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ABSTRACT

Diffusion Probabilistic Models (DPMs) are powerful generative models that have
achieved unparalleled success in a number of generative tasks. In this work, we
aim to build inductive biases into the training and sampling of diffusion models to
better accommodate the target distribution of the data to model. For topologically
structured data, we devise a frequency-based noising operator to purposefully
manipulate, and set, these inductive biases. We first show that appropriate ma-
nipulations of the noising forward process can lead DPMs to focus on particular
aspects of the distribution to learn. We show that different datasets necessitate
different inductive biases, and that appropriate frequency-based noise control in-
duces increased generative performance compared to standard diffusion. Finally,
we demonstrate the possibility of ignoring information at particular frequencies
while learning. We show this in an image corruption and recovery task, where we
train a DPM to recover the original target distribution after severe noise corruption.

1 INTRODUCTION

Diffusion Probabilistic Models (DPMs) have recently emerged as powerful tools for approximating
complex data distributions, finding applications across a variety of domains, from image synthesis to
probabilistic modeling (Yang et al., 2024; Ho et al., 2020b; Sohl-Dickstein et al., 2015; Venkatraman
et al., 2024; Sendera et al., 2024). These models operate by gradually transforming data into noise
through a defined diffusion process and training a denoising model (Vincent et al., 2008; Alain
& Bengio, 2014) to learn to reverse this process, enabling the generation of samples from the
desired distribution via appropriate scheduling. Despite their success, the inductive biases inherent
in diffusion models remain largely unexplored, particularly in how these biases influence model
performance and the types of distributions that can be effectively modeled.

Inductive biases are known to play a crucial role in deep learning models, guiding the learning process
by favoring certain types of data representations over others (Geirhos et al., 2019; Bietti & Mairal,
2019; Tishby & Zaslavsky, 2015). A well-studied example is the Frequency Principle (F-principle)
or spectral bias, which suggests that neural networks tend to learn low-frequency components of data
before high-frequency ones (Xu et al., 2019; Rahaman et al., 2019). Another related phenomenon is
what is also known as the simplicity bias, or shortcut learning (Geirhos et al., 2020; Scimeca et al.,
2021; 2023b), in which models are observed to preferentially pick up on simple, easy-to-learn, and
often spuriously correlated features in the data for prediction. If left implicit, it is often unclear
whether these biases will improve or hurt the performance of generative model on downstream

1



task, and they could lead to flawed approximations(Scimeca et al., 2023a). In this work, we aim to
explicitly tailor the inductive biases of DPMs to better learn the target distribution of interest.

Recent studies have begun to explore the inductive biases inherent in diffusion models. For instance,
Kadkhodaie et al. (2023) analyze how the inductive biases of deep neural networks trained for image
denoising contribute to the generalization capabilities of diffusion models. They demonstrate that
these biases lead to geometry-adaptive harmonic representations, which play a crucial role in the
models’ ability to generalize beyond the training data (Kadkhodaie et al., 2023). Similarly, Zhang et
al. (2024) investigate the role of inductive and primacy biases in diffusion models, particularly in
the context of reward optimization. They propose methods to mitigate overoptimization by aligning
the models’ inductive biases with desired outcomes (Zhang et al., 2024). Other methods, such as
noise schedule adaptations (Sahoo et al., 2024) and the introduction of non-Gaussian noise (Bansal
et al., 2022) have shown promise in improving the performance of diffusion models on various tasks.
However, the exploration of frequency domain techniques within diffusion models is a relatively
new area of interest. One of the pioneering studies in this domain investigates the application of
diffusion models to time series data, where frequency domain methods have shown potential for
capturing temporal dependencies more effectively (Crabbé et al., 2024). Similarly, the integration
of spatial frequency components into the denoising process has been explored for enhancing image
generation tasks (Qian et al., 2024; Yuan et al., 2023), showcasing the importance of considering
frequency-based techniques as a means of refining the inductive biases of diffusion models.

