n ∈ N∗. Consider {xk}1≤k≤n generated by GGNC
with dk = ∇ f (xk), and γ ≤ 1/(L0+ρL1). Then, the following holds

min
1≤k≤n

∥∇ f (xk)∥∗ ≤
√
∆
γn +

2∆
γρn .

Specifically, with ρ = L0
L1

and γ = 1
L0

, we have

min
1≤k≤n

∥∇ f (xk)∥∗ ≤
√

L0∆

n +
2L1∆

n .

Remark 4.4. Note that the condition ∥xk − xk+1∥ ≤ 1/L1 of Assumption 4.2 required in the proof is
always satisfied, since γρ ≤ 1/L1 holds for any ρ. We note that descent can also be established for
SD with an adaptive stepsize γk = 1/L0+L1∥∇ f (xk)∥∗ (see e.g., Balles et al. [2020, C.2.2], which uses a
definition of (L0, L1)-smoothness based on the Hessian).

In contrast with GGNC, uCG is not a descent method and requires a diminishing stepsize to converge
as suggested by the following theorem. The uCG method trades off the descent property with being
agnostic to the Lipschitz constant L0.
Theorem 4.5. Suppose Assumption 4.2 holds and let n ∈ N∗. Consider {xk}1≤k≤n generated by uCG
with γρ < 1/2L1. Then, the following holds

min
1≤k≤n

∥∇ f (xk)∥∗ ≤ 2∆
γρn + 2L0γρ.

Remark 4.6. The assumption that γρ ≤ 1/2L1 can be relaxed to γρ < 1/L1 while still ensuring
convergence, modulo a different constant in the convergence rate.

Let us now turn to the constrained case. The following theorem establishes a convergence rate for
Algorithm 2 in the deterministic setting, i.e., with dk = ∇ f (xk). The convergence rate is established
for a quantity called the Wolfe-gap,

max
u∈βD
⟨∇ f (x), x − u⟩,

which, when equal to 0, certifies that x is a critical point for the constrained problem. It is the
equivalent of the dual norm of the gradient but for constrained problems, since the gradient might not
vanish at a critical point in the constrained setting. The theorem also includes an assumption that f is
L-smooth rather than (L0, L1)-smooth. Because the iterates of Algorithm 2 are guaranteed to never
leave the compact set βD, L-smoothness is implied by (L0, L1)-smoothness here.
Theorem 4.7. Suppose f is L-smooth and let n ∈ N∗. Consider {xk}1≤k≤n generated by Algorithm 2
with dk = ∇ f (xk), γ ≤ 1

L , and ρ ≤ L so that γρ ≤ 1. Then, for all u ∈ βD, the following holds

min
1≤k≤n
⟨∇ f (xk), xk − u⟩ ≤ 2β

√
∆
γn +

2∆
γρn .

4.2 Stochastic case

We consider the following standard assumption about the bias and variance of the stochastic oracle.
Assumption 4.8. For the stochastic gradient estimator ∇ f (·, ξ) : X → Rd the following holds.

(i) Unbiased: Eξ
[
∇ f (x, ξ)

]
= ∇ f (x) ∀x ∈ X.

(ii) Bounded variance: Eξ
[
∥∇ f (x, ξ) − ∇ f (x)∥22

]
≤ σ2 ∀x ∈ X, σ ≥ 0.

In order to establish convergence in what follows, an important quantity to introduce is the error
produced by the stochastic estimator dk, which we denote by λk := dk − ∇ f (xk).

We establish the following order optimal convergence guarantee for GGNC under (L0, L1)-smoothness
using a momentum-based estimator. These convergence results for clipping with momentum appear
to be new, even in the Euclidean case.
Theorem 4.9. Suppose Assumptions 4.2 and 4.8 hold and let n ∈ N∗. Consider the iterates {xk}1≤k≤n
generated by Algorithm 1 with a constant stepsize γ ≤ 1/L0 and γρ ≤ 1/2L1. Then,

E[∥∇ f (x̄n)∥∗] ≤ 4
√
∆

√
γn +

8∆
γρn + 4

√
ϵn +

8ϵn
ρ

7

where ∆ := f (x1) − f ⋆ and ϵn := 1
n
∑n

k=1 O(
√
E[∥λk∥22] + E[∥λk∥22]).

Furthermore, assuming f is L-smooth3 and taking α = 1/
√

n, γ = 1/
√

nL0 and ρ = L0/2n1/4L1 such that
γρ = 1/2n3/4L1 we have that

E[∥∇ f (x̄n)∥∗] ≤ O
(1

n1/4

)
.

Remark 4.10. For ease of exposition, the guarantee is presented with horizon-dependent parameter
choices, but the result can be extended to an any time guarantee in a straightforward manner by
choosing the parameters as a function of k instead of n and modifying the proofs accordingly.

In the constrained case, we have the following convergence guarantee for SCG with a clipped short
step (Algorithm 2) using a momentum-based estimator. To the best of our knowledge, this is the first
convergence proof using the short step in the stochastic setting.
Theorem 4.11. Suppose Assumptions 4.2 and 4.8 hold and let n ∈ N∗. Consider the iterates {xk}1≤k≤n
generated by Algorithm 2 (Variant 1) with a constant stepsize γ ≤ 1/L

√
n and ρ ≤ 1/n1/4. Then, for all

u ∈ βD,

E[⟨∇ f (x̄n), x̄n − u⟩] ≤ 4
√
∆

√
γn +

8∆
γρn + 4

√
ϵn +

8ϵn
ρ

where ∆ := f (x1) − f ⋆ and ϵn := 1
n
∑n

k=1 O(
√
E∥λk∥22 + E∥λ

k∥22).

Furthermore, taking α = 1/
√

n, γ = 1/(L
√

n) and ρ = 1/n1/4 such that γρ = 1/(Ln3/4) we have that

E[⟨∇ f (x̄n), x̄n − u⟩] ≤ O
(1

n1/4

)
.

We additionally provide an identical guarantee for Algorithm 2 (Variant 2) in the appendix.

5 Related work
(L0, L1)-smoothness An (L0, L1)-smoothness condition was introduced based on the Hessian in
[Zhang et al., 2019] and later generalized to the first-order notion that we extend to the non-Euclidean
case [Zhang et al., 2020]. (L0,L1)-smoothness was used to analyze signSGD under heavy-tailed noise
assumptions in Kornilov et al. [2025]. A coordinate-wise (L0,L1)-smoothness condition has also been
considered for analyzing a generalized version of signSGD [Crawshaw et al., 2022].

In the Euclidean case, a descent property under (L0, L1)-smoothness was shown for both gradient
clipping [Zhang et al., 2020, Koloskova et al., 2023] and gradient descent with an appropriate adaptive
stepsize as studied in the two concurrent works Gorbunov et al. [2024] and Vankov et al. [2024].

Parameter-agnostic In the deterministic case, gradient descent with backtracking line-search was
shown to converge under (L0, L1)-smoothness without knowledge of the Lipschitz constants [Hübler
et al., 2024]. For (star)-convex problems, an interesting connection was established between gradient
norm clipping and the Polyak stepsize in Takezawa et al. [2024] and further analyzed in Gorbunov
et al. [2024] and Vankov et al. [2024]. The adaptive stepsize removes the need for knowing both L0
and L1. Unfortunately, the Polyak stepsize is deeply tied to the Euclidean and (star)-convex structure
and thus does not seem to be directly extendable to our more general setting.

In the stochastic case, the current best known parameter-agnostic method introduces an undesirable
exponential dependency on L1 in the complexity [Hübler et al., 2024]. However, knowledge of L0
can be removed without such issues through either an AdaGrad type stepsize [Wang et al., 2023, Faw
et al., 2023] or normalized gradient descent with momentum [Cutkosky and Mehta, 2020] as shown
in Hübler et al. [2024]. This mirrors results from the online learning community where both AdaGrad
and gradient normalization are known to adapt to Hölder smoothness [Orabona, 2023].

Short step In contrast with gradient descent, the Frank-Wolfe algorithm [Frank et al., 1956] does
not ensure descent with an open-loop stepsize even in the deterministic setting. Descent can be
ensured by an adaptive stepsize known as the short step, originally introduced by Frank & Wolfe
[Frank et al., 1956] and extended by Rubinov & Dem’yanov [Dem’yanov and Rubinov, 1968]. See
Pokutta [2024] for an expository treatment.

3Only local Lipschitz is needed in the sense that the condition only needs to hold for (x, y) satisfying
∥x − y∥ ≤ 1/L1. It is also possible to replace L with Ln := maxk≤n L0 + L1∥ f (xk)∥∗, e.g., as is done in [Koloskova
et al., 2023, Thm. 2.3].

8

Spectral norm methods Clipped Spectral can be viewed as a hybrid method between the stochastic
spectral descent [Carlson et al., 2015b] and the Muon optimizer [Jordan et al., 2024b], with some
crucial differences.

Muon builds the gradient estimator dk differently. Specifically they take dk = ∇ f (xk, ξk) + βdk−1 if
Nesterov momentum is disabled. This is equivalent to our choice dk = α∇ f (xk, ξk) + (1 − α)dk−1 for
LMO-based schemes, since the LMO is scale-invariant (i.e., lmo(a · s) = lmo(s) for a > 0) [Pethick
et al., 2025]. However, for SD this equivalence no longer holds (in fact we have [a · s]♯ = a[s]♯ for
a ∈ R). The appropriate choice of dk, which generalizes to SD and GGNC, turns out to be the convex
combination.

Stochastic spectral descent [Carlson et al., 2015b] does not construct a gradient estimator and instead
takes dk = ∇ f (xk, ξk). This restricts their convergence result to the case of (mild) relative noise.

In this sense, Clipped Spectral could just as well be called Clipped Muon (not to be confused with
the unrelated MuonClip [Team et al., 2025]) but we prefer Clipped Spectral as the algorithm itself is
not tied to momentum nor to Newton-Schulz, as the name Muon fundamentally is.

Tuddenham et al. [2022] also studied an optimization algorithm focused on orthogonalization,
however they orthogonalize before doing the momentum step. Pethick et al. [2025] analyzed a more
general algorithm called Averaged LMO Directional Descent which admits as a special case the
algorithm studied in Tuddenham et al. [2022]; their empirical and theoretical findings found this
algorithm to be worse than orthogonalization after the momentum step, e.g., the Scion family of
algorithms [Pethick et al., 2025].

We note that many works have recently analyzed the convergence behavior of algorithms using
spectral LMOs like Muon and Scion, starting first with Pethick et al. [2025], Li and Hong [2025] and
then Kovalev [2025], Sfyraki and Wang [2025], but always under
Modular norm [Large et al., 2024] introduced a norm choice for neural networks and established
a smoothness condition for a given neural network provided the parameter remains bounded. The
dual norm computation needed in GGNC is particularly easy to implement in the accompanying
Modula software package since ∥d∥∗ := −flatten(lmo(d))⊤ flatten(d), which in Modula code reads as
dual_norm=-sum(model.dualize(d)*d).
Weight decay Weight decay [Pratt, 1992] is a crucial component in deep learning and has become
standard in training modern neural networks through its integration with Adam [Loshchilov and
Hutter, 2017]. When combined with LMO based updates such as sign descent and the normalized
gradient descent the resulting methods can be seen as instantiations of the conditional gradient method
for constrained optimization problems [Chen et al., 2023, D’Angelo et al., 2023, Xie and Li, 2024,
Pethick et al., 2025]. Our adaptive stepsize in Algorithm 2 effectively scales the weight decay as well
as the update. This is similar to scheduled weight decay [Xie et al., 2023] which uses the adaptive
stepsize in Adam to also scale the weight decay parameter.

