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Abstract

Ensembling outputs from diverse sources is a straightforward yet effective approach1

to boost performance. Mixture-of-Agents (MoA) is one such popular ensemble2

method that aggregates outputs from multiple different Large Language Models3

(LLMs). This paper raises the question in the context of language models: is mixing4

different LLMs truly beneficial? We propose Self-MoA — an ensemble method5

that aggregates outputs from only the single top-performing LLM. Our extensive6

experiments reveal that, surprisingly, Self-MoA outperforms standard MoA that7

mixes different LLMs in a large number of scenarios: Self-MoA achieves 6.6%8

improvement over MoA on the AlpacaEval 2.0 benchmark, and an average of 3.8%9

improvement across various benchmarks, including MMLU, CRUX, and MATH.10

Applying Self-MoA to one of the top-ranking models in AlpacaEval 2.0 directly11

achieves the new state-of-the-art performance ranking 1st on the leaderboard. To12

understand the effectiveness of Self-MoA, we systematically investigate the trade-13

off between diversity and quality of outputs under various MoA settings. We14

confirm that the MoA performance is rather sensitive to the quality, and mixing15

different LLMs often lowers the average quality of the models. To complement16

the study, we identify the scenarios where mixing different LLMs could be helpful.17

This paper further introduces a sequential version of self-MoA, that is capable of18

aggregating a large number of LLM outputs on-the-fly over multiple rounds, and is19

as effective as aggregating all outputs at once.20

1 Introduction21

Large language models, like GPT [Achiam et al., 2023], Gemini [Team et al., 2023], and Claude [An-22

thropic, 2023], have significantly advanced performance across various domains. Efforts have focused23

on increasing model size and training data to enhance capabilities, but this approach incurs high costs.24

Meanwhile, scaling computation during inference remains relatively underexplored.25

A straightforward way to leverage test-time computation is through ensembling, which combines26

outputs from multiple LLMs [Wang et al., 2024a, Lin et al., 2024, Jiang et al., 2023a]. One promising27

approach is Mixture-of-Agents (MoA)[Wang et al., 2024a], which has shown strong performance in28

tasks like instruction following, summarization, data extraction[OpenPipe, 2024], and resolving real-29

world code issues [Zhang et al., 2024b]. MoA works by first querying several LLMs (proposers) to30

generate responses, which are then synthesized into a high-quality response by an LLM (aggregator).31

Previous research highlights the significance of model diversity within the proposers for optimizing32

the performance of MoA, primarily focusing on strategies for ensembling a diverse set of individual33

models. We consider cross-model diversity as the variation among different models. However,34

pursuing cross-model diversity may inadvertently include low-quality models, resulting in a quality-35

diversity trade-off. While previous studies mainly concentrate on achieving a high cross-model36
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diversity [Wang et al., 2024a, Zhang et al., 2024b], we adopt a holistic perspective on model diversity37

by considering in-model diversity, which arises from the variability of multiple responses generated38

by the same model. In-model diversity enables us to aggregate multiple outputs from an individual39

model. Intuitively, leveraging outputs from the best-performing individual model can more effectively40

navigate the quality-diversity trade-off by creating a higher-quality proposer mixture. Thus, we41

propose Self-MoA as depicted in Figure 2b, which utilizes the same prompting template as MoA42

but aggregates outputs that are repeatedly sampled from the same model, rather than from a set of43

different models. To distinguish, we use Mixed-MoA to refer to MoA configurations that combine44

different individual models when necessary.45

Surprisingly, we find that Mixed-MoA is usually sub-optimal compared with Self-MoA, especially46

when there exist significant quality differences among the proposers. Specifically, we revisit the47

same experiment setting of MoA with six open-source instruction fine-tuned models as Wang et al.48

[2024a]. Compared with Mixed-MoA which aggregates all six models, Self-MoA on the strongest49

model surpasses its mixed counterpart with merely half of the forward passes on the AlpacaEval 2.050

benchmark, showing a case of when intra-model diversity is more effective. Moreover, Self-MoA51

combined with two best-performed models on AlpacaEval 2.0 consistently achieves a 2-3 point gain52

and secures the top position on the leaderboard, which further confirms the effectiveness of Self-MoA53

in this evaluation task.54

To explore the limits of model diversity for MoA, we extend our experiments to a setting with55

three specialized models, each excelling in a specific task. Specifically, we utilize Qwen2-7B-56

Instruct [Bai et al., 2023] for common sense QA (MMLU-redux [Gema et al., 2024]), Qwen2-Math-57

7B-Instruct [Bai et al., 2023] for mathematics (MATH [Hendrycks et al., 2020]), and DeepSeek-58

Coder-V2-Lite-Instruct for coding (CRUX [Gu et al., 2024]). We compare Self-MoA against a range59

of Mixed-MoA strategies, evaluating 13 combinations of individual models based on their average60

performance across the three tasks. Our findings indicate that, even in this promising scenario for61