In this work, we explore a new avenue, to build inductive biases in DPMs by frequency-based noise
control. The main hypothesis in this paper is that the noising operator in a diffusion model has a direct
influence on the model’s representation of the data. Intuitively, the information erased by the noising
process is the very information that the denoising model has pressure to learn, so that reconstruction
is possible. Accordingly, we propose that by strategically manipulating the noising operation, we
can effectively steer the model to learn particular aspects of the data distribution. We focus our
attention to the generative learning of topologically structured data, and propose an approach that
involves designing a frequency-based noise schedule that selectively emphasizes or de-emphasizes
certain frequency components during the noising process. In this paper, we refer to our approach
as frequency diffusion. Because the Fourier transform of a Gaussian is just another Gaussian in the
frequency domain, this approach allows us to maintain the Gaussian assumptions of the diffusion
process while reorienting the noising operator within the frequency domain, enabling the generation
of Gaussian noise at different frequencies and thereby influencing the model’s learning trajectory.

We report several findings. First, we show that when the information content in the data lies more
heavily in particular frequencies, frequency diffusion yields better samplers. Furthermore, we test
this in several natural datasets, and show that depending on the dataset characteristic, different
settings of our frequency diffusion approach yield optimal results, often with comparable or superior
performance to standard diffusion. Finally, we show that through frequency-denoising we can recover
complex distributions after severe noise corruption at particular frequencies, opening interesting
venues for applications within the generative landscape.

We summarize our contributions as follows:

1. We introduce a frequency-informed noising operator that can shape the inductive biases of
diffusion models.

2. We empirically show that frequency diffusion can steer models to better approximate infor-
mation at particular frequencies of the underlying data distribution.

3. We provide empirical evidence that models trained with frequency-based noise schedules
can outperform traditional diffusion schedules across multiple datasets.

4. We show that through frequency-denoising we can recover complex distributions after severe
noise corruption at particular frequencies.
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Figure 1: Frequency diffusion under a generalized framework.

2 METHODS

2.1 DENOISING PROBABILISTIC MODELS (DPMS)

Denoising Probabilistic Models, are a class of generative models that learn to reconstruct complex
data distributions by reversing a gradual noising process. DPMs are characterized by a forward and
backward process. The forward process defines how data is corrupted, typically by Gaussian noise,
over time. Given a data point x0 sampled from the data distribution 𝑞(x0), the noisy versions of the
data x1, x2, . . . , x𝑇 are generated according to:

𝑞(x𝑡 | x𝑡−1) = N(x𝑡 ;
√
𝛼𝑡x𝑡−1, (1 − 𝛼𝑡 )I) (1)

with 𝛼𝑡 variance schedule. The reverse process models the denoising operation, attempting to recover
x𝑡−1 from x𝑡 :

𝑝𝜃 (x𝑡−1 | x𝑡 ) = N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), 𝜎2
𝑡 I), (2)

where 𝜇𝜃 (x𝑡 , 𝑡) is predicted by a neural network 𝑓𝜃 , and the variance 𝜎2
𝑡 is can be fixed, learned, or

precomputed based on a schedule. We often train the denoising model by minimizing a variational
bound on the negative log-likelihood:

𝐿 = E𝑡 ,x0 , 𝜖

[
∥𝜖 − 𝜖𝜃 (x𝑡 , 𝑡)∥2] (3)

where 𝜖 is the Gaussian noise added to x0, and 𝜖𝜃 is the model’s prediction of this noise. To generate
new samples, we sample from a Gaussian distribution and apply the learned reverse process iteratively,
often starting from a sample drawn from a simple Gaussian noise distribution.