6 Experiments
For the norm choice of Scion and ClippedScion we use the (Sign→ Spectral→ Sign) and (Spectral
→ Spectral→ Sign) configurations for language modeling and image classication respectively (see
Pethick et al. [2025, Tbl. 2-4] for the associated scaling factors). To compute the spectral lmo we
use the efficient implementation provided in Jordan et al. [2024b] of the Newton-Schultz iteration
proposed in Bernstein and Newhouse [2024]. There have been recent efforts to move beyond the
“N” (Newton-Schulz) in Muon, the most popular algorithm computing the spectral LMO, through
alternative subroutines; our algorithm is compatible with these alternatives, like the optimized
PolarExpress routine [Amsel et al., 2025] or power iterations [Ahn et al., 2025, Vogels et al., 2019],
although we do not explore them here.

Image classification We test on a convolutional neural network (CNN) on the CIFAR10 dataset.
Hyperparameters can be found in Table 2 in Appendix C. We consider both a fixed stepsize setting
and stepsize scheduling using linear rampdown to investigate if the theoretical results are predictive
of practice. We report the experimental results in Figure 1 where mean and standard deviation are
computed over 5 independent runs.

We find that clipping can substantially improve the test accuracy in the fixed stepsize setting, when
the gradient norm (i.e. ∥dk∥∗ = ⟨dk, vk⟩) is decreasing. This separation is in agreement with the

9

0 10 20 30 40 50 60 70 80
Epoch

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y
Adam
Unconstrained Scion
Unconstrained ClippedScion

0 250 500 750 1000 1250 1500 1750 2000
Iteration k

0

500

1000

1500

2000

2500

3000

Gr
ad

ie
nt

 n
or

m
 d

k

Unconstrained ClippedScion
Clipping threshold

Figure 1: For CIFAR10 experiments with fixed stepsize clipping leads to a substantial improvement.

0 1000 2000 3000 4000 5000
Iteration k

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Va
lid

at
io

n
Lo

ss

Adam
Unconstrained Scion
Unconstrained ClippedScion

10% speedup

1000 2000 3000 4000 5000
Iteration k

3000

4000

5000

6000

7000

8000

Gr
ad

ie
nt

 n
or

m
 d

k

Unconstrained ClippedScion
Clipping threshold

Figure 2: For fixed stepsize comparison clipping improves over Scion by more than a 10% speedup on
NanoGPT (1B). We observe similar gains on the smaller 124M parameter model size (cf. Appendix C).

theoretical separation between Theorem 4.3 and Theorem 4.5 on fixed stepsizes. In the constrained
case (Algorithm 2) we surprisingly find that ⟨dk, vk⟩ is increasing (cf. Figure 6 in Appendix C) which
requires further investigation. With stepsize scheduling we observe that clipping (i.e., Unconstrained
ClippedScion) and normalization (i.e., Unconstrained Scion) achieve similar performance, which
aligns with the matching theoretical rates of GGNC (Theorem 4.9) and uSCG (Pethick et al. [2025,
Thm. 5.4]) in the stochastic case when stepsizes are taken decreasing.

We also evaluate the unconstrained case (Algorithm 1) using Vision Transformers (ViT) on the
ImageNet dataset. We train a DeiT-base model using the DeiT codebase [Touvron et al., 2021] with
replacing LayerNorm by RMS norm following [Pethick et al., 2025]. Table 3 in Appendix C contains
the hyperparameter details. As shown in Figure 7 (Appendix C), Unconstrained ClippedScion
achieves an 11% speedup over Unconstrained Scion, even though its gradient norm (∥dk∥∗) is
increasing. This observation requires further exploration.

NanoGPT We additionally test on NanoGPT Karpathy [2023] in Figure 2 with modernizations
following [Jordan et al., 2024a]: rotary embeddings are used instead of positional embeddings, RMS
norm is used instead of LayerNorm, and the ReLU2 [So et al., 2021] instead of GELU activation
function. All methods are trained for 5100 iterations with a batchsize of 512 and context length of
1024 on the FineWeb dataset (see Table 4 Appendix C for further details). The empirical observations
matches those for CIFAR10 experiments.

7 Conclusion
We have shown that clipping can be extended to non-Euclidean settings and even constrained problems
by establishing a precise connection to the Frank-Wolfe short step. A descent property was established
under a generalized notion of (L0, L1)-smoothness, which opens up a range of interesting directions:

The descent property both in the unconstrained and constrained case enables integration with adaptive
stepsize choices such as AdaGrad and backtracking line-search.

The non-Euclidean notion of (L0, L1)-smoothness we introduce might be a suitable condition to study
for neural networks. Large et al. [2024] showed that neural networks are smooth in the modular norm
provided that the parameters are constrained. However, in practice, violating the constraints seem to
be unproblematic for optimization, which suggests that a looser smoothness assumption might hold
such as Assumption 4.2.

10

Acknowledgment

This work was supported as part of the Swiss AI Initiative by a grant from the Swiss National
Supercomputing Centre (CSCS) under project ID a06 on Alps. This work was supported by the
Swiss National Science Foundation (SNSF) under grant number 200021_205011. This work was
supported by Hasler Foundation Program: Hasler Responsible AI (project number 21043). Research
was sponsored by the Army Research Office and was accomplished under Grant Number W911NF-
24-1-0048.

References

Kwangjun Ahn, Byron Xu, Natalie Abreu, Ying Fan, Gagik Magakyan, Pratyusha Sharma,
Zheng Zhan, and John Langford. Dion: Distributed orthonormalized updates. arXiv preprint
arXiv:2504.05295, 2025.

Noah Amsel, David Persson, Christopher Musco, and Robert M Gower. The polar express: Optimal
matrix sign methods and their application to the muon algorithm. arXiv preprint arXiv:2505.16932,
2025.

Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geometry of sign gradient descent. arXiv
preprint arXiv:2002.08056, 2020.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024.

David Carlson, Volkan Cevher, and Lawrence Carin. Stochastic spectral descent for restricted
boltzmann machines. In Artificial Intelligence and Statistics, pages 111–119. PMLR, 2015a.

David Carlson, Ya-Ping Hsieh, Edo Collins, Lawrence Carin, and Volkan Cevher. Stochastic spectral
descent for discrete graphical models. IEEE Journal of Selected Topics in Signal Processing, 10
(2):296–311, 2015b.

Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves constrained optimization:
As lyapunov predicts. arXiv preprint arXiv:2310.05898, 2023.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. Advances in neural information processing
systems, 35:9955–9968, 2022.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International conference
on machine learning, pages 2260–2268. PMLR, 2020.

Francesco D’Angelo, Maksym Andriushchenko, Aditya Varre, and Nicolas Flammarion. Why do we
need weight decay in modern deep learning? arXiv preprint arXiv:2310.04415, 2023.

VF Dem’yanov and AM Rubinov. Minimization of functionals in normed spaces. SIAM Journal on
Control, 6(1):73–88, 1968.

Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform smooth-
ness: A stopped analysis of adaptive sgd. In The Thirty Sixth Annual Conference on Learning
Theory, pages 89–160. PMLR, 2023.

Thomas Flynn. The duality structure gradient descent algorithm: analysis and applications to neural
networks. arXiv preprint arXiv:1708.00523, 2017.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth,
and Martin Takáč. Methods for convex (l_0, l_1)-smooth optimization: Clipping, acceleration, and
adaptivity. arXiv preprint arXiv:2409.14989, 2024.

11

Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
smoothness. In International Conference on Artificial Intelligence and Statistics, pages 4861–4869.
PMLR, 2024.

Keller Jordan. Cifar-10 airbench, 2024. URL https://github.com/KellerJordan/
cifar10-airbench.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You
Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt: Speedrunning
the nanogpt baseline, 2024a. URL https://github.com/KellerJordan/modded-nanogpt.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/.

Andrej Karpathy. nanoGPT. https://github.com/karpathy/nanoGPT, 2023. Accessed: 2025-
01-25.

Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time
algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
217–226. SIAM, 2014.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
Stochastic bias and tight convergence guarantees. In International Conference on Machine
Learning, pages 17343–17363. PMLR, 2023.

Nikita Kornilov, Philip Zmushko, Andrei Semenov, Mark Ikonnikov, Alexander Gasnikov, and
Alexander Beznosikov. Sign operator for coping with heavy-tailed noise in non-convex optimiza-
tion: High probability bounds under (l_0, l_1)-smoothness. arXiv preprint arXiv:2502.07923,
2025.

Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean
trust-region optimization. arXiv preprint arXiv:2503.12645, 2025.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. arXiv preprint arXiv:2405.14813, 2024.

Jiaxiang Li and Mingyi Hong. A note on the convergence of muon and further. arXiv e-prints, pages
arXiv–2502, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Tomáš Mikolov et al. Statistical language models based on neural networks. 2012.

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional gradient methods: From
convex minimization to submodular maximization. Journal of machine learning research, 21(105):
1–49, 2020.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Francesco Orabona. Normalized gradients for all. arXiv preprint arXiv:2308.05621, 2023.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos. arXiv preprint
arXiv:2502.07529, 2025.

Sebastian Pokutta. The frank-wolfe algorithm: a short introduction. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 126(1):3–35, 2024.

Lorien Y Pratt. Non-literal transfer among neural network learners. Colorado School of Mines:
MCS-92-04, 1992.

12

https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT

Maria-Eleni Sfyraki and Jun-Kun Wang. Lions and muons: Optimization via stochastic frank-wolfe.
arXiv preprint arXiv:2506.04192, 2025.

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching for
efficient transformers for language modeling. Advances in neural information processing systems,
34:6010–6022, 2021.

Yuki Takezawa, Han Bao, Ryoma Sato, Kenta Niwa, and Makoto Yamada. Polyak meets parameter-
free clipped gradient descent. arXiv preprint arXiv:2405.15010, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534, 2025.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pages 10347–10357. PMLR, 2021.

Mark Tuddenham, Adam Prügel-Bennett, and Jonathan Hare. Orthogonalising gradients to speed up
neural network optimisation. arXiv preprint arXiv:2202.07052, 2022.

Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U Stich. Op-
timizing (l_0, l_1)-smooth functions by gradient methods. arXiv preprint arXiv:2410.10800,
2024.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems, 32,
2019.

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual Conference on
Learning Theory, pages 161–190. PMLR, 2023.

Shuo Xie and Zhiyuan Li. Implicit bias of AdamW: ℓ∞ norm constrained optimization. arXiv preprint
arXiv:2404.04454, 2024.

Zeke Xie, Zhiqiang Xu, Jingzhao Zhang, Issei Sato, and Masashi Sugiyama. On the overlooked
pitfalls of weight decay and how to mitigate them: A gradient-norm perspective. Advances in
Neural Information Processing Systems, 36:1208–1228, 2023.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms for
non-convex optimization. Advances in Neural Information Processing Systems, 33:15511–15521,
2020.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes we generalize clipping and (L0, L1)-smoothness.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
• The claims made should match theoretical and experimental results, and reflect how

much the results can be expected to generalize to other settings.
• It is fine to include aspirational goals as motivation as long as it is clear that these goals

are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See experimental section and conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
• The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
• The authors should reflect on the factors that influence the performance of the approach.

