Generalized Gradient Norm Clipping & Non-Euclidean (L_0, L_1) -Smoothness

Thomas Pethick*
EPFL (LIONS)
thomas.pethick@epfl.ch

Wanyun Xie* EPFL (LIONS) wanyun.xie@epfl.ch Mete Erdogan EPFL (LIONS) mete.erdogan@epfl.ch

Kimon Antonakopoulos EPFL (LIONS) kimon.antonakopoulos@epfl.ch Antonio Silveti-Falls Université Paris-Saclay (CVN) tonys.falls@gmail.com

Volkan Cevher EPFL (LIONS) volkan.cevher@epfl.ch

Abstract

This work introduces a hybrid non-Euclidean optimization method which generalizes gradient norm clipping by combining steepest descent and conditional gradient approaches. The method achieves the best of both worlds by establishing a descent property under a generalized notion of (L_0,L_1) -smoothness. Weight decay is incorporated in a principled manner by identifying a connection to the Frank-Wolfe short step. In the stochastic case, we show an order optimal $O(n^{-1/4})$ convergence rate by leveraging a momentum based gradient estimator. We discuss how to instantiate the algorithms for deep learning, which we dub Clipped Scion, and demonstrate their properties on image classification and language modeling. The code is available at https://github.com/LIONS-EPFL/ClippedScion.

1 Introduction

Recent work [Pethick et al., 2025] has shown that conditional gradient methods², traditionally used for constrained optimization, can also solve unconstrained problems—offering an alternative to steepest descent. From their analysis it becomes apparent that the two methods have distinct properties: whereas steepest descent requires the stepsize γ for L-smooth objectives to be taken as $\gamma < 2/L$, conditional gradient methods have no such requirement, thus allowing for large stepsizes, while remaining stable.

The price to pay for the stability is that conditional gradient based methods are not descent methods and thus eventually needs a diminishing stepsize to converge, even in the deterministic case. The problem becomes very apparent if the iterates are close to the solution, since the iterates always move by a fixed magnitude and are thus pushed away from the solution. Steepest descent does not suffer from the same problem since the effective stepsize automatically becomes smaller as the iterates approach a solution. This observation naturally raises the following question:

^{*}Equal contribution.

²By conditional gradient based methods, we mean those methods which leverage a linear minimization oracle $lmo(d) = arg \min(d, x)$ when updating their parameters with an open-loop stepsize.

Table 1: Special instantiations of Algorithm 1 according to different choices of norm. Control on the norm of the parameters is guaranteed by the constrained variant of the method (Algorithm 2).

Method	Norm type	Norm ball	lmo(d)	$ d _{*}$	Reference
Clipped GD	Vector	Euclidean · 2-ball	$-\frac{d}{\ d\ _2}$	$ d _{2}$	[Mikolov et al., 2012]
Clipped Sign	Vector	Max-norm · ∞-ball	$-\operatorname{sign}(d)$	$ d _1$	This paper
Clipped Spectral	Matrix	Spectral norm $\ \cdot\ _{S_{\infty}}$ -ball	$-UV^{\top 1}$	$-\operatorname{tr}(\operatorname{Imo}(d)^{\top}d)$	This paper
Clipped Scion (Algorithms 3 and 4)	Product	Max-norm ball over layers	$\{r_l \operatorname{Imo}_{\ \cdot\ _{W_l}}(d_l)\}_{l \in [D]}$	$-\sum_{l} \langle r_l \operatorname{lmo}(d_l), d_l \rangle$	This paper

The reduced SVD is given as $d = U \operatorname{diag}(\sigma)V^{\mathsf{T}}$.

Can we combine the two methods and get the best of both worlds? That is, does a stable method exist which takes large steps initially but adapts the stepsize when near a solution?

In this paper we answer the above in the affirmative by considering a hybrid method that combines a conditional gradient method with steepest descent. The proposed method generalizes gradient norm clipping [Mikolov et al., 2012] beyond the Euclidean case. In practice, gradient norm clipping has been widely adopted to stabilize training of recurrent neural networks (RNNs), Transformers and diffusion models, especially in large-scale settings. Theoretically, a precise characterization of the benefits has emerged under the (L_0, L_1) -smoothness assumption [Zhang et al., 2019, 2020, Koloskova et al., 2023]. Expanding on this, we show that these benefits of clipping can be made compatible with non-Euclidean methods. Besides clipping, we provide a novel analysis of conditional gradient methods without clipping under these same smoothness assumptions.

Concretely, we make the following contributions:

- (i) We introduce a hybrid method between a conditional gradient method and steepest descent (Algorithm 1), which in the Euclidean case recovers gradient norm clipping. The benefit of the hybrid method is made precise by showing a descent property under a generalized (L_0, L_1) -smoothness condition.
- (ii) In the stochastic case we show an order optimal $O(n^{-1/4})$ rate by leveraging a momentum estimator. Convergence for a clipped algorithm with stochastic feedback appears to be new even in the Euclidean case.
- (iii) We establish a connection between clipping and the short step from the Frank-Wolfe literature, which similarly enjoys a descent property. The connection enables us to combine clipping with weight decay in a principled manner that maintains convergence guarantees. We propose a stochastic variant of the short step (Algorithm 2) and establish a $O(n^{-1/4})$ rate.
- (iv) We explicitly instantiate the algorithms for deep learning through a product norm over layers (Algorithms 3 and 4) and demonstrate their properties through experiments on image classification and language modeling.

2 Preliminaries

Given a continuously differentiable objective function $f: \mathcal{X} \to \mathbb{R}$, the classical gradient descent method (GD) with a stepsize $\gamma > 0$ can be written as

$$x^{k+1} = \underset{x \in \mathcal{X}}{\arg\min} \, \gamma \langle \nabla f(x^k), x \rangle + \frac{1}{2} ||x - x^k||_2^2 = x^k - \gamma \nabla f(x^k). \tag{GD}$$

The normalized gradient descent method with radius $\rho > 0$ is, in comparison, defined as follows

$$x^{k+1} = \underset{\|x-x^k\|_2 \leq \rho}{\arg\min} \, \gamma \langle \nabla f(x^k), x \rangle = x^k + \rho \, \underset{\|x\|_2 \leq 1}{\arg\min} \, \gamma \langle \nabla f(x^k), x \rangle = x^k - \gamma \left[\rho \frac{\nabla f(x^k)}{\|\nabla f(x^k)\|_2} \right]. \quad \text{(Normalized GD)}$$

A hybrid variant is much more popular in practice,

$$x^{k+1} = \arg\min_{\|x - x^k\|_1 < \rho} \gamma \langle \nabla f(x^k), x \rangle + \frac{1}{2} \|x - x^k\|_2^2 = x^k - \gamma \min\{1, \frac{\rho}{\|\nabla f(x^k)\|_2}\} \nabla f(x^k),$$
 (Clipped GD)

which we notice can be rewritten by combining GD and Normalized GD. Indeed, all three of these algorithms correspond to minimizing

$$\gamma(\nabla f(x^k), x) + R(x)$$

for different choices of R. For GD, $R(x) = \frac{1}{2}||x - x^k||_2^2$ while for Normalized GD, $R(x) = \iota_{\rho \mathcal{D}}(x - x^k)$, the indicator function for Euclidean ball $\mathcal{D} = \{x: ||x||_2 \le 1\}$ scaled by the radius ρ ; Clipped GD combines both by taking $R(x) = \frac{1}{2}||x - x^k||_2^2 + \iota_{\rho \mathcal{D}}(x - x^k)$. This results in the iterates of Clipped GD being generated by the update in Normalized GD if $||\nabla f(x^k)||_2$ is large, but reducing to the update in GD when $||\nabla f(x^k)||_2$ is small enough.

Observation I Our first observation is that both GD and Normalized GD can be generalized to the non-Euclidean case. Define the sharp-operator [Nesterov, 2012, Kelner et al., 2014],

$$d^{\sharp} \in \operatorname*{arg\,max}_{x \in \mathcal{X}} \{\langle d, x \rangle - \tfrac{1}{2} ||x||^2\}.$$

Then, we can write the (possibly non-Euclidean) steepest descent method (SD) as follows

$$x^{k+1} = x^k - \gamma [\nabla f(x^k)]^{\sharp}$$
 (SD)

Observe that we recover GD when choosing the Euclidean ℓ_2 norm.

Generalizing Normalized GD to non-Euclidean norms is possible by noticing that the normalization can be written in terms of the *linear minimization oracle* (lmo)

$$lmo(d) \in \arg\min_{x \in \mathcal{D}} \langle d, x \rangle$$

where the constraint is a (now assumed to be non-Euclidean) norm-ball $\mathcal{D} := \{x \mid ||x|| \le 1\}$. By choosing the ℓ_2 -norm ball, Normalized GD can be seen as an instance of the so-called unconstrained conditional gradient method (uCG) [Pethick et al., 2025],

$$x^{k+1} = x^k + \gamma \rho \operatorname{Imo}(\nabla f(x^k)). \tag{uCG}$$

Observation II Our second central observation is that uCG can *in general* be considered a normalized version of steepest descent. This relationship follows from noticing that the sharp operator and lmo can be defined in terms of each other. Specifically, we have that

$$lmo(d) = -\frac{d^{\sharp}}{\|d\|_{\bullet}} \qquad \text{or, equivalently,} \qquad d^{\sharp} = -\|d\|_{*} \operatorname{lmo}(d). \tag{1}$$

In the following section we use this observation to generalize Clipped GD to the non-Euclidean case.

3 Method

We propose the generalized gradient norm clipping method (GGNC)

$$x^{k+1} = x^k - \gamma \tau_k [d^k]^{\sharp}$$
 with $\tau_k := \min\{1, \frac{\rho}{\|d^k\|_*}\}.$ (GGNC)

There is freedom in how to compute the dual norm $||d^k||_*$ due to the following equivalence property for the sharp operator, $||s||_*^2 = ||s^{\sharp}||^2 = \langle s, s^{\sharp} \rangle$. This form is useful, e.g., in the Euclidean case where the sharp-operator is readily available, since then $[d^k]^{\sharp} = d^k$.

For norm choices where the lmo is more naturally available we can equivalently write GGNC as

$$x^{k+1} = x^k + \gamma \eta_k \operatorname{Imo}(d^k)$$
 with $\eta_k := \min\{\rho, ||d^k||_*\}$.

We have that $||d^k||_* = -\langle d^k, \text{Imo}(d^k) \rangle$ due to the definition of the dual norm and the optimality of $\text{Imo}(d^k)$. So, provided that Imo has been computed, we can obtain $||d^k||_*$ with very little overhead. From this rewriting we also see that ρ can also be interpreted as the radius of the norm-ball constraint over which we compute the Imo.

The GGNC update rule can be seen as the solution to the following optimization problem:

$$x^{k+1} \in \operatorname*{arg\,min}_{\|x-x^k\| \leq \rho} \gamma \left\langle d^k, x-x^k \right\rangle + \tfrac{1}{2} \|x-x^k\|^2$$

The objective is the same quadratic approximation that gives rise to SD, but the iterates are further constrained to a trust-region of radius ρ in the chosen norm, as in uCG.

Algorithm 1 Generalized Gradient Norm Clipping (GGNC)

```
Input: Horizon n, init. x^1 \in X, d^0 = 0, momentum \alpha_k \in (0, 1], stepsize \gamma \in (0, 1)

1: for k = 1, ..., n do

2: Sample \xi_k \sim \mathcal{P}

3: d^k \leftarrow \alpha_k \nabla f(x^k, \xi_k) + (1 - \alpha_k) d^{k-1}

4: v^k \leftarrow -\operatorname{Imo}(d^k)

5: \eta_k \leftarrow \min\{\rho, \langle d^k, v^k \rangle\}

6: x^{k+1} \leftarrow x^k - \gamma \eta_k v^k

7: Choose \bar{x}^n uniformly at random from \{x^1, ..., x^n\}

Return \bar{x}^n

Equivalently to step 4-6: x^{k+1} \leftarrow x^k - \gamma \tau_k v^k with \tau_k = \min\{1, \frac{\rho}{\langle d^k, v^k \rangle^{1/2}}\} and v^k = [d^k]^{\sharp}.
```

Algorithm 2 Stochastic Short Step Conditional Gradient (S³CG)

```
Input: Horizon n, init. x^1 \in \beta \mathcal{D} = \{x \in \mathcal{X} : ||x|| \leq \beta\}, d^0 = 0, momentum \alpha_k \in (0, 1], stepsize \gamma \in (0, 1], ball radius \beta > 0

1: for k = 1, ..., n do

2: Sample \xi_k \sim \mathcal{P}

3: d^k \leftarrow \alpha_k \nabla f(x^k, \xi_k) + (1 - \alpha_k) d^{k-1}

4: v^k \leftarrow x^k - \beta \operatorname{Imo}(d^k)

5: Variant 1: \eta_k \leftarrow \operatorname{min}\{\rho, \frac{\langle d^k, v^k \rangle}{\|p^k\|^2}\}

6: Variant 2: \eta_k \leftarrow \operatorname{min}\{\rho, \frac{\langle d^k, v^k \rangle}{4\beta^2}\}

7: x^{k+1} \leftarrow x^k - \gamma \eta_k v^k

8: Choose \bar{x}^n uniformly at random from \{x^1, ..., x^n\}

Return \bar{x}^n
```

Stochastic case In the deterministic case we can simply take the direction to be $d^k = \nabla f(x^k)$. In the stochastic case, one has to proceed with more care, since $\text{Imo}(d^k)$ can be biased even when d^k is unbiased, due to its potential nonlinearity. With $\alpha_k \in (0, 1]$, we define the momentum based gradient estimator

$$d^{k} = (1 - \alpha_{k})d^{k-1} + \alpha_{k}\nabla f(x^{k}, \xi_{k}).$$

The final algorithm involving the momentum based gradient estimator is presented in Algorithm 1.

Weight decay & constrained problems Weight decay is a very popular technique, both as a regularizer to avoid overfitting and for ensuring numerical stability. A precise characterization exists for weight decay when combined with the conditional gradient based schemes like uCG, since the resulting update reduces to the classical conditional gradient method (a.k.a. Frank-Wolfe) designed for solving constrained problems [Chen et al., 2023, D'Angelo et al., 2023, Xie and Li, 2024, Pethick et al., 2025],

$$x^{k+1} = (1 - \gamma_k)x^k + \gamma_k\beta \operatorname{Imo}(\nabla f(x^k)), \tag{CG}$$

where $\beta > 0$ is the radius of norm-ball constraint and $\gamma_k > 0$ is some stepsize to be defined. The simplicial combination ensures that the iterates remain within the constraint set $\beta \mathcal{D}$ and, as a result, ensure that $\|x^k\| \le \beta$ for all k.

The CG method is not necessarily a descent method. For the classical open-loop stepsize choice $\gamma_k = ^2/_{k+2}$, it is possible to step too far in the direction given by the lmo, since the stepsize does not decrease near a critical point. Naively adopting the adaptive stepsize choice from GGNC does not seem appropriate in the constrained case, since $||d^k||_*$ might not necessarily be zero at a solution. Instead, we will argue that the correct analog of clipping in the constrained setting corresponds to a clipped version of the Frank-Wolfe *short step*. Like GGNC, this stepsize ensures an analogous descent property.

The short step is almost an immediate consequence of the L-smoothness descent lemma, from which we have

$$f(x^{k+1}) \le f(x^k) - \gamma_k \langle \nabla f(x^k), x^k - \beta \operatorname{Imo}(\nabla f(x^k)) \rangle + \gamma_k^2 \frac{L}{2} ||x^k - \beta \operatorname{Imo}(\nabla f(x^k))||^2$$
 (2)

$$\leq f(x^k) - \gamma_k \langle \nabla f(x^k), x^k - \beta \operatorname{Imo}(\nabla f(x^k)) \rangle + 2\gamma_k^2 L \beta^2. \tag{3}$$

By optimizing this bound with respect to γ_k , we arrive at two variants of the short step

$$\gamma_k \stackrel{(2)}{=} \min\{1, \frac{\langle \nabla f(x^k), x^k - \beta \operatorname{Imo}(\nabla f(x^k)) \rangle}{L\|x^k - \beta \operatorname{Imo}(\nabla f(x^k)\|^2)}\} \quad \text{or} \quad \gamma_k \stackrel{(3)}{=} \min\{1, \frac{\langle \nabla f(x^k), x^k - \beta \operatorname{Imo}(\nabla f(x^k)) \rangle}{4L\beta^2}\}$$

where the second variant is useful when the norm $\|\cdot\|$ is expensive to compute. What is particularly noteworthy of these stepsize choices is that they lead to descent, i.e., $f(x^{k+1}) \le f(x^k)$, by construction. We extend these stepsize choices to the stochastic case with Algorithm 2, where we propose a slightly different parameterization given by

$$\eta_k = \min\{\rho, \frac{\langle d^k, x^k - \beta \operatorname{Imo}(d^k) \rangle}{\|x^k - \beta \operatorname{Imo}(d^k)\|^2}\} \quad \text{or} \quad \eta_k = \min\{\rho, \frac{\langle d^k, x^k - \beta \operatorname{Imo}(d^k) \rangle}{4\beta^2}\}.$$

A careful reader might have noticed the similarity between the short step in Algorithm 2 and gradient clipping in Algorithm 1. These schemes are indeed equivalent when v^k is appropriately modified in Algorithm 2 to be $-\beta \operatorname{Imo}(d^k)$. This connection motivates our parameterization of the updates in Algorithm 2, which are scaled by $\beta \gamma \eta_k$, so that the following holds

$$\beta\gamma\eta_k = \beta\gamma\min\{\rho, \frac{-\langle d^k\beta\operatorname{Imo}(d^k)\rangle}{||\beta\operatorname{Imo}(d^k)||^2}\} = \beta\gamma\min\{\rho, \frac{\beta||d^k||_*}{||\beta\operatorname{Imo}(d^k)||^2}\} = \beta\gamma\min\{\rho, \frac{\beta||d^k||_*}{\beta^2}\} = \gamma\min\{\rho, ||d^k||_*\}.$$

The modified Step 7 of Algorithm 2 then becomes

$$x^{k+1} = x^k + \gamma \min\{\rho, ||d^k||_*\} \operatorname{Imo}(d^k)$$

which is exactly what is used in GGNC.

