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ABSTRACT

We derive a simple unified framework giving closed-form estimates for the test
risk and other generalization metrics of kernel ridge regression (KRR). Relative
to prior work, our derivations are greatly simplified and our final expressions are
more readily interpreted. In particular, we show that KRR can be interpreted as an
explicit competition among kernel eigenmodes for a fixed supply of a quantity we
term “learnability.” These improvements are enabled by a sharp conservation law
which limits the ability of KRR to learn any orthonormal basis of functions. Test
risk and other objects of interest are expressed transparently in terms of our con-
served quantity evaluated in the kernel eigenbasis. We use our improved frame-
work to: i) provide a theoretical explanation for the “deep bootstrap” of Nakkiran
et al. (2020), ii) generalize a previous result regarding the hardness of the classic
parity problem, iii) fashion a theoretical tool for the study of adversarial robust-
ness, and iv) draw a tight analogy between KRR and a well-studied system in
statistical physics.

1 INTRODUCTION

Kernel ridge regression (KRR) is a popular, tractable learning algorithm that has seen a surge of
attention due to equivalences to infinite-width neural networks (NNs) (Lee et al., 2018; Jacot et al.,
2018). In this paper, we derive a simple theory of the generalization of KRR that yields estimators
for many quantities of interest, including test risk and the covariance of the predicted function. Our
framework is consistent with other recent works, such as those of Canatar et al. (2021) and Jacot
et al. (2020), but is simpler and easier to derive. Our framework paints a new picture of KRR as an
explicit competition between eigenmodes for a fixed budget of a quantity we term “learnability,” and
downstream generalization metrics can be expressed entirely in terms of the learnability received by
each mode (Equations 7-14).

This picture stems from a conservation law latent in KRR which limits any kernel’s ability to learn
any complete basis of target functions. The conserved quantity, learnability, is the inner product of
the target and predicted functions and, as we show, can be interpreted as a measure of how well the
target function can be learned by a particular kernel given n training examples. We prove that the
total learnability, summed over a complete basis of target functions (such as the kernel eigenbasis),
is no greater than the number of training samples, with equality at zero ridge parameter.

The conservation of this quantity suggests that it will prove useful for understanding the general-
ization of KRR. This intuition is borne out by our subsequent analysis: we derive a set of simple,
closed-form estimates for test risk and other objects of interest and find that all of them can be trans-
parently expressed in terms of eigenmode learnabilities. Our expressions are more compact and
readily interpretable than those of prior work and constitute a major simplification.

Our derivation of these estimators is significantly simpler and more accessible than those of prior
work, which relied on the heavy mathematical machinery of replica calculations and random matrix
theory to obtain comparable results. By contrast, our approach requires only basic linear algebra,
leveraging our conservation law at a critical juncture to bypass the need for advanced techniques.

We use our improved framework to shed light on several topics of interest:
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i) We provide a compelling theoretical explanation for the “deep bootstrap” phenomenon of
Nakkiran et al. (2020) and identify two regimes of NN fitting occurring at early and late
training times.

ii) We generalize a previous result regarding the hardness of the parity problem for rotation-
invariant kernels. Our technique is simple and illustrates the power of our framework.

iii) We craft an estimator for predicted function smoothness, a new tool for the theoretical study
of adversarial robustness.

iv) We draw a tight analogy between our framework and the free Fermi gas, a well-studied
statistical physics system, and thereby transfer insights into the free Fermi gas over to
KRR.

We structure these applications as a series of vignettes.

The paper is organized as follows. We give preliminaries in Section 2. We define our conserved
quantity and state its basic properties in Section 3. We characterize the generalization of KRR in
terms of this quantity in Section 4. We check these results experimentally in Section 5. Section 6
consists of a series of short vignettes discussing topics (i)-(iv). We conclude in Section 7.

1.1 RELATED WORK

The present line of work has its origins with early studies of the generalization of Gaussian pro-
cess regression (Opper, 1997; Sollich, 1999), with Sollich (2001) deriving an estimator giving the
expected test risk of KRR in terms of the eigenvalues of the kernel operator and the eigendecompo-
sition of the target function. We refer to this result as the “omniscient risk estimator1,” as it assumes
full knowledge of the data distribution and target function. Bordelon et al. (2020) and Canatar et al.
(2021) brought these ideas into a modern context, deriving the omniscient risk estimator with a
replica calculation and connecting it to the “neural tangent kernel” (NTK) theory of wide neural
networks (Jacot et al., 2018), with (Loureiro et al., 2021) extending the result to arbitrary convex
losses. Sollich & Halees (2002); Caponnetto & De Vito (2007); Spigler et al. (2020); Cui et al.
(2021); Mallinar et al. (2022) study the asymptotic consistency and convergence rates of KRR in
a similar vein. Jacot et al. (2020); Wei et al. (2022) used random matrix theory to derive a risk
estimator requiring only training data. In parallel with work on KRR, Dobriban & Wager (2018);
Wu & Xu (2020); Richards et al. (2021); Hastie et al. (2022) and Bartlett et al. (2021) developed
equivalent results in the context of linear regression using tools from random matrix theory. In the
present paper, we provide a new interpretation for this rich body of work in terms of explicit com-
petition between eigenmodes, provide simplified derivations of the main results of this line of work,
and break new ground with applications to new problems of interest. We compare selected works
with ours and provide a dictionary between respective notations in Appendix A.

All prior works in this line — and indeed most works in machine learning theory more broadly
— rely on approximations, asymptotics, or bounds to make any claims about generalization. The
conservation law is unique in that it gives a sharp equality even at finite dataset size. This makes
it a particularly robust starting point for the development of our framework (which does later make
approximations).

In addition to those listed above, many works have investigated the spectral bias of neural networks
in terms of both stopping time (Rahaman et al., 2019; Xu et al., 2019b;a; Xu, 2018; Cao et al., 2019;
Su & Yang, 2019) and the number of samples (Valle-Perez et al., 2018; Yang & Salman, 2019;
Arora et al., 2019). Our investigation into the deep bootstrap ties together these threads of work:
we find that the interplay of these two sources of spectral bias is responsible for the deep bootstrap
phenomenology.

2 PRELIMINARIES AND NOTATION

We study a standard supervised learning setting in which n training samples D ≡ {xi}ni=1 are
drawn i.i.d. from a distribution p over Rd. We wish to learn a (scalar) target function f given
noisy evaluations y ≡ (yi)

n
i=1 with yi = f(xi) + ηi, with ηi ∼ N (0, ϵ2). As it simplifies later

1We borrow this terminology from Wei et al. (2022).
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Figure 1: Toy problem illustrating our conservation law. (A) The task domain: the unit cir-
cle discretized into M = 10 points, n of which comprise the dataset D (filled circles). (B) The
10 eigenfunctions of a rotation-invariant kernel on this domain, grouped into degenerate pairs and
shifted vertically for clarity. (C) We use each eigenfunction ϕk in turn as the target function. For
each ϕk, we compute training targets ϕk(D), obtain a predicted function f̂k in a standard supervised
learning setup, and subsequently compute D-learnability. This comprises 10 orthogonal learning
problems. (D,E) Stacked bar charts with 10 components showing D-learnability for each eigen-
function. The left bar in each pair contains results from NTK regression, while the right bar contains
results from wide neural networks. Models vary in activation function and number of hidden layers
(HL). Dashed lines indicate n. Learnabilities always sum to n, exactly for kernel regression and
approximately for wide networks.

analysis, we assume this N (0, ϵ2) label noise is also applied to test targets2. Our results are easily
generalized to vector-valued functions as in Canatar et al. (2021). For scalar functions g, h, we
define ⟨g, h⟩ ≡ Ex∼p[g(x)h(x)] and ||g||2 ≡ ⟨g, g⟩.

We shall study the KRR predicted function f̂ given by

f̂(x) = kxD(KDD + δIn)
−1y, (1)

where, for a positive-semidefinite kernel K, we have constructed the row vector [kxD]i = K(x, xi)
and the empirical kernel matrix [KDD]ij = K(xi, xj) (which we trust to be nonsingular), δ is a
ridge parameter, and In is the identity matrix. We wish to minimize test mean squared error (MSE)
E(D)(f) = ||f − f̂ ||2 + ϵ2 and its expectation over training sets E(f) = ED

[
E(D)(f)

]
(where the

expectation over D also averages over noise values). We emphasize that, here and in our discussion
of learnability, f̂ is understood to be the KRR predictor given by Equation 1 from training targets
generated with target function f . In the classical bias-variance decomposition of test risk, we have
bias B(f) = ||f − ED[f̂ ]||2 + ϵ2 and variance V(f) = E(f) − B(f). We also define train MSE as
Etr(f) =

1
n

∑n
i=1(f(xi)− f̂(xi))

2.