For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
• The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.
• If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.
• While the authors might fear that complete honesty about limitations might be used by

reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: All theorem statements explicit states assumptions and proof (in the appendix).
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
• Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.
• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: For hyperparameters see tables in appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
• While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: We provide an implementation of Algorithms 3 and 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
• The instructions should contain the exact command and environment needed to run to

reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
• At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See experimental sections and associated appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: CIFAR10 experiments are particularly noisy and multiple random seeds are
used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
• The factors of variability that the error bars are capturing should be clearly stated (for

example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
• The method for calculating the error bars should be explained (closed form formula,

call to a library function, bootstrap, etc.)
• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
• For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
• If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the guidelines and do conform.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is foundational research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
• The authors should consider possible harms that could arise when the technology is

being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
• If there are negative societal impacts, the authors could also discuss possible mitigation

strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We are not releasing models or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
• Datasets that have been scraped from the Internet could pose safety risks. The authors

should describe how they avoided releasing unsafe images.
• We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
• For existing datasets that are re-packaged, both the original license and the license of

the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose

asset is used.
• At submission time, remember to anonymize your assets (if applicable). You can either

create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Human subjects are not used.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
• We recognize that the procedures for this may vary significantly between institutions

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
• For initial submissions, do not include any information that would break anonymity (if

applicable), such as the institution conducting the review.
16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

Table of Contents

A Preliminaries 22

B Proofs for Section 4 (Analysis) 22

C Experiments 36

21

Algorithm 3 Unconstrained ClippedScion
Input: Horizon n, init. x1 = (W1

1 , ...,W
1
D), d0 = 0, momentum αk ∈ (0, 1], stepsize γ ∈ (0, 1), radii

rl ∈ R+, and ρ > 0.
1: for k = 1, . . . , n − 1 do
2: Sample ξk ∼ P
3: dk ← αk∇ f (xk, ξk) + (1 − αk)dk−1

4: vk
l ← −rl lmo∥·∥Wl

(dk
l) ∀1 ≤ l ≤ D

5: ηk ← min{ρ,
∑D

l=1 ⟨d
k
l , v

k
l ⟩}

6: xk+1 ← xk − γηkvk

7: Choose x̄n uniformly at random from {x1, . . . , xn}

Return x̄n

Algorithm 4 ClippedScion
Input: Horizon n, init. x1 = (W1

1 , . . . ,W
1
D) ∈ r1D1 × · · · × rDDD, d0 = 0, stepsize γ ∈ (0, 1),

momentum αk ∈ (0, 1]
1: for k = 1, . . . , n do
2: Sample ξk ∼ P
3: dk ← αk∇ f (xk, ξk) + (1 − αk)dk−1

4: vk
l ← xk

l − rl lmo∥·∥Wl
(dk

l) ∀1 ≤ l ≤ D

5: Variant 1: ηk ← min{ρ,
∑D

l=1⟨d
k
l ,v

k
l ⟩

maxD
l=1 ∥v

k
l ∥

2
Wl

}

6: Variant 2: ηk ← min{ρ,
∑D

l=1⟨d
k
l ,v

k
l ⟩

4 }

7: xk+1 ← xk − γηkvk

8: Choose x̄n uniformly at random from {x1, . . . , xn}

Return x̄n

A Preliminaries

Throughout, L-smoothness is defined as follows.
Definition A.1. A gradient mapping ∇ f : X → Rd is said to be L-smooth with L ∈ (0,∞) if for all
x, y ∈ X it holds that,

∥∇ f (x) − ∇ f (y)∥∗ ≤ L∥x − y∥. (5)

The sharp operator has the following properties

⟨s, s♯⟩ = ∥s♯∥2 = ∥s∥2∗ (6)

See Kelner et al. [2014, App. A.1] for the proof.

B Proofs for Section 4 (Analysis)

Proposition 4.1. Suppose f is L-smooth with respect to ∥ · ∥∗ and denote f ⋆ = infx∈X f (x). Then, the
iterates {xk}k∈N∗ of uCG satisfy, for all n ∈ N∗,

min
1≤k≤n

∥∇ f (xk)∥∗ ≤ 1
n
∑n

k=1 ∥∇ f (xk)∥∗ ≤
f (x1)− f ⋆

γρn +
Lγρ

2 .

Proof. By the descent lemma for L-smooth functions applied at the points xk and xk+1 and the
definition of xk+1 we have, for all k ≥ 1,

f (xk+1) ≤ f (xk) − γρ∥∇ f (xk)∥∗ + L
2γ

2ρ2.

Summing from k = 1 to k = n, and dividing by n gives

1
n
∑n

k=1 ∥∇ f (xk)∥∗ ≤
f (x1)− f ⋆

γρn +
Lγρ

2 .

Remarking that the minimum summand is smaller than the average completes the proof. □

22

B.1 Deterministic case

Recall the notation ∆ := f (x1) − f ⋆.
Theorem 4.3. Suppose Assumption 4.2 holds and let n ∈ N∗. Consider {xk}1≤k≤n generated by GGNC
with dk = ∇ f (xk), and γ ≤ 1/(L0+ρL1). Then, the following holds

min
1≤k≤n

∥∇ f (xk)∥∗ ≤
√
∆
γn +

2∆
γρn .

Specifically, with ρ = L0
L1

and γ = 1
L0

, we have

min
1≤k≤n

∥∇ f (xk)∥∗ ≤
√

L0∆

n +
2L1∆

n .

Proof. For each 1 ≤ k ≤ n, we can write the formula for xk+1 as follows

xk+1 = xk − γτk[∇ f (xk)]♯

with τk = min{1, ρ
∥∇ f (xk)∥∗

}.

From (L0, L1)-smoothness and properties of the sharp-operator ⟨s, s♯⟩ = ∥s♯∥2 = ∥s∥2∗, we have

f (xk+1) ≤ f (xk) + ⟨∇ f (xk),−γτk∇ f (xk)⟩ + L0+∥∇ f (xk)∥∗L1
2 (γτk∥∇ f (xk)∥∗)2

= f (xk) − γτk∥∇ f (xk)∥2∗ +
γ2τ2

k
2 (L0 + ∥∇ f (xk)∥∗L1)∥∇ f (xk)∥2∗.

A useful observation is that by definition of τk we have

τk∥∇ f (xk)∥∗ ≤ ρ,

since if ∥∇ f (xk)∥∗ > ρ then τk = ρ/∥∇ f (xk)∥∗, and if ∥∇ f (xk)∥∗ ≤ ρ then τk = 1. Thus we can
upper-bound the term τk∥∇ f (xk)∥∗L1 by ρL1 in the quadratic part, yielding

f (xk+1) ≤ f (xk) − γτk∥∇ f (xk)∥2∗ +
γ2τk

2 (τkL0 + ρL1)∥∇ f (xk)∥2∗
≤ f (xk) − γτk(1 − γ2 (L0 + ρL1))∥∇ f (xk)∥2∗
≤ f (xk) − γτk

2 ∥∇ f (xk)∥2∗.

where the middle inequality uses that τ2 ≤ τ since τ ≤ 1 and the last inequality uses the stepsize
choice γ ≤ 1

L0+ρL1
.

There are now two cases to consider.

Case I Clipping Active (∥∇ f (xk)∥∗ > ρ).

Here, we have τk =
ρ

∥∇ f (xk)∥∗
so

τk∥∇ f (xk)∥2∗ = ρ∥∇ f (xk)∥∗.
Therefore, the descent inequality in this case reads

f (xk+1) ≤ f (xk) − ργ2 ∥∇ f (xk)∥∗.

Case II No Clipping (∥∇ f (xk)∥∗ ≤ ρ).

In this regime, τk = 1, so the inequality becomes

f (xk+1) ≤ f (xk) − γ2 ∥∇ f (xk)∥2∗.

This is the familiar descent guaranty for the classical steepest descent method with smooth functions.

By combining the two cases and summing over all k = 1 until n we obtain
γ
2

(
ρ
∑

k∈A ∥∇ f (xk)∥∗ +
∑

k<A ∥∇ f (xk)∥2∗
)
≤ f (x1) − f ⋆

whereA is the set of indices where clipping is active (Case I). Since each sum is nonnegative, we can
conclude that

1
n
∑

k<A ∥∇ f (xk)∥2∗ ≤
2(f (x1)− f ⋆)

γn and 1
n
∑

k∈A ∥∇ f (xk)∥∗ ≤
2(f (x1)− f ⋆)
γρn . (7)

23

Recall the following inequality for real numbers: for all a, b > 0, a2 ≥ 2ab − b2. Applying this with
a = ∥∇ f (xk)∥∗ and b > 0 gives

1
n
∑

k<A ∥∇ f (xk)∥2∗ ≥
1
n
∑

k<A(2b∥∇ f (xk)∥∗ − b2) = 2b
n

(∑
k<A ∥∇ f (xk)∥∗

)
−

b2(n−|A|)
n .

Substituting this estimate into (7) and using the fact that |A| ≤ n gives

2b
n

(∑
k<A ∥∇ f (xk)∥∗

)
−

b2(n−|A|)
n ≤

2(f (x1)− f ⋆)
γn =⇒ 1

n
∑

k<A ∥∇ f (xk)∥∗ ≤ 1
2

(
f (x1)− f ⋆

bγn + b
)
.

Then, choosing b =
√

f (x1)− f ⋆
γn simplifies the above to

1
n
∑

k<A ∥∇ f (xk)∥∗ ≤
√

f (x1)− f ⋆
γn .

Now, we can combine both cases to bound the sum over 1 ≤ k ≤ n as

1
n
∑n

k=1 ∥∇ f (xk)∥∗ ≤
√

f (x1)− f ⋆
γn +

2(f (x1)− f ⋆)
γρn

Taking the minimum of the summand over 1 ≤ k ≤ n on the left hand side gives the final result. □

Theorem 4.5. Suppose Assumption 4.2 holds and let n ∈ N∗. Consider {xk}1≤k≤n generated by uCG
with γρ < 1/2L1. Then, the following holds

min
1≤k≤n

∥∇ f (xk)∥∗ ≤ 2∆
γρn + 2L0γρ.

Proof. We begin by invoking the descent lemma for (L0, L1)-smooth functions at the points xk+1 and
xk, which is justified since ∥xk+1 − xk∥ = γρ ≤ 1

2L1
. Then, applying the definition of xk+1 we get, for

all 1 ≤ k ≤ n,

f (xk+1) ≤ f (xk) + γρ⟨∇ f (xk), vk⟩ + γ2ρ2(L0 + L1∥∇ f (xk)∥∗)∥vk∥2∗

= f (xk) − γρ∥∇ f (xk)∥∗ + γ2ρ2(L0 + L1∥∇ f (xk)∥∗)

= f (xk) + L0γ
2ρ2 + (L1γρ − 1)γρ∥∇ f (xk)∥∗.

Rearranging the above yields

1
2
∥∇ f (xk)∥∗ ≤ (1 − L1γρ)∥∇ f (xk)∥∗ ≤

f (xk)− f (xk+1)
γρ

+ L0γρ

where we have used the assumption that γρ ≤ 1
2L1

in the first inequality above. The desired claim
immediately follows. □

Theorem 4.7. Suppose f is L-smooth and let n ∈ N∗. Consider {xk}1≤k≤n generated by Algorithm 2
with dk = ∇ f (xk), γ ≤ 1

L , and ρ ≤ L so that γρ ≤ 1. Then, for all u ∈ βD, the following holds

min
1≤k≤n
⟨∇ f (xk), xk − u⟩ ≤ 2β

√
∆
γn +

2∆
γρn .

Proof. We start by applying the descent lemma for L-smooth functions at the points xk+1 and xk to
get, for all 1 ≤ k ≤ n,

f (xk+1) ≤ f (xk) − γηk⟨∇ f (xk), vk⟩ +
L
2
γ2η2

k∥v
k∥2.

Now, we divide the analysis into two cases depending on whether or not clipping is active.

24

Case I Clipping active (⟨∇ f (xk),vk⟩

∥vk∥2
≥ ρ; ηk = ρ).

In this case, we can use the fact that ⟨∇ f (xk), vk⟩ ≥ ρ∥vk∥2 to get

f (xk+1) ≤ f (xk) − γηk⟨∇ f (xk), vk⟩ +
L
2
γ2η2

k∥v
k∥2

= f (xk) − γρ⟨∇ f (xk), vk⟩ +
L
2
γ2ρ2∥vk∥2

≤ f (xk) − γρ⟨∇ f (xk), vk⟩ +
L
2
γ2ρ⟨∇ f (xk), vk⟩

≤ f (xk) −
1
2
γρ⟨∇ f (xk), vk⟩

where the final inequality is due to the assumption that γ ≤ 1
L . Rearranging this gives

γρ

2
⟨∇ f (xk), vk⟩ ≤ f (xk) − f (xk+1).