2.2 FREQUENCY DIFFUSION

The objective of this section is to generate spatial Gaussian noise whose frequency content can
be systematically manipulated according to an arbitrary weighting function. In subsection 2.1, we
describe how x𝑡 is obtained from x𝑡−1 by adding Gaussian noise sampled from a normal distribution
to the sample at time step 𝑡 − 1. Specifically, we can sample 𝜖𝑡 ∼ N(0, I) and obtain x𝑡 as:

x𝑡 =
√
𝛼𝑡 x𝑡−1 +

√︁
1 − 𝛼𝑡 𝜖 . (4)

Let us denote by x ∈ R𝐻×𝑊 an image (or noise field) in the spatial domain, and by F the two-
dimensional Fourier transform operator. We let Nfreq ∈ C𝐻×𝑊 be a complex-valued random field
whose real and imaginary parts are i.i.d. Gaussian:

Nfreq = Nreal + 𝑖 Nimag, Nreal, Nimag ∼ N
(
0, I

)
. (5)
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where each pixel (or frequency bin) in Nreal and Nimag is drawn independently from a standard normal
distribution. We introduce a weighting function 𝑤( 𝑓𝑥 , 𝑓𝑦) that scales the amplitude of each frequency
component. Let f = ( 𝑓𝑥 , 𝑓𝑦) denote coordinates in frequency space, where 𝑓𝑥 =

𝑘𝑥
𝑊

, 𝑓𝑦 =
𝑘𝑦

𝐻
,

and 𝑘𝑥 , 𝑘𝑦 are integer indices (ranging over the width and height), while 𝐻 and 𝑊 are the image
dimensions. We define the frequency-controlled noise N(𝑤)

freq (f) as:

N(𝑤)
freq (f) = Nfreq (f) ⊙ 𝑤(f), (6)

After applying 𝑤(f) in the frequency domain, we invert back to the spatial domain to obtain 𝜖 (𝑤) ,
our frequency-shaped noise:

𝜖 (𝑤) = ℜ
(
F −1 (N(𝑤)

freq

) )
, (7)

where ℜ(·) denotes the real part, ensuring that our final noise field is purely real.

In summary, any frequency weighting can be represented in this unified framework:

𝜖
F−−→ Nfreq

𝑤 (f )
−−−−−→ N(𝑤)

freq
F−1

−−−−→ 𝜖 (𝑤) .

With this, we have a simple mechanism for generating noise whose power spectrum can purposefully
controlled. Note that standard white Gaussian noise is a special case of this formulation, where
𝑤(f) = 1 for all f. In contrast, more sophisticated weightings allow one to emphasize, de-emphasize,
or even remove specific bands of the frequency domain.

2.3 FREQUENCY NOISE OPERATORS

In this work, the design of 𝑤(f) is especially important. In this section, we propose a particular
choice of 𝑤(f) to control the frequency on two frequency ranges of interest. We propose alternative
formulations of w(f) in Appendix A.

BAND-PASS MASKING AND TWO-BAND MIXTURE

A band-pass mask can be viewed as a special case of a more general weighting function:

𝑤(f) ∈ {0, 1}. (8)

In this case, the frequency domain is split into a set of permitted and excluded regions, or radial
thresholds. We this, we can construct several types of filters, including a low-pass filter retaining only
frequencies below a cutoff (e.g., ∥f∥ ≤ 𝜔𝑐) a high-pass filter keeping only frequencies above a cutoff,
or more generally a filter restricting ∥f∥ to lie between two thresholds [𝑎min, 𝑏max]. We thus define a
simple band pass filter as:

𝑤(f) = M[𝑎,𝑏] ( 𝑓𝑥 , 𝑓𝑦) =

{
1, if 𝑎 ≤ 𝑑 ( 𝑓𝑥 , 𝑓𝑦) ≤ 𝑏,

0, otherwise.
(9)

Here, 𝑑 ( 𝑓𝑥 , 𝑓𝑦) =
√︂(

𝑓𝑥 − 1
2

)2
+
(
𝑓𝑦 − 1

2

)2
measures the radial distance in frequency space. In this

special case, 𝑤(f) is simply a binary mask, selecting only those frequencies within [𝑎, 𝑏].
For the experiments in this paper we formulate a simple two-band mixture, where, we limit ourselves
to constructing noise as a simple linear combination of two band-pass filtered noise components.
Specifically, as in the original band-based approach, we generate frequency-filtered noise 𝜖 𝑓 via:

𝜖 𝑓 = 𝛾𝑙 𝜖 [𝑎𝑙 ,𝑏𝑙 ] + 𝛾ℎ 𝜖 [𝑎ℎ ,𝑏ℎ ] , (10)

where 𝛾𝑙 and 𝛾ℎ denote the relative contributions of a low- and a high-frequency noise components,
each filtering noise respectively in the ranges [𝑎𝑙 , 𝑏𝑙] (low-frequency range) and [𝑎ℎ, 𝑏ℎ] (high-
frequency range). We uniquely refer to 𝜖 [𝑎,𝑏] as the noise filtered in the [𝑎, 𝑏] frequency range
following Equation 6 and Equation 7. Standard Gaussian noise emerges as a particular instance (with
𝛾𝑙 = 0.5, 𝛾ℎ = 0.5, 𝑎𝑙 = 0, 𝑏𝑙 = 0.5, 𝑎ℎ = 0.5, and 𝑏ℎ = 1) of this formulation.
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2.4 DATASETS

For the experiments, we consider five datasets, namely: MNIST, CIFAR-10, Domainnet-Quickdraw,
Wiki-Art and CelebA; providing examples of widely different visual distributions, scales, and domain-
specific statistics.

MNIST: MNIST consists of 70, 000 grayscale images of handwritten digits (0-9) (Matthey et al.,
2017). MNIST provides a simple test-bed to for the hypothesis in this work, as a well understood
dataset with well structured, and visually coherent samples.

CIFAR-10: CIFAR-10 contains 60, 000 color images distributed across 10 object categories
(Krizhevsky et al., 2009). The dataset is highly diverse in terms of object appearance, backgrounds,
and colors, with the wide-ranging visual variations across classes like animals, vehicles, and other
common objects.

DomainNet-Quickdraw: DomainNet-Quickdraw features 120, 750 sketch-style images, covering
345 object categories (Peng et al., 2019). These images, drawn in a minimalistic, abstract style,
present a distribution that is drastically different from natural images, with sparse details and heavy
visual simplifications.

WikiArt: WikiArt consists of over 81, 000 images of artwork spanning a wide array of artistic styles,
genres, and historical periods (Saleh & Elgammal, 2015). The dataset encompasses a rich and varied
distribution of textures, color palettes, and compositions, making it a challenging benchmark for
generative models, which must capture both the global structure and fine-grained stylistic variations
that exist across different forms of visual art.

CelebA: CelebA contains 202, 599 images of celebrity faces, each 178 × 218 pixels in resolution
(Liu et al., 2015). The dataset presents a diverse distribution of human faces with variations in pose,
lighting, and facial expressions.
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Figure 2: Power spectra and image visuals of the
forward Process in standard diffusion, as compared
to high and low-frequency noise settings of a two-
band mixture noise parametrization.

All experiments involve separately training and
testing DPMs with various frequency diffusion
schedules, as well as baseline standard denoising
diffusion training. We use DDPM fast sampling
(Ho et al., 2020a) to efficiently generate samples
for all reported metrics. Across the experiments,
we report FID and KID scores as similarity score
estimate metrics of the generated samples with
respect to a held-out set of data samples. In all
relevant experiments, we compute the metrics
on embeddings from block 768 of a pre-trained
Inception v3 model.

3.1 IMPROVED DIFFUSION SAMPLING
VIA FREQUENCY-BASED NOISE CONTROL

In the first set of experiments, we wish to test
our main hypothesis, i.e. that appropriate manip-
ulation of the frequency components of the noise
can better support the learning of the distribution
of interest. We follow the formulation in Equa-
tion 10 to train and compare diffusion models
with a noisy operator prioritizing different parts
of the frequency distribution. In these experi-
ments we fix 𝑎𝑙 = 0, 𝑏2 = 1, and 𝑏𝑙 = 𝑎ℎ = 0.5,
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while performing a linear sweep of the 𝛾𝑙 and 𝛾ℎ parameters by searching 𝛾𝑙 ∈ [.1, .2, ..., .9] and
𝛾ℎ = 1 − 𝛾𝑙 .