2.1 THE KERNEL EIGENSYSTEM

By Mercer’s theorem Mercer (1909), the kernel admits the decomposition K(x, x′) =∑
i λiϕi(x)ϕi(x

′), with eigenvalues λi ≥ 0 and a basis of eigenfunctions ϕi satisfying ⟨ϕi, ϕj⟩ =
δij . We assume eigenvalues are indexed in descending order.

As the eigenfunctions form a complete basis, we are free to decompose f and f̂ as

f(x) =
∑
i

viϕi(x) and f̂(x) =
∑
i

v̂iϕi(x), (2)

where v ≡ (vi)i and v̂ ≡ (v̂i)i are vectors of eigencoefficients.

2To study noiseless targets instead, simply subtract ϵ2 from expressions for test MSE.
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3 LEARNABILITY AND ITS CONSERVATION LAW

Here we define learnability, our conserved quantity. Learnability is a measure of f̂ defined similarly
to test MSE, but it is linear instead of quadratic. For any function f such that ||f || = 1, let

L(D)(f) ≡ ⟨f, f̂⟩ and L(f) ≡ ED

[
L(D)(f)

]
, (3)

where, as with MSE, f̂ is given by Equation 1. We refer to L(D)(f) the D-learnability of function
f with respect to the kernel and n and refer to L(f) as the learnability. Up to normalization, this
quantity is akin to the cosine similarity between f and f̂ . We shall show that, for KRR, learnability
gives a useful indication of how well a function (particularly a kernel eigenfunction) is learned.
Results in this section are rigorous and exact; see Appendix G for proofs.

We begin by stating several basic properties of learnability to build intuition for the quantity.

Proposition 3.1. The following properties of L(D), L, {ϕi}, and any f such that ||f || = 1 hold:

(a) L(ϕi),L(D)(ϕi) ∈ [0, 1].

(b) When n = 0, L(D)(f) = L(f) = 0.

(c) Let D+ be D ∪ x, where x ∈ X,x /∈ D is a new data point. Then L(D+)(ϕi) ≥ L(D)(ϕi).

(d) ∂
∂λi

L(D)(ϕi) ≥ 0, ∂
∂λi

L(D)(ϕj) ≤ 0, and ∂
∂δL

(D)(ϕi) ≤ 0.

(e) E(f) ≥ B(f) ≥ (1− L(f))2.

Properties (a-c) together give an intuitive picture of the learning process: the learnability of each
eigenfunction monotonically increases from zero as the training set grows, attaining its maximum
of one in the ridgeless, maximal-data limit. Properties (d) shows that the kernel eigenmodes are in
competition — increasing one eigenvalue while fixing all others can only improve the learnability
of the corresponding eigenfunction, but can only harm the learnabilities of all others — and that
regularization only harms eigenfunction learnability. Property (e) gives a lower bound on MSE in
terms of learnability and will be useful when we discuss the parity problem.

We now state the conservation law obeyed by learnability. This rule follows from the view of KRR
as a projection of f onto the n-dimensional subspace of the RKHS defined by the n samples and is
closely related to the “dimension bound” for linear learning rules given by Hsu (2021).

Theorem 3.2 (Conservation of learnability). For any complete basis of orthogonal functions F ,
when ridge parameter δ = 0, ∑

f∈F

L(D)(f) =
∑
f∈F

L(f) = n, (4)

and when δ > 0, ∑
f∈F

L(D)(f) < n and
∑
f∈F

L(f) < n. (5)

This result states that, summed over any complete basis of target functions, total learnability is at
most the number of training examples, with equality at zero ridge3. This theorem is a stronger ver-
sion of the classic “no-free-lunch” theorem for learning algorithms, which states that, averaged over
all target functions, all models perform at chance level (Wolpert, 1996). While deep and compelling,
this classic result is rarely informative in practice because the set of all possible target functions is
prohibitively large to make a nonvacuous statement. By contrast, Theorem 3.2 requires only an av-
erage over a basis of target functions and, as we shall see, it is directly informative in understanding
the generalization of KRR.

3We call Theorem 3.2 a conservation law because at zero ridge, as either the data distribution or the kernel
changes, total learnability remains constant. This is analogous to, for example, physical conservation of charge.
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4 THEORY

Eigenmode learnabilities are interpretable quantities, obeying a conservation law and several intu-
itive properties. These features suggest they may prove a wise choice of variables in a theory of
KRR generalization. Here we show that this is indeed the case: we derive a suite of estimators for
various metrics of KRR generalization, all of which can be expressed entirely in terms of modewise
learnabilities and thereby inheriting their interpretability. Because they characterize KRR learning
via eigenmode learnabilities, we call these equations the eigenlearning equations.

We sketch our method here and relegate the derivation to Appendix H. Our derivation leverages our
conservation law to avoid the need for either a replica calculation or random matrix theoretic tools
and is consequently more accessible and extensible than derivations of prior works. Results in this
section are nonrigorous. Like comparable works, our derivations use an experimentally-validated
“universality” assumption that the kernel features may be replaced by independent Gaussian features
with the same statistics without changing downstream generalization metrics.

We begin by observing that v̂ depends linearly on v, and we can thus construct a “learning transfer
matrix” T(D) such that v̂ = T(D)v. T(D) is equivalent to the “KRR reconstruction operator” of
Jacot et al. (2020) and, viewing KRR as linear regression in eigenfeature space, is essentially the
“hat” matrix of linear regression. We then study E

[
T(D)

]
, leveraging our universality assumption

to show that it is diagonal with diagonal elements of the form λi/(λi + κ), where κ is a mode-
independent constant. We show the mode-independence of κ with an eigenmode-removal argument
reminiscent of the cavity method of statistical physics (Del Ferraro et al., 2014). We use Theorem
3.2 to determine κ. Differentiating this result with respect to kernel eigenvalues, we obtain the
covariance of T(D) and thus of v̂, which permits evaluation of various test metrics4.

4.1 THE EIGENLEARNING EQUATIONS

Let the effective regularization κ be the unique positive solution to

n =
∑
i

λi
λi + κ

+
δ

κ
. (6)

We calculate various test and train metrics to be

(eigenmode learnability) L(ϕi) = Li ≡
λi

λi + κ
, (7)

(overfitting coefficient) E0 = n
∂κ

∂δ
=

n

n−
∑

i L2
i

, (8)

(test MSE) E(f) = E0

(∑
i

(1− Li)
2v2

i + ϵ2

)
, (9)

(bias of test MSE) B(f) =
∑
i

(1− Li)
2v2

i + ϵ2 =
E(f)
E0

, (10)

(variance of test MSE) V(f) = E(f)− B(f) = E0 − 1

E0
E(f), (11)

(train MSE) Etr(f) =
δ2

n2κ2
E(f), (12)

(mean predictor) E[v̂i] = Livi, (13)

(covariance of predictor) Cov[v̂i, v̂j ] =
E(f)L2

i

n
δij . (14)

The learnability of an arbitrary normalized function can be computed as L(f) =
∑

i Livi. The
mean of the target function evaluated at input x can be obtained as E[f̂(x)] =

∑
i E[vi]ϕi(x), with

the covariance obtained similarly.
4For train risk, we simply quote the result of Canatar et al. (2021).
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4.2 INTERPRETATION OF THE EIGENLEARNING EQUATIONS

Remarkably, all test metrics, and indeed all second-order statistics of f̂ , can be expressed solely in
terms of modewise learnabilities, with no additional reference to eigenvalues required. This strongly
suggests that we have identified the “correct” choice of variables for the problem. We now interpret
these equations through the lens of learnability.

Equation 6 gives a constant κ which decreases monotonically as n increases. Equation 7 states that
the learnability of eigenmode i is 0 when κ ≫ λi and approaches 1 when κ ≪ λi, in line with the
observation of Jacot et al. (2020) that a mode is well-learned when κ ≪ λi. Inserting Equation 7
into 6 and setting δ = 0, we recover our conservation law.