Case II No clipping (⟨∇ f (xk),vk⟩

∥vk∥2
≤ ρ; ηk =

⟨∇ f (xk),vk⟩

∥vk∥2
).

When clipping is not active, ηk acts like a short step which gives

f (xk+1) ≤ f (xk) − γηk⟨∇ f (xk), vk⟩ +
L
2
γ2η2

k∥v
k∥2

≤ f (xk) − γ
⟨∇ f (xk), vk⟩2

∥vk∥2
+

L
2
γ2 ⟨∇ f (xk), vk⟩2

∥vk∥2

≤ f (xk) − γ
⟨∇ f (xk), vk⟩2

∥vk∥2

where the last inequality follows from the assumption that γ ≤ 1
L . Rearranging this gives

γ

4β2 ⟨∇ f (xk), vk⟩2 ≤ f (xk) − f (xk+1).

Combining both cases DenotingA the set of indices where clipping is active and summing from
k = 1 to n we find ∑

k∈A

γρ

2
⟨∇ f (xk), vk⟩ +

∑
k<A

γ

4β2 ⟨∇ f (xk), vk⟩2 ≤ f (x1) − f ⋆

which, since each summand is nonnegative, implies that

1
n

∑
k∈A

⟨∇ f (xk), vk⟩ ≤
2(f (x1) − f ⋆)
γρn

and
1
n

∑
k<A

⟨∇ f (xk), vk⟩2 ≤
4β2(f (x1) − f ⋆)

γn
. (8)

Recall the following inequality for real numbers: for all a, b > 0, a2 ≥ 2ab − b2. Applying this with
a = ⟨∇ f (xk), vk⟩ and b > 0 gives

1
n

∑
k<A

⟨∇ f (xk), vk⟩2 ≥
1
n

∑
k<A

(2b⟨∇ f (xk), vk⟩ − b2) =
2b
n

∑
k<A

⟨∇ f (xk), vk⟩

 − b2(n − |A|)
n

.

Substituting this estimate into (8) and using the fact that |A| ≤ n gives

2b
n

∑
k<A

⟨∇ f (xk), vk⟩

 − b2(n − |A|)
n

≤
4β2(f (x1) − f ⋆)

γn

which implies that
1
n

∑
k<A

⟨∇ f (xk), vk⟩ ≤
1
2

(
4β2(f (x1) − f ⋆)

bγn
+ b

)
.

25

Thus, choosing b =
√

4β2(f (x1)− f ⋆)
γn simplifies the above to

1
n

∑
k<A

⟨∇ f (xk), vk⟩ ≤

√
4β2(f (x1) − f ⋆)

γn
= 2β

√
f (x1) − f ⋆

γn

Now, we can combine both cases to bound the sum over 1 ≤ k ≤ n as

1
n

n∑
k=1

⟨∇ f (xk), vk⟩ ≤ 2β

√
f (x1) − f ⋆

γn
+

2(f (x1) − f ⋆)
γρn

Finally, by lower bounding the left hand side by the minimal summand over 1 ≤ k ≤ n and using the
definition of vk we arrive, for all u ∈ βD, at

min
1≤k≤n
⟨∇ f (xk), xk − u⟩ ≤ 2

β √
f (x1) − f ⋆
√
γn

+
f (x1) − f ⋆

γρn

 .
□

B.2 Stochastic case

B.2.1 Convergence Analysis of uSCG

We now generalize the error control lemma Mokhtari et al. [2020, Lem. 6] to the (L0, L1)-smooth
case and modify it for the clipped algorithm Algorithm 1.

Lemma B.1 (Linear recursive inequality for E
∥∥∥λk

∥∥∥2
2 for GGNC). Suppose Assumptions 4.2 and 4.8

hold and let n ∈ N∗. Consider the iterates {xk}1≤k≤n generated by Algorithm 1. Then, for all
k ∈ {1, . . . , n}, it holds

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 −
αk

2

)
E[

∥∥∥λk−1
∥∥∥2

2] + α2
kσ

2 +
4γ2ζ2

∗ ρ
2L2

0
αk

+
4γ2ζ2

∗ ρ
2L2

1
αk

∥∇ f (xk)∥2∗,

where ζ∗ := maxx∈X
∥x∥2
∥x∥∗

.

Proof. The proof is a straightforward adaptation of the arguments laid out in Mokhtari et al. [2020,
Lem. 6], which in fact do not depend on convexity nor on the choice of stepsize. Let n ∈ N∗ and
k ∈ {2, . . . , n}, then∥∥∥λk

∥∥∥2
2 =

∥∥∥∇ f (xk) − dk
∥∥∥2

2

=
∥∥∥∇ f (xk) − αk∇ f (xk, ξk) − (1 − αk)dk−1

∥∥∥2
2

=
∥∥∥∥αk

(
∇ f (xk) − ∇ f (xk, ξk)

)
+ (1 − αk)

(
∇ f (xk) − ∇ f (xk−1)

)
− (1 − αk)

(
dk−1 − ∇ f (xk−1)

)∥∥∥∥2

2

= α2
k

∥∥∥∇ f (xk) − ∇ f (xk, ξk)
∥∥∥2

2 + (1 − αk)2
∥∥∥∇ f (xk) − ∇ f (xk−1)

∥∥∥2
2

+ (1 − αk)2
∥∥∥∇ f (xk−1) − dk−1

∥∥∥2
2

+ 2αk(1 − αk)⟨∇ f (xk−1) − ∇ f (xk−1, ξk−1),∇ f (xk) − ∇ f (xk−1)⟩

+ 2αk(1 − αk)⟨∇ f (xk) − ∇ f (xk, ξk),∇ f (xk−1) − dk−1⟩

+ 2(1 − αk)2⟨∇ f (xk) − ∇ f (xk−1),∇ f (xk−1) − dk−1⟩.

Taking the expectation conditioned on the filtration Fk generated by the iterates until k, i.e., the sigma
algebra generated by {x1, . . . , xk}, which we denote using Ek[·], and using the unbiased property in
Assumption 4.8, we get,

Ek[
∥∥∥λk

∥∥∥2
2] = α2

kEk[
∥∥∥∇ f (xk) − ∇ f (xk, ξk)

∥∥∥2
2] + (1 − αk)2

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2

2

+ (1 − αk)2
∥∥∥λk−1

∥∥∥2
2 + 2(1 − αk)2⟨∇ f (xk) − ∇ f (xk−1), λk−1⟩.

26

For brevity define Lk := L0 + L1∥∇ f (xk)∥∗. From the above expression we can estimate,

Ek[
∥∥∥λk

∥∥∥2
2]

(a)
≤ α2

kσ
2 + (1 − αk)2

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2

2 + (1 − αk)2
∥∥∥λk−1

∥∥∥2
2

+ 2(1 − αk)2⟨∇ f (xk) − ∇ f (xk−1), λk−1⟩

(b)
≤ α2

kσ
2 + (1 − αk)2

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2

2 + (1 − αk)2
∥∥∥λk−1

∥∥∥2
2

+ (1 − αk)2
(
αk
2

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2

2 +
2
αk

∥∥∥λk−1
∥∥∥2

2

)
(c)
≤ α2

kσ
2 + (1 − αk)2ζ2

∗

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2
+ (1 − αk)2

∥∥∥λk−1
∥∥∥2

2

+ (1 − αk)2
(
αk
2 ζ

2
∗

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2
+ 2
αk

∥∥∥λk−1
∥∥∥2

2

)
(d)
≤ α2

kσ
2 + (1 − αk)2ζ2

∗L2
k

∥∥∥xk − xk−1
∥∥∥2
+ (1 − αk)2

∥∥∥λk−1
∥∥∥2

2

+ (1 − αk)2
(
(αk

2)ζ∗L2
k

∥∥∥xk − xk−1
∥∥∥2
+ 2
αk

∥∥∥λk−1
∥∥∥2

2

)
(e)
≤ α2

kσ
2 + (1 − αk)2L2

kζ
2
∗γ

2η2
k + (1 − αk)2

∥∥∥λk−1
∥∥∥2

2 + (1 − αk)2
(
(αk

2)L2
kζ

2
∗γ

2η2
k +

2
αk

∥∥∥λk−1
∥∥∥2

2

)
(f)
≤ α2

kσ
2 + (1 + αk

2)(1 − αk)ζ2
∗L2

kγ
2η2

k + (1 + 2
αk

)(1 − αk)
∥∥∥λk−1

∥∥∥2
2

(g)
≤ α2

kσ
2 + 2(1 + αk

2)(1 − αk)ζ2
∗γ

2ρ2(L2
0 + L2

1∥∇ f (xk)∥2∗) + (1 + 2
αk

)(1 − αk)
∥∥∥λk−1

∥∥∥2
2 ,

using the bounded variance property from Assumption 4.8 for (a), Young’s inequality with parameter
αk/2 > 0 for (b), ζ∗ := maxx∈X

∥x∥2
∥x∥∗

for (c), Assumption 4.2 for (d), the definition of xk from
Algorithm 1 for (e), the fact that 1 − αk < 1 for (f), and ηk ≤ ρ and Young’s inequality on L2

k for (g).
To complete the proof, we note that, for all k ∈ {1, . . . , n}, it holds

(1 + 2
αk

)(1 − αk) ≤ 2
αk

and (1 − αk)(1 + αk
2) ≤ 1 − αk

2

which, applied to the previous inequality and taking total expectations, yields

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 −
αk

2

)
E[

∥∥∥λk−1
∥∥∥2

2] + α2
kσ

2 +
4γ2ζ2

∗ρ
2

αk
(L2

0 + L2
1∥∇ f (xk)∥2∗).

□

Lemma B.2 (Bound on E∥λk∥22 with horizon-dependent α for GGNC). Suppose Assumptions 4.2
and 4.8 hold, f is L-smooth, and let n ∈ N∗. Consider the iterates {xk}1≤k≤n generated by Algorithm 1
with a stepsize γρ satisfying

γρ < 1
2n3/4L1

. (9)

Moreover, consider a momentum αk = α =
1
√

n for all k ∈ {1, . . . , n}. Then, for all k ∈ {1, . . . , n} the
following holds

E[
∥∥∥λk

∥∥∥2
2] ≤

2(σ2+ζ2∗ L2/L2
1)

√
n . (10)

Proof. Let k ∈ {1, . . . , n}. We start from the recursive inequality obtained in Lemma B.1 for E[
∥∥∥λk

∥∥∥2
2].

Since we are now assuming that f is L-smooth, this inequality is satisfied with L0 = L and L1 = 0,
which gives

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 − α2

)
E[

∥∥∥λk−1
∥∥∥2

2] + α2σ2 +
4γ2ρ2ζ2

∗ L2

α
. (11)

Now, we substitute the specific choice α = 1
√

n of momentum to find

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 − 1

2
√

n

)
E[

∥∥∥λk−1
∥∥∥2

2] +
σ2

n
+ 4ζ2

∗L2ρ2γ2 √n. (12)

Using the particular choice of γρ, we have

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 − 1

2
√

n

)
E[

∥∥∥λk−1
∥∥∥2

2] + 1
n (σ2 +

ζ2
∗ L2

L2
1

).

27

Let uk = E[
∥∥∥λk

∥∥∥2
2], a = 1

2
√

n , and b = 1
n (σ2+

ζ2
∗ L2

L2
1

). Unrolling the recurrence relation uk ≤ (1−a)uk−1+b,
we have

uk ≤ (1 − a)ku0 + b
∑k−1

i=0 (1 − a)i = b
∑k−1

i=0 (1 − a)i = b 1−(1−a)k

1−(1−a) = b 1−(1−a)k

a .