3.1 Norm choices

Algorithm 1 and Algorithm 2 crucially generalize beyond the Euclidean case of Clipped GD. The following section focuses on the unconstrained variant (Algorithm 1) for simplicity, but its constrained counterpart follows in a straightforward way through Algorithm 2.

Sign A simple non-Euclidean example is the ℓ_{∞} vector norm for which GGNC reduces to a *sign-based* update

$$x^{k+1} = x^k - \gamma \eta_k \operatorname{sign}(d^k)$$
 (Clipped Sign)

where $\eta_k := \min\{\rho, \|d^k\|_1\}$. The update is dense in the sense that each coordinate undergoes the same magnitude change.

Spectral The matrix analog of the ℓ_{∞} norm is the Schatten- ∞ matrix norm, a.k.a. the spectral norm, which induces the following update

$$x^{k+1} = x^k - \gamma \eta_k U^k (V^k)^{\mathsf{T}}$$
 (Clipped Spectral)

where the reduced singular value decomposition (SVD) is given as $d^k = U^k \operatorname{diag}(\sigma^k)(V^k)^{\mathsf{T}}$. The dual norm can be computed given the lmo as $\|\sigma^k\|_1 = \|d^k\|_{\mathcal{S}_1} = -\langle d^k, \operatorname{lmo}(d^k) \rangle = -\operatorname{tr}(\operatorname{lmo}(d^k)^{\mathsf{T}}d^k) = -\operatorname{flatten}(\operatorname{lmo}(d^k))^{\mathsf{T}}$ flatten (d^k) , where $\|\cdot\|_{\mathcal{S}_1}$ is the Schatten-1 norm, a.k.a. the nuclear norm. This scheme is a clipped variant of the stochastic spectral descent method [Carlson et al., 2015b,a].

Product norm The neural networks in deep learning consist of multiple layers and it will therefore be useful to consider what we will call a *product norm*. Consider $x = (W_1, ..., W_D)$. A norm of x can be composed using norms on $\{W_l\}_{l \in [D]}$:

$$||x|| = ||(\frac{1}{r_1}||W_1||_{\mathcal{W}_1},...,\frac{1}{r_D}||W_D||_{\mathcal{W}_D})||_{\mathcal{X}}$$

for radius parameters $r_l > 0$. Notable choices of $\|\cdot\|_X$ include the ℓ_1 -norm [Flynn, 2017] and the ℓ_∞ -norm choice made by the *modular norm* [Large et al., 2024]. Interestingly, if $\|\cdot\|_X$ is the max-norm, $\|\cdot\|_X = \|\cdot\|_\infty$, then:

- (i) The lmos can be computed separately as $lmo_X(x) = \{r_1 lmo_{W_1}(W_1), ..., r_D lmo_{W_D}(W_D)\}$
- (ii) The dual norm requires summing over all l elements, i.e., $||x||_* = \sum_{l=1}^{D} \frac{1}{r_l} ||W_l||_{W_{l,*}}$.

As a particular example, consider the LARS optimizer [You et al., 2017], which performs normalized SGD layer-wise. The update rule can be written in terms of the lmo-based scheme uCG with the norm choice $||x|| = \max_l ||W_l||_F$. Writing the analog sharp-operator based scheme (i.e., SD), we see that it does *not* correspond to simply removing the normalization as for the ℓ_2 norm. Instead, using the relationship (1), we see that the correct form for the hybrid GGNC method is

$$W_l^{k+1} = W_l^k - \gamma \min\{\rho, \sum_i \|d_i^k\|_F\}\} \frac{d_l^k}{\|d_i^k\|_F} \quad \forall l \in [D]$$

where $d^k = \{d_1^k, ..., d_D^k\}$ and $\gamma > 0$ is the stepsize. Through this duality, we see that while the lmo only requires local information, the dual norm computation (and consequently also the sharp-operator in SD) requires global information.

In Algorithms 3 and 4 of the appendix we specialize Algorithms 1 and 2 to the particular case where $\|\cdot\|_X$ is the max-norm. The resulting algorithms can be seen as clipped variants of the (unconstrained) Scion algorithm [Pethick et al., 2025] so we refer to them as (unconstrained) CLIPPEDSCION.

4 Analysis

Why might it be useful to consider a hybrid of SD and uCG? As we will see, the convergence properties of the two methods are complementary.

One can show for SD under *L*-smoothness that

$$f(x^{k+1}) \le f(x^k) - \gamma(1 - \gamma L/2) ||\nabla f(x^k)||_*^2$$

In other words, SD is a descent method in the sense that it decreases the function value $f(x^k)$ at every iteration. The price we pay for this descent is that the stepsize needs to be taken sufficiently small, specifically as $\gamma < 2/L$.

On the other hand, under the same L-smoothness assumption, uCG instead satisfies

$$f(x^{k+1}) \le f(x^k) - \gamma \rho ||\nabla f(x^k)||_* + \frac{L\gamma^2 \rho^2}{2}.$$

Notice that this is not a descent method, due to the positive contribution of $\frac{L\gamma^2\rho^2}{2}$. However, there are no restrictions on the stepsize, and we can in fact show a fast rate of O(1/k) for the norm of the gradient with a constant stepsize (as opposed to $O(1/\sqrt{k})$ of SD), albeit only to a neighborhood whose radius is proportional to $\gamma\rho$, as we formalize in the following result.

Proposition 4.1. Suppose f is L-smooth with respect to $\|\cdot\|_*$ and denote $f^* = \inf_{x \in X} f(x)$. Then, the iterates $\{x^k\}_{k \in \mathbb{N}^*}$ of uCG satisfy, for all $n \in \mathbb{N}^*$,

$$\min_{1 \le k \le n} \|\nabla f(x^k)\|_* \le \frac{1}{n} \sum_{k=1}^n \|\nabla f(x^k)\|_* \le \frac{f(x^1) - f^*}{\gamma \rho n} + \frac{L\gamma \rho}{2}.$$

Recall that GGNC reduces to uCG when the gradient norm is large, so we can expect in the early phase GGNC will converge rapidly to a neighborhood of size $\frac{L\gamma\rho}{2}$. If the gradient norm is small in this region, then GGNC reduces to SD, which converges to an exact critical point even with constant stepsize and which can adapt to the loss landscape through the gradient norm.

We can make this intuition precise by analyzing these algorithms under the following generalization of (L_0, L_1) -smoothness to arbitrary norms.

Assumption 4.2. The gradient ∇f is said to be (L_0, L_1) -smooth with $L_0, L_1 \in [0, \infty)$ if, for all $x, y \in X$ with $||x - y|| \le \frac{1}{L_1}$, it holds

$$\|\nabla f(x) - \nabla f(y)\|_{*} \le (L_0 + L_1 \|\nabla f(x)\|_{*}) \|x - y\|. \tag{4}$$

4.1 Deterministic case

We now proceed to generalizing Koloskova et al. [2023, Thm. 2.1] in the deterministic case. The main argument relies on establishing that GGNC (Algorithm 1) is a descent method even under the generalized (L_0, L_1) -smoothness assumption, which enables the scheme to converge even for a fixed, horizon-independent stepsize γ . For the remainder of the paper, we will always denote $f^* := \inf_{x \in X} f(x)$ (where it is understood this infimum is taken over $\beta \mathcal{D}$ for constrained problems) and $\Delta := f(x^1) - f^*$.

Theorem 4.3. Suppose Assumption 4.2 holds and let $n \in \mathbb{N}^*$. Consider $\{x^k\}_{1 \le k \le n}$ generated by GGNC with $d^k = \nabla f(x^k)$, and $\gamma \le 1/(L_0 + \rho L_1)$. Then, the following holds

$$\min_{1 \le k \le n} \|\nabla f(x^k)\|_* \le \sqrt{\frac{\Delta}{\gamma n}} + \frac{2\Delta}{\gamma \rho n}.$$

Specifically, with $\rho = \frac{L_0}{L_1}$ *and* $\gamma = \frac{1}{L_0}$ *, we have*

$$\min_{1 \le k \le n} \|\nabla f(x^k)\|_* \le \sqrt{\frac{L_0 \Delta}{n}} + \frac{2L_1 \Delta}{n}.$$

Remark 4.4. Note that the condition $||x^k - x^{k+1}|| \le 1/L_1$ of Assumption 4.2 required in the proof is always satisfied, since $\gamma \rho \le 1/L_1$ holds for any ρ . We note that descent can also be established for SD with an adaptive stepsize $\gamma_k = 1/L_0 + L_1 ||\nabla f(x^k)||_*$ (see e.g., Balles et al. [2020, C.2.2], which uses a definition of (L_0, L_1) -smoothness based on the Hessian).

In contrast with GGNC, uCG is not a descent method and requires a diminishing stepsize to converge as suggested by the following theorem. The uCG method trades off the descent property with being agnostic to the Lipschitz constant L_0 .

Theorem 4.5. Suppose Assumption 4.2 holds and let $n \in \mathbb{N}^*$. Consider $\{x^k\}_{1 \le k \le n}$ generated by uCG with $\gamma \rho < 1/2L_1$. Then, the following holds

$$\min_{1 \le k \le n} \|\nabla f(x^k)\|_* \le \frac{2\Delta}{\gamma \rho n} + 2L_0 \gamma \rho.$$

Remark 4.6. The assumption that $\gamma \rho \leq 1/2L_1$ can be relaxed to $\gamma \rho < 1/L_1$ while still ensuring convergence, modulo a different constant in the convergence rate.

Let us now turn to the constrained case. The following theorem establishes a convergence rate for Algorithm 2 in the deterministic setting, i.e., with $d^k = \nabla f(x^k)$. The convergence rate is established for a quantity called the Wolfe-gap,

$$\max_{u \in \beta \mathcal{D}} \langle \nabla f(x), x - u \rangle,$$

which, when equal to 0, certifies that x is a critical point for the constrained problem. It is the equivalent of the dual norm of the gradient but for constrained problems, since the gradient might not vanish at a critical point in the constrained setting. The theorem also includes an assumption that f is L-smooth rather than (L_0, L_1) -smooth. Because the iterates of Algorithm 2 are guaranteed to never leave the compact set $\beta \mathcal{D}$, L-smoothness is implied by (L_0, L_1) -smoothness here.

Theorem 4.7. Suppose f is L-smooth and let $n \in \mathbb{N}^*$. Consider $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 2 with $d^k = \nabla f(x^k)$, $\gamma \le \frac{1}{L}$, and $\rho \le L$ so that $\gamma \rho \le 1$. Then, for all $u \in \beta \mathcal{D}$, the following holds

$$\min_{1 \leq k \leq n} \langle \nabla f(x^k), x^k - u \rangle \leq 2\beta \sqrt{\frac{\Delta}{\gamma n}} + \frac{2\Delta}{\gamma \rho n}.$$

4.2 Stochastic case

We consider the following standard assumption about the bias and variance of the stochastic oracle. **Assumption 4.8.** For the stochastic gradient estimator $\nabla f(\cdot, \xi) : X \to \mathbb{R}^d$ the following holds.

- (i) Unbiased: $\mathbb{E}_{\xi} [\nabla f(x, \xi)] = \nabla f(x) \quad \forall x \in \mathcal{X}$.
- (ii) Bounded variance: $\mathbb{E}_{\xi} \left[\|\nabla f(x,\xi) \nabla f(x)\|_{2}^{2} \right] \leq \sigma^{2} \quad \forall x \in \mathcal{X}, \sigma \geq 0.$

In order to establish convergence in what follows, an important quantity to introduce is the error produced by the stochastic estimator d^k , which we denote by $\lambda^k := d^k - \nabla f(x^k)$.

We establish the following order optimal convergence guarantee for GGNC under (L_0, L_1) -smoothness using a momentum-based estimator. These convergence results for clipping with momentum appear to be new, even in the Euclidean case.

Theorem 4.9. Suppose Assumptions 4.2 and 4.8 hold and let $n \in \mathbb{N}^*$. Consider the iterates $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 1 with a constant stepsize $\gamma \le 1/L_0$ and $\gamma \rho \le 1/2L_1$. Then,

$$\mathbb{E}[\|\nabla f(\bar{x}^n)\|_*] \le \frac{4\sqrt{\Delta}}{\sqrt{\gamma n}} + \frac{8\Delta}{\gamma \rho n} + 4\sqrt{\epsilon_n} + \frac{8\epsilon_n}{\rho}$$

where
$$\Delta := f(x^1) - f^*$$
 and $\epsilon_n := \frac{1}{n} \sum_{k=1}^n O(\sqrt{\mathbb{E}[\|\lambda^k\|_2^2]} + \mathbb{E}[\|\lambda^k\|_2^2])$.

Furthermore, assuming f is L-smooth³ and taking $\alpha = 1/\sqrt{n}$, $\gamma = 1/\sqrt{n}L_0$ and $\rho = L_0/2n^{1/4}L_1$ such that $\gamma \rho = 1/2n^{3/4}L_1$ we have that

$$\mathbb{E}[\|\nabla f(\bar{x}^n)\|_*] \le O(\frac{1}{n^{1/4}}).$$

Remark 4.10. For ease of exposition, the guarantee is presented with horizon-dependent parameter choices, but the result can be extended to an *any time* guarantee in a straightforward manner by choosing the parameters as a function of k instead of n and modifying the proofs accordingly.

In the constrained case, we have the following convergence guarantee for SCG with a clipped short step (Algorithm 2) using a momentum-based estimator. To the best of our knowledge, this is the first convergence proof using the short step in the stochastic setting.

Theorem 4.11. Suppose Assumptions 4.2 and 4.8 hold and let $n \in \mathbb{N}^*$. Consider the iterates $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 2 (Variant 1) with a constant stepsize $\gamma \le 1/L\sqrt{n}$ and $\rho \le 1/n^{1/4}$. Then, for all $u \in \beta \mathcal{D}$,

$$\mathbb{E}[\langle \nabla f(\bar{x}^n), \bar{x}^n - u \rangle] \le \frac{4\sqrt{\Delta}}{\sqrt{\gamma n}} + \frac{8\Delta}{\gamma \rho n} + 4\sqrt{\epsilon_n} + \frac{8\epsilon_n}{\rho}$$

where
$$\Delta := f(x^1) - f^*$$
 and $\epsilon_n := \frac{1}{n} \sum_{k=1}^n O(\sqrt{\mathbb{E}||\lambda^k||_2^2} + \mathbb{E}||\lambda^k||_2^2)$.

Furthermore, taking $\alpha = 1/\sqrt{n}$, $\gamma = 1/(L\sqrt{n})$ and $\rho = 1/n^{1/4}$ such that $\gamma \rho = 1/(Ln^{3/4})$ we have that $\mathbb{E}[\langle \nabla f(\bar{x}^n), \bar{x}^n - u \rangle] \leq O(\frac{1}{n^{1/4}})$.

We additionally provide an identical guarantee for Algorithm 2 (Variant 2) in the appendix.

5 Related work

 (L_0, L_1) -smoothness An (L_0, L_1) -smoothness condition was introduced based on the Hessian in [Zhang et al., 2019] and later generalized to the first-order notion that we extend to the non-Euclidean case [Zhang et al., 2020]. (L_0, L_1) -smoothness was used to analyze signSGD under heavy-tailed noise assumptions in Kornilov et al. [2025]. A coordinate-wise (L_0, L_1) -smoothness condition has also been considered for analyzing a generalized version of signSGD [Crawshaw et al., 2022].

In the Euclidean case, a descent property under (L_0, L_1) -smoothness was shown for both gradient clipping [Zhang et al., 2020, Koloskova et al., 2023] and gradient descent with an appropriate adaptive stepsize as studied in the two concurrent works Gorbunov et al. [2024] and Vankov et al. [2024].

Parameter-agnostic In the deterministic case, gradient descent with backtracking line-search was shown to converge under (L_0, L_1) -smoothness without knowledge of the Lipschitz constants [Hübler et al., 2024]. For (star)-convex problems, an interesting connection was established between gradient norm clipping and the Polyak stepsize in Takezawa et al. [2024] and further analyzed in Gorbunov et al. [2024] and Vankov et al. [2024]. The adaptive stepsize removes the need for knowing both L_0 and L_1 . Unfortunately, the Polyak stepsize is deeply tied to the Euclidean and (star)-convex structure and thus does not seem to be directly extendable to our more general setting.

In the stochastic case, the current best known parameter-agnostic method introduces an undesirable exponential dependency on L_1 in the complexity [Hübler et al., 2024]. However, knowledge of L_0 can be removed without such issues through either an AdaGrad type stepsize [Wang et al., 2023, Faw et al., 2023] or normalized gradient descent with momentum [Cutkosky and Mehta, 2020] as shown in Hübler et al. [2024]. This mirrors results from the online learning community where both AdaGrad and gradient normalization are known to adapt to Hölder smoothness [Orabona, 2023].

Short step In contrast with gradient descent, the Frank-Wolfe algorithm [Frank et al., 1956] does not ensure descent with an open-loop stepsize even in the deterministic setting. Descent can be ensured by an adaptive stepsize known as the short step, originally introduced by Frank & Wolfe [Frank et al., 1956] and extended by Rubinov & Dem'yanov [Dem'yanov and Rubinov, 1968]. See Pokutta [2024] for an expository treatment.

³Only local Lipschitz is needed in the sense that the condition only needs to hold for (x, y) satisfying $||x - y|| \le 1/L_1$. It is also possible to replace L with $L_n := \max_{k \le n} L_0 + L_1 ||f(x^k)||_*$, e.g., as is done in [Koloskova et al., 2023, Thm. 2.3].

Spectral norm methods Clipped Spectral can be viewed as a hybrid method between the stochastic spectral descent [Carlson et al., 2015b] and the Muon optimizer [Jordan et al., 2024b], with some crucial differences.

Muon builds the gradient estimator d^k differently. Specifically they take $d^k = \nabla f(x^k, \xi_k) + \beta d^{k-1}$ if Nesterov momentum is disabled. This is equivalent to our choice $d^k = \alpha \nabla f(x^k, \xi_k) + (1 - \alpha) d^{k-1}$ for LMO-based schemes, since the LMO is scale-invariant (i.e., $\text{Imo}(a \cdot s) = \text{Imo}(s)$ for a > 0) [Pethick et al., 2025]. However, for SD this equivalence no longer holds (in fact we have $[a \cdot s]^\sharp = a[s]^\sharp$ for $a \in \mathbb{R}$). The appropriate choice of d^k , which generalizes to SD and GGNC, turns out to be the convex combination.