Equation 9 is the omniscient risk estimator for test MSE. Modes with learnability equal to one are
fully learned and do not contribute to the risk. Noise acts the same as target weight placed in modes
with learnability zero. Equation 8 defines E0, the MSE when trained on pure-noise targets (vi = 0
and ϵ2 = 1). It is strictly greater than one and can be interpreted as the factor by which pure noise is
overfit5. The denominator explodes when the n units of learnability are fully allocated to the first n
modes, not distributed among a greater number (Li≤n = 1,Li>n = 0). In this sense, overfitting of
noise is “overconfidence” on the part of the kernel that the target function lies in the top-n subspace,
and “hedging” via a wider distribution of learnability (or sacrificing a portion of the learnability
budget to the ridge parameter) lowers E0 and fixes this problem. This overconfidence occurs when
the kernel eigenvalues drop sharply around index n and is the cause of double-descent peaks (Belkin
et al., 2019), which other works have also found can be avoided with an appropriate ridge parameter
Canatar et al. (2021); Nakkiran et al. (2021).

Equations 10 and 11 show that, remarkably, the bias and variance can be expressed solely in terms
of E(f) and E0. Since learnabilities strictly increase as n grows, the bias strictly decreases while
the variance can be nonmonotone, as also noted by Canatar et al. (2021). Equation 12 states that
train error is related to test error by the target-independent proportionality constant δ2/κ2. Finally,
Equations 13 and 14 give the mean and covariance of the predicted eigencoefficients. Different
eigencoefficients are uncorrelated, and the variance of v̂i is proportional to L2

i but surprisingly
independent of vi.

5 EXPERIMENTS

Here we describe experiments confirming our main results. The targets are eigenfunctions on three
synthetic domains — the unit circle discretized into M points, the (Boolean) hypercube {±1}d, and
the d-sphere — as well as two-class subsets of MNIST and CIFAR-10. Unless otherwise stated,
experiments use a fully-connected four-hidden-layer ReLU architecture, and finite networks have
width 500. The kernel eigenvalues on each synthetic domain group into degenerate sets which we
index by k ∈ Z+. Eigenvalues and eigencoefficients for image datasets are approximated numer-
ically from a large sample of training data. Full experimental details can be found in Appendix
B.

Figure 1 illustrates Theorem 3.2 in a toy setting. Modewise D-learnabilities indeed sum to n. Figure
2 compares theoretical predictions for learnability and MSE with experiments on real and synthetic
data, finding good agreement in all cases. Appendix C repeats one of these experiments with network
widths varying from ∞ to 20, finding good agreement with theory even at narrow width.

6 VIGNETTES

6.1 EXPLAINING THE DEEP BOOTSTRAP

The deep bootstrap (DB) is a phenomenon observed by Nakkiran et al. (2020) in which the perfor-
mance of a neural network stopped after a given number of training steps is relatively insensitive to
the size of the training set, unless the training set is so small that it has been interpolated. The DB
has been studied theoretically on kernel gradient flow (KGF), which describes the training of wide
neural networks, by Ghosh et al. (2022) in the toy case in which the data lies on a high-dimensional

5See Mallinar et al. (2022) for a discussion of this interpretation.
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Figure 2: Predicted learnabilities and MSEs closely match experiment. (A-D) Learnability of
various eigenfunctions on synthetic domains and binary functions over image datasets. Theoretical
predictions from Equation 7 (curves) are plotted against experimental values from trained finite
networks (circles) and NTK regression (triangles) with varying dataset size n. Error bars show one
standard deviation of variation. (E-H) Same as (A-D) for test MSE, with theoretical predictions
from Equation 9.

sphere. Here we give a convincing general explanation of this phenomenon using our framework
and identify two regimes of NN fitting in the process.

Ali et al. (2019) proved that KRR with finite ridge generalizes remarkably similarly to KGF with
finite stopping time (a theoretical result confirmed empirically by Lee et al. (2020) for NTKs on
image datasets). When considering a standard supervised learning setting, the effective training
time corresponding to a ridge δ is τeff ≡ δ−1n (see Appendix D for a discussion of this scaling). As
a proxy for KGF, we shall study KRR as τeff increases from 0 to ∞.

In Equation 9, the ridge parameter affects MSE solely through the value of κ. Define κ0 ≡ κ|δ=0,
the minimum effective regularization at a given dataset size. In Appendix D, we show that, for
powerlaw eigenspectra (as are commonly found in practice), there are two regimes of fitting:

1. Regularization-limited regime: τeff ≪ κ−1
0 and κ ≈ τ−1

eff . The generalization gap is
small: E(f)/Etr(f) ≈ 1. Regularization dominates generalization, and adding training
samples does not affect generalization6.

2. Data-limited regime: τeff ≫ κ−1
0 and κ ≈ κ0. The generalization gap is large:

E(f)/Etr(f) ≫ 1. Data is interpolated, and decreasing regularization (i.e. increasing
training time) does not affect generalization.

We suggest that Nakkiran et al. (2020) observe overlapping error curves for different n at early times
because, at these times, the model is in the regularization-limited regime.

We now present an experiment confirming our interpretation. In Figure 3, we reproduce an experi-
ment of Nakkiran et al. (2020) illustrating the DB using ResNets trained on CIFAR-10, juxtaposing
it with our proposed model for this phenomenon — KRR with varying τeff — trained on binarized
MNIST. The match is excellent: in particular, both plots share the DB phenomenon that error curves
for all n overlap at early times, with test and train error peeling off the master curve at roughly the
same time. We find that τeff ≈ κ−1

0 is indeed when the transition between regimes occurs for KRR,
matching our theoretical prediction. This experiment strongly suggests that both neural network
and KRR fitting can be thought of as a transition between regularization-limited and data-limited
regimes. See Appendix D for experimental details.

6.2 THE HARDNESS OF THE PARITY PROBLEM FOR ROTATION-INVARIANT KERNELS

The parity problem stands as a classic example of a function which is easy to write down but hard
for common algorithms to learn. The parity problem was shown to be exponentially hard for Gaus-

6We mean here that adding training samples while holding τeff constant does not affect generalization.
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Figure 3: We reproduce and explain the deep bootstrap phenomenon in KRR. (A) An ex-
periment illustrating the deep bootstrap effect using a ResNet-18 on CIFAR-10. (B) An analogous
experiment using KRR on binarized MNIST. Eigenlearning predictions closely match experimental
curves, and τeff = κ−1

0 (vertical dashed lines) faithfully predicts the transition from regularization-
limited to data-limited fitting for each n.

sian kernel methods by Bengio et al. (2006). Here we generalize this result to KRR with arbitrary
rotation-invariant kernels. Our analysis is made trivial by the use of our framework and is a good
illustration of the power of working in terms of learnabilities.

The problem domain is the hypercube X = {−1,+1}d, over which we define the subset-parity
functions ϕS(x) = (−1)

∑
i∈S 1[xi=1], where S ⊆ {1, ..., d} ≡ [d]. The objective is to learn ϕ[d].

For any rotation-invariant kernel (such as the NTK of a fully-connected neural network), {ϕS}S
are the eigenfunctions over this domain, with degenerate eigenvalues {λk}dk=0 depending only on
k = |S|. Yang & Salman (2019) proved that, for any fully-connected kernel, the even and odd
eigenvalues each obey a particular ordering in k. Letting d be odd for simplicity, this result and
Equation 7 imply that L1 ≥ L3 ≥ ... ≥ Ld. Counting level degeneracies, this is a hierarchy of 2d−1

learnabilities of which Ld is the smallest. The conservation law of 3.2 then implies that Ld ≤ n
2d−1 ,

which, using Proposition 3.1(e), implies that

E(ϕ[d]) ≥
(
1− n

2d−1

)2
. (15)

Obtaining an MSE below a desired threshold ϵ thus requires at least nmin = 2d−1(1− ϵ1/2) samples,
a sample complexity exponential in d. The parity problem is thus hard for all rotation-invariant
kernels7.

6.3 MEAN-SQUARED GRADIENT AND ADVERSARIAL ROBUSTNESS

While the omniscient risk estimate is the most important of the eigenlearning equations, we have
also obtained estimators for arbitrary covariances of f̂ . Here we point out a first use for these covari-
ances: studying the smoothness of f̂ and thus its adversarial robustness. We fashion an estimator
for function smoothness, confirm its accuracy with KRR experiments, and identify a discrepancy
between intuition and experiment ripe for further exploration.

Consider the mean squared gradient (MSG) of f̂ defined by G(f̂) ≡ Ex

[
|∇xf̂(x)|2

]
= ||∇f̂ ||22.