Since 0 < a < 1, we have 0 < (1 − a)k < 1 for k ≥ 1. Thus, 1 − (1 − a)k < 1. Therefore,
uk ≤ b/a. (13)

Substituting the values for a and b, we have

E[
∥∥∥λk

∥∥∥2
2] ≤

2(σ2+ζ2∗ L2/L2
1)

√
n . (14)

This concludes the proof. □

Theorem 4.9. Suppose Assumptions 4.2 and 4.8 hold and let n ∈ N∗. Consider the iterates {xk}1≤k≤n
generated by Algorithm 1 with a constant stepsize γ ≤ 1/L0 and γρ ≤ 1/2L1. Then,

E[∥∇ f (x̄n)∥∗] ≤ 4
√
∆

√
γn +

8∆
γρn + 4

√
ϵn +

8ϵn
ρ

where ∆ := f (x1) − f ⋆ and ϵn := 1
n
∑n

k=1 O(
√
E[∥λk∥22] + E[∥λk∥22]).

Furthermore, assuming f is L-smooth4 and taking α = 1/
√

n, γ = 1/
√

nL0 and ρ = L0/2n1/4L1 such that
γρ = 1/2n3/4L1 we have that

E[∥∇ f (x̄n)∥∗] ≤ O
(1

n1/4

)
.

Proof. Given that ∥xk − xk+1∥ ≤ 1/L1, which we will ensure by choice of the stepsize γηk and radius ρ,
we have from Assumption 4.2 that

0 ≤ f (xk) − f (xk+1) + ⟨∇ f (xk), xk+1 − xk⟩ +
L0+L1∥∇ f (xk)∥∗

2 ∥xk+1 − xk∥2

= f (xk) − f (xk+1) + γηk⟨∇ f (xk), lmo(dk)⟩ + L0
2 γ

2η2
k∥ lmo(dk)∥2 + L1

2 γ
2η2

k∥∇ f (xk)∥∗∥ lmo(dk)∥2

= f (xk) − f (xk+1) + γηk⟨∇ f (xk), lmo(dk)⟩ + L0
2 γ

2η2
k +

L1
2 γ

2η2
k∥∇ f (xk)∥∗

where we recall that ηk = min{ρ, ∥dk∥∗}.

To treat the inner product we introduce the error λk := dk − ∇ f (xk) and proceed as follows

⟨∇ f (xk), lmo(dk)⟩ = ⟨∇ f (xk) − dk, lmo(dk)⟩ + ⟨dk, lmo(dk)⟩

≤ ⟨∇ f (xk) − dk, lmo(dk)⟩ − ∥dk∥∗

= ⟨∇ f (xk) − dk, lmo(dk)⟩ − 1
2∥d

k∥∗ −
1
2 ∥d

k∥∗

(Triangle ineq.) ≤ ⟨∇ f (xk) − dk, lmo(dk)⟩ − 1
2∥d

k∥∗ −
1
2 ∥∇ f (xk)∥∗ + 1

2 ∥λ
k∥∗

(Cauchy-Schwarz) ≤ ∥λk∥∗ −
1
2 ∥d

k∥∗ −
1
2 ∥∇ f (xk)∥∗ + 1

2∥λ
k∥∗

≤ 3
2ζ∥λ

k∥2 −
1
2 ∥d

k∥∗ −
1
2∥∇ f (xk)∥∗

where ζ := maxx∈X
∥x∥∗
∥x∥2

is the norm equivalence constant.

Combining the two inequalities we have

0 ≤ f (xk) − f (xk+1) + γηk
3
2ζ∥λ

k∥2 − γηk
1
2∥d

k∥∗ − γηk
1
2∥∇ f (xk)∥∗ +

L0
2 γ

2η2
k +

L1
2 γ

2η2
k∥∇ f (xk)∥∗

= f (xk) − f (xk+1) + γηk
3
2ζ∥λ

k∥2 − γηk
1
2 (∥dk∥∗ − L0γηk) − γηk

1
2 (1 − L1γηk)∥∇ f (xk)∥∗

Case I Clipping Active (ρ < ∥dk∥∗).

In this case we have that ηk = ρ, so
0 ≤ f (xk) − f (xk+1) + γkρ

3
2ζ∥λ

k∥2 − γkη
2
k

1
2 (1 − L0γk) − γkρ

1
2 (1 − L1γkρ)∥∇ f (xk)∥∗

≤ f (xk) − f (xk+1) + γkρ
3
2ζ∥λ

k∥2 − γkρ
1
2 (1 − L1γkρ)∥∇ f (xk)∥∗

where we have used γk ≤
1
L0

.

4Only local Lipschitz is needed in the sense that the condition only needs to hold for (x, y) satisfying
∥x − y∥ ≤ 1/L1. It is also possible to replace L with Ln := maxk≤n L0 + L1∥ f (xk)∥∗, e.g., as is done in [Koloskova
et al., 2023, Thm. 2.3].

28

Case II No Clipping (ρ ≥ ∥dk∥∗).

Here we have that ηk = ∥dk∥∗, so

0 ≤ f (xk) − f (xk+1) + γkρ
3
2ζ∥λ

k∥2 − γkη
2
k

1
2 (1 − L0γk) − γk

1
2 (1 − L1γkρ)∥dk∥∗∥∇ f (xk)∥∗

Focusing on the last term, we have

∥dk∥∗∥∇ f (xk)∥∗ = ∥dk − ∇ f (xk) + ∇ f (xk)∥∗∥∇ f (xk)∥∗
(Triangle ineq.) ≥ (∥∇ f (xk)∥∗ − ∥λk∥∗)∥∇ f (xk)∥∗

= ∥∇ f (xk)∥2∗ − ∥λ
k∥∗∥∇ f (xk)∥∗.

For the last term, using the triangle inequality, we have

∥λk∥∗∥∇ f (xk)∥∗ ≤ ∥λk∥∗(∥∇ f (xk) − dk∥∗ + ∥dk∥∗)

= ∥λk∥2∗ + ∥λ
k∥∗∥dk∥∗

≤ ∥λk∥2∗ + ∥λ
k∥∗ρ

≤ ζ∥λk∥22 + ζ∥λ
k∥2ρ.

By combining, we have

0 ≤ f (xk) − f (xk+1) − γkη
2
k

1
2 (1 − L0γk) − γk

1
2 (1 − L1γkρ)∥∇ f (xk)∥2∗

+ γkρ
3
2ζ∥λ

k∥2 + γk
1
2ζ(1 − L1γkρ)(∥λk∥22 + ∥λ

k∥2ρ)

= f (xk) − f (xk+1) − γkη
2
k

1
2 (1 − L0γk) − γk

1
2 (1 − L1γkρ)∥∇ f (xk)∥2∗

+ γkρζ(2 − 1
2 L1γkρ)∥λk∥2 + γk

1
2ζ(1 − L1γkρ)∥λk∥22

≤ f (xk) − f (xk+1) − γk
1
2 (1 − L1γkρ)∥∇ f (xk)∥2∗

+ γkρζ(2 − 1
2 L1γkρ)∥λk∥2 + γk

1
2ζ(1 − L1γkρ)∥λk∥22

where the last inequality uses γk ≤
1
L0

.

Combining both cases Introducing the set of iterates where clipping is active,A := {k ∈ [n] | ρ <
∥dk∥∗}, we can take the expectation of both sides and sum the two cases to find
1
2γ(1 − L1γρ)(ρ

∑
k∈A E[∥∇ f (xk)∥∗] +

∑
k<A E[∥∇ f (xk)∥2∗])

≤ f (x1) − f ⋆ +
∑

k∈A γρζ
3
2E[∥λk∥2] +

∑
k<A γρζ(2 − 1

2 L1γρ)E[∥λk∥2] + γ 1
2ζ(1 − L1γρ)E[∥λk∥22]

≤ f (x1) − f ⋆ +
∑

k∈A γρζ
3
2

√
E[∥λk∥22] +

∑
k<A γρζ(2 − 1

2 L1γρ)
√
E[∥λk∥22] + γ 1

2ζ(1 − L1γρ)E[∥λk∥22]

≤ f (x1) − f ⋆ +
∑n

k=1 γρζ(2 −
1
2 L1γρ)

√
E[∥λk∥22] + γ 1

2ζ(1 − L1γρ)E[∥λk∥22]

where the second to last inequality is due to Jensen’s inequality and the last inequality uses that
γ ≤ 1/ρL1. Using the stronger requirement that γ ≤ 1/2ρL1 it follows that

1
4γ

(
ρ
∑

k∈A E[∥∇ f (xk)∥∗] +
∑

k<A E[∥∇ f (xk)∥2∗]
)
≤ ∆ + γϵn

with ∆ := f (x1) − f ⋆ and ϵn := 1
n
∑n

k=1 ρζ
7
4

√
E[∥λk∥22] + 1

4ζE[∥λk∥22]. By nonnegativity of the
summands, it follows that

1
n
∑

k∈A E[∥∇ f (xk)∥∗] ≤ 4∆
γρn +

4ϵn
ρ
, (15)

corresponding to the indices from Case I. Using Jensen’s inequality, we similarly have
1
n
∑

k<A E[∥∇ f (xk)∥∗]2 ≤ 1
n
∑

k<A E[∥∇ f (xk)∥2∗] ≤
4∆
γn + 4ϵn =: A (16)

corresponding to the indices from Case II. We will now use that 2az − a2 ≤ z2 for any a, z > 0. Pick
z = E[∥∇ f (xk)∥∗], then we have that

1
n
∑

k<A z ≤ 1
n
∑

k<A
z2

2a +
a
2

(16)
≤ A

2a +
1
n
∑

k<A
a
2 ≤

A
2a +

a
2

29

Choosing a =
√

A and using the triangle inequality we have

1
n
∑

k<A E[∥∇ f (xk)∥∗] ≤
√

A ≤ 2
√
∆
√

n + 2
√
ϵn. (17)

Summing the two cases, (15) and (17), we have

1
n
∑n

k=1 E[∥∇ f (xk)∥∗] ≤ 4
√
∆

√
γn +

8∆
γρn + 4

√
ϵn +

8ϵn
ρ
.

What remains is to bound the error ϵn that is due to the stochastic estimator. With the choice γ ≤ 1/
√

nL0,
γρ ≤ 1/2n3/4L1 and αk = 1/

√
n, invoke Lemma B.2 from which we have

E[
∥∥∥λk

∥∥∥2
2] ≤

2(σ2+ζ2∗ L2/L2
1)

√
n =: B.

It follows that

ϵn ≤ ρζ
7
4

√
B + 1

4ζB

and in turn the inequality B.2.1 simplifies

1
n
∑n

k=1 E[∥∇ f (xk)∥∗] ≤ O(
√
∆
√
γn +

∆
γρn +

√
ρζ
√

B + ζB + ρζ
√

B+ζB
ρ

)

≤ O(
√
∆
√
γn +

∆
γρn +

√
ρζB1/4 +

√
ζB + ζ

√
B + ζB

ρ
)

where we have used the triangle inequality in the second inequality. Letting b := 2(σ2 + ζ2
∗ L2/L2

1) we
have with the choice γ = 1/

√
nL0 and ρ = L0/2n1/4L1 that

1
n
∑n

k=1 E[∥∇ f (xk)∥∗] ≤ O
(

1
n1/4

(√
∆L0 + ∆L1 +

√
ζL0b1/4
√

L1
+

√
ζb + ζ

√
b + ζbL1

L0

))
≤ O

(
1

n1/4

(√
∆L0 + ∆L1 +

√
ζL0(σ2+ζ2∗ L2/L2

1)1/4

√
L1

+ (ζ +
√
ζ)

√
(σ2 + ζ2

∗ L2/L2
1) +

ζ(σ2+ζ2∗ L2/L2
1)L1

L0

))
≤ O

(
1

n1/4

(√
∆L0 + ∆L1 +

√
ζL0(

√
σ+
√
ζ∗L/L1)

√
L1

+ (ζ +
√
ζ)(σ + ζ∗L/L1) +

ζ(σ2+ζ2∗ L2/L2
1)L1

L0

))
Noting that E[∥∇ f (x̄n)∥∗] = 1

n
∑n

k=1 E[∥∇ f (xk)∥∗] completes the proof. □

B.2.2 Convergence analysis of S3CG

Following the same outline as the convergence analysis for Algorithm 1 given in the previous
subsection, we start with an error control lemma in the vein of [Mokhtari et al., 2020, Lem. 6] that is
compatible with our adaptive stepsize.