Stochastic spectral descent [Carlson et al., 2015b] does not construct a gradient estimator and instead takes $d^k = \nabla f(x^k, \xi_k)$. This restricts their convergence result to the case of (mild) relative noise.

In this sense, Clipped Spectral could just as well be called Clipped Muon (not to be confused with the unrelated MuonClip [Team et al., 2025]) but we prefer Clipped Spectral as the algorithm itself is not tied to momentum nor to Newton-Schulz, as the name Muon fundamentally is.

Tuddenham et al. [2022] also studied an optimization algorithm focused on orthogonalization, however they orthogonalize *before* doing the momentum step. Pethick et al. [2025] analyzed a more general algorithm called Averaged LMO Directional Descent which admits as a special case the algorithm studied in Tuddenham et al. [2022]; their empirical and theoretical findings found this algorithm to be worse than orthogonalization *after* the momentum step, e.g., the Scion family of algorithms [Pethick et al., 2025].

We note that many works have recently analyzed the convergence behavior of algorithms using spectral LMOs like Muon and Scion, starting first with Pethick et al. [2025], Li and Hong [2025] and then Kovalev [2025], Sfyraki and Wang [2025], but always under

Modular norm [Large et al., 2024] introduced a norm choice for neural networks and established a smoothness condition for a given neural network provided the parameter remains bounded. The dual norm computation needed in **GGNC** is particularly easy to implement in the accompanying Modula software package since $||d||_* := -\text{flatten}(\text{Imo}(d))^{\top}$ flatten(d), which in Modula code reads as dual_norm=-sum(model.dualize(d)*d).

Weight decay Weight decay [Pratt, 1992] is a crucial component in deep learning and has become standard in training modern neural networks through its integration with Adam [Loshchilov and Hutter, 2017]. When combined with LMO based updates such as sign descent and the normalized gradient descent the resulting methods can be seen as instantiations of the conditional gradient method for constrained optimization problems [Chen et al., 2023, D'Angelo et al., 2023, Xie and Li, 2024, Pethick et al., 2025]. Our adaptive stepsize in Algorithm 2 effectively scales the weight decay as well as the update. This is similar to scheduled weight decay [Xie et al., 2023] which uses the adaptive stepsize in Adam to also scale the weight decay parameter.

6 Experiments

For the norm choice of Scion and ClippedScion we use the (Sign \rightarrow Spectral \rightarrow Sign) and (Spectral \rightarrow Spectral \rightarrow Sign) configurations for language modeling and image classication respectively (see Pethick et al. [2025, Tbl. 2-4] for the associated scaling factors). To compute the spectral lmo we use the efficient implementation provided in Jordan et al. [2024b] of the Newton-Schultz iteration proposed in Bernstein and Newhouse [2024]. There have been recent efforts to move beyond the "N" (Newton-Schulz) in Muon, the most popular algorithm computing the spectral LMO, through alternative subroutines; our algorithm is compatible with these alternatives, like the optimized PolarExpress routine [Amsel et al., 2025] or power iterations [Ahn et al., 2025, Vogels et al., 2019], although we do not explore them here.

Image classification We test on a convolutional neural network (CNN) on the CIFAR10 dataset. Hyperparameters can be found in Table 2 in Appendix C. We consider both a fixed stepsize setting and stepsize scheduling using linear rampdown to investigate if the theoretical results are predictive of practice. We report the experimental results in Figure 1 where mean and standard deviation are computed over 5 independent runs.

We find that clipping can substantially improve the test accuracy in the fixed stepsize setting, when the gradient norm (i.e. $||d^k||_* = \langle d^k, v^k \rangle$) is decreasing. This separation is in agreement with the

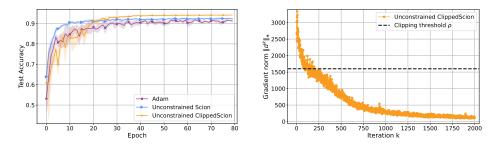


Figure 1: For CIFAR10 experiments with fixed stepsize clipping leads to a substantial improvement.

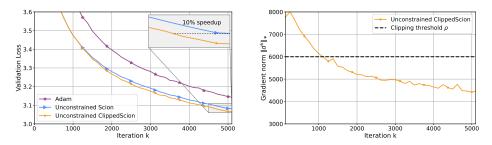


Figure 2: For fixed stepsize comparison clipping improves over Scion by more than a 10% speedup on NanoGPT (1B). We observe similar gains on the smaller 124M parameter model size (cf. Appendix C).

theoretical separation between Theorem 4.3 and Theorem 4.5 on fixed stepsizes. In the constrained case (Algorithm 2) we surprisingly find that $\langle d^k, v^k \rangle$ is increasing (cf. Figure 6 in Appendix C) which requires further investigation. With stepsize scheduling we observe that clipping (i.e., Unconstrained ClippedScion) and normalization (i.e., Unconstrained Scion) achieve similar performance, which aligns with the matching theoretical rates of GGNC (Theorem 4.9) and uSCG (Pethick et al. [2025, Thm. 5.4]) in the stochastic case when stepsizes are taken decreasing.

We also evaluate the unconstrained case (Algorithm 1) using Vision Transformers (ViT) on the ImageNet dataset. We train a DeiT-base model using the DeiT codebase [Touvron et al., 2021] with replacing LayerNorm by RMS norm following [Pethick et al., 2025]. Table 3 in Appendix C contains the hyperparameter details. As shown in Figure 7 (Appendix C), Unconstrained ClippedScion achieves an 11% speedup over Unconstrained Scion, even though its gradient norm ($\|d^k\|_*$) is increasing. This observation requires further exploration.

NanoGPT We additionally test on NanoGPT Karpathy [2023] in Figure 2 with modernizations following [Jordan et al., 2024a]: rotary embeddings are used instead of positional embeddings, RMS norm is used instead of LayerNorm, and the ReLU² [So et al., 2021] instead of GELU activation function. All methods are trained for 5100 iterations with a batchsize of 512 and context length of 1024 on the FineWeb dataset (see Table 4 Appendix C for further details). The empirical observations matches those for CIFAR10 experiments.

7 Conclusion

We have shown that clipping can be extended to non-Euclidean settings and even constrained problems by establishing a precise connection to the Frank-Wolfe short step. A descent property was established under a generalized notion of (L_0, L_1) -smoothness, which opens up a range of interesting directions:

The descent property both in the unconstrained and constrained case enables integration with adaptive stepsize choices such as AdaGrad and backtracking line-search.

The non-Euclidean notion of (L_0, L_1) -smoothness we introduce might be a suitable condition to study for neural networks. Large et al. [2024] showed that neural networks are smooth in the modular norm provided that the parameters are constrained. However, in practice, violating the constraints seem to be unproblematic for optimization, which suggests that a looser smoothness assumption might hold such as Assumption 4.2.

Acknowledgment

This work was supported as part of the Swiss AI Initiative by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID a06 on Alps. This work was supported by the Swiss National Science Foundation (SNSF) under grant number 200021_205011. This work was supported by Hasler Foundation Program: Hasler Responsible AI (project number 21043). Research was sponsored by the Army Research Office and was accomplished under Grant Number W911NF-24-1-0048.

References

- Kwangjun Ahn, Byron Xu, Natalie Abreu, Ying Fan, Gagik Magakyan, Pratyusha Sharma, Zheng Zhan, and John Langford. Dion: Distributed orthonormalized updates. *arXiv preprint* arXiv:2504.05295, 2025.
- Noah Amsel, David Persson, Christopher Musco, and Robert M Gower. The polar express: Optimal matrix sign methods and their application to the muon algorithm. *arXiv preprint arXiv:2505.16932*, 2025.
- Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geometry of sign gradient descent. *arXiv* preprint arXiv:2002.08056, 2020.
- Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. *arXiv preprint* arXiv:2409.20325, 2024.
- David Carlson, Volkan Cevher, and Lawrence Carin. Stochastic spectral descent for restricted boltzmann machines. In *Artificial Intelligence and Statistics*, pages 111–119. PMLR, 2015a.
- David Carlson, Ya-Ping Hsieh, Edo Collins, Lawrence Carin, and Volkan Cevher. Stochastic spectral descent for discrete graphical models. *IEEE Journal of Selected Topics in Signal Processing*, 10 (2):296–311, 2015b.
- Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves constrained optimization: As lyapunov predicts. *arXiv preprint arXiv:2310.05898*, 2023.
- Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness to unbounded smoothness of generalized signsgd. *Advances in neural information processing systems*, 35:9955–9968, 2022.
- Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In *International conference on machine learning*, pages 2260–2268. PMLR, 2020.
- Francesco D'Angelo, Maksym Andriushchenko, Aditya Varre, and Nicolas Flammarion. Why do we need weight decay in modern deep learning? *arXiv preprint arXiv:2310.04415*, 2023.
- VF Dem'yanov and AM Rubinov. Minimization of functionals in normed spaces. *SIAM Journal on Control*, 6(1):73–88, 1968.
- Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform smoothness: A stopped analysis of adaptive sgd. In *The Thirty Sixth Annual Conference on Learning Theory*, pages 89–160. PMLR, 2023.
- Thomas Flynn. The duality structure gradient descent algorithm: analysis and applications to neural networks. *arXiv preprint arXiv:1708.00523*, 2017.
- Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. *Naval research logistics quarterly*, 3(1-2):95–110, 1956.
- Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth, and Martin Takáč. Methods for convex (*l*_0, *l*_1)-smooth optimization: Clipping, acceleration, and adaptivity. *arXiv* preprint arXiv:2409.14989, 2024.

- Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed smoothness. In *International Conference on Artificial Intelligence and Statistics*, pages 4861–4869. PMLR, 2024.
- Keller Jordan. Cifar-10 airbench, 2024. URL https://github.com/KellerJordan/cifar10-airbench.
- Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt: Speedrunning the nanogpt baseline, 2024a. URL https://github.com/KellerJordan/modded-nanogpt.
- Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https://kellerjordan.github.io/posts/muon/.
- Andrej Karpathy. nanoGPT. https://github.com/karpathy/nanoGPT, 2023. Accessed: 2025-01-25.
- Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms*, pages 217–226. SIAM, 2014.
- Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping: Stochastic bias and tight convergence guarantees. In *International Conference on Machine Learning*, pages 17343–17363. PMLR, 2023.
- Nikita Kornilov, Philip Zmushko, Andrei Semenov, Mark Ikonnikov, Alexander Gasnikov, and Alexander Beznosikov. Sign operator for coping with heavy-tailed noise in non-convex optimization: High probability bounds under (*l*_0, *l*_1)-smoothness. *arXiv preprint arXiv:2502.07923*, 2025.
- Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean trust-region optimization. *arXiv* preprint arXiv:2503.12645, 2025.
- Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable optimization in the modular norm. *arXiv preprint arXiv:2405.14813*, 2024.
- Jiaxiang Li and Mingyi Hong. A note on the convergence of muon and further. *arXiv e-prints*, pages arXiv-2502, 2025.
- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint* arXiv:1711.05101, 2017.
- Tomáš Mikolov et al. Statistical language models based on neural networks. 2012.
- Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional gradient methods: From convex minimization to submodular maximization. *Journal of machine learning research*, 21(105): 1–49, 2020.
- Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. *SIAM Journal on Optimization*, 22(2):341–362, 2012.
- Francesco Orabona. Normalized gradients for all. arXiv preprint arXiv:2308.05621, 2023.
- Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and Volkan Cevher. Training deep learning models with norm-constrained lmos. *arXiv preprint arXiv:2502.07529*, 2025.
- Sebastian Pokutta. The frank-wolfe algorithm: a short introduction. *Jahresbericht der Deutschen Mathematiker-Vereinigung*, 126(1):3–35, 2024.
- Lorien Y Pratt. Non-literal transfer among neural network learners. *Colorado School of Mines: MCS-92-04*, 1992.

- Maria-Eleni Sfyraki and Jun-Kun Wang. Lions and muons: Optimization via stochastic frank-wolfe. *arXiv preprint arXiv:2506.04192*, 2025.
- David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching for efficient transformers for language modeling. *Advances in neural information processing systems*, 34:6010–6022, 2021.
- Yuki Takezawa, Han Bao, Ryoma Sato, Kenta Niwa, and Makoto Yamada. Polyak meets parameter-free clipped gradient descent. *arXiv preprint arXiv:2405.15010*, 2024.
- Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv preprint arXiv:2507.20534*, 2025.
- Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. In *International conference on machine learning*, pages 10347–10357. PMLR, 2021.
- Mark Tuddenham, Adam Prügel-Bennett, and Jonathan Hare. Orthogonalising gradients to speed up neural network optimisation. *arXiv preprint arXiv:2202.07052*, 2022.
- Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U Stich. Optimizing (*l*_0, *l*_1)-smooth functions by gradient methods. *arXiv preprint arXiv:2410.10800*, 2024.
- Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient compression for distributed optimization. *Advances in Neural Information Processing Systems*, 32, 2019.
- Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex objectives: Simple proofs and relaxed assumptions. In *The Thirty Sixth Annual Conference on Learning Theory*, pages 161–190. PMLR, 2023.
- Shuo Xie and Zhiyuan Li. Implicit bias of AdamW: ℓ_{∞} norm constrained optimization. *arXiv preprint arXiv:2404.04454*, 2024.
- Zeke Xie, Zhiqiang Xu, Jingzhao Zhang, Issei Sato, and Masashi Sugiyama. On the overlooked pitfalls of weight decay and how to mitigate them: A gradient-norm perspective. *Advances in Neural Information Processing Systems*, 36:1208–1228, 2023.
- Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. *arXiv* preprint arXiv:1708.03888, 2017.
- Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping algorithms for non-convex optimization. *Advances in Neural Information Processing Systems*, 33:15511–15521, 2020.
- Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates training: A theoretical justification for adaptivity. *arXiv* preprint arXiv:1905.11881, 2019.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Yes we generalize clipping and (L_0, L_1) -smoothness.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See experimental section and conclusion.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach.
 For example, a facial recognition algorithm may perform poorly when image resolution
 is low or images are taken in low lighting. Or a speech-to-text system might not be
 used reliably to provide closed captions for online lectures because it fails to handle
 technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All theorem statements explicit states assumptions and proof (in the appendix). Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: For hyperparameters see tables in appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general. releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide an implementation of Algorithms 3 and 4.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https: //nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See experimental sections and associated appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: CIFAR10 experiments are particularly noisy and multiple random seeds are used.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: See Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the guidelines and do conform.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The work is foundational research.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We are not releasing models or data.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Human subjects are not used.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

Table of Contents

A	Preliminaries	22
В	Proofs for Section 4 (Analysis)	22
C	Experiments	36

Algorithm 3 Unconstrained ClippedScion

Input: Horizon n, init. $x^1 = (W_1^1, ..., W_D^1), d^0 = 0$, momentum $\alpha_k \in (0, 1]$, stepsize $\gamma \in (0, 1)$, radii $r_l \in \mathbb{R}_+$, and $\rho > 0$.

- 1: **for** k = 1, ..., n 1 **do**
- Sample $\xi_k \sim \mathcal{P}$ 2:
- $d^k \leftarrow \alpha_k \nabla f(x^k, \xi_k) + (1 \alpha_k) d^{k-1}$ $v_l^k \leftarrow -r_l \operatorname{Imo}_{\|\cdot\|_{\mathcal{W}_l}} (d_l^k) \quad \forall 1 \le l \le D$
- $\eta_k \leftarrow \min\{\rho, \sum_{l=1}^{D} \langle d_l^k, v_l^k \rangle\}$ $x^{k+1} \leftarrow x^k \gamma \eta_k v^k$ 5:
- 7: Choose \bar{x}^n uniformly at random from $\{x^1, \dots, x^n\}$

Algorithm 4 ClippedScion

Input: Horizon n, init. $x^1 = (W_1^1, \dots, W_D^1) \in r_1 \mathcal{D}_1 \times \dots \times r_D \mathcal{D}_D$, $d^0 = 0$, stepsize $\gamma \in (0, 1)$, momentum $\alpha_k \in (0, 1]$

- 1: **for** k = 1, ..., n **do**
- 2:
- 3:
- Sample $\xi_k \sim \mathcal{P}$ $d^k \leftarrow \alpha_k \nabla f(x^k, \xi_k) + (1 \alpha_k) d^{k-1}$ $v_l^k \leftarrow x_l^k r_l \operatorname{Imo}_{\|\cdot\|_{W_l}} (d_l^k) \quad \forall 1 \le l \le D$
- Variant 1: $\eta_k \leftarrow \min\{\rho, \frac{\sum_{l=1}^{D} \langle d_l^k, v_l^k \rangle}{\max_{l=1}^{D} ||v_l^k||_{\mathcal{W}_l}^2}\}$
- Variant 2: $\eta_k \leftarrow \min\{\rho, \frac{\sum_{l=1}^{D} \langle d_l^k, v_l^k \rangle}{4}\}$ $x^{k+1} \leftarrow x^k \gamma \eta_k v^k$ 6:
- 7:
- 8: Choose \bar{x}^n uniformly at random from $\{x^1, \dots, x^n\}$

Return \bar{x}^n

Preliminaries

Throughout, L-smoothness is defined as follows.

Definition A.1. A gradient mapping $\nabla f: \mathcal{X} \to \mathbb{R}^d$ is said to be L-smooth with $L \in (0, \infty)$ if for all $x, y \in X$ it holds that,

$$\|\nabla f(x) - \nabla f(y)\|_* \le L\|x - y\|. \tag{5}$$

The sharp operator has the following properties

$$\langle s, s^{\sharp} \rangle = \|s^{\sharp}\|^2 = \|s\|_*^2$$
 (6)

See Kelner et al. [2014, App. A.1] for the proof.