This quantity is a measure of function smoothness. Eigendecomposition yields that

Ex

[∣∣∣∇xf̂(x)
∣∣∣2] =∑

ij

E[v̂iv̂j ] gij with gij ≡ Ex[∇xϕi(x) · ∇xϕj(x)] . (16)

The expectation E[v̂iv̂j ] = E[v̂i]E[v̂j ] + Cov[v̂i, v̂j ] is given by the eigenlearning equations, and
the structure constants gij , which encode information about the domain, can be computed analyti-
cally for simple domains. On the d-sphere, for which the ϕi = ϕkℓ are spherical harmonics, these
are g(kℓ),(k′ℓ′) = k(k + d− 2)δkk′δℓℓ′ .

7We note a number of recent approaches (Daniely & Malach, 2020; Kamath et al., 2020; Hsu, 2021) which
give complexity lower bounds for learning parities using a simple degeneracy argument. However, these ap-
proaches do not leverage the spectral bias of the kernel and become vacuous when k = d.
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Figure 4: Predicted function smoothness
matches experiment. Predicted MSG of f̂
(curves) and empirical MSG for kernel regression
(triangles) for k = 1 modes on hyperspheres with
varying dimension.

Figure 4 shows the MSG of the function learned
by KRR with a polynomial kernel trained on
k = 1 modes on spheres of increasing dimen-
sion d, normalized by the MSG of the ground-
truth target function. See Appendix E for ex-
perimental details and additional experiments
in this vein. True MSG matches predicted MSG
well in all settings, particularly at large n and d.

The study of adversarial robustness currently
suffers from a lack of theoretically tractable
toy models, and we suggest our expression for
MSG can help fill this gap. To illustrate this,
we describe an insight that can be drawn from
Figure 4. Vulnerability to gradient-based ad-
versarial attacks can be viewed essentially as
a phenomenon of surprisingly large gradients
with respect to the input. If such vulnerability
is an inevitable consequence of high dimension,
a common heuristic belief (e.g. Gilmer et al. (2018)), one might expect that G(f̂) is generally much
larger than G(f) at high dimension. Surprisingly, we see no such effect, a discrepancy which can be
investigated further using our framework.

6.4 A QUANTUM MECHANICAL ANALOGY AND UNIVERSAL LEARNABILITY CURVES

Here we describe a remarkably tight analogy between our picture of KRR generalization and the
statistics of the free Fermi gas, a canonical model in statistical physics. This allows certain insights
into the free Fermi gas to be ported over to KRR. This correspondence is also of fundamental inter-
est: KRR and the free Fermi gas are both paradigmatic systems in their respective fields, and it is
remarkable that their statistics are in fact the same.

We defer the details of this correspondence to Appendix F and focus here on the takeaways. The
free Fermi gas is defined by a scalar µ and a set of states with energies {εi}i, each of which may
be occupied or not. We find that − lnκ is analogous to µ, the state energies are analogous to
kernel eigenvalues, and the states’ occupation probabilies are precisely analogous to the eigenmodes’
learnabilities.

In all prior work and in our work thus far, the constant κ has thus far been defined only as the
solution to an implicit equation. Having an explicit equation would be advantageous. Leveraging
methods for the study of the free Fermi gas, we find the following explicit formula for κ:

κ =
mn(λ1, λ2, ...)

mn−1(λ1, λ2, ...)
, where mn(x1, x2, ...) ≡

∑
1≤j1<...<jn

xj1 ...xjn . (17)

The second takeaway is the identification of a universal behavior in the learning dynamics of KRR.
In systems obeying Fermi-Dirac statistics, a plot of pi vs. εi takes a characteristic sigmoidal shape.
As shown in Figure 10, we robustly see this sigmoidal shape in plots of Li vs. lnλi. As the
number of samples and even the task are varied, this sigmoidal shape remains universal, merely
translating horizontally (in particular, moving left as samples are added). This sigmoidal shape is
thus a signature of KRR and could in principle be used to, for example, determine if an unknown
kernel method resembles KRR.

7 CONCLUSIONS

We have developed an interpretable unified framework for understanding the generalization of KRR
centered on a previously-unexploited conserved quantity. We then used this improved framework
to break new theoretical ground in a variety of subjects including the parity problem, the deep
bootstrap, and adversarial robustness and developed a tight analogy between KRR and canonical
physical system allowing the transfer of insights. We have covered much territory, and each of these
subjects is ripe for further exploration in future work.
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A NOTATION DICTIONARY AND COMPARISON WITH RELATED WORKS

Tables 1, 2 and 3 provide a dictionary between the notations of our paper and the nearest related
works. Rows should be read in comparison with the top row and interpreted as “when the present
paper writes X, the other paper would write Y for the same quantity.” Comparing expressions for test
MSE in Table 2 and predicted function covariance in Table 3 makes it very clear that our learnability
framework permits simpler and much more interpretable expression of these results than previously
given.

Table 1: Notation dictionary between the present paper and related works (part 1).

Paper # samples ridge noise eigenvalues eigenfns eigencoeffs
(ours) n δ ϵ2 λi ϕi vi

Bordelon et al. (2020) p λ NA λρ λ
−1/2
ρ ψρ λ

1/2
ρ w̄ρ

Canatar et al. (2021) P λ σ2 ηρ η
−1/2
ρ ψρ η

1/2
ρ w̄ρ

Jacot et al. (2020) N Nλ ϵ2 dk f (k) ⟨f (k), f∗⟩
Cui et al. (2021)8 n nλ σ2 ηk ϕk η

1/2
k ϑ∗k

Table 2: Notation dictionary between the present paper and related works (part 2).

Paper eff. reg. overfitting coeff. test MSE

(ours) κ E0 E(f) = E0
(∑

i(1− Li)
2v2

i + ϵ2
)

Bordelon et al. (2020) t+λ
n

(
1− pγ

(t+λ)2

)−1

Eg =
∑

ρ

w̄2
ρ

λρ

(
1
λρ

+ p
λ+t

)−2 (
1− pγ

(λ+t)2

)−1

Canatar et al. (2021) κ
n

1
1−γ Eg = 1

1−γ

∑
ρ

ηρ

(κ+Pηρ)2

(
κ2w̄2

ρ + σ2Pηρ
)

Jacot et al. (2020) ϑ ∂λϑ R̃ϵ = ∂λϑ

(∣∣∣∣∣∣(Ic − Ãϑ)f
∗
∣∣∣∣∣∣2 + ϵ2

)

Cui et al. (2021)9 z
n

1

1− 1
n

p∑
k=1

η2
k

(z/n+ηk)2

ϵg =

z2

n2

∞∑
k=1

ϑ∗
k
2ηk

(z/n+ηk)2
+σ2

1− 1
n

∞∑
k=1

η2
k

(z/n+ηk)2

8Cui et al. (2021) use simplifications of the expressions of Loureiro et al. (2021), whose notation does not
map cleanly onto our tables.

9The overfitting coefficient and test MSE estimator of Cui et al. (2021) appear more complex than the
alternatives in part because other works define intermediate quantities like E0, γ, etc., which include sums over
eigenmodes.
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Table 3: Notation dictionary between the present paper and related works (part 3).

Paper predicted fn covariance

(ours) Cov[v̂i, v̂j ] =
L2

iE(f)
n δij

Bordelon et al. (2020) NA

Canatar et al. (2021) √
ηαηβCovD

[
w∗

α, w
∗
β

]
= 1

1−γ

(
σ2 + κ2

∑
ρ

ηρw̄
2
ρ

(Pηρ+κ)2

)
Pη2

α

(Pηα+κ)2
δαβ

Jacot et al. (2020)10
Vk(f

∗,λ,N,ϵ)=
∂λϑ(λ)

N

(
∥(IC−Ãϑ)f∗∥2

S
+ϵ2+⟨f(k),f∗⟩2

S

ϑ2(λ)

(ϑ(λ)+dk)
2

)
d2k

(ϑ(λ)+dk)
2

Cui et al. (2021) NA

Sollich (2001) derived the omniscient risk estimate in the context of GP regression and was, to our
knowledge, the first to obtain the result. As its notation does not map cleanly onto the variables
we use, we do not include this work in the above tables. Other analogous works include Wu &
Xu (2020), Richards et al. (2021), Hastie et al. (2022) (see Definition 1) and Bartlett et al. (2021)
(see Theorem 4.13), which derive comparable equations for the test MSE of linear ridge regression
(LRR), which, taking the dual view of KRR as LRR in the kernel embedding space, is essentially
the same problem. All comparable works involve solving a self-consistent equation for an effective
regularization parameter, which we call κ in our work.