Lemma B.3 (Linear recursive inequality for E
∥∥∥λk

∥∥∥2
2 for S3CG). Suppose Assumptions 4.2 and 4.8

hold and let n ∈ N∗. Consider the iterates {xk}1≤k≤n generated by Algorithm 2 with stepsize γηk ≤ ρ.
Then, for all k ∈ {1, . . . , n},

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 −
α

2

)
E[

∥∥∥λk−1
∥∥∥2

2] + α2σ2 +
8ζ2
∗L2βγ2ρ2

α

where ζ∗ := maxx∈X
∥x∥2
∥x∥∗

.

Proof. The proof is a straightforward adaptation of the arguments laid out in Mokhtari et al. [2020,
Lem. 6], which in fact do not depend on convexity of the function f nor on the choice of stepsize

30

γηk, as long as it is in [0, 1]. Let n ∈ N∗ and k ∈ {1, . . . , n}, then∥∥∥λk
∥∥∥2

2 =
∥∥∥∇ f (xk) − dk

∥∥∥2
2

=
∥∥∥∇ f (xk) − α∇ f (xk, ξk) − (1 − α)dk−1

∥∥∥2
2

=
∥∥∥∥α (
∇ f (xk) − ∇ f (xk, ξk)

)
+ (1 − α)

(
∇ f (xk) − ∇ f (xk−1)

)
− (1 − α)

(
dk−1 − ∇ f (xk−1)

)∥∥∥∥2

2

= α2
∥∥∥∇ f (xk) − ∇ f (xk, ξk)

∥∥∥2
2 + (1 − α)2

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2

2

+ (1 − α)2
∥∥∥∇ f (xk−1) − dk−1

∥∥∥2
2

+ 2α(1 − α)⟨∇ f (xk−1) − ∇ f (xk−1, ξk−1),∇ f (xk) − ∇ f (xk−1)⟩

+ 2α(1 − α)⟨∇ f (xk) − ∇ f (xk, ξk),∇ f (xk−1) − dk−1⟩

+ 2(1 − α)2⟨∇ f (xk) − ∇ f (xk−1),∇ f (xk−1) − dk−1⟩.

Taking the expectation conditioned on the filtration Fk generated by the iterates until k, i.e., the sigma
algebra generated by {x1, . . . , xk}, which we denote using Ek[·], and using the unbiased property in
Assumption 4.8, we get,

Ek[
∥∥∥λk

∥∥∥2
2] = α2Ek[

∥∥∥∇ f (xk) − ∇ f (xk, ξk)
∥∥∥2

2] + (1 − α)2
∥∥∥∇ f (xk) − ∇ f (xk−1)

∥∥∥2
2

+ (1 − α)2
∥∥∥λk−1

∥∥∥2
2 + 2(1 − α)2⟨∇ f (xk) − ∇ f (xk−1), λk−1⟩.

From the above expression we can estimate,

Ek[
∥∥∥λk

∥∥∥2
2]

(a)
≤ α2σ2 + (1 − α)2

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2

2 + (1 − α)2
∥∥∥λk−1

∥∥∥2
2

+ 2(1 − α)2⟨∇ f (xk) − ∇ f (xk−1), λk−1⟩

(b)
≤ α2σ2 + (1 − α)2

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2

2 + (1 − α)2
∥∥∥λk−1

∥∥∥2
2

+ (1 − α)2
(
α
2

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2

2 +
2
α

∥∥∥λk−1
∥∥∥2

2

)
(c)
≤ α2σ2 + (1 − α)2ζ2

∗

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2
+ (1 − α)2

∥∥∥λk−1
∥∥∥2

2

+ (1 − α)2
(
α
2 ζ

2
∗

∥∥∥∇ f (xk) − ∇ f (xk−1)
∥∥∥2
+ 2
α

∥∥∥λk−1
∥∥∥2

2

)
(d)
≤ α2σ2 + (1 − α)2ζ2

∗L2
∥∥∥xk − xk−1

∥∥∥2
+ (1 − α)2

∥∥∥λk−1
∥∥∥2

2

+ (1 − α)2
(
(α2)ζ∗L2

∥∥∥xk − xk−1
∥∥∥2
+ 2
α

∥∥∥λk−1
∥∥∥2

2

)
(e)
≤ α2σ2 + 4(1 − α)2ζ2

∗L2β2γ2η2
k + (1 − α)2

∥∥∥λk−1
∥∥∥2

2 + (1 − α)2
(
2αζ2

∗L2β2γ2η2
k +

2
α

∥∥∥λk−1
∥∥∥2

2

)
(f)
≤ α2σ2 + 4(1 + α2)(1 − α)ζ2

∗L2β2γ2η2
k + (1 + 2

α
)(1 − α)

∥∥∥λk−1
∥∥∥2

2
(g)
≤ α2σ2 + 4(1 + α2)(1 − α)ζ2

∗L2β2γ2ρ2 + (1 + 2
α

)(1 − α)
∥∥∥λk−1

∥∥∥2
2 ,

using the bounded variance property from Assumption 4.8 for (a), Young’s inequality with parameter
α/2 > 0 for (b), ζ∗ := maxx∈X

∥x∥2
∥x∥∗

for (c), Assumption 4.2 for (d), the definition of xk from
Algorithm 2 for (e), the fact that 1 − α < 1 for (f), and ηk ≤ ρ and for (g). To complete the proof, we
note that

(1 + 2
α

)(1 − α) ≤ (1 − α2) and (1 − α)(1 + α2) ≤ 2
α

which, applied to the previous inequality and taking total expectations, yields

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 −
α

2

)
E[

∥∥∥λk−1
∥∥∥2

2] + α2σ2 +
8ζ2
∗L2β2γ2ρ2

α
.

□

31

Lemma B.4 (Bound on the gradient error with horizon-dependent α for S3CG). Suppose Assump-
tion 4.8 holds, f is L-smooth with respect to ∥ · ∥∗, and let n ∈ N∗. Consider the iterates {xk}1≤k≤n
generated by Algorithm 2 with a stepsize γρ satisfying

γρ < 1
Ln3/4 . (18)

Moreover, consider a constant momentum αk = α =
1
√

n for all k ∈ {1, . . . , n}. Then, for all
k ∈ {1, . . . , n} the following holds

E[
∥∥∥λk

∥∥∥2
2] ≤ 2σ2+16ζ2

∗ β
2

√
n . (19)

Proof. Let n ∈ N∗ and k ∈ {1, . . . , n}. We start from the recursive inequality obtained in Lemma B.3
for E[

∥∥∥λk
∥∥∥2

2] with L the Lipschitz constant of the gradient over the compact setD to get

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 − α2

)
E[

∥∥∥λk−1
∥∥∥2

2] + α2σ2 +
8ζ2
∗L2β2γ2ρ2

α
. (20)

Now, we substitute the specific choice α = 1
√

n :

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 −

1
2
√

n

)
E[

∥∥∥λk−1
∥∥∥2

2] +
σ2

n
+ 8ζ2

∗L2β2γ2ρ2 √n. (21)

Using the particular choice of γρ specified in the statement of the lemma, we have

E[
∥∥∥λk

∥∥∥2
2] ≤

(
1 −

1
2
√

n

)
E[

∥∥∥λk−1
∥∥∥2

2] +
1
n

(σ2 + 8ζ2
∗β

2)

Let uk = E[
∥∥∥λk

∥∥∥2
2], a = 1

2
√

n , and b = 1
n (σ2 + 8ζ2

∗β
2). Unrolling the recurrence relation uk ≤

(1 − a)uk−1 + b, we have

uk ≤ (1 − a)ku0 + b
∑k−1

i=0 (1 − a)i = b
∑k−1

i=0 (1 − a)i = b 1−(1−a)k

1−(1−a) = b 1−(1−a)k

a

Since 0 < a < 1, we have 0 < (1 − a)k < 1 for k ≥ 1. Thus, 1 − (1 − a)k < 1. Therefore,

uk ≤ b/a. (22)

Substituting the values for a and b, we have

E[
∥∥∥λk

∥∥∥2
2] ≤ 2σ2+16ζ2

∗ β
2

√
n . (23)

This concludes the proof. □

Theorem 4.11. Suppose Assumptions 4.2 and 4.8 hold and let n ∈ N∗. Consider the iterates {xk}1≤k≤n
generated by Algorithm 2 (Variant 1) with a constant stepsize γ ≤ 1/L

√
n and ρ ≤ 1/n1/4. Then, for all

u ∈ βD,

E[⟨∇ f (x̄n), x̄n − u⟩] ≤ 4
√
∆

√
γn +

8∆
γρn + 4

√
ϵn +

8ϵn
ρ

where ∆ := f (x1) − f ⋆ and ϵn := 1
n
∑n

k=1 O(
√
E∥λk∥22 + E∥λ

k∥22).

Furthermore, taking α = 1/
√

n, γ = 1/(L
√

n) and ρ = 1/n1/4 such that γρ = 1/(Ln3/4) we have that

E[⟨∇ f (x̄n), x̄n − u⟩] ≤ O
(1

n1/4

)
.

Proof. Note that, since f is continuously differentiable andD is compact, f must be Lipschitz-smooth
on the scaled ball βD with respect to the norm ∥ · ∥; call the Lipschitz constant L > 0. We can
therefore start with the descent lemma for f at the points xk+1 and xk to find

0 ≤ f (xk) − f (xk+1) + ⟨∇ f (xk), xk+1 − xk⟩ +
L
2
∥xk+1 − xk∥2

≤ f (xk) − f (xk+1) − γηk⟨∇ f (xk), vk⟩ +
L
2
γ2η2

k∥v
k∥2

≤ f (xk) − f (xk+1) − γηk

(
⟨dk, vk⟩ + ⟨∇ f (xk) − dk, vk⟩

)
+

L
2
γ2η2

k∥v
k∥2.

Now we can proceed case-by-case depending on whether clipping is active or not.

32

Case I Clipping Active (γηk = γρ;
⟨dk ,vk⟩

∥vk∥2
≥ ρ).

