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Abstract

Computational methods for learning to sample from the Boltzmann distribution—
where the target distribution is known only up to an unnormalized energy function—
have advanced significantly recently. Due to the lack of explicit target samples,
however, prior diffusion-based methods, known as diffusion samplers, often require
importance-weighted estimation or complicated learning processes. Both trade off
scalability with extensive evaluations of the energy and model, thereby limiting their
practical usage. In this work, we propose Adjoint Schrodinger Bridge Sampler
(ASBS), a new diffusion sampler that employs simple and scalable matching-
based objectives yet without the need to estimate target samples during training.
ASBS is grounded on a mathematical model—the Schrodinger Bridge—which
enhances sampling efficiency via kinetic-optimal transportation. Through a new
lens of stochastic optimal control theory, we demonstrate how SB-based diffusion
samplers can be learned at scale via Adjoint Matching and prove convergence to the
global solution. Notably, ASBS generalizes the recent Adjoint Sampling (Havens
et al., 2025) to arbitrary source distributions by relaxing the so-called memoryless
condition that largely restricts the design space. Through extensive experiments, we
demonstrate the effectiveness of ASBS on sampling from classical energy functions,
amortized conformer generation, and molecular Boltzmann distributions. Codes are
available at https://github.com/facebookresearch/adjoint_samplers.

1 Introduction

Sampling from Boltzmann distributions is a fundamental problem in computational science, with
widespread applications in Bayesian inference, statistical physics, and chemistry (Box and Tiao, 2011;
Binder et al., 1992; Tuckerman, 2023). Mathematically, we aim to sample from a target distribution
v(z) known up to a unnormalized, often differentiable, energy function F(z) : X C R? 5 R,

—E(x)
v(z) = ¢ , where Z ::/ e P@dg e
X

Z

is an intractable normalization constant. For instance, the energy function E(z) of a molecular system
quantifies the stability of a chemical structure based on the 3D positions of particles. A lower energy
indicates a more stable structure and hence a higher likelihood of its occurrence, i.e., v(x) o e~ (@),

Classical methods that generate samples from v (z) rely on Markov Chain Monte Carlo algorithms,
which run a Markov chain whose stationary distribution is v(x) (Metropolis et al., 1953; Neal, 2001;
Del Moral et al., 2006). These methods, however, tend to suffer from slow mixing time and require
extensive evaluations of energy function, limiting their practical usages due to prohibitive complexity.

To improve sampling efficiency, modern samplers focus on learning better proposal distributions
(Noé et al., 2019; Midgley et al., 2023). Among those, recent advances in diffusion-based generative
models (Song et al., 2021; Ho et al., 2020) have given rise to a family of Diffusion Samplers, which
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Table 1: Compared to prior diffusion samplers, Adjoint Schrodinger Bridge Sampler (ASBS) offers
the most flexible design for diffusion samplers (2), while learning the drift u? via scalable matching
objectives that do not rely on computation of importance weights (IWs).

Design condition for (2) Learning method for u{
Method Non-memoryless Arbitrary prior Matching objective! No reliance on TWs
PIS (Zhang and Chen, 2022) DDS (vargas et al., 2023) X X X v
LV-PIS & LV-DDS (Richter and Berner, 2024) X X X X
PDDS (phittips et al., 2024) iIDEM  (Akhound-Sadegh et al., 2024) X X v X
AS (Havens et al., 2025) X X v v
Sequential SB ernwon etal, 2019) v v X X
Adjoint Schréodinger Bridge Sampler (Ours) 4 4 v 4

consider stochastic differential equations (SDEs) of the following form:
dXt = [ft(Xt) + O'tuf(Xt)] dt + O'tth, X() ~ ‘U,(Xo), (2)

where fi(x) : [0,1] x X — X the base drift, o, : [0,1] — R the noise schedule, and p(x) the
initial source distribution. Given (f;, ¢, it), the diffusion sampler learns a parametrized drift u{ (z)
transporting samples to the target distribution v(x) at the terminal time ¢ = 1.

Computational methods for learning diffusion samplers have grown significantly recently (Zhang and
Chen, 2022; Vargas et al., 2023; Berner et al., 2024; Chen et al., 2025). Due to the distinct problem
setup in (1), the target distribution is defined exclusively by its energy E(z), rather than by explicit
target samples. This characteristic renders modern generative modeling techniques for scalability—
particularly the score matching objectives' —less applicable. As such, prior matching-based diffusion
samplers (Phillips et al., 2024; Akhound-Sadegh et al., 2024; De Bortoli et al., 2024) often require
computationally intensive estimation of target samples via importance weights (IWs).

Recently, Havens et al. (2025) introduced Adjoint Sampling (AS), a new class of diffusion samplers
whose matching objectives rely only on on-policy samples, thereby greatly enhancing scalability. By
incorporating stochastic optimal control (SOC) theory (Kappen, 2005; Todorov, 2007), AS facilitates
the use of Adjoint Matching (Domingo-Enrich et al., 2025), a novel matching objective that imposes
self-consistency in generated samples, effectively eliminating the needs for target samples.

The efficiency of AS, however, is achieved through a specific instantiation of the SDE (2) to satisfy
the so-called memoryless condition. This condition—formally discussed in Section 2—restricts
its source distribution to be Dirac delta u(x) := §, precluding the use of common priors such as
Gaussian or domain-specific priors such as the harmonic oscillators in molecular systems (Jing
et al., 2023). Notably, the memoryless condition underlies all previous matching-based diffusion
samplers, restricting the design space of (2) from other choices known to enhance transportation
efficiency (Shaul et al., 2023). While the condition has been relaxed in non-matching-based methods
at extensive computational complexity (Richter and Berner, 2024; Bernton et al., 2019), no existing
diffusion sampler—to our best understanding—has successfully combined matching objectives with
non-memoryless condition. Table 1 summarizes the comparison between prior diffusion samplers.

In this work, we propose Adjoint Schrodinger Bridge Sampler (ASBS), a new adjoint-matching-
based diffusion sampler that eliminates the requirement for memoryless condition entirely. Formally,
ASBS recasts learning diffusion sampler as a distributionally constrained optimization, known as the
Schrodinger Bridge (SB) problem (Schrodinger, 1931, 1932; Léonard, 2013; Chen et al., 2016):

1
minDKL(pqubase) =Expu [/ §|uf(Xt)||2dt} , (3a)
w 0

S.t. dXt = [ft(Xt) + Utu?(Xt)] dt + O'tth, XO ~ ,LL(X()), X1 ~ V(Xl). (3b)

base

Here, p* denotes the path distribution induced by the SDE in (3b), whereas p"®° := p%=C denotes
the path distribution induced by the “base” SDE when u; := 0. By minimizing their KL divergence,
the SB problem (3) seeks the kinetic-optimal drift «;—an optimality structure well correlated

!The matching objective is a simple regression loss, E|[uf (X;) — v:(X¢, X1)||?, w.r.t. some tractable v;.



with sampling efficiency in generative modeling (Finlay et al., 2020; Liu et al., 2023). Since
the SOC problem in AS corresponds to a specific case of the SB problem with (f;, u) := (0,4),
ASBS extends AS to handle non-memoryless conditions by solving more general SB problems (see
Theorem 3.1). Computationally, ASBS retains all scalability advantages from AS by utilizing an
adjoint-matching objective that removes the need for estimating target samples. It also introduces a
corrector-matching objective to correct nontrivial biases arising from non-memoryless conditions.
We prove that alternating optimization between the two matching objectives is equivalent to executing
the Iterative Proportional Fitting algorithm (Kullback, 1968), ensuring global convergence of ASBS
to u} (see Theorem 3.2). Though extensive experiments, we show superior performance of ASBS
over prior diffusion samplers across various benchmarks on sampling multi-particle energy functions.

In summary, we present the following contributions:

* We introduce ASBS, an SB-based diffusion sampler capable of sampling target distributions using
only unnormalized energy functions, by solving general SB problems with arbitrary priors.

* We base ASBS on a new SOC framework that removes the restrictive memoryless condition, de-
velop a scalable matching-based algorithm, and prove theoretical convergence to global solution.

* We show ASBS’s superior performance over prior methods on sampling Boltzmann distributions
of classical energy functions, alanine dipeptide molecule and amortized conformer generation.

2 Preliminary

We revisit the memoryless condition introduced by Domingo-Enrich et al. (2025) and examine its
impact on the constructions of SOC-based diffusion samplers (Zhang and Chen, 2022; Havens et al.,
2025), which are closely related to our ASBS. Additional review can be found in Appendix A.

Stochastic Optimal Control (SOC) The SOC problem (4) studies an optimization problem:

1
min E x . pu [/ e (Xe) | *dt —|—g(X1)} s.t. (2), 4)
v 0

which, unlike the SB problem (3), includes an additional terminal cost g(x) : X — R at the terminal
time ¢t = 1 and considers the SDE without the terminal constraint X; ~ v. The primary reason for
studying this specific optimization problem is that the optimal distribution is known analytically by?

p*(Xo,Xl) _ pbase(Xo,Xl)e_g(X1)+VU(XO), where ‘/O(x) = —log /pliz‘lge(y‘x)e—g(y)dy 5)

is the initial value function. That is, the optimal distribution p* is an exponentially tilted version of
the base distribution, p?*¢ := p»=0 Specifically, p*** is tilted by the terminal cost “—g(X;)” and
the initial value function V4 (X)), which is intractable. Consequently, to ensure its marginal p*(X7)
follows the target distribution (X7 ), we must eliminate the initial value function bias from V;(Xp).