Proofs for Section 4 (Analysis)

Proposition 4.1. Suppose f is L-smooth with respect to $\|\cdot\|_*$ and denote $f^* = \inf_{x \in X} f(x)$. Then, the iterates $\{x^k\}_{k\in\mathbb{N}^*}$ of uCG satisfy, for all $n\in\mathbb{N}^*$,

$$\min_{1 \le k \le n} \|\nabla f(x^k)\|_* \le \frac{1}{n} \sum_{k=1}^n \|\nabla f(x^k)\|_* \le \frac{f(x^1) - f^*}{\gamma \rho n} + \frac{L \gamma \rho}{2}.$$

Proof. By the descent lemma for L-smooth functions applied at the points x^k and x^{k+1} and the definition of x^{k+1} we have, for all $k \ge 1$,

$$f(x^{k+1}) \le f(x^k) - \gamma \rho \|\nabla f(x^k)\|_* + \frac{L}{2} \gamma^2 \rho^2.$$

Summing from k = 1 to k = n, and dividing by n gives

$$\tfrac{1}{n} \textstyle \sum_{k=1}^n ||\nabla f(x^k)||_* \leq \tfrac{f(x^1) - f^\star}{\gamma \rho n} + \tfrac{L \gamma \rho}{2}.$$

Remarking that the minimum summand is smaller than the average completes the proof.

B.1 Deterministic case

Recall the notation $\Delta := f(x^1) - f^*$.

Theorem 4.3. Suppose Assumption 4.2 holds and let $n \in \mathbb{N}^*$. Consider $\{x^k\}_{1 \le k \le n}$ generated by GGNC with $d^k = \nabla f(x^k)$, and $\gamma \le 1/(L_0 + \rho L_1)$. Then, the following holds

$$\min_{1 \le k \le n} \|\nabla f(x^k)\|_* \le \sqrt{\frac{\Delta}{\gamma n}} + \frac{2\Delta}{\gamma \rho n}.$$

Specifically, with $\rho = \frac{L_0}{L_1}$ and $\gamma = \frac{1}{L_0}$, we have

$$\min_{1 \le k \le n} \|\nabla f(x^k)\|_* \le \sqrt{\frac{L_0 \Delta}{n}} + \frac{2L_1 \Delta}{n}.$$

Proof. For each $1 \le k \le n$, we can write the formula for x^{k+1} as follows

$$x^{k+1} = x^k - \gamma \tau_k [\nabla f(x^k)]^{\sharp}$$

with $\tau_k = \min\{1, \frac{\rho}{\|\nabla f(x^k)\|_*}\}.$

From (L_0, L_1) -smoothness and properties of the sharp-operator $\langle s, s^{\sharp} \rangle = ||s^{\sharp}||^2 = ||s||_*^2$, we have

$$\begin{split} f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), -\gamma \tau_k \nabla f(x^k) \rangle + \frac{L_0 + \|\nabla f(x^k)\|_* L_1}{2} (\gamma \tau_k \|\nabla f(x^k)\|_*)^2 \\ &= f(x^k) - \gamma \tau_k \|\nabla f(x^k)\|_*^2 + \frac{\gamma^2 \tau_k^2}{2} (L_0 + \|\nabla f(x^k)\|_* L_1) \|\nabla f(x^k)\|_*^2. \end{split}$$

A useful observation is that by definition of τ_k we have

$$|\tau_k||\nabla f(x^k)||_* \le \rho,$$

since if $\|\nabla f(x^k)\|_* > \rho$ then $\tau_k = \rho/\|\nabla f(x^k)\|_*$, and if $\|\nabla f(x^k)\|_* \le \rho$ then $\tau_k = 1$. Thus we can upper-bound the term $\tau_k \|\nabla f(x^k)\|_* L_1$ by ρL_1 in the quadratic part, yielding

$$f(x^{k+1}) \leq f(x^k) - \gamma \tau_k \|\nabla f(x^k)\|_*^2 + \frac{\gamma^2 \tau_k}{2} (\tau_k L_0 + \rho L_1) \|\nabla f(x^k)\|_*^2$$

$$\leq f(x^k) - \gamma \tau_k (1 - \frac{\gamma}{2} (L_0 + \rho L_1)) \|\nabla f(x^k)\|_*^2$$

$$\leq f(x^k) - \frac{\gamma \tau_k}{2} \|\nabla f(x^k)\|_*^2.$$

where the middle inequality uses that $\tau^2 \le \tau$ since $\tau \le 1$ and the last inequality uses the stepsize choice $\gamma \le \frac{1}{L_0 + \rho L_1}$.

There are now two cases to consider.

Case I Clipping Active $(\|\nabla f(x^k)\|_* > \rho)$.

Here, we have $\tau_k = \frac{\rho}{\|\nabla f(x^k)\|_*}$ so

$$|\tau_k||\nabla f(x^k)||_*^2 = \rho||\nabla f(x^k)||_*.$$

Therefore, the descent inequality in this case reads

$$f(x^{k+1}) \le f(x^k) - \frac{\rho \gamma}{2} ||\nabla f(x^k)||_*.$$

Case II No Clipping $(\|\nabla f(x^k)\|_* \le \rho)$.

In this regime, $\tau_k = 1$, so the inequality becomes

$$f(x^{k+1}) \le f(x^k) - \frac{\gamma}{2} ||\nabla f(x^k)||_*^2$$

This is the familiar descent guaranty for the classical steepest descent method with smooth functions.

By combining the two cases and summing over all k = 1 until n we obtain

$$\textstyle \frac{\gamma}{2} \left(\rho \sum_{k \in \mathcal{A}} \|\nabla f(x^k)\|_* + \sum_{k \notin \mathcal{A}} \|\nabla f(x^k)\|_*^2 \right) \leq f(x^1) - f^\star$$

where \mathcal{A} is the set of indices where clipping is active (Case I). Since each sum is nonnegative, we can conclude that

$$\frac{1}{n} \sum_{k \notin \mathcal{A}} \|\nabla f(x^k)\|_*^2 \le \frac{2(f(x^1) - f^*)}{\gamma n} \quad \text{and} \quad \frac{1}{n} \sum_{k \in \mathcal{A}} \|\nabla f(x^k)\|_* \le \frac{2(f(x^1) - f^*)}{\gamma \rho n}. \tag{7}$$

Recall the following inequality for real numbers: for all a, b > 0, $a^2 \ge 2ab - b^2$. Applying this with $a = \|\nabla f(x^k)\|_*$ and b > 0 gives

$$\frac{1}{n} \sum_{k \notin \mathcal{A}} \|\nabla f(x^k)\|_*^2 \ge \frac{1}{n} \sum_{k \notin \mathcal{A}} (2b\|\nabla f(x^k)\|_* - b^2) = \frac{2b}{n} \left(\sum_{k \notin \mathcal{A}} \|\nabla f(x^k)\|_* \right) - \frac{b^2(n - |\mathcal{A}|)}{n}.$$

Substituting this estimate into (7) and using the fact that $|\mathcal{A}| \le n$ gives

$$\frac{2b}{n} \left(\sum_{k \notin \mathcal{A}} \| \nabla f(x^k) \|_* \right) - \frac{b^2 (n - |\mathcal{A}|)}{n} \le \frac{2(f(x^1) - f^*)}{\gamma n} \implies \frac{1}{n} \sum_{k \notin \mathcal{A}} \| \nabla f(x^k) \|_* \le \frac{1}{2} \left(\frac{f(x^1) - f^*}{b \gamma n} + b \right).$$

Then, choosing $b = \sqrt{\frac{f(x^1) - f^*}{\gamma n}}$ simplifies the above to

$$\label{eq:def_energy} \textstyle \frac{1}{n} \sum_{k \notin \mathcal{A}} \| \nabla f(x^k) \|_* \leq \sqrt{\frac{f(x^1) - f^\star}{\gamma n}}.$$

Now, we can combine both cases to bound the sum over $1 \le k \le n$ as

$$\frac{1}{n} \sum_{k=1}^{n} \|\nabla f(x^k)\|_* \leq \sqrt{\frac{f(x^1) - f^\star}{\gamma n}} + \frac{2(f(x^1) - f^\star)}{\gamma \rho n}$$

Taking the minimum of the summand over $1 \le k \le n$ on the left hand side gives the final result. \Box

Theorem 4.5. Suppose Assumption 4.2 holds and let $n \in \mathbb{N}^*$. Consider $\{x^k\}_{1 \le k \le n}$ generated by uCG with $\gamma \rho < 1/2L_1$. Then, the following holds

$$\min_{1 \le k \le n} \|\nabla f(x^k)\|_* \le \frac{2\Delta}{\gamma \rho n} + 2L_0 \gamma \rho.$$

Proof. We begin by invoking the descent lemma for (L_0, L_1) -smooth functions at the points x^{k+1} and x^k , which is justified since $||x^{k+1} - x^k|| = \gamma \rho \le \frac{1}{2L_1}$. Then, applying the definition of x^{k+1} we get, for all $1 \le k \le n$,

$$f(x^{k+1}) \leq f(x^k) + \gamma \rho \langle \nabla f(x^k), v^k \rangle + \gamma^2 \rho^2 (L_0 + L_1 || \nabla f(x^k) ||_*) || v^k ||_*^2$$

= $f(x^k) - \gamma \rho || \nabla f(x^k) ||_* + \gamma^2 \rho^2 (L_0 + L_1 || \nabla f(x^k) ||_*)$
= $f(x^k) + L_0 \gamma^2 \rho^2 + (L_1 \gamma \rho - 1) \gamma \rho || \nabla f(x^k) ||_*.$

Rearranging the above yields

$$\frac{1}{2} \|\nabla f(x^k)\|_* \le (1 - L_1 \gamma \rho) \|\nabla f(x^k)\|_* \le \frac{f(x^k) - f(x^{k+1})}{\gamma \rho} + L_0 \gamma \rho$$

where we have used the assumption that $\gamma \rho \leq \frac{1}{2L_1}$ in the first inequality above. The desired claim immediately follows.

Theorem 4.7. Suppose f is L-smooth and let $n \in \mathbb{N}^*$. Consider $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 2 with $d^k = \nabla f(x^k)$, $\gamma \le \frac{1}{L}$, and $\rho \le L$ so that $\gamma \rho \le 1$. Then, for all $u \in \beta \mathcal{D}$, the following holds

$$\min_{1 \le k \le n} \langle \nabla f(x^k), x^k - u \rangle \le 2\beta \sqrt{\frac{\Delta}{\gamma n}} + \frac{2\Delta}{\gamma \rho n}$$

Proof. We start by applying the descent lemma for L-smooth functions at the points x^{k+1} and x^k to get, for all $1 \le k \le n$,

$$f(x^{k+1}) \le f(x^k) - \gamma \eta_k \langle \nabla f(x^k), v^k \rangle + \frac{L}{2} \gamma^2 \eta_k^2 ||v^k||^2.$$

Now, we divide the analysis into two cases depending on whether or not clipping is active.

Case I Clipping active $(\frac{\langle \nabla f(x^k), y^k \rangle}{||y^k||^2} \ge \rho; \eta_k = \rho)$.

In this case, we can use the fact that $\langle \nabla f(x^k), v^k \rangle \ge \rho ||v^k||^2$ to get

$$f(x^{k+1}) \leq f(x^k) - \gamma \eta_k \langle \nabla f(x^k), v^k \rangle + \frac{L}{2} \gamma^2 \eta_k^2 ||v^k||^2$$

$$= f(x^k) - \gamma \rho \langle \nabla f(x^k), v^k \rangle + \frac{L}{2} \gamma^2 \rho^2 ||v^k||^2$$

$$\leq f(x^k) - \gamma \rho \langle \nabla f(x^k), v^k \rangle + \frac{L}{2} \gamma^2 \rho \langle \nabla f(x^k), v^k \rangle$$

$$\leq f(x^k) - \frac{1}{2} \gamma \rho \langle \nabla f(x^k), v^k \rangle$$

where the final inequality is due to the assumption that $\gamma \leq \frac{1}{L}$. Rearranging this gives

$$\frac{\gamma \rho}{2} \langle \nabla f(x^k), v^k \rangle \le f(x^k) - f(x^{k+1}).$$

Case II No clipping $(\frac{\langle \nabla f(x^k), \nu^k \rangle}{\|\nu^k\|^2} \le \rho; \eta_k = \frac{\langle \nabla f(x^k), \nu^k \rangle}{\|\nu^k\|^2})$.

When clipping is not active, η_k acts like a short step which gives

$$f(x^{k+1}) \le f(x^{k}) - \gamma \eta_{k} \langle \nabla f(x^{k}), v^{k} \rangle + \frac{L}{2} \gamma^{2} \eta_{k}^{2} ||v^{k}||^{2}$$

$$\le f(x^{k}) - \gamma \frac{\langle \nabla f(x^{k}), v^{k} \rangle^{2}}{||v^{k}||^{2}} + \frac{L}{2} \gamma^{2} \frac{\langle \nabla f(x^{k}), v^{k} \rangle^{2}}{||v^{k}||^{2}}$$

$$\le f(x^{k}) - \gamma \frac{\langle \nabla f(x^{k}), v^{k} \rangle^{2}}{||v^{k}||^{2}}$$

where the last inequality follows from the assumption that $\gamma \leq \frac{1}{L}$. Rearranging this gives

$$\frac{\gamma}{4\beta^2} \langle \nabla f(x^k), v^k \rangle^2 \le f(x^k) - f(x^{k+1}).$$

Combining both cases Denoting \mathcal{A} the set of indices where clipping is active and summing from k = 1 to n we find

$$\sum_{k \in \mathcal{R}} \frac{\gamma \rho}{2} \langle \nabla f(x^k), v^k \rangle + \sum_{k \notin \mathcal{R}} \frac{\gamma}{4\beta^2} \langle \nabla f(x^k), v^k \rangle^2 \le f(x^1) - f^*$$

which, since each summand is nonnegative, implies that

$$\frac{1}{n} \sum_{k \in \mathcal{R}} \langle \nabla f(x^k), v^k \rangle \le \frac{2(f(x^1) - f^*)}{\gamma \rho n} \quad \text{and} \quad \frac{1}{n} \sum_{k \notin \mathcal{R}} \langle \nabla f(x^k), v^k \rangle^2 \le \frac{4\beta^2 (f(x^1) - f^*)}{\gamma n}. \tag{8}$$

Recall the following inequality for real numbers: for all $a, b > 0, a^2 \ge 2ab - b^2$. Applying this with $a = \langle \nabla f(x^k), v^k \rangle$ and b > 0 gives

$$\frac{1}{n}\sum_{k\not\in\mathcal{A}}\langle\nabla f(x^k),v^k\rangle^2\geq\frac{1}{n}\sum_{k\not\in\mathcal{A}}(2b\langle\nabla f(x^k),v^k\rangle-b^2)=\frac{2b}{n}\left(\sum_{k\not\in\mathcal{A}}\langle\nabla f(x^k),v^k\rangle\right)-\frac{b^2(n-|\mathcal{A}|)}{n}.$$

Substituting this estimate into (8) and using the fact that $|\mathcal{A}| \leq n$ gives

$$\frac{2b}{n} \left(\sum_{k \notin \mathcal{A}} \langle \nabla f(x^k), v^k \rangle \right) - \frac{b^2(n - |\mathcal{A}|)}{n} \le \frac{4\beta^2(f(x^1) - f^*)}{\gamma n}$$

which implies that

$$\frac{1}{n} \sum_{k \notin \mathcal{A}} \langle \nabla f(x^k), v^k \rangle \leq \frac{1}{2} \left(\frac{4\beta^2 (f(x^1) - f^\star)}{b \gamma n} + b \right).$$

Thus, choosing $b = \sqrt{\frac{4\beta^2(f(x^1) - f^*)}{\gamma^n}}$ simplifies the above to

$$\frac{1}{n} \sum_{k \notin \mathcal{A}} \langle \nabla f(x^k), v^k \rangle \le \sqrt{\frac{4\beta^2 (f(x^1) - f^*)}{\gamma n}} = 2\beta \sqrt{\frac{f(x^1) - f^*}{\gamma n}}$$

Now, we can combine both cases to bound the sum over $1 \le k \le n$ as

$$\frac{1}{n} \sum_{k=1}^{n} \langle \nabla f(x^k), v^k \rangle \le 2\beta \sqrt{\frac{f(x^1) - f^*}{\gamma n}} + \frac{2(f(x^1) - f^*)}{\gamma \rho n}$$

Finally, by lower bounding the left hand side by the minimal summand over $1 \le k \le n$ and using the definition of v^k we arrive, for all $u \in \beta \mathcal{D}$, at

$$\min_{1 \leq k \leq n} \langle \nabla f(x^k), x^k - u \rangle \leq 2 \left(\beta \frac{\sqrt{f(x^1) - f^\star}}{\sqrt{\gamma n}} + \frac{f(x^1) - f^\star}{\gamma \rho n} \right).$$

B.2 Stochastic case

B.2.1 Convergence Analysis of uSCG

We now generalize the error control lemma Mokhtari et al. [2020, Lem. 6] to the (L_0, L_1) -smooth case and modify it for the clipped algorithm Algorithm 1.

Lemma B.1 (Linear recursive inequality for $\mathbb{E} \|\lambda^k\|_2^2$ for GGNC). Suppose Assumptions 4.2 and 4.8 hold and let $n \in \mathbb{N}^*$. Consider the iterates $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 1. Then, for all $k \in \{1, ..., n\}$, it holds

$$\mathbb{E}[\|\lambda^k\|_2^2] \le \left(1 - \frac{\alpha_k}{2}\right) \mathbb{E}[\|\lambda^{k-1}\|_2^2] + \alpha_k^2 \sigma^2 + \frac{4\gamma^2 \zeta_*^2 \rho^2 L_0^2}{\alpha_k} + \frac{4\gamma^2 \zeta_*^2 \rho^2 L_1^2}{\alpha_k} \|\nabla f(x^k)\|_*^2,$$

where $\zeta_* := \max_{x \in \mathcal{X}} \frac{\|x\|_2}{\|x\|_*}$.