3.1.1 QUALITATIVE OVERVIEW

First, we show a qualitative example of a standard linear noising schedule forward operation in
Figure 2, as compared to two particular settings of our constant high and low-frequency linear
schedules of the band-pass filter. With standard noise, information is uniformly removed from the
image, with sample quality degrading evenly over time. In the high-frequency noising schedule,
sharpness and texture are removed more prominently, while in the low-frequency noising schedule,
general shapes and homogeneous pixel clusters are affected most, yielding qualitatively different
information destruction operations. As discussed previously, we hypothesize that this will in turn
purposely affect the statistics of the information learned by the denoiser model, effectively focusing
the diffusion sampling process on different parts of the distribution.

3.1.2 LEARNING TARGET DISTRIBUTIONS FROM FREQUENCY-BOUNDED INFORMATION

Figure 3: FID of diffusion samplers trained with
various combinations of frequency noise. The set-
tings for 𝛾𝑙 = 0.5 yields standard diffusion train-
ing.

We conduct experiments to learn the distribution
of data where, by construction, the information
content lies in the low frequencies. We use the
CIFAR-10 dataset, and corrupt the original data
with high-frequency noise 𝜖 [.3,1.] , thus erasing
the high-frequency content while predominantly
preserving the low-frequency details in the range
𝜖 [0.,.3] . We train 9 diffusion models, including a
standard diffusion (baseline) model, and 8 mod-
els trained with frequency-based noise control
spanning 8 combinations of 𝛾𝑙 (𝛾ℎ = 1 − 𝛾𝑙).
We repeat the experiment over three seeds and
report the average FID and error in Figure 3. In
the figure, we observe the DPMs trained with
higher amounts of low-frequency noise (higher
𝛾𝑙) to perform significantly better than both the
baseline (𝛾𝑙 = 0.5), and higher frequency de-
noising models (lower 𝛾𝑙). Furthermore, we see a mostly monotonically descending trend in FID for
increasing values of lower frequency noise in the diffusion forward schedule, supporting the original
intuition of how the frequency manipulation of the noising operator can directly steer the denoiser’s
learning trends, and therefor how progressively higher amount of low-frequency forward noise aid in
the learning of samplers for data containing mostly low-frequency information.

3.1.3 FREQUENCY-BASED NOISE CONTROL IN NATURAL DATASETS

We further test our hypothesis by training 9 models for each of the datasets considered, inclusive
of all 𝛾-variations of our two-band mixture frequency-based noise schedule. We train these models
on MNIST, CIFAR-10, Domainnet-Quickdraw, Wiki-Art and CelebA, and report the FID and KID
metrics for all ablations in Table 1. In the table, we observe three out of five datasets to significantly
benefit from frequency-controlled noising schedules, achieving the lowest FID and KID scores across
all tested models. Interestingly, the performance trends are also mostly monotonic, which together
with our previous experiments is indicative of where the learned information lies. For simple datasets,
such as MNIST or CIFAR-10, most frequency denoising settings perform well, with balanced high-to-
low-frequency schedules performing best overall. Denoisers for Domainnet-Quickdraw and CelebA
yield better performance for slightly higher frequency noising schedules, suggesting higher frequency
information content for good FID and KID approximations, while Wiki-Art shows slight biases
towards lower frequency schedules.
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Table 1: Results for FID and KID across different settings of (𝛾𝑙 , 𝛾ℎ) for our frequency diffusion
two-band mixture schedule across different datasets (mean ± standard error across 3 seeds). The
baseline runs correspond to 𝛾𝑙 = 𝛾ℎ = 0.5.