Memoryless condition & SOC-based diffusion sampler A common approach to eliminate the
aforementioned initial value function bias, adopted by most diffusion samplers, is to restrict the
class of base processes to be memoryless. Formally, the memoryless condition assumes statistical
independency between X and X; in the base distribution:

memoryless
Y base

P X, X1) = PP (Xo)pPe(X). (©)
This memoryless condition (6) simplifies the optimal distribution at the terminal time ¢ = 1 and,
upon choosing a proper terminal cost g(x), recovers the target distribution v,

p* (Xl) memgyless /pbase(XO)pbase(Xl)efg(X1)+V0(X0)dXO o pbase(Xl)efg(Xﬂ — I/(Xl),

pliase (x)

where the last equality is due to setting the terminal cost to g(x) := log”~. Typically, the
memoryless condition (6) is enforced by a careful design of the base distribution pb¢

or, equivalently,

’Equation (5) can be obtained by rewriting (4) as Dkr(p"||p"™) + Epy [9(X1)] and then computing
the analytic solution p*(X1|Xo) oc p*™*(X1|Xo)e 9*1) and normalization [ p"*°(X;|Xo)e 9XVdX; =
e~ Vo(Xo) See Appendix A.1 for details.
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Figure 1: Effect of the memoryless condition on learning SOC-based diffusion samplers. We consider
Gaussian prior u(z) := N (z;0,1) with (f;, o¢) set to VP-SDE for the first plot and (0, 0.2) for
the rest; see Appendix A.l for details. The memoryless condition injects significant noise (left)
to correct the otherwise biased optimization (middle), whereas ASBS can successfully debias any
non-memoryless processes (right).

the parameters ( f;, o4, 1) in (2). For instance, the variance-preserving process (VP; Song et al., 2021)
considers a linear base drift f;, a noise schedule o; that grows significantly with time, and a Gaussian
prior u; see Figure 1. Alternatively, one could implement (6) with Dirac delta prior p(z) := ()
and f; := 0, leading to the following SOC problem (Zhang and Chen, 2022):

1 base X
IHJH]EXNpu |;/O %Hut( )” dt + IOg ()((1)1) S.t. dXt = O't’l,Lt(Xt)dt + (')'thVt7 X():O (7)

Based on the aforementioned reasoning, solving (7) results in a diffusion sampler that transports
samples to the target distribution at t=1, with Adjoint Sampling (Havens et al., 2025) as the only
scalable method of this class. Despite encouraging, the SOC problem in (7) is nevertheless limited by
its trivial source, precluding potentially more effective options for sampling Boltzmann distributions.

3 Adjoint Schrodinger Bridge Sampler

We introduce a new diffusion sampler by solving the SB problem (3), where the target distribution v ()
is given by its energy function F(z) rather than explicit samples. All proofs are left in Appendix B.

3.1 SOC Characteristics of the SB Problem

The SB problem (3)—as an optimization problem with distribution constraints—is widely explored
in optimal transport, stochastic control, and recently machine learning (Léonard, 2012; Chen et al.,
2021; De Bortoli et al., 2021). Its kinetic-optimal drift «* satisfies the following optimality equations:

)= [Pirlew)dy. eo(@)po(e) = ula)  (Ba)

ui(x) = 0+ Vlogyi(x), where
Gula) = [P @ly)pow)dy, @i(@)pi() = v(z) (8b)

and pbase(y|x) = p°( X;=y| X =x) is the transition kernel of the base process for observing y at
time ¢ given x at time s. The SB potentials ;(z), $1(z) € CH2([0,1],R?) are then defined (up to

some multiplicative constant) as solutions to forward and backward time integrations w.r.t. p't’fge.

Equation (8) are computationally challenging to solve—even when plgl‘“e has an analytical solution—
due to the intractable integration and coupled boundaries at ¢ = 0 and 1. Our key observation is that
the first equation (8a) resembles the optimality condition of the SOC problem (4) (see Appendix A.1).
This implies that the optimality conditions of SB hints an SOC reinterpretation, which, as we will
demonstrate, is more tractable than solving (8) directly. We formalize our finding below.

Theorem 3.1 (SOC characteristics of SB). The kinetic-optimal drift u} in (8) solves an SOC problem

$1(X1)
v(X1)

1
minEx pu [/ |ug(Xy)|?dt + log 5.t (2). ©)
w 0



Theorem 3.1 suggests that every SB problem (3) can be solved like an SOC problem (4) with the
terminal cost g(z) := log 2. Comparing to the formulation in Adjoint Sampling (Havens et al.,
2025), the two SOC problems, namely (7) and (9), differ in their terminal costs—where ptl’ase is
replaced by ¢1—and the relaxation of the source distribution from Dirac delta Xy = 0 to general

source £1(Xp).

How ¢ () debiases non-memoryless SOC problems Taking a closer look at the effect of (1,
notice that the optimal distribution of the SB problem—according to Theorem 3.1 and (5)—follows

p*(Xo, X1) = p*(Xo, X1) exp (— log 22 —log <P0(X0)> ; (10)

where “—log " is the equivalent initial value function. One can verify that the marginal at the
terminal time ¢ = 1 indeed satisfies the target distribution,

* * (10) v(Xx 2
PH(X1) = [P (Xo, X1)dXo = 20 [p(Xo, X1) e dXo
b

8a) p ase ~
E A (X0 Xo)go(X0)dXo Z v(X)).

(11)

That is, the optimality equations in (8), in their essence, construct a specific function ¢;(-) that
eliminates the initial value function bias associated with any non-memoryless processes, thereby
ensuring that the optimal distribution satisfies the target v at ¢ = 1.

3.2 Adjoint Sampling with General Source Distribution

We now specialize Theorem 3.1 to sampling Boltzmann distributions (1), where v(z) o e~ F(®),
and hence the terminal cost of the new SOC problem in (9) becomes log f’}(gf)) = E(z) + log ¢1(x).
To encourage minimal transportation cost (Chen and Georgiou, 2015; Peyré and Cuturi, 2017), we
consider the Brownian-motion base process with a degenerate base drift f; := 0. Applying Adjoint
Matching (AM; Domingo-Enrich et al., 2025) to the resulting SOC problem leads to

[Hut(Xt) + o0t (VE + Vlog 1) (Xl)\ﬂ , U= stopgrad(u). (12)

* : _
u* = argjnln ]Eplzz‘ns&lp&l
Note that the AM objective in (12) functions as a self-consistency loss—in that both the regression
and its expectation depend on the optimization variable u. This makes (12) particularly suitable for
learning SB-based diffusion samplers, unlike previous matching-based SB methods (Shi et al., 2023;
Liu et al., 2024), which all require ground-truth target samples from X; ~ v.

Computing the AM objective in (12) requires knowing V log 1 (z), which, as we discussed in (11),
serves as a corrector that debiases the optimization toward the desired target. Notably, this corrector
function V log ¢ () also admits a variational form (Peluchetti, 2022, 2023; Shi et al., 2023):3

Viog o = aurghminI[*lpg,f1 [Hh(Xl) -V, Ingbase(Xl\Xo)Hz] ' (13)

To summarize, Equations (12) and (13) characterize two distinct matching objectives that any kinetic-
optimal drift u} of SBs must satisfy. When the source distribution degenerates to Dirac delta X := 0,
(13) is minimized at V log pb*¢, and (12) simply recovers the objective used in Adjoint Sampling
(Havens et al., 2025). In other words, (12) and (13) should be understood as a generalization of
Adjoint Sampling to handle arbitrary—including non-memoryless—source distributions.

3.3 Alternating Optimization with Adjoint and Corrector Matching

Building upon the theoretical characterization in Section 3.2, we aim to design a learning algorithm
that finds a diffusion sampler satisfying (12) and (13), which correspond to two simple matching-
based objectives. However, these matching objectives cannot be naively implemented due to their
interdependency: Solving (12) for the kinetic-optimal drift v* requires knowing V log ;. Like-
wise, solving (13) for the corrector function V log ¢; requires samples from u*. We relax the
interdependency with an alternating optimization scheme. Specifically, given an approximation of
Vlog ¢1 ~ h*=1 from the previous stage k — 1, we first update the drift u(*) with the AM objective:

3Formally, V log (¢ () is the kinetic-optimal drift along the reversed time coordinate s := 1 — ¢, and (13) is
its variational formulation, i.e., the Markovian projection at s = 0; see Appendix A.2 for details.



Algorithm 1 Adjoint Schrédinger Bridge Sampler (ASBS)

Require: Sample-able source X ~ p, differentiable energy E'(x), parametrized ug(t, x) and hy(x)
I: Initialize A := 0
2: forstage kin1,2,... do
3: Update drift u}"” by solving (14)

)

4:  Update corrector hg€ by solving (15)
5

: end for

ASBS Generated Samples (upper) and Grad. of Terminal Cost (bottom) at each Stage k
Target Samples v « exp(—E) k=1 k=2 k=3 k=20 (final)

m

(k)
VE +h

(o ERARINeS
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Figure 2: Illustration of ASBS on a 2D example. By alternatively minimizing the Adjoint Matching
(AM) objective (14) and the Corrector Matching (CM) objective (15), ASBS progressively learns a
better corrector 1 that debiases the SOC problem for the control *. Note that since the corrector
is initialized with »{:= 0, the first AM stage simply regresses " to the energy gradient VE.

u(k) = a,I‘gquinEpl;m‘s&lpg’l |:||Ut(Xt) + O’t(VE + h(kfl))(Xl)H2:| , U= stopgrad(u)_ (14)

Then, we use the resulting drift u® to update h(k) by minimizing the following matching objective,
which—in light of the corrector role of V log ¢ ;—we refer to as the Corrector Matching objective:

hF) .= arg min E .o [[Ih(X1) = Va, log p"**(X1]Xo0) %] . (15)
h 0,1

Equation (15) should be distinguish from the bridge-matching objectives in data-driven SB methods
(Shi et al., 2023; Somnath et al., 2023), where X; must be drawn from the target distribution v. In
contrast, the matching objectives in (14) and (15) depend only on model samples at the current stage

(k)
(

X1 ~ p"e (X1]|Xo), hence can be used to learn SB-based diffusion samplers at scale.

The alternating optimization between (14) and (15) creates a sequence of updates, (u(?), h(9)) —
e (u(k), h(k)) — - -+, that may be thought of as running coordinate descent between the control u
and the corrector h. Intuitively, at each stage k, we first find the control u® that best aligns with
the corrector from previous stage, h*~1), then update the corrector h(¥) accordingly to reflect the
“memorylessness” of the current control u(¥). We summarize our method, Adjoint Schrodinger
Bridge Sampler (ASBS), in Algorithm 1, while leaving the full details with additional components,
such as replay buffers, in Appendix C. Finally, we prove that this alternating optimization indeed
converges to the kinetic-optimal drift ©* in (8).

Theorem 3.2 (Global convergence of ASBS). Algorithm I converges to the Schrodinger bridge

solution of (3), provided all matching stages achieve their critical points, i.e.,

lim u® = u*.
k—oo



4 Theoretical Analysis

We provide the proof of Theorem 3.2 and highlight theoretical insights throughout. While ASBS
is specialized to a degenerate base drift f; := 0, all theoretical results here apply to general f;. To
simplify notation, we omit the parameters 6, ¢ and reparametrize the corrector by h(*) = Vlog h(*).
All proofs are left in Appendix B.