It is worth pointing out that this literature is largely divided into two parallel camps: the works in the
tables above, together with Loureiro et al. (2021) and Cohen et al. (2021) (who study GP regression
using field theoretic tools), study the generalization of KRR, largely using approaches from statisti-
cal physics, while Dobriban & Wager (2018); Wu & Xu (2020); Richards et al. (2021); Hastie et al.
(2022); Bartlett et al. (2021) study LRR using random matrix theory. Despite studying virtually the
same problem, these camps have largely developed unaware of each other, and we hope the present
paper helps unify them. The KRR works all rely on approximations, particularly the spectral “uni-
versality” approximation that the eigenfunctions are random and structureless and the design matrix
can thus be replaced by a random Gaussian matrix. The works of Bordelon et al. (2020); Canatar
et al. (2021), as well as ours, make additional approximations valid for reasonable eigenspectra and
large n, while Jacot et al. (2020) does not make approximations and provides bounds instead (though
these bounds diverge at zero ridge, highlighting the difficulty of studying interpolating methods). On
the other side, the LRR works do not make a unversality approximation, but instead assume in their
setting that the feature vectors are high-dimensional and have (sub)Gaussian moments (or some sim-
ilar condition), which ultimately amounts to the same condition, now enforced in the setting instead
of assumed as an approximation. These works are typically mathematically rigorous. Relative to the
LRR works, one contribution of the KRR works is the empirical observation that this universality
approximation is generally accurate in practice11, even for NTKs at initialization (for NTKs after
training, the story appears mixed; see Wei et al. (2022) for evidence for universality and Ba et al.
(2022) for evidence against it).

While our work is generally consistent with other works in the KRR set, we note one discrepancy
regarding the covariance of the predicted function. Our expression, Equation 14, agrees with that
of Canatar et al. (2021)12. However, the expression of Jacot et al. (2020), given in Theorem 2,
contains an extra O(n−1) term (blue in Table 3) dependent upon the target eigencoefficient of the
mode in question. This term is small enough that it can be removed without affecting the bounds
the authors prove. It contributes negligibly when summing over all eigenmodes to compute e.g. test

11This is a nontrivial observation, as is not hard to construct contrived cases in which this approximation
does not hold, as discussed by Sollich & Halees (2002). The conditions under which this universality assump-
tion holds are an active area of research. A variety of rigorous works have proven this spectral universality
assumption in specific high-dimensional settings (El Karoui, 2010; Cheng & Singer, 2013; Fan & Montanari,
2019; Liu et al., 2021; Lu & Yau, 2022), and Tomasini et al. (2022) has shown it does not quite hold in certain
noisy low-dimensional settings.

12Equation 71 in the supplement of their published paper, giving the covariance of the predicted function,
contains an spurious extra term, but this has been fixed in the arXiv version.
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error or mean squared gradient, but contributes to leading order when interrogating the variance of a
particular mode. A sanity-check calculation that the sum of variance over all modes ought to equal
V(f) provides evidence that our equations, which lack this term, are correct.

Lastly, we note that Cohen et al. (2021) study Gaussian process regression in the spirit of Sollich
(1999) using field theoretic tools. Though they do not explicitly discuss the omniscient risk estimate,
Canatar et al. (2021) note that their “equivalence kernel + corrections” learning curve can be viewed
as a perturbative expansion of the omniscient risk estimate.

B EXPERIMENTAL METHODS

B.1 SYNTHETIC DOMAINS

Our experiments use both real image datasets and synthetic target functions on the following three
domains:

1. Discretized Unit Circle. We discretize the unit circle into M points, X =

{(cos(2πj/M), sin(2πj/M)}Mj=1. Unless otherwise stated, we use M = 256. The eigen-
functions on this domain are ϕ0(θ) = 1, ϕk(θ) =

√
2 cos(kθ), and ϕ′k(θ) =

√
2 sin(kθ),

for k ≥ 1.
2. Hypercube. We use the vertices of the d-dimensional hypercube X = {−1, 1}d, giving
M = 2d. As stated in Section 6.2, the eigenfunctions on this domain are the subset-parity
functions with eigenvalues determined by the number of sensitive bits k.

3. Hypersphere. To demonstrate that our results extend to continuous domains, we perform
experiments on the d-sphere Sd ≡ {x ∈ Rd+1|x2 = 1}. The eigenfunctions on this
domain are the hyperspherical harmonics (see, e.g., Frye & Efthimiou (2012); Bordelon
et al. (2020)) which group into degenerate sets indexed by k ∈ N. The corresponding
eigenvalues decrease exponentially with k, and so when summing over all eigenmodes
when computing predictions, we simply truncate the sum at kmax = 70.

Eigenvalues and multiplicities for these synthetic domains are shown in Figure 5.
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Figure 5: 4HL ReLU NTK eigenvalues and multiplicities on three synthetic domains.
(A) Eigenvalues for k for the discretized unit circle (M = 256). Eigenvalues decrease
as k increases except for a few near exceptions at high k. (B) Eigenvalues for the 8d
hypercube. Eigenvalues decrease monotonically with k. (C) Eigenvalues for the 7-sphere
up to k = 70. Eigenvalues decrease monotonically with k. (D) Eigenvalue multiplicity
for the discretized unit circle. All eigenvalues are doubly degenerate (due to cos and sin
modes) except for k = 0 and k = 128. (E) Eigenvalue multiplicity for the 8d hypercube.
(F) Eigenvalue multiplicity for the 7-sphere.
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B.2 IMAGE DATASET EIGENINFORMATION

Experiments with binary image classification tasks used scalar targets of ±1. To obtain the eigen-
information necessary for theoretical predictions, we select a large training set with M ∼ O(104)
samples, computing the eigensystem of the data-data kernel matrix to obtain M eigenvalues {λi}i
and target vector eigencoefficients v. We then compute theoretical learnability and MSE as normal.

The resulting test MSE predictions obtained this way correspond to an average over the M points in
the sample, n of which are in fact part of the training set (compare with the discrete and continuous
settings of Appendix H.1, and thus they are too low when n/M is not negligible. We wish to predict
purely the off-training-set error EOTS. We do so by noting that ME = nEtr + (M − n)EOTS and
solving for EOTS (doing the same thing for for learnability). Another solution to this problem is to
change the experimental design so train and test data are sampled from the same large pool (as done
by Bordelon et al. (2020) and Canatar et al. (2021)), but this trick allows us a more standard setup
in which train and test data are disjoint. Experimental test metrics for image datasets are computed
with a random subset of M ′ ∼ O(1k) images from the test set.

Eigenvalues and multiplicities for four two-class image datasets are shown in Figure 6.

Figure 6: Eigenvalues and eigencoefficients for four binary image classification tasks.
(A) Kernel eigenvalues as computed from 104 training points as described in Appendix B.
Spectra for CIFAR10 tasks roughly follow power laws with exponent −1, while spectra
for MNIST tasks follow power laws with slightly steeper descent. (B) Eigencoefficients
as computed from 104 training points. Tasks with higher observed learnability (Figure 2)
place more weight in higher (i.e., lower-index) eigenmodes and less in lower ones.

B.3 RUNTIMES

For the dataset sizes we consider in this paper, exact NTK regression is typically quite fast, running
in seconds, while the training time of finite networks varies from seconds to minutes and depends on
width, depth, training set size, and eigenmode. In particular, as described by Rahaman et al. (2019),
lower eigenmodes take longer to train (especially when aiming for near-zero training MSE as we do
here).

B.4 HYPERPARAMETERS

We conduct all our experiments using JAX (Bradbury et al., 2018), performing exact NTK regression
with the neural tangents library (Novak et al., 2019) built atop it. Unless otherwise stated, all
experiments used four-hidden-layer ReLU networks initialized with NTK parameterization (Sohl-
Dickstein et al., 2020) with σw = 1.4, σb = .1. The tanh networks used in generating Figure 1
instead used σw = 1.5. Experiments on the unit circle always used a learning rate of .5, while
experiments on the hypercube, hypersphere, and image datasets used a learning rate of .5 or .1
depending on the experiment. While higher learning rates led to faster convergence, they tended
to match theory more poorly, in line with the large learning rate regimes described by Lewkowycz
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et al. (2020). Means and one-standard-deviation error bars always the statistics from several random
dataset draws and initializations (for finite nets):

• The toy experiment of Figure 1 used only a single trial per eigenmode by design.
• Other experiments on synthetic domains used 30 trials.
• The experiments on image datasets in Figure 2 used 15 trials.