Dataset → MNIST CIFAR-10 Domainnet-Quickdraw Wiki-Art CelebA
Algo ↓ Metric → FID (↓) KID (↓) FID (↓) KID (↓) FID (↓) KID (↓) FID (↓) KID (↓) FID (↓) KID (↓)

baseline 0.0168±0.0010 0.0000±0.0000 0.1055±0.0042 0.0001±0.0000 0.0875±0.0060 1.69e-04±1.61𝑒 − 05 0.1622±0.0133 2.53e-04±1.80𝑒 − 05 0.0863±0.0094 0.0001±0.0000
𝛾𝑙 = 0.1, 𝛾ℎ = 0.9 0.2624±0.2184 7.90e-04±6.85𝑒 − 04 0.2648±0.0691 4.31e-04±1.30𝑒 − 04 0.5250±0.3907 1.46e-03±1.21𝑒 − 03 0.2673±0.0273 4.31e-04±4.56𝑒 − 05 0.1555±0.0273 2.97e-04±6.93𝑒 − 05
𝛾𝑙 = 0.2, 𝛾ℎ = 0.8 0.0432±0.0187 1.10e-04±5.24𝑒 − 05 0.2191±0.0223 3.86e-04±6.72𝑒 − 05 0.1843±0.0723 4.20e-04±2.15𝑒 − 04 0.2048±0.0063 3.43e-04±1.27𝑒 − 05 0.1024±0.0045 1.85e-04±2.72𝑒 − 06
𝛾𝑙 = 0.3, 𝛾ℎ = 0.7 0.0267±0.0029 6.40e-05±8.63𝑒 − 06 0.1506±0.0168 2.28e-04±3.34𝑒 − 05 0.1248±0.0375 2.70e-04±1.13𝑒 − 04 0.1865±0.0181 2.86e-04±2.46𝑒 − 05 0.0838±0.0107 1.44e-04±1.89𝑒 − 05
𝛾𝑙 = 0.4, 𝛾ℎ = 0.6 0.0224±0.0032 5.29e-05±8.15𝑒 − 06 0.1131±0.0079 1.64e-04±2.15𝑒 − 05 0.0799±0.0166 0.0001±0.0000 0.1597±0.0122 2.62e-04±3.23𝑒 − 05 0.0875±0.0020 1.49e-04±1.71𝑒 − 06
𝛾𝑙 = 0.6, 𝛾ℎ = 0.4 0.0253±0.0039 5.81e-05±7.63𝑒 − 06 0.1131±0.0074 1.56e-04±1.95𝑒 − 05 0.1128±0.0174 2.57e-04±5.56𝑒 − 05 0.1348±0.0126 0.0002±0.0000 0.1068±0.0039 2.04e-04±1.07𝑒 − 05
𝛾𝑙 = 0.7, 𝛾ℎ = 0.3 0.0363±0.0075 9.14e-05±2.04𝑒 − 05 0.1432±0.0203 2.19e-04±3.66𝑒 − 05 0.1353±0.0223 2.91e-04±6.08𝑒 − 05 0.1561±0.0123 2.32e-04±2.46𝑒 − 05 0.0990±0.0082 1.84e-04±2.12𝑒 − 05
𝛾𝑙 = 0.8, 𝛾ℎ = 0.2 0.0512±0.0119 1.36e-04±3.60𝑒 − 05 0.1898±0.0095 2.88e-04±1.85𝑒 − 05 0.2288±0.0737 5.85e-04±2.21𝑒 − 04 0.2256±0.0096 3.86e-04±3.08𝑒 − 05 0.1053±0.0185 1.95e-04±4.34𝑒 − 05
𝛾𝑙 = 0.9, 𝛾ℎ = 0.1 0.3403±0.1513 9.74e-04±4.47𝑒 − 04 0.3226±0.0660 5.31e-04±1.20𝑒 − 04 0.9827±0.4229 2.84e-03±1.29𝑒 − 03 0.3250±0.0270 5.57e-04±3.22𝑒 − 05 0.2291±0.0605 4.86e-04±1.52𝑒 − 04

3.2 SELECTIVE LEARNING: FREQUENCY-BASED NOISE CONTROL TO OMIT TARGETED
INFORMATION

Following our original intuition, a denoising model has pressure to learn the very information that is
erased by the forward noising operator to achieve successful reconstruction. Conversely, when the
noising operator is crafted to leave parts of the original distribution intact, no such pressure exists,
and the denoising model can effectively discard the left-out statistics during generation.