Our first result presents a variational characteristic to the solution of the AM objective in (14).

Theorem 4.1 (Adjoint Matching solves a forward half bridge). Let p“(k) be the path distribution
induced by the drift u*) in (14) at stage k. Then, p“(k) solves the following variational problem:

u(k

) . 7(k—1)
P =argmin {Dxr(pllg""™ ) i po = u}, (16)

where qi Vs the path distribution induced by a “backward” SDE on the reversed time coordinate
s := 1 — t, defined by the corrector from the previous stage h(*~1)

dYy, = [ fs(Y. )+U2VIOg¢ (Y- )] ds + o, dW,, o /plidi\o (y|2)¢1(2)dz, a7
with the boundary conditions Yy ~ v and ¢o(y) = h(*=1 (y).

Theorem 4.1 suggests that any SOC problems with the terminal cost g(z) := log V(l() 2) can be

reinterpreted as KL minimization w.r.t. a specific backward SDE (17) that is fully characterized by
v—which serves as its source distribution—and h*)—which defines its drift through the function
¢s(y). The objective in (16) differs from the one in the original SB problem (3) by disregarding the
target boundary constraint, X; ~ v. Consequently, (16) only solves a forward half bridge.

Next, we show that the CM objective (15) admits a similar variational form, except backward in time.
Theorem 4.2 (Corrector Matching solves a backward half bridge). Ler R%) be the corrector in (15)
at stage k. Then, the path distribution qh(k) solves the following variational problem:

7 (k) . u®)
¢" = argmin { Dkr.(p" " lg) : ¢ = v} (1%
q

Unlike (16), the objective in (18) disregards the source boundary constraint 4 instead, thereby solving
a backward half bridge. Theorems 4.1 and 4.2 imply that our ASBS in Algorithm 1 implicitly employs
an optimization scheme that alternates between solving forward and backward half bridges, thereby
instantiating the celebrated Iterative Proportional Fitting algorithm (IPF; Fortet, 1940; Kullback,
1968). Combining with the analysis by (De Bortoli et al., 2021) leads to our final result in Theorem 3.2.

5 Related Works

We provide additional clarification on SB-related works and leave the full review to Appendix A.3.

Data-driven Schrodinger Bridges The SB problem has attracted notable interests in machine
learning due to its connection to diffusion-based generative models (Wang et al., 2021). Earlier
methods implemented classical IPF algorithms (De Bortoli et al., 2021; Vargas et al., 2021; Chen
et al., 2022), with scalability later enhanced by bridge matching-based methods (Shi et al., 2023; Liu
et al., 2024). Unlike ASBS, all of them focus on generative modeling and assume access to extensive
target samples during training, making them unsuitable for sampling from Boltzmann distributions.

SB-inspired Diffusion Samplers Notably, in the context of diffusion samplers, the SB formulation
has been constantly emphasized as a mathematically appealing framework for both theoretical analysis
and method motivation (Zhang and Chen, 2022; Vargas et al., 2024; Richter and Berner, 2024; Havens
et al., 2025). None of the prior methods, however, offers general solutions to learning SB-based
diffusion samplers, instead specializing to either the memoryless condition or non-matching-based
objectives, which largely complicate the learning process (see Table 1). Conceptually, our ASBS
stands closest to SSB (Bernton et al., 2019) by learning general SB samplers. However, the two
methods differ fundamentally in scalability: SSB is a Sequential Monte Carlo-based method (Chopin,
2002) augmented with learned transition kernels using Gaussian-approximated SB potentials. As
with many MCMC-augmented samplers (Gabrié et al., 2022; Matthews et al., 2022), SSB requires
extensive evaluations on the energy F(z), in contrast to ASBS, which is much more energy-efficient.



Table 2: Results on the synthetic energy functions for n-particle bodies with their corresponding
dimensions d. Following (Chen et al., 2025; Havens et al., 2025), we report Sinkhorn for MW-5 and
the Wasserstein-2 distances w.r.t samples, s, and energies, E(-)W, for the rest. All values are
averaged over three random trials. Best results are highlighted.

MW-5 (d=5) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)

Method Sinkhorn | Wy | E(O)Wal Wal EOW2] Whl E() Wy
PDDS (Phillips et al., 2024) — 0.92-0.08 0.58+025 4.66+087  56.01+1030 — —
SCLD (Chen et al., 2025) 0.44+0.06 1304064 0.40+019 29340190 27.98+ 126 — —
PIS (Zhang and Chen, 2022) 0.65+0.25 0.68-£028 0.65+025 1.934007 18.02+ 112 4.79+045  228.70+13127
DDS (Vargas et al., 2023) 0.63 024 0.9210.11 0.90-+£037 1994015 24.61+ 590 4.60+000 173.09+ 1501
LV-PIS (Richter and Berner, 2024) — 1.04:020  1.89+0s0 — — — —
iDEM (Akhound-Sadegh et al., 2024) — 0.70+006  0.55+014  1.61+o01 30.78+2446 4.69+15  93.534 1631
AS (Havens et al., 2025) 0.32+0.06 0.62:006  0.55+0.12 1.67 001 240+ 125 4.04+1005  30.83+ 519
ASBS (Ours) 0.15+0.02 0.43:005s 020011 1.59+005  1.99+ 101 4.001005  28.10+ 515
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Figure 3: The energy histograms of DW-4 and LJ-13 from Table 2. Figure 4: Complexity w.r.t. the
ASBS generates samples whose energy profiles closely match those  number of function evaluation
of the ground-truth samples. (NFE) on LJ-13 potential.

6 Experiments

Benchmarks We evaluate our ASBS on three classes of multi-particle energy functions E'(x).

» Synthetic energy functions These are classical potentials based on pair-wise distances of an
n-particle system, where F(z) is known analytically. Following (Akhound-Sadegh et al., 2024,
Chen et al., 2025), we consider a 2D 4-particle Double-Well potential (DW-4), a 1D 5-particle
Many-Well potential (MW-5), a 3D 13-particle Lennard-Jones potential (LJ-13) and a 3D 55-
particle Lennard-Jones potential (LJ-55). For the ground-truth samples, we sample analytically
from MW-5 and use the MCMC samples from (Klein et al., 2023) for the rest of three potentials.

* Alanine dipeptide This is a molecule consisting of 22 atoms in 3D. Specifically, we consider the
alanine dipeptide in an implicit solvent and aim to sample from its Boltzmann distribution at a
temperature 300K . Following prior methods (Zhang and Chen, 2022; Wu et al., 2020), we use
the energy function E(z) from the OpenMM library (Eastman et al., 2017) and consider a more
structural internal coordinate with the dimension d = 60. The ground-truth samples contain 107
configurations, simulated from Molecular Dynamics (Midgley et al., 2023).

* Amortized conformer generation Finally, we consider a new benchmark proposed in (Havens
et al., 2025) for large-scale conformer generation. Conformers are locally stable configurations
located at the local minima of the molecule’s potential energy surface (Hawkins, 2017). Sam-
pling conformers is essentially a conditional generation task, targeting a Boltzmann distribution
v(z|g) o e~ 79 at a low temperature T < 1, conditioned on the molecular topology g € G.
The training set Gy, contains 24,477 molecular topologies from SPICE (Eastman et al., 2023),
represented by the SMILES strings (Weininger, 1988), whereas the test set G contains 80
topologies from SPICE and another 80 from GEOM-DRUGS (Axelrod and Gomez-Bombarelli,
2022). As with (Havens et al., 2025), we consider F(z|g) a foundation model eSEN from (Fu
et al., 2025), which predicts energy with density-functional-theory accuracy at a much lower
computational cost. We use CREST conformers (Pracht et al., 2024) as the ground-truth samples.

Baselines and evaluation We compare ASBS with a wide range of diffusion samplers, including
PIS (Zhang and Chen, 2022), DDS (Vargas et al., 2023), PDDS (Phillips et al., 2024), SCLD (Chen



Table 3: Comparison between diffusion samplers on sampling the molecular Boltzmann distribution
of the alanine dipeptide. We report the KL divergence Dy, for the 1D marginal across five torsion
angles and the Wasserstein-2 W, on jointly (¢, 1), known as Ramachandran plots (see Figure 5).
Best results are highlighted.

Dxt, on each torsion’s marginal | W on joint |
Method @ ¥ "1 V2 V3 (#,9)
PIS (Zhang and Chen, 2022) 0.05+0.03 0.38+0.49 5.61+124 4.4940.03 4.60+0.03 1.27+1.19
DDS (Vargas et al., 2023) 0.03+0.01 0.16+0.07 2.44+0096 0.03+0.00 0.03+0.00 0.68+0.09
AS (Havens et al., 2025) 0.09+0.09 0.04+0.04 0.17+0.17 0.56+0.09 0.51+0.06 0.65+052
ASBS (Ours) 0.02+0.00 0.01+0.00 0.03+0.01 0.02+0.00 0.02+0.00 0.25+001

Table 4: Results on large-scale amortized conformer generation, evaluated on two test sets, SPICE
and GEOM-DRUGS, both with and without post-processing relaxation. We report the coverage (%)
and Absolute Mean RMSD (AMR) of the recall at the threshold 1.0A. Note that “+RDKit warmup”
refers to warm-starting the model ug using RDKit conformers; see Appendix D for details. Best
results without and with RDKit warm-up are highlighted separately.

without relaxation with relaxation
SPICE GEOM-DRUGS SPICE GEOM-DRUGS
Method Coverage AMR | CoverageT AMR| Coverage? AMR] Coverage?t AMR]
RDKit ETKDG (Riniker and Landrum, 2015) ~ 56.94 23580 1.04+050  50.81+3000 1154061 702123170 0.79-041  62.55+3167  0.93+053
AS (Havens et al., 2025) 56.75+315  0.96+026 36231300 1.200045  82.41:05s5  0.68:028  64.26+3:57  0.89+045
ASBS w/ Gaussian prior (Ours) 73.04 5105 0.83:02¢  50.23+3505  1.05:043  88.26:2057  0.60+02¢ 723212065 0.77 035
ASBS w/ harmonic prior (Ours) T4.05+316 0.82+023  53.1443560 1.03:042  88.71+1863 0.59+024 727742004 0.78+035
AS +RDKit warmup (Havens et al, 2025) 722123022 0.84+020 521943520 1.02:031  87.84:1900  0.60:025  73.881286:  0.76+034
ASBS +RDKit warmup (Ours) 77.84+283  0.79+023  57.19+35 0.98:040  88.08+1s81  0.58+024  73.18+3000  0.76+037

et al., 2025), LV (Richter and Berner, 2024), iDEM (Akhound-Sadegh et al., 2024) and finally Adjoint
Sampling (AS; Havens et al., 2025). For the conformer generation task, we include additionally a
domain-specific baseline, RDKit ETKDG (Riniker and Landrum, 2015), which relies on chemistry-
based heuristics. The evaluation pipelines are consistent with prior methods, where we adopt the
SCLD setup for MW-5, the PIS setup for alanine dipeptide, and the AS setup for all the rest; see
Appendix D for details.