Mixed-MoA where each individual model excels in a specific subtask, only two Mixed-MoA strategies62

slightly outperform Self-MoA by 0.17% and 0.35%. Furthermore, if we have prior knowledge of the63

tasks and employ task-specific models as proposers for Self-MoA such as DeepSeek-Coder-V2-Lite-64

Instruct on CRUX or Qwen2-Math-7B-Instruct on MATH, Self-MoA can significantly outperform65

the best Mixed-MoA.66

To better understand Self-MoA’s effectiveness, we conducted a comprehensive analysis of the quality-67

diversity trade-off in MoA through over 200 experiments. We used the Vendi Score [Dan Friedman68

and Dieng, 2023] to assess diversity among proposers’ outputs and measured quality by their average69

performance. In Section 3, we confirm that MoA performance has a positive correlation with both70

quality and diversity. Additionally, we reveal a clear trade-off along the Pareto front between these two71

factors. Notably, we find that MoA is highly sensitive to quality variations, with optimal performance72

typically occurring in regions with high quality and relatively low diversity. This explains Self-MoA’s73

effectiveness, as it leverages the strongest model, ensuring consistently high-quality outputs.74

Finally, we assess Self-MoA’s performance under increasing computational budgets. As the number75

of outputs increases, its scalability is limited by the aggregator’s context length. To overcome this,76

we introduce Self-MoA-Seq (Figure 2c), a sequential version that processes outputs with a sliding77

window, enabling it to handle any number of model outputs. Our results show that Self-MoA-Seq78

performs at least as well as Self-MoA, allowing scalable ensembling for LLMs with shorter context79

lengths without sacrificing performance.80

Overall, our contributions are three-fold:81

• We propose Self-MoA, which leverages in-model diversity by synthesizing multiple outputs82

from the same model. Surprisingly, it outperforms existing Mixed-MoA approaches that83

focus on cross-model diversity across a variety of benchmarks.84

• Through systematic experiments and statistical analysis, we uncover a core trade-off between85

diversity and quality among the proposers, emphasizing that MoA is highly sensitive to86

proposer quality. This finding also explains the success of Self-MoA, which leverages87

outputs from the highest-performing model, ensuring superior overall quality.88

• We extend Self-MoA to its sequential version Self-MoA-Seq, which iteratively aggregates a89

small amount of outputs step by step. Self-MoA-Seq unlocks LLMs that are constrained by90

the context length and enables computation scaling during inference.91
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Table 1: Comparison of Self-MoA and Mixed-MoA on AlpacaEval 2.0 leaderboard. We use Qwen1.5-
110B-Chat as the aggregator.

Model Configuration LC Win Rate # Forward Passes

Individual

WizardLM-2-8x22B 53.1 1
Qwen1.5-110B-Chat 43.9 1
LLaMA-3-70B-Instruct 34.4 1
Qwen1.5-72B-Chat 36.6 1
Mixtral-8x22B-Instruct-v0.1 30.2 1
dbrx-instruct 25.4 1

Mixed-MoA MoA-Lite [Wang et al., 2024a] 59.1 7
3-Layer MoA [Wang et al., 2024a] 65.4 13

Self-MoA Self-MoA + WizardLM-2-8x22B 65.7 7

2 Is Ensembling Different LLMs Beneficial?92

As introduced in Section 1, previous research primarily emphasizes cross-model diversity, which93

can inadvertently include low-quality proposers. In this work, we introduce Self-MoA (Figure 2),94

which uses a single top-performing model to generate multiple outputs and aggregate them to produce95

the final result. Self-MoA leverages in-model diversity as repeated sampling often produces varied96

outputs. We propose our research question as follows:97

Does the benefit of MoA stem from cross-model diversity?98

Can we build a stronger MoA by utilizing in-model diversity?99

We adopt the same experiment setting as Wang et al. [2024a] in AlpacaEval 2.0 benchmark (Ap-100

pendix B.2) and compare the performance of MoA and Self-MoA1. Following Wang et al. [2024a],101

we construct MoA based on six individual models: Qwen1.5-110B-Chat [Bai et al., 2023], Qwen1.5-102

72B-Chat [Bai et al., 2023], WizardLM-8x22B [Xu et al., 2023], LLaMA-3-70B-Instruct [Touvron103

et al., 2023], Mixtral-8x22B-Instruct-v0.1 [Jiang et al., 2024a], and dbrx-instruct [Team et al., 2024b].104

Each model is sampled with a temperature of 0.7, following the default in [Wang et al., 2024a].105