B.5 INITIALIZING THE NETWORK FUNCTION AT ZERO

Naively, when training an infinitely-wide network, the NTK only describes the mean learned func-
tion, and the true learned function will include an NNGP-kernel-dependent fluctuation term reflect-
ing the random initialization (Lee et al., 2019). However, by storing a copy of the parameters at
t = 0 and redefining f̂t(x) := f̂t(x) − f̂0(x) throughout optimization and at test time, this term
becomes zero. We use this trick in our experiments with finite networks.
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C VARYING WIDTH EXPERIMENT

While kernel regression describes only infinitely-wide neural networks, it is natural to wonder
whether our equations are nonetheless informative outside this regime. Figure 7 compares pre-
dicted learnability and MSE with experiment for hypercube eigenmodes with networks with varying
widths. Our predictions remain informative down to width 50, and lower-frequency modes are bet-
ter learned at all widths, suggesting that kernel eigenanalysis has a role to play even in the study of
feature learning.
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Figure 7: Comparison between predicted learnability and MSE for networks of various
widths. (A-F) Predicted (curves) and true (triangles and circles) learnability for four eigen-
modes on the 8d hypercube. Dataset size n varies within each subplot, and the width of the
4HL ReLU network varies between subplots. (G-L) Same as (A-F) but with MSE instead of
learnability.
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D EXPLAINING THE DEEP BOOTSTRAP IN KRR

In this appendix, we use the eigenlearning equations to arrive at an explanation of the deep bootstrap
phenomenon of Nakkiran et al. (2020). As explained in the main text, we study KRR as a proxy for
KGF. We begin by finding the relationship between the ridge parameter and the effective training
time (we assume for simplicity that the learning rate of KGF is one). Ali et al. (2019) obtained their
result regarding the similarity of KRR and KGF13 under the identifcation [time] = [ridge]−1. They
assume a different ridge scaling than ours, and, in our notation, we identify τeff = δ−1n. Their KGF
scaling is correct for modeling a standard supervised learning setup, as can be verified by taking the
KGF limit of ordinary minibatch SGD.

To study the effect of this “early stopping” on generalization, we must find how finite τeff affects the
constant κ. Recalling Equation 6 defining κ,

n =
∑
i

λi
λi + κ

+
δ

κ
, (6)

we can easily see that κ ≤ (n−1
∑

i λi + τ−1
eff ) and κ ≥ τ−1

eff ). Squeezing κ with these bounds, we
find that, when n ≫ τ−1

eff
∑

i λi, then κ ≈ τ−1
eff . For any τeff, there thus exists some n above which

additional data does not further lower κ and permit the learning of additional eigenmodes. Let us
call this the regularization-limited regime, and its counterpart (in which τeff is sufficiently large and
regularization is effectively zero) the data-limited regime.

We can find the crossover regularization provided knowledge of the eigenspectrum. Let us as-
sume that λi ∼ i−α for some α > 1. Mallinar et al. (2022) show that κ0 ≡ κ|δ=0 →(
α−1π csc(α−1π)

)α
n−α as n → ∞. Extending their analysis to finite ridge, we find that, at

large n, n = n(κ/κ0)
−1/α + (δκ)−1, or equivalently

1 =
(κ0
κ

) 1
α

+
1

τeffκ
. (18)

Inspection of Equation 18 reveals that when τeff ≪ κ−1
0 , then κ ≈ τ−1

eff , and when τeff ≫ κ−1
0 , then

κ ≈ κ0. We thus expect a crossover from the regularization-limited to the data-limited regime when
τeff ≈ κ0.

In Figure 8, we plot the theoretical omniscient risk estimate using powerlaw eigenvalues (λi ∼ i−α)
and powerlaw eigencoefficients v2

i ∼ i−α) with α = 2 for various n. The close resemblance of these
curves to the experimental KRR curves of Figure 3 confirm that our powerlaw toy model is good.
If desired, Figures 3(A,B) and Figure 8 can be viewed as the distillation of the DB phenomenon in
three stages of increasing artificiality.

It is worth noting that increasing n serves to both decrease κ and decrease E0. For powerlaw spec-
tra, as n increases with fixed τeff, E0 tends to its lower bound of 1. It approaches 1 when the
regularization-limited regime begins.

Similar ideas regarding the scaling of KRR are discussed by Cui et al. (2021). The notion of regimes
limited by either dataset size or training time is explored using the language of scaling laws by
Kaplan et al. (2020) and Bahri et al. (2021). We expect that this analysis could be extended to
proper KGF using the analysis of Bordelon & Pehlevan (2021).

D.1 DEEP BOOTSTRAP EXPERIMENTS

In replicating the deep bootstrap phenomenon for neural networks, we use the same experimental
setup as Nakkiran et al. (2020), a ResNet-18 architecture trained on CIFAR-10 with data augmenta-
tion (random horizontal flips and random crops). We optimize cross-entropy loss using SGD, with
batchsize 128, momentum 0.9, and initial learning rate 0.1 with cosine decay. The test/train curves
are the mean of 4 training runs; the curves have been gaussian-smoothed to remove high-frequency
noise artifacts.

13More precisely, they study linear ridge regression and linear gradient flow, but their result also applies to
the kernelized versions of these algorithms.
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We perform kernel ridge regression (KRR) using the NTK of a fully-connected network with four
hidden layers of width 500. We binarize MNIST into two classes: {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9}.
Although the test curves shift slightly depending on the binarization scheme, the theory curves all
fall within one standard deviation of the empirical curves for all binarizations we tried. The KRR
test/train curves are the mean of 10 training runs.

10-2 101 104 107 1010

τeff

10-3
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E(
f)

n= 16

n= 125

n= 1000

n= 8000

train
test
n→∞

Figure 8: Deep bootstrap theoretical test/train curves for a synthetic kernel
spectrum. Here we illustrate the deep bootstrap phenomenon using a hypo-
thetical kernel giving powerlaw eigenvalues and eigencoefficients with expo-
nent α = 2. In this setting, we note that finite-data test/train curves simul-
taneously split from the n → ∞ “online learning curve” (black dot-dashed
line). We see that τeff = κ−1

0 (vertical dashed lines) predicts the transition
from regularization-limited to data-limited fitting for each n. (We choose α = 2
for a clean illustration of the phenomenon; empirically, CIFAR-10 and MNIST
give spectra with exponents closer to 1.)

E ADDITIONAL MEAN-SQUARED GRADIENT EXPERIMENTS

In the MSG experiment of 4, we run KRR with a polynomial kernel on data sampled from hyper-
spheres of varying dimension. The polynomial kernel isK(x, x′) = 1+x⊤x′+(x⊤x′)2+(x⊤x′)3.
We perform this experiment using PyTorch (Paszke et al., 2019) and compute ∇f̂ numerically.

In the MSG experiment of 9, we train finite-width FCNs on eigenmodes on the (discretized) unit
circle.
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Figure 9: Predicted function smoothness matches experiment on the unit
circle. Theoretical MSG predictions (curves) and empirical values for finite
networks (circles) and kernel regression (triangles) for various eigenmodes on
the discretized unit circle with M = 256, normalized by the ground-truth
mean squared gradient of G(f) = E

[
|f ′(x)|2

]
= k2. Because this is a

discrete domain, smoothness is computed using a discretization as G(f̂) =

Ej

[
|f̂(xj)− f̂(xj+1)|2

]
, where xj and xj+1 are neighboring points on the unit

circle.

F QUANTUM MECHANICAL ANALOGY

F.1 EXPLICIT EQUATION FOR κ

Here we develop a tight analogy between our picture of KRR and the free Fermi gas. The free
Fermi gas consists of a collection of single-particle orbitals with energies {εi}i connected to a bath
of particles at chemical potential µ. In our analogy, we will identify orbital i with kernel eigenmode
i. Each orbital will contain zero or one fermions (ni ∈ {0, 1}), with the occupation probability
of orbital i given by the Fermi-Dirac distribution to be ⟨ni⟩ = (1 + eεi−µ)−1. If we identify
εi = − lnλi and µ = − lnκ, we find that ⟨ni⟩ = Li: the orbital occupation probability is precisely
the eigenmode learnability.

We can always choose κ so that eigenmode learnabilities sum to n. This is equivalent to the state-
ment that we can always choose the chemical potential µ to ensure the system contains n fermions
on average. An eigenmode with eigenvalue λi ≥ κ receives at least half a unit of learnability, and
an orbital with energy εi ≤ µ is occupied with probability at least one half.