ASBS models For all tasks, we consider a degenerate base drift f; := 0, as discussed in Section 3.2,
and set 0, a geometric noise schedule. For energy functions that directly take particle systems as
inputs—such as DW, LJ, and eSEN—we parametrize the models ug, hy with two Equivariant Graph
Neural Networks (Satorras et al., 2021) and consider a domain-specific source distribution—the
harmonic prior (Jing et al., 2023). Formally, for an n-particle system = = {x;}?_,, the harmonic prior
harmonic () 18 @ quadratic potential that can be sampled analytically from an anisotropic Gaussian:

,Ufharmonic(x) X exp(—% Zi,j ||'I’L - Ij”Q)' (19)

For other energy functions, we use standard fully-connected neural networks and consider Gaussian
priors. All models are trained with Adam (Kingma and Ba, 2015) and, following standard practices
(Havens et al., 2025; Akhound-Sadegh et al., 2024), utilize replay buffers; see Appendix C for details.

Results Table 2 presents the results on synthetic energy functions. Notably, ASBS consistently
outperforms prior diffusion samplers across all energy functions. In Figure 3, we compare the
energy histograms of DW-4 and LJ-13 potentials between the ground-truth MCMC samples and those
from ASBS. It is evident that ASBS generates samples that closely resemble the target Boltzmann
distribution v(x) oc e~ F(*) resulting in energy profiles F(z) that are almost indistinguishable from
the ground truth. Computationally, Figure 4 shows the average number of evaluation required on the
energy E(x) and the model wy(t, z) for each gradient update. ASBS is much more efficient than
most diffusion samplers, with a slight overhead compared to AS due to the additional network hy ().

Table 3 summarizes the results for alanine dipeptide. Following standard pipeline (Zhang and Chen,
2022), we generate model samples X; € R and extract five torsion angles—including the backbone
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Figure 7: Recall coverage curves on amortized conformer generation on the SPICE and GEOM-
DRUGS test sets without RDKit warm-start. Note that Table 4 reports the recall coverages at the

threshold 1.0A.

angles ¢, ¥ and methyl rotation angles v, 2, y3—all of them exhibit multi-modal distributions.
Notably, ASBS achieves lowest KL divergence to the ground-truth marginals across all five torsions.
Figure 5 further compares the joint distributions of (¢, 1)), known as the Ramachandran plots (Spencer
et al., 2019), between ground-truth and ASBS. While ASBS identifies all high-density modes in the
region ¢ € [—m, 0], it misses few low-density modes. This mode-seeking behavior, inherit in all
SOC-based diffusion samplers, could be improved with important weighting. We provide further
discussions in Appendix D.4.

Table 4 presents the recall for amortized conformer generation compared to ground-truth samples. For
prior diffusion samplers, we primarily compare to AS (Havens et al., 2025) due to the benchmark’s
scale. Following AS, we ablate a warm-start stage using RDKit conformers, which are close but not
identical to ground-truth samples, and include results with relaxation for post-generation optimization.
Since AS is a specific instance of ASBS with a Dirac delta prior—as discussed in Section 3.2—any
performance improvements from AS to ASBS highlight the added capability to handle arbitrary
priors and, consequently, non-memoryless processes. Remarkably, without any warm-start, ASBS
with the harmonic prior (19) already matches and, in many cases, surpasses the RDKit-warm-up
AS. With warm-start, ASBS achieves best performance across most metrics. This highlights the
significance of domain-specific priors, aiding exploration as effectively as warm-start with additional
data, which may not always be available. Finally, we visualize the generation process of ASBS with
harmonic prior (19) in Figure 6 and report the recall curves in Figure 7. In practice, we observe that
ASBS achieves slightly better results with a harmonic prior compared to a Gaussian prior, with both
significantly outperforming AS (Havens et al., 2025). See Appendix D.4 for further ablation studies.

7 Conclusion and Limitation

We introduced Adjoint Schrodinger Bridge Sampler (ASBS), a new diffusion sampler for Boltz-
mann distributions that solves general SB problems given only target energy functions. ASBS is
based on a scalable matching framework, converges theoretically to the global solution, and performs
superiorly across various benchmarks. Despite these encouraging results, further enhancement with
importance sampling techniques is worth investigating to mitigate the mode collapse inherent in
SOC-inspired diffusion samplers. Exploring its effectiveness in sampling amortized Boltzmann
distributions would also be valuable.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Proofs and assumptions of all theorems appearing in the main paper can be
found in Appendix B.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Necessary information to reproduce our method is discussed in Section 6, with
full details in Appendices C and D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: All data used in this work is open-source. Unfortunately, due to organizational
policy, we are unable to release our source code at submission time. However, we plan to
make it publicly available in the near future once administrative challenges are resolved.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental setups are discussed in Section 6, with full details in Ap-
pendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All numerical values in Section 6 are averaged over a few random trials and
we have reported their standard deviations.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide these details in the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We read and comply with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This work does not have novel societal impact beyond that of already existing
diffusion samplers.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Original papers that produced the code package or dataset are all properly
credited.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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A Additional Preliminary and Reviews

A.1 Stochastic Optimal Control (SOC)

In this subsection, we expand Section 2 with details. Recall the SOC problem in (4):

mJnEXNpu {/ ;Hut(Xt)Hth—i-g(Xl)] (20a)
S.t. dXt = [ft(Xt) + O'tut(Xt)] dt + O'thVt7 X() ~ . (20b)

Similar to (8), the optimal control to (20) can be characterized through an optimality equation:
up () = —oyVVi(z), where Vi(z)= —10g/pliz“;e(y|x)e_vl(y)dy, Vi(z) =g(z) (21)

is the value function known to satisfy the Hamilton—Jacobi-Bellman (HJB) equation (Bellman, 1954).
We provide further characterization below.

Optimal distribution The optimization problem in (20) is known analytically. Specifically, notice
that the entropy-regularized objective in (20) can be reformulated as:

Dk (p(X)[[p™(X)) + Epx) [9(X1)]
= Dict. (p(X0) [0"*(X0)) + Epxy) | Dot (p(X [ X0) [0"*(X | X0)) + Epix ) l9(X0)]
= Dxr, (p(Xo)[[pP™*(X0)) + Ep(xo) [DKL (P(X|X0)\|pbase(X|X0)€79(Xl))} (22)

where we shorthand X = X 1) and denote P3¢ the base distribution induced by (20b) with « := 0,
i.e., the uncontrolled distribution. Minimizing (22) w.r.t. p yields

P (X|Xo) = PP(X | Xp)e 9D p*(Xo) = p"(Xo) (23)

Z(Xo)

where Z (X)) is the normalization term defined by
Z(Xy) = / P (X[ Xo)e 9XVdX = / P (X1 | Xo)e 9 d X, (24)

which is exactly e~V (Xo) due to (21). Combing (23) and (24) leads to the the optimal distribution
in (5), which we restate below for completeness:

p*(X) _ pbase(X)efg(Xl)JrVo(Xg) — p*(Xo,X1) _ pbase(Xo’Xl)efg(Xl)JrVo(Xg) (25)

Adjoint Matching (AM) Scalable computational methods for solving (20) have been challenging,
as naively back-propagating through (20) induces prohibitively high computational cost. Instead,
Adjoint Matching (Domingo-Enrich et al., 2025) employs a matching-based objective, named Adjoint
Matching (AM):

u* =argminEx e [[lue(Xe) + orae|?] @ = stopgrad(u), (26a)
where —da; =a; - Vfi(Xy)dt, a1 = Vg(Xq) (26b)

is the backward dynamics of the (lean) adjoint state a; = a(t; X [t,l])~ It has been proven that the
unique critical point of (26) is the optimal control u*, implying a new characteristics of the optimal
control w* using the adjoint state:

up(x) = —oyEp [ay| Xy = 2. (27)

Adjoint Sampling (AS) Recently, Havens et al. (2025) introduced an adaptation of AM tailored to
sampling Boltzmann distribution v/(z) o e~#(*) by considering
P(a)

fe =0, () = do(), g(x) = log OR (28)



That is, AS considers the following SOC problem with a degenerate base drift, a Dirac delta prior,
base
and a specific instantiation of the terminal cost g(z) := log 2 > (X) :

base ( X1 )

1
min Ex ., [/ %Hut(Xt)||2dt+logply(X1) } s.t. dX; = oyuy (X,)dt + o, dWy, Xo=0. (29)
w 0

Notably, this SOC problem (29) admits a simplified adjoint state a; and a degenerate initial value
function Vp(z):

a; 'Vg(X1) E Viegph™e(X1) + VE(X))  Vte[0,1] (30)
28 ase v
Vo(x) =~ log / P () gy =~ log 1 = 0, (31)
P (y)
which further implies that the optimal distribution p* is a reciprocal process (Léonard et al., 2014):
x( 3y GD base( yry @) base V(X N
pHX) S (X )e I =P (X)pbas(e(;()l) = PP (X X1)pH (X)), (32)
1

Combining the adjoint characteristics of the optimal control (27) with the simplified adjoint state a,
in (30) and optimal distribution p* (32) motivates the following Reciprocal Adjoint Matching (RAM)
objective used in AS, where the unique critical point remains to be the optimal control ©* in (21).

u* = arg min Epl;alxslepvll [llue(Xe) + 00 (VE + V log p§*°) (X1)|I’], u=stopgrad(u). (33)

Remark on reciprocal representation The reciprocal representation of the optimal-controlled
distribution p* in (32) extends to general SOC problems (20) with non-trivial base drifts and source
distributions. Specifically, any optimal-controlled distribution that solves (20) can be factorized by

p*(X) = p"*(X[Xo, X1)p* (X0, X1). (34)
We leave a formal statement in Theorem B.3 and Corollary B .4.