For Self-MoA, we aggregate six outputs sampled from WizardLM-2-8x22B, as it consistently out-106

performs the other models. In line with Wang et al. [2024a], we use Qwen1.5-110B-Chat as the107

aggregator for both MoA and Self-MoA.108

We present the LC win rate for each model configuration in Table 1. For individual models, we109

report the higher value between the leaderboard results and our reproduction. Additionally, we110

include the total number of forward passes, where one forward pass is counted each time a proposer111

model generates an output or an aggregator synthesizes a result. Notably, Self-MoA demonstrates112

remarkable effectiveness in this task, outperforming the strongest MoA baseline with only half the113

forward passes. This suggests that, while using multiple models intuitively offers greater diversity,114

ensembling multiple outputs from a single model is more effective.115

To further validate the effectiveness of Self-MoA, we apply it to the two top-performing models116

on AlpacaEval 2.0, and find Self-MoA consistently achieves a 2-3 point gain and secures the top117

position on the leaderboard during submission. We also extend experiments to more diverse tasks118

and specialized models, observing promising results of aggregating outputs from only the single119

top-performing LLM. More details are deferred to Appendix C.1 and Appendix C.2.120

3 The Quality-Diversity Trade-off121

We investigate factors that contribute to the strong performance of Self-MoA through careful ex-122

periments. Previous studies have mainly focused on increasing model diversity within the group123

1We note that this experiment is similar to the “single-proposer" setting in Wang et al. [2024a], however
our reproduced result is different. We conjecture that such a major difference is due to different choices of the
proposer model, which is not mentioned in Wang et al. [2024a]. As we shall see later in Section 3, ensembling
performance is more sensitive to quality rather than diversity. Therefore, a worse proposer model will lead to
suboptimal performance of Self-MoA.
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Figure 1: The diversity-quality trade-off: Mixed-MoA incorporates different individual models
as proposers, while Self-MoA uses the same individual model for this role. Quality is assessed
based on the average performance of each proposer, and diversity is computed with the Vendi
Score [Dan Friedman and Dieng, 2023] of outputs generated by proposers on the same prompts. A
zoomed version is provided in Appendix D.

(cross-model diversity) [Wang et al., 2024a, Jiang et al., 2023a, Zhang et al., 2024b]. However,124

searching for diverse models can sometimes lead to including poorly performed models, resulting125

in a trade-off between diversity and quality, where quality refers to how well each individual model126

performs in the group.127

Therefore, we aim to identify the existence of a general relationship between MoA’s performance128

and quality as well as diversity. Following Section 2, we evaluate MoA’s performance on MMLU,129

CRUX, and MATH, which cover tasks requiring a wide range of capabilities. We vary the quality130

and diversity with two orders of freedom: 1) combinations of individual models in proposers from131

Section C.2; and 2) sampling temperature. i.e., 0.5, 0.7, 1.0, 1.1, and 1.2. This results in a total of132

over 70 unique MoA proposer mixtures. We measure the quality and diversity with Vendi Score133

(Appendix B.4) and average accuracy.134

Results. We plot MoA’s performance with corresponding diversity and quality for each mixture of135

proposers in Figure 1. We summarize key observations as follows:136

• The trends among MMLU, CRUX, and MATH are consistently aligned.137

• When the quality is fixed, increasing diversity can enhance MoA’s performance.138

• When the diversity is fixed, improving quality can also boost MoA’s performance.139

• There exists a trade-off in the achievable Pareto front between diversity and quality.140

• Notably, the best performance of MoA is typically observed in the bottom right of each141

subplot, indicating a strong sensitivity to quality.142

Previous work on ensembles [Wang et al., 2024a, Jiang et al., 2023a, Zhang et al., 2024b] primarily143

focuses on increasing the diversity of models within the proposer mixture. However, as shown in144

Figure 1, compared to Self-MoA on the best-performing model, simply aiming for greater diversity145

in the proposer mixture can result in lower overall quality, which may negatively impact MoA’s146

performance. This trade-off between diversity and quality helps to explain why Self-MoA achieves147

superior performance across various benchmarks.148

With statistical analysis conducted in Appendix C.3, we further confirm the positive correlation149

between MoA performance and both quality and diversity, while prioritizing quality over diversity.150

4 Conclusion151

In this paper, we introduce Self-MoA, an innovative approach that utilizes in-model diversity to en-152

hance the performance of large language models during inference. Our experiments demonstrate that153

Self-MoA outperforms traditional Mixed-MoA strategies in many popular benchmarks, particularly154

when the proposer model quality varies. By aggregating outputs from a single high-performing model,155

Self-MoA effectively addresses the quality-diversity trade-off. We further identify the scenarios where156

mixing LLM can be potentially beneficial (deferred to Appendix C.4) and extend Self-MoA to the157

constrained context length setting (deferred to Appendix C.5). These findings highlight the potential158

of in-model diversity in optimizing LLM performance and pave the way for further advancements in159

ensemble methods.160
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A Related Work298

Ensembles of LLMs. Model ensembling aims to combine strengths from multiple models. Previous299

studies have explored various methods to leverage a diverse set of models, including but not limited to300

prompting [Wang et al., 2024a], weight averaging [Lin et al., 2024, Ramé et al., 2024], routing [Jiang301

et al., 2024b, Lu et al., 2023], training a generative fusion model [Jiang et al., 2023b], and so on.302