Proof. The proof is a straightforward adaptation of the arguments laid out in Mokhtari et al. [2020, Lem. 6], which in fact do not depend on convexity nor on the choice of stepsize. Let $n \in \mathbb{N}^*$ and $k \in \{2, ..., n\}$, then

$$\begin{aligned} \left\| \lambda^{k} \right\|_{2}^{2} &= \left\| \nabla f(x^{k}) - d^{k} \right\|_{2}^{2} \\ &= \left\| \nabla f(x^{k}) - \alpha_{k} \nabla f(x^{k}, \xi_{k}) - (1 - \alpha_{k}) d^{k-1} \right\|_{2}^{2} \\ &= \left\| \alpha_{k} \left(\nabla f(x^{k}) - \nabla f(x^{k}, \xi_{k}) \right) + (1 - \alpha_{k}) \left(\nabla f(x^{k}) - \nabla f(x^{k-1}) \right) - (1 - \alpha_{k}) \left(d^{k-1} - \nabla f(x^{k-1}) \right) \right\|_{2}^{2} \\ &= \alpha_{k}^{2} \left\| \nabla f(x^{k}) - \nabla f(x^{k}, \xi_{k}) \right\|_{2}^{2} + (1 - \alpha_{k})^{2} \left\| \nabla f(x^{k}) - \nabla f(x^{k-1}) \right\|_{2}^{2} \\ &+ (1 - \alpha_{k})^{2} \left\| \nabla f(x^{k-1}) - d^{k-1} \right\|_{2}^{2} \\ &+ 2\alpha_{k}(1 - \alpha_{k}) \langle \nabla f(x^{k-1}) - \nabla f(x^{k-1}, \xi_{k-1}), \nabla f(x^{k}) - \nabla f(x^{k-1}) \rangle \\ &+ 2\alpha_{k}(1 - \alpha_{k}) \langle \nabla f(x^{k}) - \nabla f(x^{k}, \xi_{k}), \nabla f(x^{k-1}) - d^{k-1} \rangle \\ &+ 2(1 - \alpha_{k})^{2} \langle \nabla f(x^{k}) - \nabla f(x^{k-1}), \nabla f(x^{k-1}) - d^{k-1} \rangle. \end{aligned}$$

Taking the expectation conditioned on the filtration \mathcal{F}_k generated by the iterates until k, i.e., the sigma algebra generated by $\{x^1, \ldots, x^k\}$, which we denote using $\mathbb{E}_k[\cdot]$, and using the unbiased property in Assumption 4.8, we get,

$$\mathbb{E}_{k}[\|\lambda^{k}\|_{2}^{2}] = \alpha_{k}^{2}\mathbb{E}_{k}[\|\nabla f(x^{k}) - \nabla f(x^{k}, \xi_{k})\|_{2}^{2}] + (1 - \alpha_{k})^{2}\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|_{2}^{2} + (1 - \alpha_{k})^{2}\|\lambda^{k-1}\|_{2}^{2} + 2(1 - \alpha_{k})^{2}\langle\nabla f(x^{k}) - \nabla f(x^{k-1}), \lambda^{k-1}\rangle.$$

For brevity define $L_k := L_0 + L_1 ||\nabla f(x^k)||_*$. From the above expression we can estimate,

$$\begin{split} \mathbb{E}_{k}[\left\|\lambda^{k}\right\|_{2}^{2}] &\overset{(a)}{\leq} \alpha_{k}^{2} \sigma^{2} + (1 - \alpha_{k})^{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|_{2}^{2} + (1 - \alpha_{k})^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\quad + 2(1 - \alpha_{k})^{2} \langle\nabla f(x^{k}) - \nabla f(x^{k-1}), \lambda^{k-1}\rangle \\ &\overset{(b)}{\leq} \alpha_{k}^{2} \sigma^{2} + (1 - \alpha_{k})^{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|_{2}^{2} + (1 - \alpha_{k})^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\quad + (1 - \alpha_{k})^{2} \left(\frac{\alpha_{k}}{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|_{2}^{2} + \frac{2}{\alpha_{k}} \left\|\lambda^{k-1}\right\|_{2}^{2}\right) \\ &\overset{(c)}{\leq} \alpha_{k}^{2} \sigma^{2} + (1 - \alpha_{k})^{2} \zeta_{*}^{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|^{2} + (1 - \alpha_{k})^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\quad + (1 - \alpha_{k})^{2} \left(\frac{\alpha_{k}}{2} \zeta_{*}^{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|^{2} + \frac{2}{\alpha_{k}} \left\|\lambda^{k-1}\right\|_{2}^{2}\right) \\ &\overset{(d)}{\leq} \alpha_{k}^{2} \sigma^{2} + (1 - \alpha_{k})^{2} \zeta_{*}^{2} L_{k}^{2} \left\|x^{k} - x^{k-1}\right\|^{2} + (1 - \alpha_{k})^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\quad + (1 - \alpha_{k})^{2} \left(\frac{\alpha_{k}}{2} \zeta_{*}^{2} L_{k}^{2} \left\|x^{k} - x^{k-1}\right\|^{2} + (1 - \alpha_{k})^{2} \left\|\lambda^{k-1}\right\|_{2}^{2}\right) \\ &\overset{(e)}{\leq} \alpha_{k}^{2} \sigma^{2} + (1 - \alpha_{k})^{2} L_{k}^{2} \zeta_{*}^{2} \gamma^{2} \eta_{k}^{2} + (1 - \alpha_{k})^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} + (1 - \alpha_{k})^{2} \left(\frac{\alpha_{k}}{2} L_{k}^{2} \zeta_{*}^{2} \gamma^{2} \eta_{k}^{2} + (1 - \alpha_{k})^{2} \left\|\lambda^{k-1}\right\|_{2}^{2}\right) \\ &\overset{(e)}{\leq} \alpha_{k}^{2} \sigma^{2} + (1 + \frac{\alpha_{k}}{2})(1 - \alpha_{k}) \zeta_{*}^{2} L_{k}^{2} \gamma^{2} \eta_{k}^{2} + (1 + \frac{2}{\alpha_{k}})(1 - \alpha_{k}) \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\overset{(e)}{\leq} \alpha_{k}^{2} \sigma^{2} + (1 + \frac{\alpha_{k}}{2})(1 - \alpha_{k}) \zeta_{*}^{2} L_{k}^{2} \gamma^{2} \eta_{k}^{2} + (1 + \frac{2}{\alpha_{k}})(1 - \alpha_{k}) \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\overset{(e)}{\leq} \alpha_{k}^{2} \sigma^{2} + 2(1 + \frac{\alpha_{k}}{2})(1 - \alpha_{k}) \zeta_{*}^{2} \chi^{2} \gamma^{2} \rho^{2} (L_{0}^{2} + L_{1}^{2} \|\nabla f(x^{k})\|_{*}^{2}) + (1 + \frac{2}{\alpha_{k}})(1 - \alpha_{k}) \left\|\lambda^{k-1}\right\|_{2}^{2}, \end{aligned}$$

using the bounded variance property from Assumption 4.8 for (a), Young's inequality with parameter $\alpha_k/2>0$ for (b), $\zeta_*:=\max_{x\in\mathcal{X}}\frac{\|x\|_2}{\|x\|_*}$ for (c), Assumption 4.2 for (d), the definition of x^k from Algorithm 1 for (e), the fact that $1-\alpha_k<1$ for (f), and $\eta_k\leq\rho$ and Young's inequality on L^2_k for (g). To complete the proof, we note that, for all $k\in\{1,\ldots,n\}$, it holds

$$(1 + \frac{2}{\alpha_k})(1 - \alpha_k) \le \frac{2}{\alpha_k}$$
 and $(1 - \alpha_k)(1 + \frac{\alpha_k}{2}) \le 1 - \frac{\alpha_k}{2}$

which, applied to the previous inequality and taking total expectations, yields

$$\mathbb{E}[\|\lambda^k\|_2^2] \le \left(1 - \frac{\alpha_k}{2}\right) \mathbb{E}[\|\lambda^{k-1}\|_2^2] + \alpha_k^2 \sigma^2 + \frac{4\gamma^2 \zeta_*^2 \rho^2}{\alpha_k} (L_0^2 + L_1^2 \|\nabla f(x^k)\|_*^2).$$

Lemma B.2 (Bound on $\mathbb{E}||\lambda^k||_2^2$ with horizon-dependent α for GGNC). Suppose Assumptions 4.2 and 4.8 hold, f is L-smooth, and let $n \in \mathbb{N}^*$. Consider the iterates $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 1 with a stepsize $\gamma \rho$ satisfying

$$\gamma \rho < \frac{1}{2n^{3/4}L_1}. (9)$$

Moreover, consider a momentum $\alpha_k = \alpha = \frac{1}{\sqrt{n}}$ for all $k \in \{1, ..., n\}$. Then, for all $k \in \{1, ..., n\}$ the following holds

$$\mathbb{E}[\|\lambda^k\|_2^2] \le \frac{2(\sigma^2 + \zeta_1^2 L^2 / L_1^2)}{\sqrt{n}}.$$
 (10)

Proof. Let $k \in \{1, ..., n\}$. We start from the recursive inequality obtained in Lemma B.1 for $\mathbb{E}[\|\lambda^k\|_2^2]$. Since we are now assuming that f is L-smooth, this inequality is satisfied with $L_0 = L$ and $L_1 = 0$, which gives

$$\mathbb{E}[\|\lambda^k\|_2^2] \le \left(1 - \frac{\alpha}{2}\right) \mathbb{E}[\|\lambda^{k-1}\|_2^2] + \alpha^2 \sigma^2 + \frac{4\gamma^2 \rho^2 \zeta_2^2 L^2}{\alpha}. \tag{11}$$

Now, we substitute the specific choice $\alpha = \frac{1}{\sqrt{n}}$ of momentum to find

$$\mathbb{E}[\|\lambda^k\|_2^2] \le (1 - \frac{1}{2\sqrt{n}}) \mathbb{E}[\|\lambda^{k-1}\|_2^2] + \frac{\sigma^2}{n} + 4\zeta_*^2 L^2 \rho^2 \gamma^2 \sqrt{n}. \tag{12}$$

Using the particular choice of $\gamma \rho$, we have

$$\mathbb{E}[\left\|\lambda^{k}\right\|_{2}^{2}] \leq (1 - \frac{1}{2\sqrt{n}})\mathbb{E}[\left\|\lambda^{k-1}\right\|_{2}^{2}] + \frac{1}{n}(\sigma^{2} + \frac{\zeta_{*}^{2}L^{2}}{\zeta_{*}^{2}}).$$

27

Let $u_k = \mathbb{E}[\|\lambda^k\|_2^2]$, $a = \frac{1}{2\sqrt{n}}$, and $b = \frac{1}{n}(\sigma^2 + \frac{\zeta_*^2 L^2}{L_1^2})$. Unrolling the recurrence relation $u_k \le (1-a)u_{k-1} + b$, we have

$$u_k \leq (1-a)^k u_0 + b \sum_{i=0}^{k-1} (1-a)^i = b \sum_{i=0}^{k-1} (1-a)^i = b \tfrac{1-(1-a)^k}{1-(1-a)} = b \tfrac{1-(1-a)^k}{a}.$$

Since 0 < a < 1, we have $0 < (1 - a)^k < 1$ for $k \ge 1$. Thus, $1 - (1 - a)^k < 1$. Therefore,

$$u_k \le b/a. \tag{13}$$

Substituting the values for a and b, we have

$$\mathbb{E}[\left\|\lambda^{k}\right\|_{2}^{2}] \leq \frac{2(\sigma^{2} + \xi_{1}^{2} L^{2}/L_{1}^{2})}{\sqrt{n}}.\tag{14}$$

This concludes the proof.

Theorem 4.9. Suppose Assumptions 4.2 and 4.8 hold and let $n \in \mathbb{N}^*$. Consider the iterates $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 1 with a constant stepsize $\gamma \le 1/L_0$ and $\gamma \rho \le 1/2L_1$. Then,

$$\mathbb{E}[\|\nabla f(\bar{x}^n)\|_*] \le \frac{4\sqrt{\Delta}}{\sqrt{\gamma n}} + \frac{8\Delta}{\gamma \rho n} + 4\sqrt{\epsilon_n} + \frac{8\epsilon_n}{\rho}$$

where
$$\Delta := f(x^1) - f^*$$
 and $\epsilon_n := \frac{1}{n} \sum_{k=1}^n O(\sqrt{\mathbb{E}[\|\lambda^k\|_2^2]} + \mathbb{E}[\|\lambda^k\|_2^2])$.

Furthermore, assuming f is L-smooth⁴ and taking $\alpha = 1/\sqrt{n}$, $\gamma = 1/\sqrt{n}L_0$ and $\rho = L_0/2n^{1/4}L_1$ such that $\gamma \rho = 1/2n^{3/4}L_1$ we have that

$$\mathbb{E}[\|\nabla f(\bar{x}^n)\|_*] \le O(\frac{1}{n^{1/4}}).$$

Proof. Given that $||x^k - x^{k+1}|| \le 1/L_1$, which we will ensure by choice of the stepsize $\gamma \eta_k$ and radius ρ , we have from Assumption 4.2 that

$$\begin{split} 0 &\leq f(x^k) - f(x^{k+1}) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L_0 + L_1 \|\nabla f(x^k)\|_*}{2} \|x^{k+1} - x^k\|^2 \\ &= f(x^k) - f(x^{k+1}) + \gamma \eta_k \langle \nabla f(x^k), \operatorname{Imo}(d^k) \rangle + \frac{L_0}{2} \gamma^2 \eta_k^2 \|\operatorname{Imo}(d^k)\|^2 + \frac{L_1}{2} \gamma^2 \eta_k^2 \|\nabla f(x^k)\|_* \|\operatorname{Imo}(d^k)\|^2 \\ &= f(x^k) - f(x^{k+1}) + \gamma \eta_k \langle \nabla f(x^k), \operatorname{Imo}(d^k) \rangle + \frac{L_0}{2} \gamma^2 \eta_k^2 + \frac{L_1}{2} \gamma^2 \eta_k^2 \|\nabla f(x^k)\|_* \|\operatorname{Imo}(d^k)\|^2 \\ &= f(x^k) - f(x^{k+1}) + \gamma \eta_k \langle \nabla f(x^k), \operatorname{Imo}(d^k) \rangle + \frac{L_0}{2} \gamma^2 \eta_k^2 + \frac{L_1}{2} \gamma^2 \eta_k^2 \|\nabla f(x^k)\|_* \|\operatorname{Imo}(d^k)\|^2 \\ &= f(x^k) - f(x^{k+1}) + \gamma \eta_k \langle \nabla f(x^k), \operatorname{Imo}(d^k) \rangle + \frac{L_0}{2} \gamma^2 \eta_k^2 + \frac{L_1}{2} \gamma^2 \eta_k^2 \|\nabla f(x^k)\|_* \|\operatorname{Imo}(d^k)\|^2 \\ &= f(x^k) - f(x^{k+1}) + \gamma \eta_k \langle \nabla f(x^k), \operatorname{Imo}(d^k) \rangle + \frac{L_0}{2} \gamma^2 \eta_k^2 \|\operatorname{Imo}(d^k)\|^2 + \frac{L_1}{2} \gamma^2 \eta_k^2 \|\nabla f(x^k)\|_* \|\operatorname{Imo}(d^k)\|^2 \\ &= f(x^k) - f(x^{k+1}) + \gamma \eta_k \langle \nabla f(x^k), \operatorname{Imo}(d^k) \rangle + \frac{L_0}{2} \gamma^2 \eta_k^2 \|\operatorname{Imo}(d^k)\|^2 + \frac{L_1}{2} \gamma^2 \eta_k^2 \|\nabla f(x^k)\|_* \|\operatorname{Imo}(d^k)\|^2 + \frac{L_1}{2} \gamma^2 \eta_k^2 \|\nabla f(x^k)\|^2 + \frac{L_1}{2} \gamma^2$$

where we recall that $\eta_k = \min\{\rho, ||d^k||_*\}$.

To treat the inner product we introduce the error $\lambda^k := d^k - \nabla f(x^k)$ and proceed as follows

$$\begin{split} \langle \nabla f(x^k), \text{Imo}(d^k) \rangle &= \langle \nabla f(x^k) - d^k, \text{Imo}(d^k) \rangle + \langle d^k, \text{Imo}(d^k) \rangle \\ &\leq \langle \nabla f(x^k) - d^k, \text{Imo}(d^k) \rangle - \|d^k\|_* \\ &= \langle \nabla f(x^k) - d^k, \text{Imo}(d^k) \rangle - \frac{1}{2} \|d^k\|_* - \frac{1}{2} \|d^k\|_* \\ &(\text{Triangle ineq.}) \leq \langle \nabla f(x^k) - d^k, \text{Imo}(d^k) \rangle - \frac{1}{2} \|d^k\|_* - \frac{1}{2} \|\nabla f(x^k)\|_* + \frac{1}{2} \|\lambda^k\|_* \\ &(\text{Cauchy-Schwarz}) \leq \|\lambda^k\|_* - \frac{1}{2} \|d^k\|_* - \frac{1}{2} \|\nabla f(x^k)\|_* + \frac{1}{2} \|\lambda^k\|_* \\ &\leq \frac{3}{2} \zeta \|\lambda^k\|_2 - \frac{1}{2} \|d^k\|_* - \frac{1}{2} \|\nabla f(x^k)\|_* \end{split}$$

where $\zeta := \max_{x \in X} \frac{\|x\|_*}{\|x\|_2}$ is the norm equivalence constant.

Combining the two inequalities we have

$$0 \leq f(x^{k}) - f(x^{k+1}) + \gamma \eta_{k} \frac{3}{2} \zeta ||\lambda^{k}||_{2} - \gamma \eta_{k} \frac{1}{2} ||d^{k}||_{*} - \gamma \eta_{k} \frac{1}{2} ||\nabla f(x^{k})||_{*} + \frac{L_{0}}{2} \gamma^{2} \eta_{k}^{2} + \frac{L_{1}}{2} \gamma^{2} \eta_{k}^{2} ||\nabla f(x^{k})||_{*}$$
$$= f(x^{k}) - f(x^{k+1}) + \gamma \eta_{k} \frac{3}{2} \zeta ||\lambda^{k}||_{2} - \gamma \eta_{k} \frac{1}{2} (||d^{k}||_{*} - L_{0} \gamma \eta_{k}) - \gamma \eta_{k} \frac{1}{2} (1 - L_{1} \gamma \eta_{k}) ||\nabla f(x^{k})||_{*}$$

Case I Clipping Active $(\rho < ||d^k||_*)$.