AS with linear base drift and Gaussian prior (Figure 1) Here, we discuss an alternative
instantiation of AM for sampling with linear base drift and Gaussian prior, which reproduces the
leftmost plot in Figure 1. Consider

base
fila) = —ghia, pa)=N@0D),  oo=B ) = logt (x(f). (35)

where (3, is chosen such that (f;, u, o) fulfill the memoryless condition. For instance, Figure |
adopts the VPSDE (Song et al., 2021) setup:

Bt = (1 = t) Bmax + tBmin, Bmax = 20, Brin = 0.1. (36)
Similar to (30), the resulting SOC problem admits a simplified adjoint state a;:
ar = ke V(X)) E we(Vieg P (X)+VE(XL)), kg 1= e 300 Prdn & em3 00
and the RAM objective becomes 7
u = argjnin ]Epl;zrg’lpg’l [llue(Xe) + ouie (VE + Viog p™) (X1)[|°], @ = stopgrad(u).
(38)

Note that p?lagel can be sampled analytically:

3¢ Fe(l — K2 ke(l — R? 1— k(1 —FR?
e, (X1 X0, X1) 2 A, L) g e ) o (Amm) (2R g
’ 1—k7 11—k 1—k{

where #; is defined in (37) and & := e~ 3 Jo ArdT 20 o= Ft(Be+Po)
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A.2 Schrodinger Bridge (SB)

In this subsection, we provide additional clarification on SB and specifically the derivation of (13).
Recall the optimality equations of SB in (8):

)= [P l)er )y, co@)pole) = p(x) @0m)
Gul@) = [P @ly)2ow)dy. @i(@)pr(@) = v(x) (40b)

Just like how the value function of an SOC problem fully characterizes the optimal control and its
corresponding optimal distribution, so does the SB potential ¢ (x):

uy(z) = 04 Vloeg p(x), where

(X)) = p"asemigggg P (X |Xo)r (X1)¢o(Xo), (1)

where the last equality is due to p®°(X) = p®®¢(X|X()u(Xo) and then invoking (40a). Note
that (41) recovers (10) by marginalizing over ¢ € (0, 1). Due to the construction of ¢, (x) and @ ()
in (40), the marginal optimal distribution admits a strikingly simple factorization:

pi(z) = / (X, X, = 2] Xo) o1 (X1) Go(Xo)dX
= / / PP (X1 | X, = 2)p" (X, = 2| X0)p1(X1)Po(Xo)dXod X,

- ( [ e - xxomo(xo)dxo) ( [r=calx - x)sol(Xl)Xm)
=¢t(x) (), 42)

or, more generally,
Phi(y 1) = D (@ly)@s () e (x), s <t (43)

Derivation of (13) We now provide a simpler derivation of (13) compared to its original derivation
based on path measure theory (Shi et al., 2023):

(40b) base

Vlog ¢(z) Pijo (z]y)po(y)dy

-5 / V. Tos ) (ol) o)

/V log pyio® (2y)pg . (yl2)dy, (44)

where the last equality follows by

base

s (ylr) 2 po(.7) ay PU @y o()ee(@)  phie(@ly)do(y)
PR T a@e@ T a@e T al)

Equation (44) implies a matching-based variational formulation of V log ¢ (-)—also known as the
bridge matching objective in data-driven SB (Shi et al., 2023; Liu et al., 2023).

Vlog ¢y = arg;nin By , [174(X1) — Vi, log p?( X[ Xo)[1?] - (45)

Equation (45) recovers (13) att = 1.

A.3 Additional Related Works

In this subsection, we provide additional review on existing learning-based methods for sampling
Boltzmann distributions.

Learning-augmented MCMC  This class of methods can be thought of as extension of classical
sampling methods—such as MCMC (Metropolis et al., 1953; HASTINGS, 1970), Sequential Monte
Carlo (SMC; Del Moral et al., 2006) and Annealed Importance Sampling (AIS; Neal, 2001)—where
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traditional proposal distributions are replaced with modern machine learning models. For instance,
Arbel et al. (2021) and Gabrié et al. (2022) use normalizing flows (Chen et al., 2018) as learned
proposal distributions, whereas Matthews et al. (2022) employ stochastic normalizing flow (Wu et al.,
2020). More recently, Chen et al. (2025) have explored the use of diffusion models (Song et al., 2021;
Ho et al., 2020). However, training these models typically requires computing importance weights,
which necessitates a large number of energy evaluations.

MCMC-augmented Diffusion Samplers Alternatively, methods of this class adopt modern
generative models to sampling Boltzmann distributions and incorporate MCMC techniques to mitigate
the lack of explicit target samples. For example, Phillips et al. (2024), (De Bortoli et al., 2024) and
(Akhound-Sadegh et al., 2024) employ score matching objective from score-based diffusion models
(Song et al., 2021; Ho et al., 2020). In contrast, Albergo and Vanden-Eijnden (2024) base their
method on action matching objectives (Neklyudov et al., 2023). However, estimating target samples
requires computing importance weights, which makes these methods computationally expensive in
terms of energy function evaluations.

B Proofs

B.1 Preliminary and Additional Theoretical Results
Lemma B.1 (Itd lemma (Itd, 1951)). Let X, be the solution to the It6 SDE:
dXt = ft (Xt)dt + O'tth.

Then, the stochastic process vi(X;), where v € C12(]0,1],R%), is also an Ité process:

1
dUt(Xt) = 8tvt(Xt) + Vvt(Xt) . f + io-tQAvt(Xt) dt + atht(Xt) . th (46)
Lemma B.2 (Laplacian trick). For any twice-differentiable function 7 such that w(x) # 0, it holds
that
%Aw(m) = ||Vlog7(x)||* + Alog 7(z) 47)
Proof.
Ar(z) =V - Vr(zx)

v
=V . (n(z)Vlegn(z))

Vr(x) - Viegm(x) + n(z)Alogn(z)
=n(z) (|V1ogm(z)|* + Alog 7(x))

O

Theorem B.3 (SB characteristics of SOC). The optimal distribution p* of the SOC problem in (20)
is also the solution to the following SB problem:

base)

arg min { Dk, (p||[p*™*) : po = p, p1 =pi}. (48)
p

Proof. We aim to show that there exist a transform such that the SOC’s optimality equation (21) can
be reinterpreted as the ones for SB (40). To this end, consider

pi(x) == e VD Gi(a) = @pr(a). (49)

One can verify that the value function V() defined in (21) can be rewritten as
ou(o) = [ Bl )
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On the other hand, we can expand @;(x) by

Gu(w) = et / dx
_ Vi@ / dX,dX,
= %@ / PPO(X; =, Xg)e™ V@V (Xo)g X,

N /pbase(Xt = | Xo)u(Xo)e? X dX,

— [ i alnéotway.

Combined, the optimality equation (21) for the SOC problem can be rewritten equivalently as

ou(o) = [ B 0, po(@)g0(x) = (o),
uy(z) = 0y Vleg o (x), where

Pi(z) = /p'ifée(xly)%(y)d% e1(z)p1(z) = pi(z).
We conclude that p* indeed solves (48). ]

Corollary B.4 (Reciprocal process of the SOC problem). The optimal distribution p* of the SOC
problem in (20) is a reciprocal process, i.e.,

PH(X) = P (X | Xo, X1)p* (Xo, X1). (51)
B.2 Missing Proofs in Main Paper

Proof of Theorem 3.1 Comparing (8a) to (21), we can reinterpret ¢ () as an value function V;(z)
by reinterpreting
8b o1(x
Vi(e) == ~logei(a). g(a) =~ log i (a) 2 1og 2.
v(z)
That is, the kinetic-optimal drift of SB solves an SOC problem (4) with a terminal cost g(x) : f1(2)
d

Proof of Theorem 4.1  For notational simplicity, we will denote ¢ = qﬁ(kfl) throughout the proof.
We first rewrite the backward SDE (17) in the forward direction (Nelson, 2020):

dX; = [fi — 07 Viog ¢y + 07V 1og ¢ dt + odW;, Xy ~ v,
where we rewrite ¢ (x) w.r.t. the forward time coordiante:

o() = / e @l)do)dy,  bi(x) = RED(a), (52)

Note that (52) admits an equivalent PDE form by invoking Feynman-Kac formula (Le Gall, 2016):
2

o = (o
Kpu(w) = =V - (fin) + 5 Adu(2),  dr(2) = R (). (53)
On the other hand, the dynamics of 9;q follows the Fokker Plank equation (@ksendal, 2003):
1
Ohar =V - ((fr —0fVlog ¢y + 07 Viogq:) ¢i) + ingQt

1
=V. ((UEVIOng)t - ft) Qt) - io—tQAqtv
and straightforward calculation yields
1 1
O¢logq; = U?AIOg@ -V-fi+ (U?VIOg@ - ft) -Vlog g — §Ut2||V10th||2 - §U§A10tha
(54
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where we apply the Laplacian trick (47) to %Aq = [|[V1og ¢:||* + Alog ¢.