Zhang et al. [2024a] argues that the fusion of specialized models with certain general abilities could303

be a promising direction toward Artificial General Intelligence. Mixture-of-Agents (MoA, Wang et al.304

[2024a]) first queries multiple LLMs to generate responses, then iteratively aggregates these samples305

through several rounds of synthesis. MoA shows promising results on several benchmarks, and its306

variants achieve superior performance on the AlpacaEval 2.0 leaderboard. Our method is inspired307

by the prompt pipeline proposed in MoA. However, while existing MoA focuses on unleashing the308

strength from multiple different models [Wang et al., 2024a, Jiang et al., 2023b, Zhang et al., 2024b],309

we demonstrate the trade-off between diversity and quality within the proposers, highlighting that310

focusing solely on diversity may compromise overall quality and final performance.311

LLM Inference with Repeated Sampling. Previous studies have shown that combining model312

outputs from repeated sampling can yield a better response in various domains. In tasks with313

automatic verifiers available, such as math [Hendrycks et al., 2021] and code [Chen et al., 2021],314

simply sampling LLMs multiple times can significantly improve the pass@k metric and hence boost315

the success rate of solving the tasks [Roziere et al., 2023, Li et al., 2022, Brown et al., 2024]. In316

more general tasks without verification tools, we can conduct techniques like majority vote, self-317

consistency, and best-of-n to choose the most promising one from candidate responses [Wang et al.,318

2022, Chen et al., 2023b, Gui et al., 2024, Li et al., 2024]. Therefore, repeated sampling is recently319

regarded as one approach of scaling compute during inference time [Brown et al., 2024]. In this work,320

we identify the surprising effectiveness of repeated sampling in the context of MoA. Unlike majority321

vote or best-of-N, Self-MoA asks LLMs to synthesize outputs generated from repeated sampling,322

hence can further improve over each individual output.323

Collaborative Agents There is a surge of interest in building agent systems based on verification,324

critique, discussion, and refinement. For example, Stechly et al. [2023], Valmeekam et al. [2023], and325

Madaan et al. [2024] use self-critique to iteratively refine outputs through a chain structure. Madaan326

et al. [2024], Chen et al. [2024], and Wang et al. [2024a] explore the incorporation of multiple models327

to create a stronger agent that outperform each individual model. Du et al. [2023] incorporates328

multiple LLMs that propose and debate their individual responses over several rounds to reach a329

common final answer. Liang et al. [2023] proposes Multi-Agent Debate, which encourages divergent330

thinking during LLM debates to arrive at more informative conclusions and avoid rushing to incorrect331

answers. Chen et al. [2023a] introduces RECONCILE, which adopts a confidence-weighted voting332

mechanism for better consensus among LLM discussions. Interestingly, Wang et al. [2024b] shows333

that a single model with carefully designed prompts can sometimes match the performance of agent334

discussions. Moreover, agent discussions mainly outperform a single LLM when the prompts are335

insufficient.336

B Supplements337

B.1 Visual Illustrations of Our Proposed Methods338

Please check Figure 2 for an illustration of MoA, Self-MoA, and Self-MoA-Seq.339

B.2 Evaluation Benchmarks340

AlpacaEval 2.0 [Dubois et al., 2024] is a widely used benchmark for assessing the instruction-341

following abilities of LLMs. It offers a set of real-world instructions and employs a GPT-4-based342

annotator to compare the model’s responses against reference answers generated by GPT-4. To address343

length bias inherent in model-based evaluation, Dubois et al. [2024] introduced the length-controlled344

(LC) win rate as a more robust evaluation metric.345

MMLU [Hendrycks et al., 2020] is a multiple-choice dataset designed to assess a model’s multitask346

accuracy. MMLU is widely used to evaluate both the breadth and depth of language understanding347
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Figure 2: Comparison of MoA, Self-MoA, and Self-MoA-Seq. (a) In MoA, multiple models respond
to a query, followed by an aggregator synthesizing their outputs. (b) Self-MoA simplifies this by
repeatedly sampling from a single model. (c) Self-MoA-Seq extends Self-MoA by applying a sliding
window to combine the best output so far with candidate outputs. At each timestep, the synthesized
output is repeated to bias the aggregator towards it, reducing the context length requirements and
expanding the method’s applicability. Note that MoA can extend to multiple rounds of aggregation
(Appendix B.3), while Self-MoA and Self-MoA-Seq can extend to more outputs, but we omit them
here for clarity.

capabilities of current LLMs across a diverse array of subjects, including mathematics, history,348

computer science, logic, and law. We adopt MMLU-redux [Gema et al., 2024] for evaluation, which349

is a subset of MMLU with 3,000 samples fixing the errors in the dataset through human re-annotating.350