In this case we have that $\eta_k = \rho$, so

$$0 \leq f(x^{k}) - f(x^{k+1}) + \gamma_{k} \rho_{\frac{3}{2}}^{\frac{3}{2}} \zeta \|\lambda^{k}\|_{2} - \gamma_{k} \eta_{k}^{\frac{1}{2}} (1 - L_{0} \gamma_{k}) - \gamma_{k} \rho_{\frac{1}{2}} (1 - L_{1} \gamma_{k} \rho) \|\nabla f(x^{k})\|_{*}$$

$$\leq f(x^{k}) - f(x^{k+1}) + \gamma_{k} \rho_{\frac{3}{2}}^{\frac{3}{2}} \zeta \|\lambda^{k}\|_{2} - \gamma_{k} \rho_{\frac{1}{2}} (1 - L_{1} \gamma_{k} \rho) \|\nabla f(x^{k})\|_{*}$$

where we have used $\gamma_k \leq \frac{1}{L_0}$.

⁴Only local Lipschitz is needed in the sense that the condition only needs to hold for (x, y) satisfying $||x - y|| \le 1/L_1$. It is also possible to replace L with $L_n := \max_{k \le n} L_0 + L_1 ||f(x^k)||_*$, e.g., as is done in [Koloskova et al., 2023, Thm. 2.3].

Case II No Clipping $(\rho \ge ||d^k||_*)$.

Here we have that $\eta_k = ||d^k||_*$, so

$$0 \le f(x^k) - f(x^{k+1}) + \gamma_k \rho_2^3 \zeta \|\lambda^k\|_2 - \gamma_k \eta_k^2 \frac{1}{2} (1 - L_0 \gamma_k) - \gamma_k \frac{1}{2} (1 - L_1 \gamma_k \rho) \|d^k\|_* \|\nabla f(x^k)\|_*$$

Focusing on the last term, we have

$$\begin{aligned} ||d^{k}||_{*}||\nabla f(x^{k})||_{*} &= ||d^{k} - \nabla f(x^{k}) + \nabla f(x^{k})||_{*}||\nabla f(x^{k})||_{*} \\ &\text{(Triangle ineq.)} \geq (||\nabla f(x^{k})||_{*} - ||\lambda^{k}||_{*})||\nabla f(x^{k})||_{*} \\ &= ||\nabla f(x^{k})||_{*}^{2} - ||\lambda^{k}||_{*}||\nabla f(x^{k})||_{*}. \end{aligned}$$

For the last term, using the triangle inequality, we have

$$\begin{aligned} \|\lambda^{k}\|_{*} \|\nabla f(x^{k})\|_{*} &\leq \|\lambda^{k}\|_{*} (\|\nabla f(x^{k}) - d^{k}\|_{*} + \|d^{k}\|_{*}) \\ &= \|\lambda^{k}\|_{*}^{2} + \|\lambda^{k}\|_{*} \|d^{k}\|_{*} \\ &\leq \|\lambda^{k}\|_{*}^{2} + \|\lambda^{k}\|_{*} \rho \\ &\leq \zeta \|\lambda^{k}\|_{2}^{2} + \zeta \|\lambda^{k}\|_{2} \rho. \end{aligned}$$

By combining, we have

$$\begin{split} 0 &\leq f(x^k) - f(x^{k+1}) - \gamma_k \eta_k^2 \frac{1}{2} (1 - L_0 \gamma_k) - \gamma_k \frac{1}{2} (1 - L_1 \gamma_k \rho) ||\nabla f(x^k)||_*^2 \\ &+ \gamma_k \rho_2^3 \zeta ||\lambda^k||_2 + \gamma_k \frac{1}{2} \zeta (1 - L_1 \gamma_k \rho) (||\lambda^k||_2^2 + ||\lambda^k||_2 \rho) \\ &= f(x^k) - f(x^{k+1}) - \gamma_k \eta_k^2 \frac{1}{2} (1 - L_0 \gamma_k) - \gamma_k \frac{1}{2} (1 - L_1 \gamma_k \rho) ||\nabla f(x^k)||_*^2 \\ &+ \gamma_k \rho \zeta (2 - \frac{1}{2} L_1 \gamma_k \rho) ||\lambda^k||_2 + \gamma_k \frac{1}{2} \zeta (1 - L_1 \gamma_k \rho) ||\lambda^k||_2^2 \\ &\leq f(x^k) - f(x^{k+1}) - \gamma_k \frac{1}{2} (1 - L_1 \gamma_k \rho) ||\nabla f(x^k)||_*^2 \\ &+ \gamma_k \rho \zeta (2 - \frac{1}{2} L_1 \gamma_k \rho) ||\lambda^k||_2 + \gamma_k \frac{1}{2} \zeta (1 - L_1 \gamma_k \rho) ||\lambda^k||_2^2 \end{split}$$

where the last inequality uses $\gamma_k \leq \frac{1}{L_0}$.

Combining both cases Introducing the set of iterates where clipping is active, $\mathcal{A} := \{k \in [n] \mid \rho < \|d^k\|_*\}$, we can take the expectation of both sides and sum the two cases to find

$$\frac{1}{2}\gamma(1 - L_{1}\gamma\rho)(\rho \sum_{k \in \mathcal{A}} \mathbb{E}[\|\nabla f(x^{k})\|_{*}] + \sum_{k \notin \mathcal{A}} \mathbb{E}[\|\nabla f(x^{k})\|_{*}^{2}])$$

$$\leq f(x^{1}) - f^{\star} + \sum_{k \in \mathcal{A}} \gamma\rho\zeta\frac{3}{2}\mathbb{E}[\|\lambda^{k}\|_{2}] + \sum_{k \notin \mathcal{A}} \gamma\rho\zeta(2 - \frac{1}{2}L_{1}\gamma\rho)\mathbb{E}[\|\lambda^{k}\|_{2}] + \gamma\frac{1}{2}\zeta(1 - L_{1}\gamma\rho)\mathbb{E}[\|\lambda^{k}\|_{2}^{2}]$$

$$\leq f(x^{1}) - f^{\star} + \sum_{k \in \mathcal{A}} \gamma\rho\zeta\frac{3}{2}\sqrt{\mathbb{E}[\|\lambda^{k}\|_{2}^{2}]} + \sum_{k \notin \mathcal{A}} \gamma\rho\zeta(2 - \frac{1}{2}L_{1}\gamma\rho)\sqrt{\mathbb{E}[\|\lambda^{k}\|_{2}^{2}]} + \gamma\frac{1}{2}\zeta(1 - L_{1}\gamma\rho)\mathbb{E}[\|\lambda^{k}\|_{2}^{2}]$$

$$\leq f(x^{1}) - f^{\star} + \sum_{k=1}^{n} \gamma\rho\zeta(2 - \frac{1}{2}L_{1}\gamma\rho)\sqrt{\mathbb{E}[\|\lambda^{k}\|_{2}^{2}]} + \gamma\frac{1}{2}\zeta(1 - L_{1}\gamma\rho)\mathbb{E}[\|\lambda^{k}\|_{2}^{2}]$$

where the second to last inequality is due to Jensen's inequality and the last inequality uses that $\gamma \le 1/\rho L_1$. Using the stronger requirement that $\gamma \le 1/2\rho L_1$ it follows that

$$\textstyle \frac{1}{4} \gamma \left(\rho \sum_{k \in \mathcal{A}} \mathbb{E}[\|\nabla f(x^k)\|_*] + \sum_{k \notin \mathcal{A}} \mathbb{E}[\|\nabla f(x^k)\|_*^2] \right) \leq \Delta + \gamma \epsilon_n$$

with $\Delta := f(x^1) - f^*$ and $\epsilon_n := \frac{1}{n} \sum_{k=1}^n \rho \zeta_{\frac{7}{4}} \sqrt{\mathbb{E}[\|\lambda^k\|_2^2]} + \frac{1}{4} \zeta \mathbb{E}[\|\lambda^k\|_2^2]$. By nonnegativity of the summands, it follows that

$$\frac{1}{n} \sum_{k \in \mathcal{A}} \mathbb{E}[\|\nabla f(x^k)\|_*] \le \frac{4\Delta}{\gamma_{0n}} + \frac{4\epsilon_n}{\rho},\tag{15}$$

corresponding to the indices from Case I. Using Jensen's inequality, we similarly have

$$\frac{1}{n} \sum_{k \notin \mathcal{A}} \mathbb{E}[\|\nabla f(x^k)\|_*]^2 \le \frac{1}{n} \sum_{k \notin \mathcal{A}} \mathbb{E}[\|\nabla f(x^k)\|_*^2] \le \frac{4\Delta}{\gamma_n} + 4\epsilon_n =: A$$
 (16)

corresponding to the indices from Case II. We will now use that $2az - a^2 \le z^2$ for any a, z > 0. Pick $z = \mathbb{E}[\|\nabla f(x^k)\|_*]$, then we have that

$$\frac{1}{n} \sum_{k \notin \mathcal{A}} z \le \frac{1}{n} \sum_{k \notin \mathcal{A}} \frac{z^2}{2a} + \frac{a}{2} \le \frac{A}{2a} + \frac{1}{n} \sum_{k \notin \mathcal{A}} \frac{a}{2} \le \frac{A}{2a} + \frac{a}{2}$$

Choosing $a = \sqrt{A}$ and using the triangle inequality we have

$$\frac{1}{n} \sum_{k \notin \mathcal{A}} \mathbb{E}[\|\nabla f(x^k)\|_*] \le \sqrt{A} \le \frac{2\sqrt{\Delta}}{\sqrt{n}} + 2\sqrt{\epsilon_n}. \tag{17}$$

Summing the two cases, (15) and (17), we have

$$\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}[\|\nabla f(x^k)\|_*] \le \frac{4\sqrt{\Delta}}{\sqrt{\gamma n}} + \frac{8\Delta}{\gamma \rho n} + 4\sqrt{\epsilon_n} + \frac{8\epsilon_n}{\rho}.$$

What remains is to bound the error ϵ_n that is due to the stochastic estimator. With the choice $\gamma \le 1/\sqrt{n}L_0$, $\gamma \rho \le 1/2n^{3/4}L_1$ and $\alpha_k = 1/\sqrt{n}$, invoke Lemma B.2 from which we have

$$\mathbb{E}[\|\lambda^k\|_2^2] \le \frac{2(\sigma^2 + \xi_*^2 L^2 / L_1^2)}{\sqrt{n}} =: B.$$

It follows that

$$\epsilon_n \le \rho \zeta_A^{\frac{7}{4}} \sqrt{B} + \frac{1}{4} \zeta B$$

and in turn the inequality B.2.1 simplifies

$$\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}[\|\nabla f(x^{k})\|_{*}] \leq O(\frac{\sqrt{\Delta}}{\sqrt{\gamma n}} + \frac{\Delta}{\gamma \rho n} + \sqrt{\rho \zeta \sqrt{B} + \zeta B} + \frac{\rho \zeta \sqrt{B} + \zeta B}{\rho})$$

$$\leq O(\frac{\sqrt{\Delta}}{\sqrt{\gamma n}} + \frac{\Delta}{\gamma \rho n} + \sqrt{\rho \zeta} B^{1/4} + \sqrt{\zeta B} + \zeta \sqrt{B} + \frac{\zeta B}{\rho})$$

where we have used the triangle inequality in the second inequality. Letting $b := 2(\sigma^2 + \zeta_*^2 L^2/L_1^2)$ we have with the choice $\gamma = 1/\sqrt{n}L_0$ and $\rho = L_0/2n^{1/4}L_1$ that

$$\begin{split} &\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}[\|\nabla f(x^{k})\|_{*}] \leq O\Big(\frac{1}{n^{1/4}} (\sqrt{\Delta L_{0}} + \Delta L_{1} + \frac{\sqrt{\zeta L_{0}}b^{1/4}}{\sqrt{L_{1}}} + \sqrt{\zeta b} + \zeta \sqrt{b} + \frac{\zeta b L_{1}}{L_{0}})\Big) \\ &\leq O\Big(\frac{1}{n^{1/4}} (\sqrt{\Delta L_{0}} + \Delta L_{1} + \frac{\sqrt{\zeta L_{0}}(\sigma^{2} + \zeta_{*}^{2}L^{2}/L_{1}^{2})^{1/4}}{\sqrt{L_{1}}} \\ &\quad + (\zeta + \sqrt{\zeta}) \sqrt{(\sigma^{2} + \zeta_{*}^{2}L^{2}/L_{1}^{2})} + \frac{\zeta(\sigma^{2} + \zeta_{*}^{2}L^{2}/L_{1}^{2})L_{1}}{L_{0}})\Big) \\ &\leq O\Big(\frac{1}{n^{1/4}} (\sqrt{\Delta L_{0}} + \Delta L_{1} + \frac{\sqrt{\zeta L_{0}}(\sqrt{\sigma} + \sqrt{\zeta_{*}L/L_{1}})}{\sqrt{L_{1}}} \\ &\quad + (\zeta + \sqrt{\zeta})(\sigma + \zeta_{*}L/L_{1}) + \frac{\zeta(\sigma^{2} + \zeta_{*}^{2}L^{2}/L_{1}^{2})L_{1}}{L_{2}})\Big) \end{split}$$

Noting that $\mathbb{E}[\|\nabla f(\bar{x}^n)\|_*] = \frac{1}{n} \sum_{k=1}^n \mathbb{E}[\|\nabla f(x^k)\|_*]$ completes the proof.

B.2.2 Convergence analysis of S³CG

Following the same outline as the convergence analysis for Algorithm 1 given in the previous subsection, we start with an error control lemma in the vein of [Mokhtari et al., 2020, Lem. 6] that is compatible with our adaptive stepsize.

Lemma B.3 (Linear recursive inequality for $\mathbb{E} \|\lambda^k\|_2^2$ for S³CG). Suppose Assumptions 4.2 and 4.8 hold and let $n \in \mathbb{N}^*$. Consider the iterates $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 2 with stepsize $\gamma \eta_k \le \rho$. Then, for all $k \in \{1, \ldots, n\}$,

$$\mathbb{E}[\left\|\boldsymbol{\lambda}^{k}\right\|_{2}^{2}] \leq \left(1 - \frac{\alpha}{2}\right) \mathbb{E}[\left\|\boldsymbol{\lambda}^{k-1}\right\|_{2}^{2}] + \alpha^{2} \sigma^{2} + \frac{8\zeta_{*}^{2}L^{2}\beta\gamma^{2}\rho^{2}}{\alpha}$$

where $\zeta_* := \max_{x \in X} \frac{\|x\|_2}{\|x\|_*}$.

Proof. The proof is a straightforward adaptation of the arguments laid out in Mokhtari et al. [2020, Lem. 6], which in fact do not depend on convexity of the function f nor on the choice of stepsize

 $\gamma \eta_k$, as long as it is in [0, 1]. Let $n \in \mathbb{N}^*$ and $k \in \{1, \ldots, n\}$, then

$$\begin{split} \left\| \lambda^{k} \right\|_{2}^{2} &= \left\| \nabla f(x^{k}) - d^{k} \right\|_{2}^{2} \\ &= \left\| \nabla f(x^{k}) - \alpha \nabla f(x^{k}, \xi_{k}) - (1 - \alpha) d^{k-1} \right\|_{2}^{2} \\ &= \left\| \alpha \left(\nabla f(x^{k}) - \nabla f(x^{k}, \xi_{k}) \right) + (1 - \alpha) \left(\nabla f(x^{k}) - \nabla f(x^{k-1}) \right) - (1 - \alpha) \left(d^{k-1} - \nabla f(x^{k-1}) \right) \right\|_{2}^{2} \\ &= \alpha^{2} \left\| \nabla f(x^{k}) - \nabla f(x^{k}, \xi_{k}) \right\|_{2}^{2} + (1 - \alpha)^{2} \left\| \nabla f(x^{k}) - \nabla f(x^{k-1}) \right\|_{2}^{2} \\ &+ (1 - \alpha)^{2} \left\| \nabla f(x^{k-1}) - d^{k-1} \right\|_{2}^{2} \\ &+ 2\alpha (1 - \alpha) \langle \nabla f(x^{k-1}) - \nabla f(x^{k-1}, \xi_{k-1}), \nabla f(x^{k}) - \nabla f(x^{k-1}) \rangle \\ &+ 2\alpha (1 - \alpha)^{2} \langle \nabla f(x^{k}) - \nabla f(x^{k}, \xi_{k}), \nabla f(x^{k-1}) - d^{k-1} \rangle \\ &+ 2(1 - \alpha)^{2} \langle \nabla f(x^{k}) - \nabla f(x^{k-1}), \nabla f(x^{k-1}) - d^{k-1} \rangle. \end{split}$$

Taking the expectation conditioned on the filtration \mathcal{F}_k generated by the iterates until k, i.e., the sigma algebra generated by $\{x^1, \dots, x^k\}$, which we denote using $\mathbb{E}_k[\cdot]$, and using the unbiased property in Assumption 4.8, we get,

$$\mathbb{E}_{k}[\|\lambda^{k}\|_{2}^{2}] = \alpha^{2}\mathbb{E}_{k}[\|\nabla f(x^{k}) - \nabla f(x^{k}, \xi_{k})\|_{2}^{2}] + (1 - \alpha)^{2}\|\nabla f(x^{k}) - \nabla f(x^{k-1})\|_{2}^{2} + (1 - \alpha)^{2}\|\lambda^{k-1}\|_{2}^{2} + 2(1 - \alpha)^{2}\langle\nabla f(x^{k}) - \nabla f(x^{k-1}), \lambda^{k-1}\rangle.$$