Now, recall that p is the path distribution induced by the following SDE:
dX; = [fi(Xy) + opue(Xy)] dt 4 o, dW, Xo ~ p. (55)
Invoke Ito Lemma (46) to log q;(X:), where X; follows (55):

|
dlogq; = |:('),lug g+ Viegq - (i +opuy) + ;(r,“A logq, | dt + o,V log q; - AW,

9 . 9 ] 2 )
4 |:rr,‘A]<>g(), -V fi+0;Vilogos - Viogqr — 50% Viogq "+ Viogq, - (opuy) | dt
-+ atV log q * th (56)
Likewise, invoke Ito Lemma (46) to log ¢;(X;), where X, follows (55):

dlog ¢,

1
= |Olog 1 + V1og ¢y - (f + orus) + iafAlog ¢t] dt 4+ 0+ Vlog ¢ - AW,

I 2 A¢ 1
(2) -V ft + %% + VlOg ¢t . (UtUt) + iU?AIOg ¢t:| dt + O'tVIOg qbt . th
L o
@7 o} 2 e L,
= | -V-f; + 5 ([[V1og ¢¢l|” + Alog ¢r) 4+ Vlog ¢y-(opue) + 50t Alog ¢y | dt + 04V log ¢;-dW,

2
= *v . ft + %HVIOg d)t”Q + VIOg ¢t . (O'tut) + O'fAlOg ¢t:| dt —+ O'tVIOg ¢t . th (57)
Subtracting (57) from (56) leads to
dlog ¢y —dlogq; = [%Hut +0yVlog ¢, — 0,Vlog q||* — %||ut||2] dt + atVIOg% -dW;. (58)
t

Finally, we are ready to compute the variational objective in (16):

o 1
DKL(quh(k 1>) =Ex~pe [/ %HUt(Xt) + 0 Vlog ¢ (Xy) — UtVIOth(Xt)”th}
0

1
O [ [ Gl i? + atog (%0 - aloga(x0) dt}
0

1
=Ex.,u 1 X 2d 1 ¢1(X1) | ¢O(XO):| 5
o | [ O a1+ 10g 2L 10 200 (59)
! R=1) (X
O<EX~p“ |:/O %||Ut(Xt)||2dt+10g 1/()((1)1):| (60)

That is, we have shown that the variational objective Dk, (p| |qﬁ(k71>) is equivalent (up to an additive
constant) to an SOC problem (60). Applying Reciprocal Adjoint Matching (Havens et al., 2025) with

the reciprocal process from Corollary B.4 conclude that Dk, (p| |qﬁ(k_1)) is minimized by .0

Proof of Theorem 4.2  For notational simplicity, we will denote pF) = p“(k) throughout the proof.
Let g be the path distribution induced by a backward SDE, propagating along the time coordinate
s:=1—t

dY; = [— fs(Ys) + osvs(Ys)] ds + osdW, Yy ~ .

Next, rewrite the forward SDE p(k) in the backward direction:
v, = [—fs —oul® + 02V logpgk)} ds + osdWy, Yo ~ ™|y

By Theorem B.3, we know that p(*) is the SB solution, thereby satisfying

o) = [ Bl W), eole)do@) =) (61
ugk)(x) = 04V log (), where

ou(@) = [ Bl 0u)dy, o1(0)n (@) = (@) 610
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Since we are working with the backward time coordinate s, it is convenience to define ¢ := @1
and rewrite (61b) by

base pY") (v)
¢s(y) = p1_3|0(y|z)¢1(z)dz, do(y) = orly) (62)
Now, expanding the variational objective with Girsanov Theorem yields (Sérkké and Solin, 2019)

1
Dxr(0™|lg) = By oy { / = 0sVlog s (Ya) + 0,V log pi (Vy) — vs(Ya)||?ds |, (63)
0
which is minimized point-wise at

k
P () @
©s(y)
In other words, the backward SDE that minimizes (63) must obey

dY; = [—£5(Ys) + 02V 1og ¢5(Ys)] ds + odW,, Yo ~ v,

with ¢, defined in (62). That is, we have concluded so far that

vi(y) = o5V log osVlog ps(y).

(k) :
¢"' /¢1 = argmin {DKL(p(k)Hq) fqu=v}. ()
a

k
o
w1 "

Hence, it remains to be shown that the minimizer 7L§k) of the CM objective at stage k equals
This is indeed the case since p(*) is the SB solution:

- , (k)
Vlog (k) (I:S) arg}minEpgkl) [Hh(Xl) -V, logpbase(Xl‘Xo)”ﬂ (o) V log ¢1 “2) V log %

]

C Practical Implementation of ASBS

Algorithm 2 summarizes the practical implementation of ASBS, where we expand the adjoint and
corrector matching steps (i.e., lines 3 and 4 in Algorithm 1) to full details. Table 5 provides the
hyper-parameters for each task. We break down each component as follows:

Harmonic prior fthamonic  Recall the harmonic prior in (19):
Hnarmonic () o< exp(—g 3, ; lla; — a;4|?). (65)

In practice, we set « = 1 and implement (65) as an anisotropic Gaussian. For instance, for a 2-particle
system in 3D, i.e., z = [x1;x2] € RS, we can rewrite (65) as a quadratic potential,

1 0 0 -3 0 0
0o 1 0 0 -1 o0
_1
exp(—1||z1 — 22||?) = exp(z ' Rz), where R = _Ol 8 (1) (1) 8 Ol 60
10 0 1 0
0 -3
o 0 - o o0 1
2

and then sample = from the Gaussian A/ (x; 0, (R + €I) 1), where we set e = 1072,
Noise schedule o; ' We consider two types of noise schedule.

» The geometric noise schedule (Song et al., 2021; Karras et al., 2022) monotonically decays from
t = 0 to 1 according to some prescribed Sy and Bmax:

geometric ) 1t
or S B (G ) 2008 G (67)
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Algorithm 2 Adjoint Schrodinger Bridge Sampler (ASBS)

Require: Sample-able source Xy ~ p, differentiable energy F(x), parametrized drift uy (¢, x) and
corrector hy(z), replay buffers Bagj and B, number of stages K, numbers of AM and CM
epochs Mg and M, number of resamples N, number of gradient steps L, time scaling A¢,
maximum energy gradient norm aupyy.

1: Initialize h((j)o) =0

2: forstage kin 1,2,..., K do

3: forepochinl,2,... M, do

4: Sample from model {(X{”, XN | ~ p»*, where u(¥) = stopgrad(u}”)

5: Compute adjoint target agi) = stopgrad( VE(Xl(i)) + hék)(Xfi))>
6: Update replay buffer B,gj <= Bagj U {(Xéi), X{i), agi)) A

7: Take L gradient steps Vg Lam W.I.t. the AM objective:

k
Lam(0) = B 140,1],(X0,X1,a0)~Bugs, Xo~p (- Xo,X1) [/\t\lué (8, Xe) + atatllﬂ

8: end for

9: forepochinl,2, ..., My do
10: Sample from model {(X{”, X("')IN | ~ p»*, where u(¥) = stopgrad(ul’)
11: Update replay buffer By < Ber U {(Xél), Xl(z)) N,

12: Take L gradient steps V4 Lcm W.r.t. the CM objective:

Lem(9) = E(xo,x0)Ban |10 (X1) = Vi, log p™ (X1]X0) ]

13:  end for
14: end for
15: return Kinetic-optimal drift u* =~ wug(t, x)

It is convenience to further define

t . 25 2t
o 24, geometric po Buin Buin 32._ 32 2 . Ftjo
Kt|s -—/ UTdT - max ((ﬂmﬂx T\ B , B7i= max ﬁmim Ve = Bg :
S

(68)

With them, the conditional base distribution when f := 0 can be represented compactly by
P(X | Xo) = N (X5 Xo, irfo]) (692)
P (X4 Xo, X1) = N (X5 (1= 7) Xo + 7:.X1, B2 (1 = 7)) (69b)

* The constant noise schedule simply sets
o =" o, (70)
When f := 0, the base SDE is effectively a standard Brownian motion whose conditional
distributions obey

PP (X | Xo) = N(Xy; Xo, 0%t (71a)
PP (X | X0, X1) = N (X (1 )Xo + X1, 0%H(1 — t)]) (71b)

Replay buffers B,q; and B,y  Similar to many previous diffusion samplers (Havens et al., 2025;
Akhound-Sadegh et al., 2024; Chen et al., 2025), we employ replay buffers B in computation of both
adjoint (14) and corrector (15) matching objectives. Specifically, we rebase the expectation over
model samples p“(k) onto a replay buffer /3, which stores the most latest | 3| samples. We update the
buffer with N new samples every L gradient steps. Note that the use of replay buffers effectively
render ASBS a hybrid method between on-policy and off-policy.
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Parametrization of vy and h,  For each energy function, we parametrize the drift ug(t, ) and
the corrector h, () with two neural networks, vy (¢, ) and vy (¢, z), of the same architecture.

Specifically, we parametrize the drift as ug(t, z) := o:vg(t, ), which effectively eliminates the noise
schedule “o;” in matching target (see (14)), making it time-invariant for each sampled trajectory.
The only exception is the conformer generation task, where we keep the original parametrization
ug(t,x) := wvg(t,z), which empirically yields better results. On the other hand, since hy(z) is
independent of time, we simply set a fixed time input ¢ = 1, i.e., hy(z) = v4(1, z).

The specific parametrization v(t, 2) employed for each task are detailed below.

* MW-5: We consider v(t, x) a standard fully-connected network with 4 layers with 64 hidden
features of the following form:

output = layer_no---olayer_1o (x_embed(z) + t_embed(t))

* DW-4, LJ-13, LJ-55: We consider v(t, 2) a Equivariant Graph Neural Network (EGNN; Satorras
et al., 2021) with 5 layers and 128 hidden features. The architecture of EGNN is aligned with
prior methods (Akhound-Sadegh et al., 2024; Havens et al., 2025).

* Alanine dipeptide: We use the same architecture as in MW-5, except with 8 layers with 256
hidden features.

* Conformer generation: We consider v(t, x) a similar EGNN used in Adjoint Sampling (Havens
et al., 2025), except with 20 layers. Ablation study on the same EGNN architecture can be found
in Appendix D.4.

Clipping ormax ~ We clip the energy gradient to prevent its maximum norm from exceeding cvmax.-

Time scaling \;  Following standard practices for AM objective, we employ a time scaling \; to
improve numerical stability. Note that this does not affect the minimizer of the AM objective. We set
A = % for all tasks.

t

Translation invariance =~ For DW-4, LJ-13, LJ-55, and conformer generation tasks, we follow prior
methods (Akhound-Sadegh et al., 2024; Havens et al., 2025) by restricting the state space to a zero
center-of-mass (ZCOM) subspace and thereby enforcing translation invariance.

For a n-particle k-dimensional system, i.e., x = [z1;- -+ ; xp] Where x; € R*, the ZCOM subspace is
defined as X7°OM = {z € R"* : 3" | x; = 0}. Practically, this is achieved by projecting the initial
sample X ~ 1, the SDE’s noise dW;, and the energy gradient VE(-) onto X?“°M, Note that the
output of EGNN is by construction ZCOM.

Formally, the adaption is equivalent to augmenting the SDE with a projection matrix A € R™**nk:
1
dX; = oy Auy(X,)dt + o, AdW,, Xo =AYy, Yo~ pu, A= <In - 1n1§) ® I, (72)
n
where ® is the Kronecker product, I,, € R™*"™ is an identity matrix, and 1,, € R™ is a vector of ones.