CRUX [Gu et al., 2024] consists of 800 Python code functions, each containing 3 to 13 lines351

along with an input-output pair. Based on this dataset, Gu et al. [2024] constructs two tasks: input352

prediction and output prediction. To successfully complete these tasks, the LLM must demonstrate353

code reasoning abilities.354

MATH [Hendrycks et al., 2021] comprises 12,500 challenging competition-level mathematics355

problems. For our analysis, we utilize the testing subset of MATH, which consists of 5,000 samples.356

B.3 Multi-Layer MoA357

MoA can be extended to multiple layers. For MoA with l layers and n LLMs {Ai,j}nj=1 in each layer358

i, we can formulate it as follows:359

yi =

n⊕
j=1

[Ai,j(xi)] + x1, xi+1 = yi,

where each LLM Aj
i generates a response for the query xi, which is further concatenated with the360

original query by the aggregator’s prompt
⊕

.361

B.4 Vendi Score362

The Vendi Score (VS) is a metric designed to evaluate diversity in machine learning. It takes as input363

a collection of samples along with a pairwise similarity function, and it outputs a single value that364

represents the effective number of unique elements within the sample set.365

The score is computed using a positive semi-definite similarity matrix K ∈ Rn×n as follows:366

V S(K) = exp

(
−tr
(
K

n
log

(
K

n

)))
= exp

(
−

n∑
i=1

λi log(λi)

)

Here, λi are the eigenvalues of the normalized matrix K
n , and 0 log 0 = 0. Essentially, the Vendi367

Score is the exponential of the von Neumann entropy of K
n , which reflects the Shannon entropy of368
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its eigenvalues, also referred to as the effective rank. This metric provides a quantitative measure of369

diversity based on the distribution of similarity scores among the samples.370

B.5 Normalization of Inputs371

Given a sequence of inputs x1, ..., xn. Let x′ denote the normalized x. We have372

x′ =
xi − x̄

std(x)
, where x̄ =

1

n

n∑
i=1

xi, and std(x) =

√√√√ 1

n

n∑
i=1

(xi − x̄)2

B.6 Implication of R-squre373

The implications of R-squared are presented in Table 2, illustrating the degree of influence between374

the independent and dependent variables. [Sarjana et al., 2020].

Table 2: The interpretation of R-square

R-square Level

[0, 0.2) Very weak

[0.2, 0.4) Weak

[0.4, 0.6) Median

[0.6, 0.8) Strong

[0.8, 1.0] Very Strong

375

C Additional Results376

C.1 Applying Self-MoA on AlpacaEval 2.0377

To further validate the effectiveness of Self-MoA, we apply it to the two top-performing models on378

AlpacaEval 2.0: gemma-2-9b-it-WPO-HB [Zhou et al., 2024] and gemma-2-9b-it-SimPO [Meng379

et al., 2024]. We use each model as both the proposer and the aggregator2, with a temperature of380

0.7 for all the generations. Due to the context length constraint of Gemma 2 [Team et al., 2024a],381

the aggregator can only take four samples as the input. As shown in Table 3, Self-MoA consistently382

achieves a 2-3 point gain and secures the top position on the leaderboard during submission.383

C.2 Experiments on Multiple Datasets with Specialized Models384

In this section, we explore different ensembling methods on a diverse set of benchmarks using385

specialized models.386

Evaluation datasets. We conduct evaluations across a diverse set of benchmarks: MMLU, CRUX,387

and MATH. Please check Appendix B.2 for more details.388

Models. To ensure sufficient diversity, we select three LLMs with specialized strengths: Qwen2-7B-389

Instruct3, DeepSeek-Coder-V2-Lite-Instruct4, and Qwen2-Math-7B-Instruct5. We fix the number of390

proposers to six and sweep various combinations of these three models. For convenience, we denote391

Qwen2-7B-Instruct as i, DeepSeek-Coder-V2-Lite-Instruct as d, and Qwen2-Math-7B-Instruct as m.392

The evaluation results in Table 4 show that Qwen2-7B-Instruct, DeepSeek-Coder-V2-Lite-Instruct,393

and Qwen2-Math-7B-Instruct excel on MMLU, CRUX, and MATH, respectively. We use the short394

2Qwen1.5-110B-Chat is not used as the aggregator since the two top models significantly outperform it.
3https://huggingface.co/Qwen/Qwen2-7B-Instruct
4https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
5https://huggingface.co/Qwen/Qwen2-Math-7B-Instruct
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Table 3: Self-MoA achieves state-of-the-art performance on the AlpacaEval 2.0 leaderboard when
using top-performing models as both proposers and aggregators. We only ensemble 4 outputs due to
context window constraints.