Here we elaborate further the physical analogy laid out in Section 6.4. In our system of noninteract-
ing fermions, we have thus far identified

− lnλi ⇔ εi (energy of orbital i) (19)
− lnκ⇔ µ (chemical potential) (20)

Li ⇔ ⟨ni⟩ (expected occupancy of orbital i). (21)

What is the value of κ? Observe that

⟨ni⟩ =
1

1 + eεi−µ
(22)

gives the expected occupation number in the grand canonical ensemble where the total number of
fermions is allowed to fluctuate. By the equivalence of thermodynamic ensembles, we expect to get
the same answer for ⟨ni⟩ in the canonical ensemble where the total number of fermions does not
fluctuate and is exactly n. This suggests that we should attempt to compute ⟨ni⟩ in the canonical
ensemble. By comparing the answer to the grand canonical expression, we can solve for µ and hence
for κ.
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We assume a total number of orbitals M ≫ n (which may be infinite). Note that the equivalence of
ensembles holds only in the thermodynamic limit n≫ 1, so we must take this limit at the end.

In the canonical ensemble, each microstate is labeled by of a list of indices 1 ≤ j1 < ... < jn ≤M
corresponding to the occupied orbitals. Direct computation of the canonical partition function shows
that

ZC = mn(e
−ε1 , ...., e−εD ), (23)

where mn is the so-called “elementary symmetric polynomial of order n”:

mn(x1, ..., xM ) =
∑

1≤j1<...<jn≤M

xj1 ...xjn . (24)

We also define the same with index i disallowed:
m(i)

n (x1, ..., xM ) =
∑

1≤j1<...<jn≤M
jk ̸=i ∀ k

xj1 ...xjn . (25)

We find that

⟨ni⟩ = −∂ lnZC

∂εi
= e−εi

m
(i)
n−1(e

−ε1 , ...., e−εM )

mn(e−ε1 , ...., e−εM )
. (26)

Comparing Equations 22 and 26, solving for µ, and using Equation 20, we find that

κ =
mn(λ)

m
(i)
n−1(λ)

− λi (27)

for any i, where λ = (λi)
M
i=1. We are free to choose i≫ n so that λi is negligible, yielding

κ =
mn(λ)

mn−1(λ)
. (28)

We have arrived at an explicit expression for κ. This expression “solves” Equation 6, the implicit
equation defining κ, in the thermodynamic limit. Numerics easily confirm a close match with the
implicit solution. While many works have defined similar constants implicitly, this is the first place
to our knowledge that the explicit solution appears.

The meaning of κ is elucidated by analogy to µ in the canonical ensemble. In the canonical ensem-
ble, all orbitals are “fighting” for the supply of n particles, and µ represents their “average pull” on
each unit. Similarly, in KRR, we can view eigenmodes as competing for the kernel’s supply of n
units of learnability, with κ encoding their average pull on this supply. This analogy deepens our
picture of KRR as the competition among eigenmodes for a fixed supply of learnability.

F.2 ADDITIONAL ANALOGOUS QUANTITIES

In the grand canonical ensemble, the total occupation N =
∑

i ni concentrates about its mean n
and has fluctuations given by Var[N ] =

∑
i⟨ni⟩(1 − ⟨ni⟩) (since each site constitutes a Bernoulli

variable). Comparing with equation 8, we find that
n/E0 ⇔ Var[N ] . (29)

Smaller particle number fluctuations in the analogous physical system thus correspond to larger
E0 and greater overfitting of noise. This provides a physical interpretation of the “overfitting as
overconfidence” notion of Section 4.2.

The grand canonical partition function of our free Fermi gas is

ZGC =
∏
i

(1 + eεi+µ). (30)

The analogous quantity in KRR is

ZKRR =
∏
i

(1 +
λi
κ
). (31)

It holds that
∂ lnZGC

∂µ
= ⟨n⟩, (32)

and indeed we find that
− ∂ lnZKRR

∂ lnκ
= n. (33)
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F.3 UNIVERSAL LEARNABILITY CURVES
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Figure 10: Modewise learnabilities fall on universal sigmoidal curves. (A-F) Predicted learn-
ability curve (sigmoidal curves) and empirical learnabilities for trained networks (circles) and NTK
regression (triangles) for eigenmodes k ∈ {0, ..., 7} on three domains for n = 8, 64. Vertical dashed
lines indicate κ. (G) All data from (A-F) with eigenvalues rescaled by κ.

Figure 10 shows that curves of learnability vs. eigenvalue collapse onto a single sigmoidal curve
upon rescaling. We note that similar collapse of data from different experiments upon rescaling
occurs in many important statistical physics systems including superconductors (Kardar, 2007) and
turbulent flows (Goldenfeld, 2006).

It is broadly worth noting that informative constants determined by self-consistency conditions are
a hallmark of statistical mechanics. It is thus sensible that such a constant would be emerge from
the replica calculation of Canatar et al. (2021).

G PROOFS: LEARNABILITY AND ITS CONSERVATION LAW

In this appendix, we provide proofs of the formal claims of Section 3. We make use of our learning
transfer matrix formalism (discussed in Appendix H.2) for these proofs as it improves clarity and
compactness, but all our proofs can also be straightforwardly carried through without it. The learning
transfer matrix is defined as

T(D) ≡ ΛΦ
(
Φ⊤ΛΦ+ δIn

)−1
Φ⊤, (51)

with Φij = ϕi(xj) and T ≡ ED
[
T(D)

]
. It holds that v̂ = T(D)v. It is easy to see (by making v a

one-hot vector) that L(D)(ϕi) = T
(D)
ii and L(ϕi) = Tii.

Property (a): L(ϕi),L(D)(ϕi) ∈ [0, 1].

Letting ei be the one-hot unit vector with a one at index i, we observe that

L(D)(ϕi) = e⊤i T
(D)ei (34)

= e⊤i ΛΦ
(
Φ⊤ΛΦ+ δIn

)−1
Φ⊤ei (35)

= λ
1/2
i e⊤i Φ

(
Φ⊤ΛΦ+ δIn

)−1
Φ⊤eiλ

1/2
i (36)

= z⊤(zz⊤ +M)−1z ∈ [0, 1]. (37)

where in the third line we have used the fact that ei is a unit vector and Λ is diagonal, in the fourth
line we have defined z = λ

1/2
i Φ⊤ei and M = Φ⊤ΛΦ + δIn − zz⊤, and in the fifth line we have

used the fact that M is positive semidefinite. Given this, L(ϕi) ∈ [0, 1] by averaging.

Property (b): L(D)(f) = L(f) = 0.

Proof. When n = 0, the predicted function f̂ is uniformly zero, and so we have L(D)(f) = L(f) =
0.
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Remark. As a corollary, it is easy to show that, when M is finite, n = M , and δ = 0, then
L(D)(f) = L(f) = 1.

Property (c): Let D+ be D ∪ x, where x ∈ X,x /∈ D is a new data point. Then L(D+)(ϕi) ≥
L(D)(ϕi).

We first use the Moore-Penrose pseudoinverse, which we denote by (·)+, to cast T(D) into the dual
form

T(D) ≡ ΛΦ
(
Φ⊤ΛΦ

)−1
Φ⊤ = Λ1/2

(
Λ1/2ΦΦ⊤Λ1/2

)(
Λ1/2ΦΦ⊤Λ1/2 + δIM

)+
Λ−1/2,

(38)

This follows from the property of pseudoinverses that A(A⊤A+δI)+A⊤ = (AA⊤)(AA⊤+δI)+

for any matrix A. We now augment our system with one extra data point, getting

T(D+) = Λ1/2
(
Λ1/2(ΦΦ⊤ + ξξ⊤)Λ1/2

)(
Λ1/2(ΦΦ⊤ + ξξ⊤)Λ1/2 + δIM

)+
Λ−1/2, (39)

where ξ is an M -element column vector. Equations 38 and 39 yield that

L(D)(ϕi) = e⊤i T
(D)ei = e⊤i

(
Λ1/2ΦΦ⊤Λ1/2

)(
Λ1/2ΦΦ⊤Λ1/2 + δIM

)+
ei, (40)

L(D+)(ϕi) = e⊤i T
(D+)ei = e⊤i

(
Λ1/2(ΦΦ⊤ + ξξ⊤)Λ1/2

)(
Λ1/2(ΦΦ⊤ + ξξ⊤) + δIMΛ1/2

)+
ei.