Initialization and alternate procedure  As ASBS is an instantiation of the IPF algorithm (see
Theorem 3.2), it must adhere to the IPF initialization protocol to ensure theoretical convergence to
the global solution. Specifically, the IPF initialization can be implemented in two ways

* Initialize with hfﬁo) := 0 and run AM, CM, ... until convergence. We adopt this setup for all tasks.

* Initialize with uéo) := 0 and run CM, AM, ... until convergence. Since p“(o) = pbase in this setup,
the optimal corrector at the first CM stage is known analytically:

(15) ase ase
B () L2 / PR (412) V. Log 335 () dy

base( |I)
:/ sty VaPiio (2ly)dy

P @ly)

e Ve [ RS el

=V log p}***(z) (73)
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Table 5: Hyperparameters of ASBS for the each task.

Synthetic energy functions Alanine Conformer
dipeptide  generation
MW-5 DW-4 LJ-13 LJ-55

" N(0,1)  pharmonic in (19) with «=2,2,1  N(0,0.25) [harmonic
Brmin — 0.001  0.001 0.001 0.001 0.001
Brnax — 1 1 2 0.5 1
o 0.2 — — — — —
K 5 20 15 15 15 3
Mg 100 200 300 300 4000 2500
My 20 20 20 20 2000 2000
N 1000 1000 1000 1000 1000 128
L 200 100 100 100 100 100
|B| 10* 10* 10* 10* 10* 6.4 x 104
O'max — 100 100 100 100 150

In practice, we find that the two setups yield similar performance.

RDKit warm-start  This warm-starts the drift uy using RDKit samples. The procedure is inspired
by the fact that (Shi et al., 2023; Liu et al., 2023):

u; = 0V log gy
= arg min EP?,l [||ut(Xt) — 04V, logpbase(X1|Xt)H2}

Ut

= argminIE(XO’XI)NPSJ)thpba~e(,|X0)X1) |:||’U/t(_Xt) - O'tvxt lngbase(Xl‘Xt)HQ] . (74)

where the last equality is due to

“1) pas ~
o1 (2, y,2) =055y, 212) o () p1(2)

base base

=pijou1 (Ylz, 2)p1li (2[y) o (@)1 (2)
(43) *
=i (ylz, 2)p 1 (@, 2). (75)
Equation (74) can be understood as an analogy of (45) for another SB potential ;. In practice, given
RDKit samples X; ~ ¢RPKit, we warm-start ASBS by minimizing w.r.t. the following objective:

Lovarmup(0) =Eoret4(0.1] Xorops. X g5 Xy rephoe(| Xo.X1) P\tHut (X,) — 0¢ Vs, log P (X1 | X,) ||2}

(69a) ~ o
= Iy 14[0,1], X o~ p1, X1 ~gqRDKIC X, ropbise (1| X, X1 ) |:)\f|Uf(Xf) — Tt‘t(Xl — Xt)2:| , (76)

ot
Kt "

where x1|; is defined in (68) for the geometric noise schedule. We set the time scaling S\t =

Note that, unlike AS, the minimizer of (76) does not equal u*, since (Xo, X1) ~ pu ® gRPKit # p6,1
are sampled independently.

D Experiment Details

D.1 Synthetic Energy Functions

D.1.1 Energy functions

In this section, we provide the exact setup for our synthetic energy experiments in Table 2. We
consider four synthetic energy functions that have been widely used in recent literature to benchmark
sampling and generative algorithms: MW-5, DW-4, LJ-13, and LJ-55.
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MW-5 The MW-5 (Many-Well in 5D) energy is a S-particle 1D system adopted from Chen et al.
(2025), where © = [x1;- - ;5] € R with x; € R, . The energy function is defined as follows:

B(z) =) (x7 —4)? (77)
i=1
where we set § = 4. This creates distinct modes centered at combinations of ++/3 in each of the d
dimensions.

DW-4 The DW-4 (Double-Well for 4 particles in 2D) energy is a physically motivated pairwise
potential originally proposed in Kohler et al. (2020) and subsequently used in Akhound-Sadegh et al.
(2024); Havens et al. (2025). It defines a system of four particles, each living in R?, leading to an 8D
state vector & = [x1; x2; x3;x4] € R® with z; € R?. The energy function reads

1

E(JL‘) = exp Z Z (a(dij - do) + b(d” - do)Z + C(dz’j - d0)4) s (78)
i<j

where d;; = ||z; — x]|2 is the Euclidean distance between particles ¢ and j. We follow the standard

configuration witha = 0, b = —4, ¢ = 0.9, dyp = 1, and temperature 7 = 1.

LJ-13 and LJ-55 The Lennard-Jones (LJ) potentials are classical intermolecular potentials com-
monly used in physics to model atomic interactions. These are defined for a system of n particles
in 3D space, with z = [x1;...;2,] € R3 and x; € R3. The index following "LJ-" indicates the
number of particles (e.g., 13 or 55). The unnormalized energy function takes the form:

6 12
€ T'm, T'm c )
E = — — | == - - 7
(@) %E}K%> (%) +5 2 llzi = C@)IP, (79)
1<J 7
where d;; = ||z; — x;]|2 is the pairwise distance and C'(z) denotes the center of mass of the particles.

We use the parameter values 7, = 1, e = 1, ¢ = 0.5, and 7 = 1, following prior work. The LJ-13
and LJ-55 systems correspond to 39D and 165D, respectively.

D.1.2 Baselines

Here, we outline the procedure used to obtain the values reported in Table 2 for the baseline methods.

For PIS (Zhang and Chen, 2022), DDS (Vargas et al., 2023), and LV-PIS (Richter and Berner, 2024),
iDEM (Akhound-Sadegh et al., 2024), and AS (Havens et al., 2025), we reuse the values reported
in AS (Havens et al., 2025, Table 1) for DW-4, LJ-13, and LJ-55 energy functions. As for MW-5,
which is not included in AS, we run iDEM using their official implementation and the rest of baseline
methods using our own implementation in PyTorch (Paszke et al., 2019). We were unable to obtain
reportable results for LV-PIS and iDEM on this energy function.

For PDDS (Phillips et al., 2024) and SCLD (Chen et al., 2025), we run their official implementations
in JAX (Bradbury et al., 2018) using the default hyperparameter settings specified for the Log-
Gaussian Cox Process experiment in their respective papers. To enhance stability and convergence on
synthetic energy functions, we tune the gradient clipping parameters. For PDDS, we apply clipping
to the gradient of the energy function. For SCLD, we clip both the energy gradient and the Langevin
norm. In both cases, the clipping magnitude is selected from the set {1, 10, 100, 1000} based on the
best validation performance. Training is performed for 100,000 iterations across all runs. For SCLD,
we use subtrajectory splitting with the default value of 4, so that it does not degenerate to CMCD
(Vargas et al., 2024). In practice, we find that using subtrajectories yields better results.

D.1.3 Evaluation Metrics

In this subsection, we outline the evaluation criteria used to quantitatively assess the quality of
samples generated from synthetic energy functions. We employ three primary metrics: Sinkhorn
distance, geometric W5, and energy W-, each designed to capture different aspects of distributional
similarity between generated and ground truth samples.

Sinkhorn distance  To evaluate the similarity between the empirical distributions of generated and
reference samples, we compute the Sinkhorn distance using the entropy-regularized optimal transport
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formulation (Peyré and Cuturi, 2019), following the implementation of Blessing et al. (2024) and
Chen et al. (2025). The Sinkhorn regularization coefficient is set to 10~ throughout. We use 2,000
samples from both the generated and ground truth distributions to compute the metric.

Geometric 1V, For DW and LJ tasks, the potential energy functions—and consequently, the
sample distributions—exhibit invariance to both particle permutations and rigid transformations such
as rotations and reflections. To appropriately account for these symmetries, we employ the geometric
Ws distance as defined by Akhound-Sadegh et al. (2024) and Havens et al. (2025). Formally, the
2-Wasserstein distance is computed as:

Wiov) = _int [ Dl nla.y) dedy, (50)
mell(o,v
where II(7, v) denotes the set of joint couplings with prescribed marginals 7 (generated) and v
(ground truth), and D(x, y) is a symmetry-aware distance between samples defined as:
D(x,y) = min r—(R®P . 81

()=, min__ e (Re Py, 81)
Here, O(s) denotes the group of orthogonal transformations in s spatial dimensions (rotations and
reflections), and S(n) represents the symmetric group over n particles. As exact minimization over
these symmetry groups is computationally infeasible, we adopt the approximation scheme of Kohler
et al. (2020). We use 2000 samples from each generated and ground truth distribution to compute the
metric.

Energy W, To evaluate fidelity with respect to the target energy landscape, we also compute
the 2-Wasserstein distance between the energy values of generated samples and those of ground
truth samples. For each target distribution, we generate 2,000 samples from both the model and the
reference, and compare their respective energy histograms. This scalar-based Wasserstein metric
serves as a proxy for how well the generative model captures the energy histogram of the target
distribution.

D.2 Alanine dipeptide

Benchmark description We adopt the experiment setup primarily from (Midgley et al., 2023).
Given a configuration of alanine dipeptide, which consists of 22 particles in 3D, ie., z =
[#1;+ - ;w22] € RO6 where z; € R3, we apply the same coordinate transform 7~ proposed by
Midgley et al. (2023). This coordinate transform maps the Cartesian coordinates to internal coor-
dinates, 7 (r) =: z € R5Y, which include bond lengths, bond angles, and dihedral angles (Stimper
et al., 2022). This process effectively removes six degrees of freedom—three for translation and three
for rotation—thereby enforcing structural invariance. Non-angular coordinates are further normalized
using samples with minimal energies. We refer readers to (Midgley et al., 2023, Appendix F.1) for
further details. Note that the internal coordinate transformation is bijective. Hence, we can compute
the energy via

E(z) = E(T'(2)) (82)

Evaluation and baselines  For each sample z = 7 ~1(z) € R5%, we extract five torsion angles,
including the backbone angles ¢, 1) and methyl rotation angles v, 2, 3. We report two divergence
metrics with respect to the ground-truth distribution, which contains 107 samples simulated by
Molecular Dynamics. We implement the baseline methods, including PIS (Zhang and Chen, 2022),
DDS (Vargas et al., 2023), AS (Havens et al., 2025), using PyTorch (Paszke et al., 2019).