From the above expression we can estimate,

$$\begin{split} \mathbb{E}_{k}[\left\|\lambda^{k}\right\|_{2}^{2}] &\overset{(a)}{\leq} \alpha^{2} \sigma^{2} + (1-\alpha)^{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|_{2}^{2} + (1-\alpha)^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\quad + 2(1-\alpha)^{2} \langle \nabla f(x^{k}) - \nabla f(x^{k-1}), \lambda^{k-1} \rangle \\ &\overset{(b)}{\leq} \alpha^{2} \sigma^{2} + (1-\alpha)^{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|_{2}^{2} + (1-\alpha)^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\quad + (1-\alpha)^{2} \left(\frac{\alpha}{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|_{2}^{2} + \frac{2}{\alpha} \left\|\lambda^{k-1}\right\|_{2}^{2}\right) \\ &\overset{(c)}{\leq} \alpha^{2} \sigma^{2} + (1-\alpha)^{2} \zeta_{*}^{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|^{2} + (1-\alpha)^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\quad + (1-\alpha)^{2} \left(\frac{\alpha}{2} \zeta_{*}^{2} \left\|\nabla f(x^{k}) - \nabla f(x^{k-1})\right\|^{2} + \frac{2}{\alpha} \left\|\lambda^{k-1}\right\|_{2}^{2}\right) \\ &\overset{(d)}{\leq} \alpha^{2} \sigma^{2} + (1-\alpha)^{2} \zeta_{*}^{2} L^{2} \left\|x^{k} - x^{k-1}\right\|^{2} + (1-\alpha)^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\quad + (1-\alpha)^{2} \left(\frac{\alpha}{2}) \zeta_{*} L^{2} \left\|x^{k} - x^{k-1}\right\|^{2} + \frac{2}{\alpha} \left\|\lambda^{k-1}\right\|_{2}^{2}\right) \\ &\overset{(e)}{\leq} \alpha^{2} \sigma^{2} + 4(1-\alpha)^{2} \zeta_{*}^{2} L^{2} \beta^{2} \gamma^{2} \eta_{k}^{2} + (1-\alpha)^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} + (1-\alpha)^{2} \left(2\alpha \zeta_{*}^{2} L^{2} \beta^{2} \gamma^{2} \eta_{k}^{2} + \frac{2}{\alpha} \left\|\lambda^{k-1}\right\|_{2}^{2}\right) \\ &\overset{(e)}{\leq} \alpha^{2} \sigma^{2} + 4(1-\alpha)^{2} \zeta_{*}^{2} L^{2} \beta^{2} \gamma^{2} \eta_{k}^{2} + (1-\alpha)^{2} \left\|\lambda^{k-1}\right\|_{2}^{2} + (1-\alpha)^{2} \left(2\alpha \zeta_{*}^{2} L^{2} \beta^{2} \gamma^{2} \eta_{k}^{2} + \frac{2}{\alpha} \left\|\lambda^{k-1}\right\|_{2}^{2}\right) \\ &\overset{(e)}{\leq} \alpha^{2} \sigma^{2} + 4(1+\frac{\alpha}{2})(1-\alpha) \zeta_{*}^{2} L^{2} \beta^{2} \gamma^{2} \eta_{k}^{2} + (1+\frac{2}{\alpha})(1-\alpha) \left\|\lambda^{k-1}\right\|_{2}^{2} \\ &\overset{(g)}{\leq} \alpha^{2} \sigma^{2} + 4(1+\frac{\alpha}{2})(1-\alpha) \zeta_{*}^{2} L^{2} \beta^{2} \gamma^{2} \rho^{2} + (1+\frac{2}{\alpha})(1-\alpha) \left\|\lambda^{k-1}\right\|_{2}^{2}, \end{split}$$

using the bounded variance property from Assumption 4.8 for (a), Young's inequality with parameter $\alpha/2>0$ for (b), $\zeta_*:=\max_{x\in\mathcal{X}}\frac{\|x\|_2}{\|x\|_1}$ for (c), Assumption 4.2 for (d), the definition of x^k from Algorithm 2 for (e), the fact that $1-\alpha<1$ for (f), and $\eta_k\leq\rho$ and for (g). To complete the proof, we note that

$$(1 + \frac{2}{\alpha})(1 - \alpha) \le (1 - \frac{\alpha}{2})$$
 and $(1 - \alpha)(1 + \frac{\alpha}{2}) \le \frac{2}{\alpha}$

which, applied to the previous inequality and taking total expectations, yields

$$\mathbb{E}[\left\|\lambda^{k}\right\|_{2}^{2}] \leq \left(1 - \frac{\alpha}{2}\right) \mathbb{E}[\left\|\lambda^{k-1}\right\|_{2}^{2}] + \alpha^{2} \sigma^{2} + \frac{8\zeta_{*}^{2} L^{2} \beta^{2} \gamma^{2} \rho^{2}}{\alpha}.$$

Lemma B.4 (Bound on the gradient error with horizon-dependent α for S³CG). Suppose Assumption 4.8 holds, f is L-smooth with respect to $\|\cdot\|_*$, and let $n \in \mathbb{N}^*$. Consider the iterates $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 2 with a stepsize $\gamma \rho$ satisfying

$$\gamma \rho < \frac{1}{\ln^{3/4}}.\tag{18}$$

Moreover, consider a constant momentum $\alpha_k = \alpha = \frac{1}{\sqrt{n}}$ for all $k \in \{1, ..., n\}$. Then, for all $k \in \{1, ..., n\}$ the following holds

$$\mathbb{E}\left[\left\|\lambda^{k}\right\|_{2}^{2}\right] \leq \frac{2\sigma^{2}+16\zeta_{2}^{2}\beta^{2}}{\sqrt{n}}.\tag{19}$$

Proof. Let $n \in \mathbb{N}^*$ and $k \in \{1, ..., n\}$. We start from the recursive inequality obtained in Lemma B.3 for $\mathbb{E}[\|\lambda^k\|_2^2]$ with L the Lipschitz constant of the gradient over the compact set \mathcal{D} to get

$$\mathbb{E}[\|\lambda^{k}\|_{2}^{2}] \le \left(1 - \frac{\alpha}{2}\right) \mathbb{E}[\|\lambda^{k-1}\|_{2}^{2}] + \alpha^{2} \sigma^{2} + \frac{8\zeta_{*}^{2} L^{2} \beta^{2} \gamma^{2} \rho^{2}}{\alpha}. \tag{20}$$

Now, we substitute the specific choice $\alpha = \frac{1}{\sqrt{n}}$:

$$\mathbb{E}[\|\lambda^{k}\|_{2}^{2}] \le \left(1 - \frac{1}{2\sqrt{n}}\right) \mathbb{E}[\|\lambda^{k-1}\|_{2}^{2}] + \frac{\sigma^{2}}{n} + 8\zeta_{*}^{2}L^{2}\beta^{2}\gamma^{2}\rho^{2}\sqrt{n}. \tag{21}$$

Using the particular choice of $\gamma \rho$ specified in the statement of the lemma, we have

$$\mathbb{E}[\|\lambda^{k}\|_{2}^{2}] \leq \left(1 - \frac{1}{2\sqrt{n}}\right) \mathbb{E}[\|\lambda^{k-1}\|_{2}^{2}] + \frac{1}{n}(\sigma^{2} + 8\zeta_{*}^{2}\beta^{2})$$

Let $u_k = \mathbb{E}[\|\lambda^k\|_2^2]$, $a = \frac{1}{2\sqrt{n}}$, and $b = \frac{1}{n}(\sigma^2 + 8\zeta_*^2\beta^2)$. Unrolling the recurrence relation $u_k \le (1-a)u_{k-1} + b$, we have

$$u_k \leq (1-a)^k u_0 + b \sum_{i=0}^{k-1} (1-a)^i = b \sum_{i=0}^{k-1} (1-a)^i = b \tfrac{1-(1-a)^k}{1-(1-a)} = b \tfrac{1-(1-a)^k}{a}$$

Since 0 < a < 1, we have $0 < (1 - a)^k < 1$ for $k \ge 1$. Thus, $1 - (1 - a)^k < 1$. Therefore,

$$u_k \le b/a. \tag{22}$$

Substituting the values for a and b, we have

$$\mathbb{E}[\left\|\lambda^{k}\right\|_{2}^{2}] \le \frac{2\sigma^{2} + 16\zeta_{2}^{2}\beta^{2}}{\sqrt{n}}.$$
(23)

This concludes the proof.

Theorem 4.11. Suppose Assumptions 4.2 and 4.8 hold and let $n \in \mathbb{N}^*$. Consider the iterates $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 2 (Variant 1) with a constant stepsize $\gamma \le 1/L\sqrt{n}$ and $\rho \le 1/n^{1/4}$. Then, for all $u \in \beta \mathcal{D}$,

$$\mathbb{E}[\langle \nabla f(\bar{x}^n), \bar{x}^n - u \rangle] \le \frac{4\sqrt{\Delta}}{\sqrt{\gamma n}} + \frac{8\Delta}{\gamma \rho n} + 4\sqrt{\epsilon_n} + \frac{8\epsilon_n}{\rho}$$

where $\Delta := f(x^1) - f^*$ and $\epsilon_n := \frac{1}{n} \sum_{k=1}^n O(\sqrt{\mathbb{E}||\lambda^k||_2^2} + \mathbb{E}||\lambda^k||_2^2)$.

Furthermore, taking $\alpha = 1/\sqrt{n}$, $\gamma = 1/(L\sqrt{n})$ and $\rho = 1/n^{1/4}$ such that $\gamma \rho = 1/(Ln^{3/4})$ we have that

$$\mathbb{E}[\langle \nabla f(\bar{x}^n), \bar{x}^n - u \rangle] \le O(\frac{1}{n^{1/4}}).$$

Proof. Note that, since f is continuously differentiable and \mathcal{D} is compact, f must be Lipschitz-smooth on the scaled ball $\beta\mathcal{D}$ with respect to the norm $\|\cdot\|$; call the Lipschitz constant L>0. We can therefore start with the descent lemma for f at the points x^{k+1} and x^k to find

$$0 \leq f(x^{k}) - f(x^{k+1}) + \langle \nabla f(x^{k}), x^{k+1} - x^{k} \rangle + \frac{L}{2} ||x^{k+1} - x^{k}||^{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \langle \nabla f(x^{k}), v^{k} \rangle + \frac{L}{2} \gamma^{2} \eta_{k}^{2} ||v^{k}||^{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \left(\langle d^{k}, v^{k} \rangle + \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle \right) + \frac{L}{2} \gamma^{2} \eta_{k}^{2} ||v^{k}||^{2}.$$

Now we can proceed case-by-case depending on whether clipping is active or not.

Case I Clipping Active $(\gamma \eta_k = \gamma \rho; \frac{\langle d^k, v^k \rangle}{||v^k||^2} \ge \rho)$.

For all $u \in \beta \mathcal{D}$ it holds.

$$\begin{split} 0 &\leq f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \left(\langle d^{k}, v^{k} \rangle + \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle \right) + \frac{L}{2} \gamma^{2} \eta_{k}^{2} ||v^{k}||^{2} \\ &\leq f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \left(\frac{1}{2} \langle d^{k}, v^{k} \rangle + \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle + \frac{1}{2} \langle d^{k} - \nabla f(x^{k}), x^{k} - u \rangle + \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle \right) + \frac{L}{2} \gamma^{2} \eta_{k}^{2} ||v^{k}||^{2} \\ &\stackrel{\text{(a)}}{\leq} f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \left(\frac{1}{2} \langle d^{k}, v^{k} \rangle + \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle - \frac{1}{2} ||\lambda^{k}||_{2} ||x^{k} - u||_{2} - ||\lambda^{k}||_{2} ||v^{k}||_{2} \right) + \frac{L}{2} \gamma^{2} \eta_{k}^{2} ||v^{k}||^{2} \\ &\stackrel{\text{(b)}}{\leq} f(x^{k}) - f(x^{k+1}) + \gamma \eta_{k} \left(\frac{L}{2} \gamma \eta_{k} ||v^{k}||^{2} - \frac{1}{2} \langle d^{k}, v^{k} \rangle \right) - \gamma \eta_{k} \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle + \gamma \eta_{k} \frac{3}{2} ||\lambda^{k}||_{2} D_{2} \\ &\stackrel{\text{(c)}}{\leq} f(x^{k}) - f(x^{k+1}) + \gamma \rho \left(\frac{L}{2} \gamma \rho ||v^{k}||^{2} - \frac{1}{2} \rho ||v^{k}||^{2} \right) - \gamma \rho \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle + \gamma \rho \frac{3}{2} ||\lambda^{k}||_{2} D_{2} \\ &\stackrel{\text{(d)}}{\leq} f(x^{k}) - f(x^{k+1}) + \gamma \rho \frac{3}{2} ||\lambda^{k}||_{2} D_{2} - \gamma \rho \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle \end{split}$$

where $D_2 = \max_{x,y \in \beta \mathcal{D}} ||x - y||_2$ is the diameter of the set $\beta \mathcal{D}$ in the Euclidean norm. The inequality (a) follows by Cauchy-Schwarz, (b) follows by using the diameter of $\beta \mathcal{D}$, (c) follows since clipping is active, and (d) follows since $Ly \le 1$. Finally, rearranging gives

$$\gamma \rho \langle \nabla f(x^k), x^k - u \rangle \le 2 \left(f(x^k) - f(x^{k+1}) \right) + 3D_2 \gamma \rho ||\lambda^k||_2. \tag{24}$$

Case II No Clipping $(\gamma \eta_k = \gamma \frac{\langle d^k, v^k \rangle}{\|v^k\|^2}; \frac{\langle d^k, v^k \rangle}{\|v^k\|^2} \leq \rho)$.

In this case, our stepsize acts like the short step. Starting with the previous inequality from the descent lemma we have, for all $u \in \beta \mathcal{D}$,

$$0 \leq f(x^{k}) - f(x^{k+1}) - \gamma \frac{\langle d^{k}, v^{k} \rangle}{\|v^{k}\|^{2}} \langle d^{k}, v^{k} \rangle - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle + \frac{L}{2} \gamma^{2} \left(\frac{\langle d^{k}, v^{k} \rangle}{\|v^{k}\|^{2}} \right)^{2} \|v^{k}\|^{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \frac{\langle d^{k}, v^{k} \rangle^{2}}{\|v^{k}\|^{2}} - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle + L \gamma^{2} \frac{\langle d^{k}, v^{k} \rangle^{2}}{2\|v^{k}\|^{2}}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \frac{\langle d^{k}, v^{k} \rangle^{2}}{2\|v^{k}\|^{2}} - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle$$

$$(25)$$

where in the last inequality we have used that $\gamma \leq \frac{1}{L}$. Rearranging, we can estimate

$$0 \leq f(x^{k}) - f(x^{k+1}) - \gamma \frac{\langle d^{k}, v^{k} \rangle^{2}}{2||v^{k}||^{2}} - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle$$

$$\stackrel{\text{(a)}}{\leq} f(x^{k}) - f(x^{k+1}) - \frac{1}{2||v^{k}||^{2}} \left(\frac{\gamma}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle^{2} - 2\gamma \langle \nabla f(x^{k}) - d^{k}, x^{k} - u \rangle^{2} \right) - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle$$

$$= f(x^{k}) - f(x^{k+1}) - \frac{\gamma}{4||v^{k}||^{2}} \langle \nabla f(x^{k}), x^{k} - u \rangle^{2} + \frac{\gamma}{||v^{k}||^{2}} \langle \nabla f(x^{k}) - d^{k}, x^{k} - u \rangle^{2} - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle$$

$$\stackrel{\text{(b)}}{\leq} f(x^{k}) - f(x^{k+1}) - \frac{\gamma}{4||v^{k}||^{2}} \langle \nabla f(x^{k}), x^{k} - u \rangle^{2} + \frac{D_{2}^{2} \gamma}{||v^{k}||^{2}} ||\lambda^{k}||_{2}^{2} + D_{2} \gamma \rho ||\lambda^{k}||_{2}$$

$$\stackrel{\text{(c)}}{\leq} 16\beta^{2} \left(f(x^{k}) - f(x^{k+1}) \right) - \gamma \langle \nabla f(x^{k}), x^{k} - u \rangle^{2} + 4D_{2}^{2} \gamma ||\lambda^{k}||_{2}^{2} + 16D_{2}\beta^{2} \gamma \rho ||\lambda^{k}||_{2}$$

where (a) is due to Young's inequality, (b) is due to Cauchy-Schwarz and the definition of D_2 as the diameter of $\beta \mathcal{D}$ in the Euclidean norm, and (c) follows by multiplying everything by $4||v^k||^2$ and estimating. We can rearrange this to finally arrive at

$$\gamma \langle \nabla f(x^k), x^k - u \rangle^2 \le 16\beta^2 \left(f(x^k) - f(x^{k+1}) \right) + 4D_2^2 \gamma ||\lambda^k||_2^2 + 16D_2 \beta^2 \gamma \rho ||\lambda^k||_2.$$

Combining Both Cases Let $M = \max\{16\beta^2, 2\}$ and $M' = \max\{16D_2\beta^2, 3D_2\}$ and let $\mathcal{A} \subset \{1, 2, ..., n\}$ denote the indices where clipping is active. Let $n \in \mathbb{N}^*$ and denote

$$\epsilon_n := \frac{1}{n} \sum_{k=1}^n M' \rho \mathbb{E}[||\lambda^k||_2] + \frac{1}{n} \sum_{k=1}^n 4D_2^2 \mathbb{E}[||\lambda^k||_2^2].$$

Then, taking expectations, adding from k = 1 to n, and dividing by n gives

$$\frac{1}{n} \sum_{k \in \mathcal{A}} \gamma \rho \mathbb{E}[\langle \nabla f(x^k), x^k - u \rangle] + \frac{1}{n} \sum_{k \notin \mathcal{A}} \gamma \mathbb{E}[\langle \nabla f(x^k), x^k - u \rangle^2] \le \frac{M}{n} \left(f(x^1) - f^* \right) + \gamma \epsilon_n. \tag{27}$$

We can lower bound the left hand side by the sum over $\mathcal A$ and divide by $\gamma\rho$ to get

$$\frac{1}{n} \sum_{k \in \mathcal{I}} \mathbb{E}[\langle \nabla f(x^k), x^k - u \rangle] \le \frac{M\Delta}{\gamma \rho n} + \frac{\epsilon_n}{\rho}. \tag{28}$$

Similarly, lower bounding the left hand side by the sum over the complement of \mathcal{A} and dividing by γ , we get by Jensen's inequality

$$\frac{1}{n} \sum_{k \notin \mathcal{A}} \mathbb{E}[\langle \nabla f(x^k), x^k - u \rangle]^2 \le \frac{1}{n} \sum_{k \notin \mathcal{A}} \mathbb{E}[\langle \nabla f(x^k), x^k - u \rangle^2] \le \frac{M\Delta}{\gamma n} + \epsilon_n. \tag{29}$$

We use the fact that $2az - a^2 \le z^2$ for any a, z > 0. Picking $z = \mathbb{E}[\langle \nabla f(x^k), x^k - u \rangle]$, it follows that

$$\frac{1}{n} \sum_{k \notin \mathcal{A}} z \le \frac{1}{n} \sum_{k \notin \mathcal{A}} \frac{z^2}{2a} + \frac{a}{2} \le \frac{A}{2a} + \frac{1}{n} \sum_{k \notin \mathcal{A}} \frac{a}{2} \le \frac{A}{2a} + \frac{a}{2}$$
 (30)

where $A := \frac{M\Delta}{\gamma n} + \epsilon_n$. Choosing $a = \sqrt{A}$ and replacing z by $\mathbb{E}[\langle \nabla f(x^k), x^k - u \rangle]$ we get

$$\frac{1}{n} \sum_{k \notin \mathcal{H}} \mathbb{E}[\langle \nabla f(x^k), x^k - u \rangle] \le \sqrt{A} = \frac{\sqrt{M\Delta}}{\sqrt{\gamma n}} + \sqrt{\epsilon_n}. \tag{31}$$

Adding both of these we get

$$\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}[\langle \nabla f(x^k), x^k - u \rangle] \le \frac{\sqrt{M\Delta}}{\sqrt{\gamma n}} + \sqrt{\epsilon_n} + \frac{M\Delta}{\gamma \rho n} + \frac{\epsilon_n}{\rho}. \tag{32}$$

Let $\Lambda_n^2 := \frac{2\sigma^2 + 16\zeta_n^2\beta^2}{\sqrt{n}}$. By lemma B.4, $\Lambda_n^2 \ge \mathbb{E}[\|\lambda^k\|_2^2]$ for all $k \le n$.