In this section, we perform experiments whereby the original data is corrupted with noise at different
frequency ranges. The objective is to manipulate the inductive biases of diffusion denoisers to avoid
learning the corruption noise, while correctly approximating the relevant information in the data. We
formulate our corruption process as x′ = 𝐴𝑐 (x), where:

𝐴𝑐 (x) = x + 𝛾𝑐𝜖 𝑓 [𝑎𝑐 ,𝑏𝑐 ] (11)

Here, 𝜖 [𝑎𝑐 ,𝑏𝑐 ] denotes noise in the [𝑎𝑐, 𝑏𝑐] frequency range. We default 𝛾𝑐 = 1. and show samples
of the original and corrupted distributions in Figure 4. For any standard DPM training procedure,
the denoiser would make no distinction of which information to learn, and thus would approximate
the corrupted distribution presented at training time. As such, the recovery of the original, noiseless,
distribution would normally be impossible. Assuming knowledge of the corruption process, we
frame the frequency diffusion learning procedures as a noiseless distribution recovery process, and
set 𝑎𝑙 = 0, 𝑏ℎ = 1, 𝑏𝑙 = 𝑎𝑐, and 𝑎ℎ = 𝑏𝑐. This formulation effectively allows for the forward
frequency noising operator to omit the range of frequencies in which the noise lies. In line with our
previous rationale, this would effectively put no pressure on the denoiser to learn the noise part of the
distribution at hand, and focus instead on the frequency ranges where the true information lies.

We compare original and corrupted samples from MNIST, as well as samples from standard and
frequency diffusion-trained models in Figure 4. In line with our hypothesis, we observe frequency
diffusion DPMs trained with an appropriate frequency noise operator to be able to discard the
corrupting information and recover the original distribution after severe noisy corruption. We further
measure the FID and KID of the samples generated by the baseline and frequency DPMs against the
original (uncorrupted) data samples in Table 2. We perform 8 ablation studies, considering noises
at 0.1 non-overlapping intervals in the [0.1, .9] frequency range. We observe frequency diffusion
to outperform standard diffusion training across all tested ranges. Interestingly, we observe better
performance (lower FID) for data corruption in the high-frequency ranges, and reduced performance
for data corruptions in low-frequency ranges, suggesting a marginally higher information content in
the low frequencies for the MNIST dataset.

4 DISCUSSION AND CONCLUSION

In this work, we studied the potential to build inductive biases in the training and sampling of
Diffusion Probabilistic Models by purposeful manipulation of the forward, noising, process. We
introduced frequency diffusion, an approach that enables us to guide DPMs toward learning specific
statistics of the data distribution. We compare frequency diffusion to DPS trained with standard
gaussian noise on generative visual tasks set by several datasets, with significant varying structure and
scales. We show several key findings. First, we show that appropriate manipulation of the forward
noising process can serve as a stong inductive bias for diffusion models to better learn the information
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Table 2: Resulting FID and KID between standard diffusion and frequency diffusion DPMs trained
on noise-corrupted data, with respect to samples from the true uncorrupted distribution (mean ±
standard error across 3 seeds). We report eight ablation experiments across different non-overlapping
corruption noise schemes.

Dataset → Baseline Ours
Corruption ↓ FID (↓) KID (↓) FID (↓) KID (↓)

𝜖 [0.1,0.2] 3.2273±8.50𝑒 − 03 0.0114±3.13𝑒 − 05 2.7572±3.56𝑒 − 02 0.0095±1.47𝑒 − 04
𝜖 [0.2,0.3] 3.6601±4.43𝑒 − 03 0.0132±1.67𝑒 − 05 3.0416±4.47𝑒 − 02 0.0107±1.79𝑒 − 04
𝜖 [0.3,0.4] 3.4771±4.79𝑒 − 03 0.0125±1.89𝑒 − 05 2.9952±3.35𝑒 − 02 0.0106±1.23𝑒 − 04
𝜖 [0.4,0.5] 3.4281±5.46𝑒 − 03 0.0123±1.98𝑒 − 05 2.9218±2.54𝑒 − 02 0.0105±8.79𝑒 − 05
𝜖 [0.5,0.6] 3.3638±6.31𝑒 − 03 0.0121±2.32𝑒 − 05 2.8267±2.81𝑒 − 02 0.0102±9.32𝑒 − 05
𝜖 [0.6,0.7] 3.2444±7.10𝑒 − 03 0.0116±2.55𝑒 − 05 2.7026±3.90𝑒 − 02 0.0097±1.28𝑒 − 04
𝜖 [0.7,0.8] 3.0442±6.32𝑒 − 03 0.0109±2.29𝑒 − 05 2.5469±6.39𝑒 − 02 0.0091±2.00𝑒 − 04
𝜖 [0.8,0.9] 3.4660±7.90𝑒 − 03 0.0124±2.96𝑒 − 05 2.5138±9.63𝑒 − 02 0.0090±3.07𝑒 − 04