Model Configuration LC Win Rate

Individual gemma-2-9b-it-WPO-HB 76.7
gemma-2-9b-it-SimPO 72.4

Self-MoA Self-MoA + gemma-2-9b-it-WPO-HB 78.5 (rank #1)
Self-MoA + gemma-2-9b-it-SimPO 75.0

Table 4: Comparison of Self-MoA and Mixed-MoA in MMLU, CRUX, and MATH. Mixed-MoA
models with top two average performances are highlighted by underline. The labels i, m, and
d refer to Qwen2-7B-Instruct, DeepSeek-Coder-V2-Lite-Instruct, and Qwen2-Math-7B-Instruct,
respectively. The average performance represents the mean accuracy across MMLU, CRUX, and
MATH. TaskBest indicates that we use the strongest model for each task as both proposer and
aggregator. For instance, in the case of CRUX, TaskBest refers to DeepSeek-Coder-V2-Lite-Instruct
(d.

Aggregator Proposer MMLU CRUX MATH Average

Individual
- i 66.16 36.25 53.81 52.07
- d 60.91 49.51 53.82 54.74
- m 54.36 27.88 69.576 50.60

Mixed-MoA i

iimmdd 67.89 42.88 64.38 58.38
imdddd 67.42 44.50 63.90 58.61
iiiimd 68.90 41.25 63.00 57.72
immmmd 66.63 42.75 66.02 58.47
iimmmm 66.23 39.25 66.10 57.19
iiimmm 67.49 38.25 64.16 56.63
iiiimm 68.00 37.00 62.92 55.97
iidddd 68.21 45.50 62.56 58.76
iiiddd 68.21 42.88 62.38 57.82
iiiidd 68.47 40.75 61.24 56.82
mmdddd 66.34 46.75 66.48 59.86
mmmddd 65.80 47.00 67.32 60.04
mmmmdd 65.44 42.50 67.62 58.52

Self-MoA
i dddddd 65.23 50.75 63.08 59.69
i 6×TaskBest 69.01 50.75 68.42 62.73

TaskBest 6×TaskBest 69.01 52.62 69.806 63.81

name for the mixture of proposers. For example, iiddmm indicates the inclusion of two samples from395

each model respectively. When a model is represented multiple times in the proposer mixture, we396

ensure that two samples are generated with different random seeds. We set the temperature of each397

model to be 0.7 for the individual model, and use temperature 0 for the aggregator. We mainly use398

Qwen2-7B-Instruct as the aggregator but also try different models as the aggregator. We explore399

various MoA configurations, including individual models, combinations of two or three models as400

proposers, and using a single model as the proposer (Self-MoA).401

Results. The results are shown in Table 4. When considering i as the aggregator, among 11 tested402

combinations of proposers for MoA, only two combinations slightly outperformed Self-MoA with403

dddddd. Specifically, the combinations mmdddd and mmmddd outperformed dddddd by 0.17% and404

0.35%, respectively. The performance of the remaining MoA models was inferior to that of dddddd.405

6As Qwen2-Math-7B-Instruct only supports context length of 4096, for these two data points, we sample the
proposer with a reduced token length of 1024, and only aggregates three outputs from the proposer.
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Table 5: Linear regression (Equation 1) of MoA’s performance t on diversity d and quality q.

Dataset α β R-squareCoefficient P-value Coefficient P-value

MMLU 2.558 ± 0.176 < 0.001 1.841 ± 0.176 < 0.001 0.771

CRUX 4.548 ± 0.459 < 0.001 1.421 ± 0.459 < 0.001 0.685

MATH 4.719 ± 0.416 < 0.001 2.839 ± 0.416 < 0.001 0.760

Adding model diversity does not necessarily enhance performance. For instance, MoA with iimmdd406

performs worse than mmmddd in terms of average accuracy. Although model i is the strongest on407

MMLU among individual models, its inclusion in the proposers does not improve overall performance408

on the mixed datasets, i.e., mmmddd has 60.04% overall performance while iimmdd only has 58.38%.409

The performance of Self-MoA can be significantly improved when we are allowed to select the410

strongest model for each task. This is particularly beneficial when we have prior knowledge of the411

task we wish to address. As shown in Table 4, when we use Qwen2-7B-Instruct as the aggregator,412

Self-MoA achieves a performance of 62.73% by selecting the appropriate proposer for each task.413

Additionally, employing a task-specific aggregator further boosts overall performance to 63.81%. We414

postpone more discussion to Section C.4.415

C.3 Statistical Analysis416

To further understand the numerical correlation between MoA’s performance and diversity as well417

as quality, we conduct linear regression for MoA’s performance t on diversity d and quality q.418

Specifically, we fit the following equation for each dataset:419

t = α× q + β × d+ γ, (1)

where α, β, γ ∈ R are real-valued coefficients to be determined. For each dataset, we collect around420