For all u ∈ βD it holds,

0 ≤ f (xk) − f (xk+1) − γηk

(
⟨dk, vk⟩ + ⟨∇ f (xk) − dk, vk⟩

)
+

L
2
γ2η2

k∥v
k∥2

≤ f (xk) − f (xk+1) − γηk

(
1
2
⟨dk, vk⟩ +

1
2
⟨∇ f (xk), xk − u⟩ +

1
2
⟨dk − ∇ f (xk), xk − u⟩ + ⟨∇ f (xk) − dk, vk⟩

)
+

L
2
γ2η2

k∥v
k∥2

(a)
≤ f (xk) − f (xk+1) − γηk

(
1
2
⟨dk, vk⟩ +

1
2
⟨∇ f (xk), xk − u⟩ −

1
2
∥λk∥2∥xk − u∥2 − ∥λk∥2∥vk∥2

)
+

L
2
γ2η2

k∥v
k∥2

(b)
≤ f (xk) − f (xk+1) + γηk

(
L
2
γηk∥vk∥2 −

1
2
⟨dk, vk⟩

)
− γηk

1
2
⟨∇ f (xk), xk − u⟩ + γηk

3
2
∥λk∥2D2

(c)
≤ f (xk) − f (xk+1) + γρ

(
L
2
γρ∥vk∥2 −

1
2
ρ∥vk∥2

)
− γρ

1
2
⟨∇ f (xk), xk − u⟩ + γρ

3
2
∥λk∥2D2

(d)
≤ f (xk) − f (xk+1) + γρ

3
2
∥λk∥2D2 − γρ

1
2
⟨∇ f (xk), xk − u⟩

where D2 = max
x,y∈βD

∥x − y∥2 is the diameter of the set βD in the Euclidean norm. The inequality (a)

follows by Cauchy-Schwarz, (b) follows by using the diameter of βD, (c) follows since clipping is
active, and (d) follows since Lγ ≤ 1. Finally, rearranging gives

γρ⟨∇ f (xk), xk − u⟩ ≤ 2
(

f (xk) − f (xk+1)
)
+ 3D2γρ∥λ

k∥2. (24)

Case II No Clipping (γηk = γ
⟨dk ,vk⟩

∥vk∥2
; ⟨d

k ,vk⟩

∥vk∥2
≤ ρ).

In this case, our stepsize acts like the short step. Starting with the previous inequality from the descent
lemma we have, for all u ∈ βD,

0 ≤ f (xk) − f (xk+1) − γ
⟨dk, vk⟩

∥vk∥2
⟨dk, vk⟩ − γηk⟨∇ f (xk) − dk, vk⟩ +

L
2
γ2

(
⟨dk, vk⟩

∥vk∥2

)2

∥vk∥2

≤ f (xk) − f (xk+1) − γ
⟨dk, vk⟩2

∥vk∥2
− γηk⟨∇ f (xk) − dk, vk⟩ + Lγ2 ⟨d

k, vk⟩2

2∥vk∥2

≤ f (xk) − f (xk+1) − γ
⟨dk, vk⟩2

2∥vk∥2
− γηk⟨∇ f (xk) − dk, vk⟩

(25)

where in the last inequality we have used that γ ≤ 1
L . Rearranging, we can estimate

0 ≤ f (xk) − f (xk+1) − γ
⟨dk, vk⟩2

2∥vk∥2
− γηk⟨∇ f (xk) − dk, vk⟩

(a)
≤ f (xk) − f (xk+1) −

1
2∥vk∥2

(
γ

2
⟨∇ f (xk), xk − u⟩2 − 2γ⟨∇ f (xk) − dk, xk − u⟩2

)
− γηk⟨∇ f (xk) − dk, vk⟩

= f (xk) − f (xk+1) −
γ

4∥vk∥2
⟨∇ f (xk), xk − u⟩2 +

γ

∥vk∥2
⟨∇ f (xk) − dk, xk − u⟩2 − γηk⟨∇ f (xk) − dk, vk⟩

(b)
≤ f (xk) − f (xk+1) −

γ

4∥vk∥2
⟨∇ f (xk), xk − u⟩2 +

D2
2γ

∥vk∥2
∥λk∥22 + D2γρ∥λ

k∥2

(c)
≤ 16β2

(
f (xk) − f (xk+1)

)
− γ⟨∇ f (xk), xk − u⟩2 + 4D2

2γ∥λ
k∥22 + 16D2β

2γρ∥λk∥2

(26)
where (a) is due to Young’s inequality, (b) is due to Cauchy-Schwarz and the definition of D2 as
the diameter of βD in the Euclidean norm, and (c) follows by multiplying everything by 4∥vk∥2 and
estimating. We can rearrange this to finally arrive at

γ⟨∇ f (xk), xk − u⟩2 ≤ 16β2
(

f (xk) − f (xk+1)
)
+ 4D2

2γ∥λ
k∥22 + 16D2β

2γρ∥λk∥2.

Combining Both Cases Let M = max{16β2, 2} and M′ = max{16D2β
2, 3D2} and let A ⊂

{1, 2, . . . , n} denote the indices where clipping is active. Let n ∈ N∗ and denote

ϵn :=
1
n

n∑
k=1

M′ρE[∥λk∥2] +
1
n

n∑
k=1

4D2
2E[∥λk∥22].

33

Then, taking expectations, adding from k = 1 to n, and dividing by n gives

1
n

∑
k∈A

γρE[⟨∇ f (xk), xk − u⟩] +
1
n

∑
k<A

γE[⟨∇ f (xk), xk − u⟩2] ≤
M
n

(
f (x1) − f ⋆

)
+ γϵn. (27)

We can lower bound the left hand side by the sum overA and divide by γρ to get

1
n

∑
k∈A

E[⟨∇ f (xk), xk − u⟩] ≤
M∆
γρn
+
ϵn
ρ
. (28)

Similarly, lower bounding the left hand side by the sum over the complement ofA and dividing by γ,
we get by Jensen’s inequality

1
n

∑
k<A

E[⟨∇ f (xk), xk − u⟩]2 ≤
1
n

∑
k<A

E[⟨∇ f (xk), xk − u⟩2] ≤
M∆
γn
+ ϵn. (29)

We use the fact that 2az − a2 ≤ z2 for any a, z > 0. Picking z = E[⟨∇ f (xk), xk − u⟩], it follows that

1
n

∑
k<A

z ≤
1
n

∑
k<A

z2

2a
+

a
2
≤

A
2a
+

1
n

∑
k<A

a
2
≤

A
2a
+

a
2 (30)

where A := M∆
γn + ϵn. Choosing a =

√
A and replacing z by E[⟨∇ f (xk), xk − u⟩] we get

1
n

∑
k<A

E[⟨∇ f (xk), xk − u⟩] ≤
√

A =

√
M∆
√
γn
+
√
ϵn. (31)

Adding both of these we get

1
n

n∑
k=1

E[⟨∇ f (xk), xk − u⟩] ≤

√
M∆
√
γn
+
√
ϵn +

M∆
γρn
+
ϵn
ρ
. (32)

Let Λ2
n := 2σ2+16ζ2

∗ β
2

√
n . By lemma B.4, Λ2

n ≥ E[∥λk∥22] for all k ≤ n.

Next, we can estimate
ϵn ≤ M′ρΛn + 4D2

2Λ
2
n

√
ϵn ≤

√
M′ρΛn + 2D2Λn

ϵn
ρ
≤ M′Λn +

4
ρ

D2
2Λ

2
n.

Substituting in the definition of Λn, γ, and ρ while also noting the definition of x̄n, we get

E[⟨∇ f (x̄n), x̄n − u⟩] ≤

√
M∆
√
γn
+
√
ϵn +

M∆
γρn
+
ϵn
ρ

≤

√
M∆
√
γn
+

√
M′ρΛn + 2D2Λn +

M∆
γρn
+ M′Λn +

4
ρ

D2
2Λ

2
n

≤

√
LM∆
n1/4 +

√
M′

(
2σ2 + 16ζ2

∗β2
)

n1/4 +
2D2

√
2σ2 + 16ζ2

∗β2

n1/4

+
LM∆
n1/4 +

M′
√

2σ2 + 16ζ2
∗β2

n1/4 +
4D2

2

(
2σ2 + 16ζ2

∗β
2
)

n1/4

which gives a big O rate

E[⟨∇ f (x̄n, x̄n − u⟩] ≤ O
(

1
n1/4

)
.

□

34

Theorem B.5. Suppose Assumptions 4.2 and 4.8 hold and let n ∈ N∗. Consider the iterates {xk}1≤k≤n
generated by Algorithm 2 (Variant 2) with a constant stepsize γ ≤ 1/L

√
n and ρ ≤ 1/n1/4. Then, for all

u ∈ D,

E[⟨∇ f (x̄n), x̄n − u⟩] ≤ 4
√
∆

√
γn +

8∆
γρn + 4

√
ϵn +

8ϵn
ρ

where ∆ := f (x1) − f ⋆ and ϵn := 1
n
∑n

k=1 O(
√
E∥λk∥22 + E∥λ

k∥22).

Furthermore, taking α = 1/
√

n, γ = 1/(L
√

n) and ρ = 1/n1/4 such that γρ = 1/(Ln3/4) we have that

E[⟨∇ f (x̄n), x̄n − u⟩] ≤ O
(1

n1/4

)
.

Proof. Note that, since f is continuously differentiable andD is compact, f must be Lipschitz-smooth
on the scaled ball βD with respect to the norm ∥ · ∥; call the Lipschitz constant L. We can therefore
start with the descent lemma for f at the points xk+1 and xk to find

0 ≤ f (xk) − f (xk+1) + ⟨∇ f (xk), xk+1 − xk⟩ +
L
2
∥xk+1 − xk∥2

≤ f (xk) − f (xk+1) − γηk⟨∇ f (xk), vk⟩ +
L
2
γ2η2

k∥v
k∥2

≤ f (xk) − f (xk+1) − γηk

(
⟨dk, vk⟩ + ⟨∇ f (xk) − dk, vk⟩

)
+

L
2
γ2η2

k∥v
k∥2.

(33)

Now we can proceed case-by-case depending on whether clipping is active or not.

Case I Clipping Active (γηk = γρ;
⟨dk ,vk⟩

4β2 ≥ ρ).

0 ≤ f (xk) − f (xk+1) − γηk

(
⟨dk, vk⟩ + ⟨∇ f (xk) − dk, vk⟩

)
+

L
2
γ2η2

k∥v
k∥2

≤ f (xk) − f (xk+1) − γηk

(
1
2
⟨dk, vk⟩ +

1
2
⟨∇ f (xk), xk − u⟩ +

1
2
⟨dk − ∇ f (xk), xk − u⟩ + ⟨∇ f (xk) − dk, vk⟩

)
+

L
2
γ2η2

k∥v
k∥2

≤ f (xk) − f (xk+1) − γηk

(
1
2
⟨dk, vk⟩ +

1
2
⟨∇ f (xk), xk − u⟩ −

1
2
∥λk∥2∥xk − u∥2 − ∥λk∥2∥vk∥2

)
+

L
2
γ2η2

k∥v
k∥2

≤ f (xk) − f (xk+1) + γηk

(
L
2
γηk∥vk∥2 −

1
2
⟨dk, vk⟩

)
− γηk

1
2
⟨∇ f (xk), xk − u⟩ + γηk

3
2
∥λk∥2D2

≤ f (xk) − f (xk+1) + γρ
(
2Lγρβ2 − 2ρβ2

)
− γρ

1
2
⟨∇ f (xk), xk − u⟩ + γρ

3
2
∥λk∥2D2

≤ f (xk) − f (xk+1) + γρ
3
2
∥λk∥2D2 − γρ

1
2
⟨∇ f (xk), xk − u⟩

(34)
in the second inequality we have used the fact that ∥vk∥2 ≤ 2∥xk∥2 + 2∥β lmo(dk)∥2 ≤ 4β2 and the fact
that ∥vk∥2 ≤ D2. Finally, rearranging gives

γρ⟨∇ f (xk), xk − u⟩ ≤ 2
(

f (xk) − f (xk+1)
)
+ 3D2γρ∥λ

k∥2. (35)

Case II No Clipping (γηk = γ
⟨dk ,vk⟩

4β2 ; ⟨d
k ,vk⟩

4β2 ≤ ρ).