For the KL divergences, we adopt setup from (Wu et al., 2020) and compute the divergence of the
ground-truth marginal to model marginal for each torsion angle:

Dict, (" ()Ip" () ~ 3 P*(:) log 5%1 |

where P* and P“¢ are histograms of 107 samples, discretized between [—, 7] with 200 intervals.

e=1075, (83)

For the Wasserstein-2 distance, we use the Geometric W, in (80), where each sample is now in 2D,
x = [¢,] € R2. Due to the high computational cost, we compute the value using a subset of 10*
samples from the test set ground-truth samples, which is fixed for all methods.

Finally, both Ramachandran plots in Figure 5 are generated using 107 samples.

33



SPICE SPICE + relax GEOM-DRUGS GEOM-DRUGS + relax

100 - 100 = 100 100 : -
vl Zl == ==~
- d 5 il z
X 80 7 80 G 80 7° 80 e
- ’ 4 4 /2
® ’ (7 v 7.
9 60 / 60 28 60 ! 60 g
1) /| g/
-2 / y /) 4
o 7 A 'y 4
2 40 7 40 y 40 s 40 G
= / RDKit i f 4
¢ 7 4
3 20 g == 20 ! 20 4 20 g
o 1 ASBS gauss 7 7
/7 —— ASBS harmonic il %
0 0 0 =7 0+=
0 05 1.0 15 20 0 05 1.0 15 20 0 05 1.0 15 20 0 05 1.0 15 2.0
Threshold (Angstrém) Threshold (Angstrém) Threshold (Angstrém) Threshold (Angstrém)

Figure 8: Ablation study on full recall coverage curves (without RDKit warm-start) using the same
EGNN architecture as in AS (Havens et al., 2025). Note that Table 6 reports the values at the

thresholds 1.0A and 1.25A.

D.3 Amortized conformer generation

In this subsection, we provide some context for the experimental results found in Table 4 regarding
the generation of conformers.

Benchmark description Conformers are atomic representations of molecules in cartesian space
with their constituent atoms arranged into local minima on the potential energy surface. Molecules
are defined to be a graph of atoms (nodes) connected by bonds (edges); conformers are geometric
realizations of that molecule. Torsion angles, or rotatable bonds, are particularly important degrees of
freedom for defining conformations since bond lengths and bond angles are typically much more
stable due to a high sensitivity to perturbations. It is common to consider bond lengths and bond
angles fixed, while the torsional degrees of freedom define the conformer.

The task in this benchmark is to take a representation of the molecular graph, usually a SMILES
string (Weininger, 1988), and comprehensively sample the conformational configuration space. In
flexible molecules, there can be a large number of conformers with many separated modes in a 3n. — 6
dimensional space. (Where n represents the number of atoms and 6 comes from the irrelevance of
rotation and translation of the conformer.) We quantify the notion of comprehensively sampling the
space by comparing generated structures to a set of conformers sampled using expensive, standard
search techniques (Pracht et al., 2024) that were further relaxed using extremely precise density
function theory-based, quantum chemistry methods (Neese, 2012; Levine et al., 2025). A detailed
description of this benchmark can be found in its source (Havens et al., 2025, Appendix F.).

Evaluation and baselines The method of comparison between proposed structure and reference
conformer is to use RDKit’s (Landrum, 2006) implementation of Root Mean Squared Displacement
(RMSD), a measure of distance between atomic structures that is invariant to translation and rotation.
We set a threshold RMSD for two structures to match and computed the Recall Coverage and Recall
Average Minimum RMSD (AMR). The experiment was performed with both generated structures
and with generated structures after a so-called relaxation, i.e. geometry optimization of energy, using
eSEN (Fu et al., 2025). The equations for computing these metrics are:

COV-R(3) = % {le{l,....L}:3ke{l,...,K}, RMSD(Cy,C})<3}|  (84)

1
AMR-R := — i RMSD ;
L, 2=, weltiti RMSP(C €D )

where § = 0.75 A is the coverage threshold, L = max(L’, 128), where L’ is the number of reference
conformers, K = 2L, and let {C} };¢[1,1) and {Ck }re1, k] be the sets of ground truth and generated
conformers respectively. We capped the reference conformers per molecule at 512 in COV-R.

The values for the baselines are adopted from AS (Havens et al., 2025).
D.4 Additional Experiments and Discussions

Ablation study between AS and ASBS using the same EGNN  For the amortized conformer
generation task in Table 4, we use an EGNN architecture with 20 layers, whereas AS employs the
same architecture with 12 layers. In Table 6, we report the results of ASBS using the same 12-layer
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Table 6: Ablation study on amortized conformer generation using the same EGNN architecture as in

AS (Havens et al., 2025). We report the recall at the thresholds 1.0A and 1.25A, where the latter was
reported in AS.

without relaxation with relaxation
SPICE GEOM-DRUGS SPICE GEOM-DRUGS

Method CoverageT AMR ] Coveraget AMR | CoverageT AMR] Coverage?t AMR |

ot RDKit ETKDG Riniker and Landrum, 2015) 56,94 +3550  1.042050  50.81+31600  1.15+06 70213170 0.79-+0 62.55+3167 0.93+053

S AS (Havens et al., 2025) 56.75 315 0.96:026 36231302 1.20:045 824110585 0.68:028 64261315 0.89045

E ASBS w/ Gaussian prior (Ours) 68.61+:345  0.88+025  46.03+3500  1.08+03  84.77:265  0.64:025  68.83:3155  0.80+037

§ ASBS w/ Harmonic prior (Ours) 70.70+ 33> 0.86:021  52.19:3505  1.05:001  86.79:2s  0.61:020  70.08:3160 0.80+037
=

& AS +RDKit warmup avens etat, 2025y 722143022 0.84=024  52.19+3500  1.02+031  87.84-1920  0.60+023  73.88+2863  0.76-034

ASBS +RDKit warmup (Ours) 74.29+3125  0.82402¢4  55.88+3651  0.98:03  87.25:20 0.60+02¢4  74.11+3016  0.75+034

ﬁ RDKit ETKDG (Riniker and Landrum, 2015) 727443318 1.04-05  63.51+3:74 1.15061 81.61:2755  0.79:040  71.72:42973  0.93:05:

' AS (Havens et al., 2025) 822212572 0.96+026  60.93+3505  1.20+043 941041567 0.68+025  79.08:2044  0.89+045

30 ASBS w/ Gaussian prior (Ours) 87202155 0.88:055  70.86+3108  1.08:036  95.19:1020  0.64:005  84.66+050:  0.80+037

J;:g ASBS w/ Harmonic prior (Ours) 89.66+1942  0.86+02¢ 7450+  1.05:041  96.64:1005  0.61:02 83.76+2477  0.80+037
=

= AS +RDKit warmup (Havens ctal, 2025y 89.42+1745  0.84+1024  72.98 1305 1.02034 96.65 751 0.60:02:  87.01+:2279  0.76+034

ASBS +RDKit warmup (Ours) 90.85+177¢  0.82:02¢  77.86+3037  0.98:03  97.28:655  0.60:02:  87.81:2275  0.75+03
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Figure 9: Compared to vanilla Langevin baseline, our ASBS—instantiated with a standard uni-
variance Gaussian—is able to identify almost all modes without any prior knowledge of where the
target modes were located.

EGNN as AS. Notably, our ASBS consistently outperforms AS on all metrics across all setups, except
the coverage for GEOM-DRUGS with relaxation and RDKit warm-start, where ASBS falls slightly
behind AS by only 1.0%. Finally, Figure 8 reports the full recall coverage curves that reproduce
Table 4.

Ability of ASBS in finding modes = We conduct additional experiments on the 40-mode GMM in
2D. Specifically, we instantiate ASBS with a uni-variance Gaussian source distribution centered at
zero, effectively assuming no prior knowledge of the target modes, as the initial distribution does not
coincide with any target modes. We also run a vanilla Langevin baseline for 1 million steps, starting
from the same source distribution.

Figure 9 represents the quantitative results. Notably, ASBS is able to identify almost all modes. In
contrast, the vanilla Langevin baseline appears to suffer from a slow mixing rate, recovering less
than half of the total modes even after 1 million steps. We highlight this distinction as an advantage
of constructing diffusion samplers from the stochastic control and Schrédinger Bridge frameworks,
which allows theoretical convergence to target distribution within a finite horizon. Finally, we believe
that with proper tuning of the ASBS noise schedule, its performance can be further enhanced.

Discussion on important weights  Finally, we discuss the potential integration of ASBS with
importance weights, emphasizing that our theoretical and algorithmic frameworks do not preclude
the use of importance weights to further enhance performance or robustness.

Formally, the importance weights over model path X ~ p*“ admit the following representation:

_ X t " 24, lu AW — loe PLED L Bo(Xo)
w(X) = dp(X) p(/o 3 lue (X[ dt /o (X¢) - dW, — log V(X1) + log “()Eé)g)>’
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which can be obtained from (59) by setting h := (; so that q’_l = p* is the optimal distribution of SB.
Note that when the source distribution degenerates to the Dirac delta p(Xo) = do(Xo), the last term

log io((;(i“)) becomes a constant and—as discussed in Section 3.2—p»; = p4%°, thereby recovering the

weights used in prior SOC-based methods (Zhang and Chen, 2022; Havens et al., 2025).

Equation (86) is also a more concise representation than the one derived in (Richter and Berner, 2024),
by recognizing the following relation through the application of Ito Lemma (46) to log @ (X}):

log ¢1(X71)
log ¢o(Xo)

where we shorthand v;(x) := 0,V log ¢¢ ().

= /0 [%Hvt(Xt)”Z + (ue - v)(Xe) + V- (00 (Xy) — fo(X4))] dt—l—/o v (Xy)-dWy,

87

Estimating the weight in (86) requires knowing the ratios il(%) and “‘;0(5) , which are not immediately
available with the current parametrization, ug(t, z) =~ 0,V log ¢ (x) and hy(z) ~ V log ¢1(z). One

accommodation is to reparametrize the functions with potential network v(¢, z) : [0,1] x X — R,
ug(t,x) := o Vuy(t, z), hg(x) := Vug(l, x) (88)

and then regress their gradients onto the adjoint and corrector targets. With that, the logarithmic
ratios can be easily estimated:

¢1(x) Polz) @
e @) w@

A more detailed investigation of this importance sampling scheme is left for future work.

=v(1,2) + E(z), log wo(z) = vp(0, ). (89)
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