70 data points from Figure 1 to construct the set {qi, di, ti}Ni=1. The coefficients α, β, and γ are then421

derived by solving a linear regression on {qi, di, ti}Ni=1. To make coefficients α and β comparable,422

we normalize q and d by subtracting their means and dividing by their standard deviations (detailed423

in Appendix B.5), respectively. The results are presented in Table 5. We observe that the p-values for424

both α and β are less than 0.001, indicating a significant correlation between MoA’s performance425

and both quality and diversity [Arnold, 1990]. The R-squared values from the linear regression426

across three datasets are approximately around 0.7, indicating that the linear model based on quality427

and diversity explains 70% MoA’s performance and hence a strong correlation between inputs and428

outputs, according to Appendix B.6. In later parts, we show that using a more fine-grained quality429

calculation can further increase the R-square value.430

Comparing the effect strength of quality and diversity. From Table 5, we observe that α is431

greater than β across all three datasets. In particular, for CRUX and MATH, the gap between432

these two measures is even more pronounced. These results suggest that MoA’s performance is433

particularly sensitive to variations in quality, highlighting the importance of prioritizing quality within434

the proposer mixture. This finding is also consistent with our observation that MoA achieves its best435

performance in the bottom right of the plot in Figure 1, further supporting the effectiveness of our436

proposed Self-MoA approach.437

Alternative quality measurements. We use the averaged accuracy of each individual model to438

measure quality in the previous analysis. In this section, we explore alternative methods for assessing439

the quality of proposers. Recall that q1, . . . , q6 denote the accuracy of each individual model among440

proposers, and without loss of generality, we assume q1 ≥ q2 ≥ . . . ≥ q6. It is reasonable to assume441

that the aggregator can select the correct answer from the proposers, particularly when the responses442

of individual models are inconsistent. In such cases, the aggregator would rely more heavily on443

models with better individual performance, meaning the weight of q1 would be greater than that of444

q6.445

Therefore, we compare the following methods to calculate quality:446

• Average: 1
6

∑6
i=1 qi.447
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Table 6: The R-square of the linear regression when we use different quality measurement methods.
We find using Centered-1/K-Norm with K=2 can achieve good performance among all these three
datasets.

Dataset Method Average (K=1) K=2 K=3 K=4

MMLU K-Norm 0.771 0.809 0.832 0.845
Centered-1/K-Norm 0.771 0.881 0.902 0.903

CRUX K-Norm 0.685 0.736 0.765 0.779
Centered-1/K-Norm 0.685 0.753 0.758 0.753

MATH K-Norm 0.760 0.720 0.692 0.672
Centered-1/K-Norm 0.760 0.720 0.692 0.672

• K-Norm:
(

1
6

∑6
i=1 q

K
i

)1/K
, where a larger K places more emphasis on stronger individual448

models.449

• Centered-1/K-Norm: q1−
(

1
6

∑6
i=1(q1 − qi)

1/K
)K

. In this formulation, we first compute450

the difference between qi and the best model’s q1. The 1/K norm emphasizes the weights451

of models whose performance is closer to q1.452

All three methods are the same when K = 1. For each quality measurement, we fit a linear regression453

to assess the relationship between MoA’s performance and the quality and diversity metrics, reporting454

the R-squared values in Table 6. Our analysis shows that in MMLU and CRUX, applying a larger455

weight to better-performing individual models tends to increase the R-squared values. However, this456

trend is inconsistent for MATH. We conjecture that this inconsistency arises because the aggregator457

Qwen2-7B-Instruct is relatively weak on MATH compared to the strongest individual model, Qwen2-458

Math-7B-Instruct. This limitation constrains the performance of MoA, leading to an inconsistent459

trend in the linear regression results. In contrast, on MMLU, where Qwen2-7B-Instruct is the460

strongest individual model, we find that the R-squared value can exceed 0.9 with K = 2 using the461

Centered-1/K-Norm. This indicates a very strong linear relationship between MoA performance and462

the quality and diversity metrics. Overall, we conclude that employing Centered-1/K-Norm with463

K = 2 (marked in blue) achieves strong performance across all three datasets.464

C.4 When Mixed-MoA Outperforms Self-MoA?465

According to the quality-diversity trade-off illustrated in Figure 1, we conjecture that increasing466

diversity can enhance MoA’s performance when the quality is controlled.467

Typically, Mixed-MoA exhibits greater diversity than Self-MoA. Therefore, conditioned on similar468

quality, Mixed-MoA can outperform Self-MoA. This scenario arises when individual models demon-469

strate similar performance while still exhibiting significant cross-model diversity. For instance, if470

we combine three tasks of MMLU, CRUX, and MATH, the average performances of the individual471

models are 52.07%, 54.74%, and 50.60%, respectively (Table 4). In this combined task, each model472

specializes in different parts, with i performing best on MMLU, d on CRUX, and m on MATH.473

From the “Average" column of Table 4, we observe that Mixed-MoA indeed outperforms Self-MoA of474

dddddd, which is aggregating samples from the individual model with the best average performance.475

Specifically, Mixed-MoA of mmdddd and mmmddd achieves the average performance of 59.86% and476

60.04%, improves upon Self-MoA of dddddd by 0.35%. Given the reported small margin, we argue477

that Self-MoA is still a very competitive baseline under this setting, not to mention the dominant478

performance of Self-MoA over Mixed-MoA when focusing on one single task.479

We further consider another single-task case on MMLU, involving two individual models: Llama-480

3.1-8B-Instruct and Qwen2-7B-Instruct, with Qwen2-7B-Instruct serving as the aggregator. We481

choose Llama-3.1-8B-Instruct because it performs similarly to Qwen2-7B-Instruct as an individual482

model. Table 7 demonstrates that even when the performance of two individual models is close,483

Self-MoA—utilizing six Llama-3.1-8B-Instruct proposers (denoted as llllll)—still outperforms484

the Mixed-MoA configuration (denoted as iiilll).485
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Table 7: MoA of Llama-3.1-8B-Instruct and Qwen2-7B-Instruct. l is short for Llama-3.1-8B-Instruct
and i is short for Qwen2-7B-Instruct.