Next, we can estimate

$$\epsilon_n \le M' \rho \Lambda_n + 4D_2^2 \Lambda_n^2$$

$$\sqrt{\epsilon_n} \le \sqrt{M' \rho \Lambda_n} + 2D_2 \Lambda_n$$

$$\frac{\epsilon_n}{\rho} \le M' \Lambda_n + \frac{4}{\rho} D_2^2 \Lambda_n^2.$$

Substituting in the definition of Λ_n , γ , and ρ while also noting the definition of \bar{x}^n , we get

$$\mathbb{E}[\langle \nabla f(\bar{x}^{n}), \bar{x}^{n} - u \rangle] \leq \frac{\sqrt{M\Delta}}{\sqrt{\gamma n}} + \sqrt{\epsilon_{n}} + \frac{M\Delta}{\gamma \rho n} + \frac{\epsilon_{n}}{\rho}$$

$$\leq \frac{\sqrt{M\Delta}}{\sqrt{\gamma n}} + \sqrt{M'\rho\Lambda_{n}} + 2D_{2}\Lambda_{n} + \frac{M\Delta}{\gamma \rho n} + M'\Lambda_{n} + \frac{4}{\rho}D_{2}^{2}\Lambda_{n}^{2}$$

$$\leq \frac{\sqrt{LM\Delta}}{n^{1/4}} + \frac{\sqrt{M'\left(2\sigma^{2} + 16\zeta_{*}^{2}\beta^{2}\right)}}{n^{1/4}} + \frac{2D_{2}\sqrt{2\sigma^{2} + 16\zeta_{*}^{2}\beta^{2}}}{n^{1/4}}$$

$$+ \frac{LM\Delta}{n^{1/4}} + \frac{M'\sqrt{2\sigma^{2} + 16\zeta_{*}^{2}\beta^{2}}}{n^{1/4}} + \frac{4D_{2}^{2}\left(2\sigma^{2} + 16\zeta_{*}^{2}\beta^{2}\right)}{n^{1/4}}$$

which gives a big O rate

$$\mathbb{E}[\langle \nabla f(\bar{x}^n, \bar{x}^n - u \rangle] \le O\left(\frac{1}{n^{1/4}}\right).$$

Theorem B.5. Suppose Assumptions 4.2 and 4.8 hold and let $n \in \mathbb{N}^*$. Consider the iterates $\{x^k\}_{1 \le k \le n}$ generated by Algorithm 2 (Variant 2) with a constant stepsize $\gamma \le 1/L\sqrt{n}$ and $\rho \le 1/n^{1/4}$. Then, for all $u \in \mathcal{D}$,

$$\mathbb{E}[\langle \nabla f(\bar{x}^n), \bar{x}^n - u \rangle] \leq \frac{4\sqrt{\Delta}}{\sqrt{\gamma n}} + \frac{8\Delta}{\gamma \rho n} + 4\sqrt{\epsilon_n} + \frac{8\epsilon_n}{\rho}$$

where $\Delta := f(x^1) - f^*$ and $\epsilon_n := \frac{1}{n} \sum_{k=1}^n O(\sqrt{\mathbb{E}||\lambda^k||_2^2} + \mathbb{E}||\lambda^k||_2^2)$.

Furthermore, taking $\alpha = 1/\sqrt{n}$, $\gamma = 1/(L\sqrt{n})$ and $\rho = 1/n^{1/4}$ such that $\gamma \rho = 1/(Ln^{3/4})$ we have that

$$\mathbb{E}[\langle \nabla f(\bar{x}^n), \bar{x}^n - u \rangle] \le O(\frac{1}{n^{1/4}}).$$

Proof. Note that, since f is continuously differentiable and \mathcal{D} is compact, f must be Lipschitz-smooth on the scaled ball $\beta\mathcal{D}$ with respect to the norm $\|\cdot\|$; call the Lipschitz constant L. We can therefore start with the descent lemma for f at the points x^{k+1} and x^k to find

$$0 \leq f(x^{k}) - f(x^{k+1}) + \langle \nabla f(x^{k}), x^{k+1} - x^{k} \rangle + \frac{L}{2} ||x^{k+1} - x^{k}||^{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \langle \nabla f(x^{k}), v^{k} \rangle + \frac{L}{2} \gamma^{2} \eta_{k}^{2} ||v^{k}||^{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \left(\langle d^{k}, v^{k} \rangle + \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle \right) + \frac{L}{2} \gamma^{2} \eta_{k}^{2} ||v^{k}||^{2}.$$
(33)

Now we can proceed case-by-case depending on whether clipping is active or not.

Case I Clipping Active $(\gamma \eta_k = \gamma \rho; \frac{\langle d^k, v^k \rangle}{4\beta^2} \ge \rho)$.

$$0 \leq f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \left(\langle d^{k}, v^{k} \rangle + \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle \right) + \frac{L}{2} \gamma^{2} \eta_{k}^{2} \|v^{k}\|^{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \left(\frac{1}{2} \langle d^{k}, v^{k} \rangle + \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle + \frac{1}{2} \langle d^{k} - \nabla f(x^{k}), x^{k} - u \rangle + \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle \right) + \frac{L}{2} \gamma^{2} \eta_{k}^{2} \|v^{k}\|^{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \eta_{k} \left(\frac{1}{2} \langle d^{k}, v^{k} \rangle + \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle - \frac{1}{2} \|\lambda^{k}\|_{2} \|x^{k} - u\|_{2} - \|\lambda^{k}\|_{2} \|v^{k}\|_{2} \right) + \frac{L}{2} \gamma^{2} \eta_{k}^{2} \|v^{k}\|^{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) + \gamma \eta_{k} \left(\frac{L}{2} \gamma \eta_{k} \|v^{k}\|^{2} - \frac{1}{2} \langle d^{k}, v^{k} \rangle \right) - \gamma \eta_{k} \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle + \gamma \eta_{k} \frac{3}{2} \|\lambda^{k}\|_{2} D_{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) + \gamma \rho \left(2L \gamma \rho \beta^{2} - 2\rho \beta^{2} \right) - \gamma \rho \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle + \gamma \rho \frac{3}{2} \|\lambda^{k}\|_{2} D_{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) + \gamma \rho \frac{3}{2} \|\lambda^{k}\|_{2} D_{2} - \gamma \rho \frac{1}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle$$

in the second inequality we have used the fact that $||v^k||^2 \le 2||x^k||^2 + 2||\beta|\operatorname{Imo}(d^k)||^2 \le 4\beta^2$ and the fact that $||v^k||_2 \le D_2$. Finally, rearranging gives

$$\gamma \rho \langle \nabla f(x^k), x^k - u \rangle \le 2 \left(f(x^k) - f(x^{k+1}) \right) + 3D_2 \gamma \rho ||\lambda^k||_2. \tag{35}$$

Case II No Clipping $(\gamma \eta_k = \gamma \frac{\langle d^k, v^k \rangle}{4\beta^2}; \frac{\langle d^k, v^k \rangle}{4\beta^2} \leq \rho)$.

$$0 \leq f(x^{k}) - f(x^{k+1}) - \gamma \frac{\langle d^{k}, v^{k} \rangle}{4\beta^{2}} \langle d^{k}, v^{k} \rangle - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle + \frac{L}{2} \gamma^{2} \left(\frac{\langle d^{k}, v^{k} \rangle}{4\beta^{2}} \right)^{2} \|v^{k}\|^{2}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \frac{\langle d^{k}, v^{k} \rangle^{2}}{4\beta^{2}} - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle + L\gamma^{2} \frac{\langle d^{k}, v^{k} \rangle^{2}}{8\beta^{2}}$$

$$\leq f(x^{k}) - f(x^{k+1}) - \gamma \frac{\langle d^{k}, v^{k} \rangle^{2}}{8\beta^{2}} - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle$$

$$(36)$$

where in the last inequality we have used that $\gamma \leq \frac{1}{L}$. Rearranging,

$$0 \leq f(x^{k}) - f(x^{k+1}) - \gamma \frac{\langle d^{k}, v^{k} \rangle^{2}}{8\beta^{2}} - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle$$

$$\leq f(x^{k}) - f(x^{k+1}) - \frac{1}{8\beta^{2}} \left(\frac{\gamma}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle^{2} - 2\gamma \langle \nabla f(x^{k}) - d^{k}, x^{k} - u \rangle^{2} \right) - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle$$

$$\leq f(x^{k}) - f(x^{k+1}) - \frac{1}{8\beta^{2}} \left(\frac{\gamma}{2} \langle \nabla f(x^{k}), x^{k} - u \rangle^{2} \right) + \frac{\gamma}{4\beta^{2}} \langle \nabla f(x^{k}) - d^{k}, x^{k} - u \rangle^{2} - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle$$

$$\leq f(x^{k}) - f(x^{k+1}) - \frac{\gamma}{16\beta^{2}} \langle \nabla f(x^{k}), x^{k} - u \rangle^{2} + \frac{\gamma}{4\beta^{2}} \langle \nabla f(x^{k}) - d^{k}, x^{k} - u \rangle^{2} - \gamma \eta_{k} \langle \nabla f(x^{k}) - d^{k}, v^{k} \rangle$$

$$\leq f(x^{k}) - f(x^{k+1}) - \frac{\gamma}{16\beta^{2}} \langle \nabla f(x^{k}), x^{k} - u \rangle^{2} + \frac{D_{2}^{2}\gamma}{4\beta^{2}} ||\lambda^{k}||_{2}^{2} + D_{2}\gamma \rho ||\lambda^{k}||_{2}$$

$$\leq 16\beta^{2} \left(f(x^{k}) - f(x^{k+1}) \right) - \gamma \langle \nabla f(x^{k}), x^{k} - u \rangle^{2} + 4D_{2}^{2}\gamma ||\lambda^{k}||_{2}^{2} + 16D_{2}\beta^{2}\gamma \rho ||\lambda^{k}||_{2}.$$

$$(37)$$

The rest of the proof is exactly the same as it was for Variant 1, so we omit it.

C Experiments

Our implementations follow Unconstrained ClippedScion and ClippedScion Algorithm 3 and Algorithm 4 (Variant 2), respectively. For simplicity, we absorb the latter's factor of 4 into the clipping threshold ρ , so both algorithms directly clip $\sum_{l=1}^{D} \langle d_l^k, v_l^k \rangle$ at ρ .

CIFAR10 experiments are run on a single A100 NVIDIA GPU, NanoGPT runs are run on $4 \times H100$ NVIDIA GPUs, and ViT experiments use $16 \times GH200$ NVIDIA GPUs. Hyperparameters are provided in Tables 2 to 4.

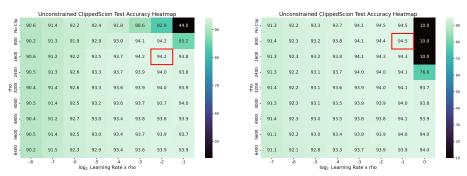


Figure 3: The optimal hyperparameters for Unconstrained ClippedScion on CIFAR10 for 80 epochs, (left) no stepsize decay (right) with stepsize decay. (indicated in red). The first row indicated with "No Clip" corresponds to Unconstrained Scion.

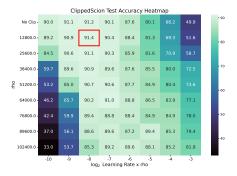


Figure 4: The optimal hyperparameters for ClippedScion on CIFAR10 for 80 epochs, no stepsize decay (indicated in red). The first row indicated with "No Clip" corresponds to Scion.

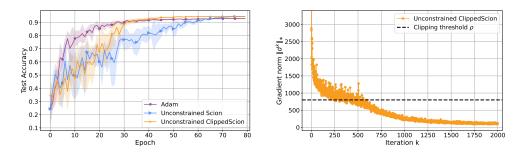


Figure 5: For CIFAR10 experiments with stepsize decay; Unconstrained Scion and Unconstrained ClippedScion achieve similar performance as expected.

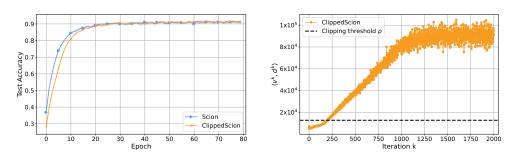


Figure 6: For CIFAR10 experiments for constrained variant of the algorithms without stepsize decay; clipping is less effective due to the surprising increase of $\langle v^k, d^k \rangle$. We observe that even the (deterministic) Wolfe gap is increasing, which is otherwise expected to go to zero.

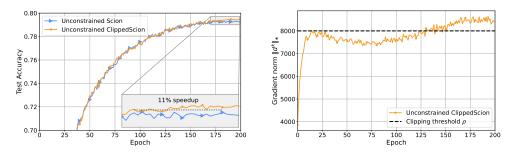


Figure 7: Clipping improves over Scion by a 11% speedup on DeiT-base.

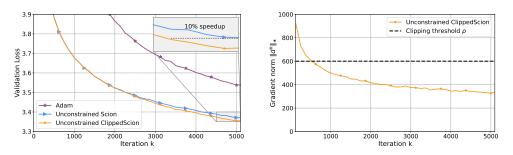


Figure 8: For fixed stepsize comparison clipping improves over Scion by more than a 10% speedup on NanoGPT (124M).

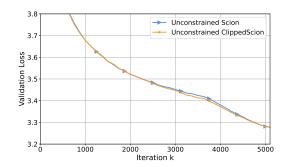


Figure 9: NanoGPT (124M) with stepsize decay. Unconstrained Scion and Unconstrained Clipped-Scion similar performance for the final iterate as expected under stepsize decay.

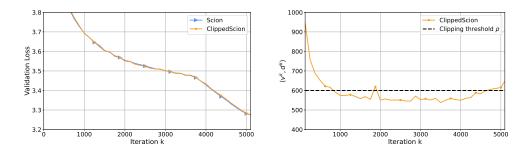


Figure 10: NanoGPT (124M) for constrained variants of the algorithm with stepsize decay. An interesting observation, which requires further investigation, is that $\langle v^k, d^k \rangle$ surprisingly increases during the linear stepsize decay.

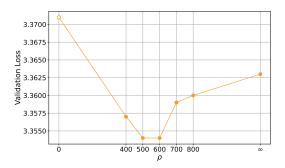


Figure 11: NanoGPT (124M) for Unconstrained ClippedScion with ρ sweeping. The sweep range is set according to the gradient norm from Figure 8 (right). Both steepest descent ($\rho=\infty$) and conditional gradient ($\rho\to 0$) perform worse than clipping.

Table 2: Hyperparameters for the CIFAR10 experiments building on airbench [Jordan, 2024].

Hyperparameter	Adam	(Clipped)Scion	Unconst. Scion	Unconst. ClippedScion
Block size (b1, b2, b3)	width factor × (64, 256, 256)			
Activation function	GELU			
Dataset	CIFAR10 (50000 training examples)			
batch size			2000	
Epochs	80			
Stepsize schedule	Linear decay $\gamma_k = \gamma \cdot (1 - k/n)$			
Averaging parameter α	0.9		0.5	
Stepsize γ	1e-3	2^{-8}	2^{-5}	2^{-2}
Initial stepsize γ for decay	2e-3	-	2^{-1}	2^{-1}
Clipping parameter ρ	-	12800	-	1600
Radius $r_1 / r_\ell / r_D$	-	1 / 5 / 2000	1 / 5 / 200	1/5/200

Table 3: DeiT-base hyperparameters following the tuned hyperparameters of Pethick et al. [2025]

Hyperparameter	Unconstrained Scion	Unconstrained ClippedScion
Layers		12
Head dim		64
Activation function	$\sqrt{2}$ · GELU (sca	led to preserve variance)
Normalization function		MSNorm
Sequence Length		197
Dataset	Im	ageNet-1k
Stepsize schedule	Co	osine decay
Max lr		0.00024
Warmup epochs		0
End lr		10^{-7}
Batch size		4096
Epochs		200
Averaging parameter α		0.1
Radius $\rho_1 / \rho_\ell / \rho_L$	25	5 / 25 / 500
Clipping parameter ρ	=	8000

Table 4: NanoGPT hyperparameters following the tuned hyperparameters of Pethick et al. [2025].

Hyperparameter	AdamW	(Unconstrained) Scion (Unconstrained) ClippedScio	
Layers		12	
Head dim	128		
Activation function	$2 \cdot \text{ReLU}(x)^2$		
Vocabulary size	50304		
Dataset	FineWeb		
batch size	512		
block size	1024		
Iterations <i>n</i>	5100		
Warmdown	28.5%		
Stepsize schedule	Cons	stant then linear decay $\gamma_k = \begin{cases} \gamma & \text{if } k < n - m \\ \gamma \cdot (\frac{n-k}{m}) & \text{if } k \ge n - m \end{cases}$	
Warmup	5%	0	
Gradient clipping	Yes	No	
Momentum β_1 / β_2	0.9 / 0.95	-	
Averaging parameter α	-	0.1	
Stepsize $\gamma \rho$	0.0018	0.00036	
Clipping parameter ρ	-	600 for 124M model and 6000 for 1B model	
Radius $r_1 / r_\ell / r_D$	-	- /50 / 3000	