Figure 4: Samples from the original data distribution, the degraded data distribution, a standard
diffusion sampler trained on the degraded data distribution, and a frequency diffusion sampler trained
on the degraded data distribution. We generate noise for data corruption in the frequency range
[𝑎𝑐 = 0.5, 𝑏𝑐 = 0.6)].

of the distribution at particular frequencies. Second, we show that this important characteristic can
be readily used when training diffusion models on natural dataset, some of which may be better
supported by appropriate frequency diffusion schedules, yielding higher sampling quality. Third, we
show how this processes can be used to discard unwanted information at particular frequency ranges,
yielding DPMs capable of extract noiseless signals from the remaining ranges.

In our approach, we have limited the results to a simple two-band pass frequency filter. We propose
in Appendix A several other alternatives, which may serve as more flexible tools to inject useful
inductive biases for similar tasks. Moreover, the approach can be extended beyond constant schedules.
For instance, it may prove useful to introduce dynamic frequency noise strategies that shift the focus
from low-frequency (general shapes) to high-frequency (sharp edges and textures) components over
the time discretization of the sampling process. Such methods could more closely align with human
visual processing, which progressively sharpens details over time, offering a more natural sampling
process. Additionally, other domains of noise manipulation—outside of the frequency domain may
also present new opportunities for further improving DPMs across various tasks.

Finally, a current limitation of this approach lies in the complexity of understanding the relationship
between visual data in spatial and frequency domains. The perception of information in the frequency
domain does not always translate straightforwardly to visual content, complicating the process of
designing optimal noise schedules. As such, it is not trivial to design appropriate frequency schedules
for a particular distribution. In practice, empirical validation may still be required to identify the best
inductive biases for a given dataset. Future work could focus on refining analytical tools for frequency
analysis or exploring alternative inductive bias mechanisms that extend beyond frequency-based
manipulations.

Overall, this work opens the door for more targeted and flexible diffusion generative modeling by
building inductive biases through the manipulation of the forward nosing process. The ability to
design noise schedules that align with specific data characteristics holds promise for advancing the
state of the art in generative modeling.
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A FREQUENCY NOISE OPERATORS

In this section, we propose two alternatives to the design of 𝑤(f), which can be considered as viable
alternatives for frequency manipulations of the noise.

POWER-LAW WEIGHTING.

A natural alternative choice is the power-law weighting, expressed as:

𝑤(f) = ∥f∥𝛼, (12)

where f = ( 𝑓𝑥 , 𝑓𝑦) denotes a frequency coordinate, and the exponent 𝛼 determines which frequencies
are amplified or suppressed. Power-law weighting is popular in the modeling if natural phenomena
(e.g., fractal landscapes, turbulence) where the energy distribution often follows an approximate
power spectrum (Van der Schaaf & van Hateren, 1996).

EXPONENTIAL DECAY WEIGHTING

Another alternative is an exponential decay function, defined as as:

𝑤(f) = exp
(
−𝛽 ∥f∥2) , (13)

where 𝛽 > 0, and frequencies with larger norms ∥f∥ are exponentially suppressed. This weighting
effectively imposes spatial correlations, e.g. for 𝛽 close to 0 the function induces the retention of
more high-frequency components, while for large 𝛽, the function quickly damps out high frequencies,
resulting in a smoothing of the spatial domain.
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