Aggregator Proposer MMLU

Individual - i 66.16
- l 66.40

Mixed-MoA i iiilll 70.73

Self-MoA i iiiiii 69.01
i llllll 71.27
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Figure 3: The performance of Self-MoA and Self-MoA-Seq with a growing number of samples.
Dashed lines indicate the performance of a single forward pass with the base model.

C.5 Scaling Inference Compute with Self-MoA486

In previous sections, we have provided evidence that Self-MoA over one strong model is straightfor-487

ward but effective. As the community is becoming more aware of scaling inference time comput-488

ing [Brown et al., 2024, Snell et al., 2024, Wu et al., 2024], one natural question to ask is:489

Given a strong model, does Self-MoA’s performance scale with the number of repeated samples?490

Intuitively, Self-MoA cannot scale indefinitely by simply increasing the computation budget for at491

least three reasons:492

• As more responses are sampled from a single model, the diversity among those samples493

tends to plateau.494

• Aggregating information from many samples is more challenging for LLMs compared to495

handling a smaller number of samples.496

• Every LLM has a context length limit (e.g., 8192 tokens for Gemma 2), which restricts the497

number of responses an aggregator can process at once.498

While the first limitation is inherent to repeated sampling, we address the latter two by introducing Self-499

MoA-Seq, a sequential variant designed to manage large numbers of responses without overwhelming500

the aggregator. Self-MoA-Seq uses a sliding window to aggregate a fixed number of responses at a501

time, allowing it to handle an unlimited number of responses, regardless of context length constraints.502

A visual illustration is provided in Figure 2.503

We evaluate the performance of Self-MoA and Self-MoA-Seq with increasing sample sizes on the504

MMLU and CRUX benchmarks to study their scaling behavior. For each benchmark, we use the505

best-performing model as both the proposer and aggregator (Qwen2-7B-Instruct for MMLU and506

DeepSeek-Coder-V2-Lite-Instruct for CRUX), with a sampling temperature of 0.7. In Self-MoA-Seq,507

the window size is set to six, with the first three slots reserved for the current synthesized output. We508
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vary the number of samples from 6 to 30 and plot the accuracy curves from three runs with different509

seeds in Figure 3. Our key observations are as follows:510

• Both Self-MoA and Self-MoA-Seq significantly improve performance over the individual511

base model.512

• Adding more samples can have both positive and negative effects, meaning there is no513

universal compute-optimal solution.514

• Self-MoA-Seq delivers performance that is comparable to, or slightly better than, Self-MoA.515

These findings suggest that Self-MoA-Seq can extend the effectiveness of Self-MoA to LLMs with516

shorter context lengths, without sacrificing performance. Following Section C.4, we explore whether517

introducing a second model can enhance performance in the sequential setting. Given that Llama-3.1-518

8B-Instruct performs similarly to Qwen2-7B-Instruct on the MMLU task, we compare the impact of519

adding Llama-3.1-8B-Instruct and DeepSeek-Coder-V2-Lite-Instruct (which underperforms Qwen2-520

7B-Instruct by 5%) after aggregating 30 samples from Qwen2-7B-Instruct in Self-MoA-Seq. We find521

that incorporating Llama-3.1-8B-Instruct boosts accuracy by around 2%, whereas adding DeepSeek-522

Coder-V2-Lite-Instruct reduces accuracy by more than 1.5%. This result provides another example523

of cross-model diversity benefiting MoA, and shows the potential of Self-MoA-Seq with increasing524

computation budget.525

D Zoomed Figures526

Figure 4 is a zoomed version of Figure 1.527
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Figure 4: A zoomed version of Figure 1.

16


	Introduction
	Is Ensembling Different LLMs Beneficial?
	The Quality-Diversity Trade-off
	Conclusion
	Related Work
	Supplements
	Visual Illustrations of Our Proposed Methods
	Evaluation Benchmarks
	Multi-Layer MoA
	Vendi Score
	Normalization of Inputs
	Implication of R-squre

	Additional Results
	Applying Self-MoA on AlpacaEval 2.0
	Experiments on Multiple Datasets with Specialized Models
	Statistical Analysis
	When Mixed-MoA Outperforms Self-MoA?
	Scaling Inference Compute with Self-MoA

	Zoomed Figures