0 ≤ f (xk) − f (xk+1) − γ
⟨dk, vk⟩

4β2 ⟨d
k, vk⟩ − γηk⟨∇ f (xk) − dk, vk⟩ +

L
2
γ2

(
⟨dk, vk⟩

4β2

)2

∥vk∥2

≤ f (xk) − f (xk+1) − γ
⟨dk, vk⟩2

4β2 − γηk⟨∇ f (xk) − dk, vk⟩ + Lγ2 ⟨d
k, vk⟩2

8β2

≤ f (xk) − f (xk+1) − γ
⟨dk, vk⟩2

8β2 − γηk⟨∇ f (xk) − dk, vk⟩

(36)

35

where in the last inequality we have used that γ ≤ 1
L . Rearranging,

0 ≤ f (xk) − f (xk+1) − γ
⟨dk, vk⟩2

8β2 − γηk⟨∇ f (xk) − dk, vk⟩

≤ f (xk) − f (xk+1) −
1

8β2

(
γ

2
⟨∇ f (xk), xk − u⟩2 − 2γ⟨∇ f (xk) − dk, xk − u⟩2

)
− γηk⟨∇ f (xk) − dk, vk⟩

≤ f (xk) − f (xk+1) −
1

8β2

(
γ

2
⟨∇ f (xk), xk − u⟩2

)
+
γ

4β2 ⟨∇ f (xk) − dk, xk − u⟩2 − γηk⟨∇ f (xk) − dk, vk⟩

≤ f (xk) − f (xk+1) −
γ

16β2 ⟨∇ f (xk), xk − u⟩2 +
γ

4β2 ⟨∇ f (xk) − dk, xk − u⟩2 − γηk⟨∇ f (xk) − dk, vk⟩

≤ f (xk) − f (xk+1) −
γ

16β2 ⟨∇ f (xk), xk − u⟩2 +
D2

2γ

4β2 ∥λ
k∥22 + D2γρ∥λ

k∥2

≤ 16β2
(

f (xk) − f (xk+1)
)
− γ⟨∇ f (xk), xk − u⟩2 + 4D2

2γ∥λ
k∥22 + 16D2β

2γρ∥λk∥2.

(37)

The rest of the proof is exactly the same as it was for Variant 1, so we omit it. □

C Experiments

Our implementations follow Unconstrained ClippedScion and ClippedScion Algorithm 3 and Algo-
rithm 4 (Variant 2), respectively. For simplicity, we absorb the latter’s factor of 4 into the clipping
threshold ρ, so both algorithms directly clip

∑D
l=1 ⟨d

k
l , v

k
l ⟩ at ρ.

CIFAR10 experiments are run on a single A100 NVIDIA GPU, NanoGPT runs are run on 4 ×
H100 NVIDIA GPUs, and ViT experiments use 16 × GH200 NVIDIA GPUs. Hyperparameters are
provided in Tables 2 to 4.

-8 -7 -6 -5 -4 -3 -2 -1
log2 Learning Rate x rho

No
 C

lip
80

0
16

00
24

00
32

00
40

00
48

00
56

00
64

00
rh

o

90.6 91.4 92.2 92.4 91.8 88.6 82.9 44.0

90.2 91.3 91.9 92.8 93.0 94.1 94.2 85.2

90.6 91.2 92.2 93.5 93.7 94.2 94.2 93.8

90.5 91.3 92.6 93.3 93.7 93.9 94.0 93.8

90.4 91.4 92.6 93.3 93.6 93.9 94.0 93.9

90.5 91.4 92.5 93.2 93.6 93.7 93.7 94.0

90.4 91.2 92.7 93.0 93.4 93.8 93.8 93.9

90.5 91.4 92.5 93.0 93.4 93.7 93.9 93.7

90.2 91.5 92.3 92.9 93.4 93.6 93.9 93.9

Unconstrained ClippedScion Test Accuracy Heatmap

50

60

70

80

90

-7 -6 -5 -4 -3 -2 -1 0
log2 Learning Rate x rho

No
 C

lip
80

0
16

00
24

00
32

00
40

00
48

00
56

00
64

00
rh

o

91.3 92.2 93.3 93.7 94.1 94.5 94.5 10.0

91.4 92.3 93.2 93.8 94.1 94.4 94.5 10.0

91.3 92.3 93.2 93.8 94.1 94.3 94.3 10.0

91.3 92.2 93.1 93.7 94.0 94.0 94.1 76.6

91.4 92.2 93.1 93.6 93.9 94.0 94.1 93.7

91.3 92.3 93.1 93.5 93.9 93.9 94.0 93.8

91.4 92.3 93.0 93.5 93.8 93.8 94.1 93.9

91.1 92.2 93.0 93.4 93.8 93.9 94.0 94.0

91.1 92.1 92.8 93.3 93.7 93.9 93.9 94.0

Unconstrained ClippedScion Test Accuracy Heatmap

10

20

30

40

50

60

70

80

90

Figure 3: The optimal hyperparameters for Unconstrained ClippedScion on CIFAR10 for 80 epochs,
(left) no stepsize decay (right) with stepsize decay. (indicated in red). The first row indicated with
"No Clip" corresponds to Unconstrained Scion.

-10 -9 -8 -7 -6 -5 -4 -3
log2 Learning Rate x rho

No Clip

12800.0

25600.0

38400.0

51200.0

64000.0

76800.0

89600.0

102400.0

rh
o

90.0 91.1 91.2 90.1 87.6 80.1 68.2 49.9

89.2 90.9 91.4 90.4 88.4 81.3 69.3 51.6

84.5 90.6 91.1 90.3 85.9 81.6 70.9 58.7

59.7 89.6 90.9 89.6 87.6 85.5 80.0 72.5

53.2 85.0 90.7 90.6 87.7 84.9 80.4 73.6

46.2 65.7 90.2 91.0 88.8 86.5 83.9 77.1

42.4 59.9 89.4 88.8 88.4 84.9 84.9 78.0

37.0 56.1 88.6 89.6 87.2 89.4 85.3 79.4

33.0 53.7 85.3 89.2 89.6 88.1 85.2 81.8

ClippedScion Test Accuracy Heatmap

40

50

60

70

80

90

Figure 4: The optimal hyperparameters for ClippedScion on CIFAR10 for 80 epochs, no stepsize
decay (indicated in red). The first row indicated with "No Clip" corresponds to Scion.

36

0 10 20 30 40 50 60 70 80
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Adam
Unconstrained Scion
Unconstrained ClippedScion

0 250 500 750 1000 1250 1500 1750 2000
Iteration k

0

500

1000

1500

2000

2500

3000

Gr
ad

ie
nt

 n
or

m
 d

k

Unconstrained ClippedScion
Clipping threshold

Figure 5: For CIFAR10 experiments with stepsize decay; Unconstrained Scion and Unconstrained
ClippedScion achieve similar performance as expected.

0 10 20 30 40 50 60 70 80
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Scion
ClippedScion

0 250 500 750 1000 1250 1500 1750 2000
Iteration k

2x104

4x104

6x104

8x104

1x105

vk ,
dk

ClippedScion
Clipping threshold

Figure 6: For CIFAR10 experiments for constrained variant of the algorithms without stepsize
decay; clipping is less effective due to the surprising increase of ⟨vk, dk⟩. We observe that even the
(deterministic) Wolfe gap is increasing, which is otherwise expected to go to zero.

0 25 50 75 100 125 150 175 200
Epoch

0.70

0.72

0.74

0.76

0.78

0.80

Te
st

 A
cc

ur
ac

y

Unconstrained Scion
Unconstrained ClippedScion

11% speedup

0 25 50 75 100 125 150 175 200
Epoch

4000

5000

6000

7000

8000

Gr
ad

ie
nt

 n
or

m
 d

k

Unconstrained ClippedScion
Clipping threshold

Figure 7: Clipping improves over Scion by a 11% speedup on DeiT-base.

0 1000 2000 3000 4000 5000
Iteration k

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Va
lid

at
io

n
Lo

ss

Adam
Unconstrained Scion
Unconstrained ClippedScion

10% speedup

1000 2000 3000 4000 5000
Iteration k

0

200

400

600

800

1000

Gr
ad

ie
nt

 n
or

m
 d

k

Unconstrained ClippedScion
Clipping threshold

Figure 8: For fixed stepsize comparison clipping improves over Scion by more than a 10% speedup
on NanoGPT (124M).

37

0 1000 2000 3000 4000 5000
Iteration k

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Va
lid

at
io

n
Lo

ss

Unconstrained Scion
Unconstrained ClippedScion

Figure 9: NanoGPT (124M) with stepsize decay. Unconstrained Scion and Unconstrained Clipped-
Scion similar performance for the final iterate as expected under stepsize decay.

0 1000 2000 3000 4000 5000
Iteration k

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Va
lid

at
io

n
Lo

ss

Scion
ClippedScion

1000 2000 3000 4000 5000
Iteration k

400

500

600

700

800

900

1000
vk ,

dk

ClippedScion
Clipping threshold

Figure 10: NanoGPT (124M) for constrained variants of the algorithm with stepsize decay. An
interesting observation, which requires further investigation, is that ⟨vk, dk⟩ surprisingly increases
during the linear stepsize decay.

0 400 500 600 700 800

3.3550

3.3575

3.3600

3.3625

3.3650

3.3675

3.3700

Va
lid

at
io

n
Lo

ss

Figure 11: NanoGPT (124M) for Unconstrained ClippedScion with ρ sweeping. The sweep range
is set according to the gradient norm from Figure 8 (right). Both steepest descent (ρ = ∞) and
conditional gradient (ρ→ 0) perform worse than clipping.

38

Table 2: Hyperparameters for the CIFAR10 experiments building on airbench [Jordan, 2024].

Hyperparameter Adam (Clipped)Scion Unconst. Scion Unconst. ClippedScion
Block size (b1, b2, b3) width factor × (64, 256, 256)

Activation function GELU
Dataset CIFAR10 (50000 training examples)

batch size 2000
Epochs 80

Stepsize schedule Linear decay γk = γ · (1 − k/n)
Averaging parameter α 0.9 0.5

Stepsize γ 1e-3 2−8 2−5 2−2

Initial stepsize γ for decay 2e-3 - 2−1 2−1

Clipping parameter ρ - 12800 - 1600
Radius r1 / rℓ / rD - 1 / 5 / 2000 1 / 5 / 200 1 / 5 / 200

Table 3: DeiT-base hyperparameters following the tuned hyperparameters of Pethick et al. [2025]

Hyperparameter Unconstrained Scion Unconstrained ClippedScion
Layers 12

Head dim 64
Activation function

√
2· GELU (scaled to preserve variance)

Normalization function RMSNorm
Sequence Length 197

Dataset ImageNet-1k
Stepsize schedule Cosine decay

Max lr 0.00024
Warmup epochs 0

End lr 10−7

Batch size 4096
Epochs 200

Averaging parameter α 0.1
Radius ρ1 / ρℓ / ρL 25 / 25 / 500

Clipping parameter ρ - 8000

Table 4: NanoGPT hyperparameters following the tuned hyperparameters of Pethick et al. [2025].

Hyperparameter AdamW (Unconstrained) Scion (Unconstrained) ClippedScion
Layers 12

Head dim 128
Activation function 2 · ReLU(x)2

Vocabulary size 50304
Dataset FineWeb

batch size 512
block size 1024

Iterations n 5100
Warmdown 28.5%

Stepsize schedule Constant then linear decay γk =

{
γ if k < n − m
γ · (n−k

m) if k ≥ n − m
Warmup 5% 0

Gradient clipping Yes No
Momentum β1 / β2 0.9 / 0.95 -

Averaging parameter α - 0.1
Stepsize γρ 0.0018 0.00036

Clipping parameter ρ - 600 for 124M model and 6000 for 1B model
Radius r1 / rℓ / rD - - /50 / 3000

39

	Introduction
	Preliminaries
	Method
	Norm choices

	Analysis
	Deterministic case
	Stochastic case

	Related work
	Experiments
	Conclusion
	Preliminaries
	Proofs for Section 4 (Analysis)
	Deterministic case
	Stochastic case
	Convergence Analysis of uSCG
	Convergence analysis of S3CG

	Experiments