(41)

The rightmost expressions of Equations 40 and 41 both contain a factor of the form B(B + δI)+,
where A is a symmetric positive semidefinite matrix. An operator of this form is a projector onto the
row space of B when δ = 0 and a variant of this projector with “shrinkage” when δ > 0. Comparing
these equations, we find that the projectors are the same except that, in Equation 41, there is one
additional dimension in the row-space and thus one new basis vector in the projector (provided ξ is
orthonormal to the other columns of Φ; otherwise there are zero additional dimensions).

In the case δ = 0, this new basis vector cannot decrease e⊤i T
(D+)ei, and thus L(D+)(ϕi) ≥

L(D)(ϕi) in the ridgeless case. In the case δ > 0, a singular value decomposition of the projec-
tor confirms that the addition still cannot decrease e⊤i T

(D+)ei. This shows the desired property. It
follows as a corollary that increasing n→ n+ 1 cannot decrease L(f).

Property (d): ∂
∂λi

L(D)(ϕi) ≥ 0, ∂
∂λi

L(D)(ϕj) ≤ 0, and ∂
∂δL

(D)(ϕi) ≤ 0.

Proof. Differentiating T
(D)
jj with respect to a particular λi, we find that

∂

∂λi
L(D)(ϕi) =

∂

∂λi
T

(D)
jj = (δij − λjϕ

⊤
j K

−1ϕi)ϕ
⊤
i K

−1ϕj , (42)

where ϕ⊤
i is the ith row of Φ and K = Φ⊤ΛΦ + δIn. Specializing to the case i = j, we note

that ϕ⊤
i K

−1ϕi ≥ 0 because K is positive definite, and λiϕiK
−1ϕ⊤

i ≤ 1 because λiϕiϕ
⊤
i is one

of the positive semidefinite summands in K =
∑

k λkϕkϕ
⊤
k + δIn. The first clause of the property

follows.

To prove the second clause, we instead specialize to the case i ̸= j, which yields that

∂

∂λi
L(D)(ϕj) =

∂

∂λi
T

(D)
jj = −λj

(
ϕ⊤

j K
−1ϕi

)2
, (43)

which is manifestly nonpositive because λj > 0. The second clause follows.

Differentiating Equation 51 w.r.t. δ yields that ∂
∂δT

(D) = −ΛΦK−2Φ⊤. We then observe that

∂

∂δ
L(D)(ϕi) = e⊤i

∂

∂δ
T(D)ei = −λie⊤i ΦK−2Φ⊤ei, (44)
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which must be nonpositive because λi > 0 and ΦK−2Φ⊤ is manifestly positive definite. The
desired property follows.

Property (e): E(f) ≥ B(f) ≥ (1− L(f))2.

Noting that ||v|| = ||f || = 1, expected MSE is given by

E(f) = E
[
(v − v̂)2

]
= ||v||2− 2v⊤E[v̂]+E

[
v̂2
]
= 1− 2v⊤E[v̂] + ||E[v̂]||2︸ ︷︷ ︸

bias B(f)

+ Var[||v||]︸ ︷︷ ︸
variance V(f)

. (45)

It is apparent that E(f) ≥ B(f). Projecting any vector onto an arbitrary unit vector can only decrease
its magnitude, and so

B(f) ≥ 1− 2v⊤E[v̂] + E
[
v̂⊤]vv⊤E[v̂] =

(
1− v⊤E[v̂]

)2
= (1− L(f))2. (46)

G.1 PROOF OF THEOREM 3.2 (CONSERVATION OF LEARNABILITY)

First, we note that, for any orthogonal basis F on X ,

∑
f∈F

L(D)(f) =
∑
v∈V

v⊤T(D)v

v⊤v
, (47)

where V is an orthogonal set of vectors spanning RM . This is equivalent to Tr
[
T(D)

]
. This trace is

given by

Tr
[
T(D)

]
= Tr

[
Φ⊤ΛΦ(Φ⊤ΛΦ+ δIn)

−1
]
= Tr

[
K(K+ δIn)

−1
]
. (48)

When δ = 0, this trace simplifies to Tr[In] = n. When δ > 0, it is strictly less than n. This proves
the theorem.

Remark. Theorem 3.2 is a consequence of the fact that T(D) is simply a projector onto an n-
dimensional space spanned by the embeddings of the n samples.

H DERIVATIONS: THE EIGENLEARNING EQUATIONS

In this appendix, we derive the eigenlearning equations for the test risk and covariance of the pre-
dicted function. Throughout this derivation, we shall prioritize clarity and interpretability over math-
ematical rigor, giving a derivation which can be understood without advanced mathematical tools
and thereby filling a gap in the literature. For a formal derivation using random matrix theory, see
Jacot et al. (2020), and for a derivation using a replica calculation of a similar level of rigor as we
use here, see Canatar et al. (2021).

In the interest of clarity, we begin with a brief summary of the appendix. We begin by discussing
the problem setting (Section H.1). We then define the learning transfer matrix formalism (H.2) and
use it to set the ridge parameter and noise to zero (H.3). After stating our main approximation (H.4),
we find the expectation of the learning transfer matrix (H.5, H.6), using our conservation law to fix
κ (H.7, H.8). Taking well-placed derivatives, we bootstrap the expectation of the learning transfer
matrix to its second order statistics (H.9) and add back the ridge and noise (H.10). We conclude
with various useful bounds on κ (H.11).

H.1 THE DATA DISTRIBUTION

We shall, in this derivation, consider a slightly more general setting than discussed in the main text.
In the main text, we supposed the data were drawn i.i.d. from a continuous distribution p over Rd.
Here, in addition to this case, we shall also consider a setting in which the data are sampled without
replacement from a discrete set X ⊂ Rd with |X | =M . We will refer to this as the “discrete setting”
and the setting with continuous distribution as the “continuous setting.” As discussed in Appendix B,
the discrete setting matches several of our experiments (namely those on the discretized unit circle
and on the vertices of the hypercube).
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This discrete setting clearly converges to the continuous setting as M → ∞: when M ≫ n2, the
probability of sampling the same point twice is negligible (and so we can drop the “without replace-
ment” and sample with replacement as in the continuous setting) and, by distributing X throughout
Rd with point density proportional to p, we approach sampling from a continuous distribution. Al-
ternatively, we could imagine X consists of M i.i.d. samples from p, so that, when we later sample
n points from X , they are themselves i.i.d. samples from p as M → ∞. It is worth noting that the
data distribution in e.g. a computer vision task is in fact discrete because pixel values are discretized,
and thus it is reasonable to work with a discrete measure.

Kernel eigenmodes in the discrete setting are defined as M−1
∑

x′∈X K(x, x′)ϕi(x
′) = λiϕi(x).

Note that, in this case, the number of eigenmodes is M , the same number as the cardinality of X .
In the continuous setting, the number of eigenmodes is infinite (though there may be only finitely
many with nonzero eigenvalues), but, like Bordelon et al. (2020), we will find it useful to assume
that we need only consider a finite (but very large) numberM . This serves merely permit us to work
with finite matrices (to which the standard tools of linear algebra apply) and to thereby save us the
trouble of dealing with infinite and semi-infinite matrices, which require greater care. So long as
M is sufficiently large, we do not lose anything in discarding the exceedingly small eigenvalue tail
λi>M , as is typical in the study of kernel methods and as our final results will confirm.

Our subsequent derivation will generally apply to both the discrete and continuous settings.

H.2 THE LEARNING TRANSFER MATRIX

We begin by translating the KRR predictor into the kernel eigenbasis. Because K(x, x′) =∑M
i=1 λiϕi(x)ϕi(x

′), we can decompose the empirical kernel matrix as KDD = Φ⊤ΛΦ, where
Λ ≡ diag(λ1, ..., λM ) and Φ is the M × n “design matrix” given by Φij ≡ ϕi(xj).

The predicted function coefficients v̂ are given by

v̂i = ⟨ϕi, f̂⟩ = λiϕi(KDD + δIn)
−1Φ⊤v, (49)

where we have used the orthonormality of the eigenfunctions and defined [ϕi]j = ϕi(xj) to be the
i-th row of Φ. Stacking these coefficients into a matrix equation, we find

v̂ = ΛΦ
(
Φ⊤ΛΦ+ δIn

)−1
Φ⊤v = T(D)v, (50)

where the learning transfer matrix

T(D) ≡ ΛΦ
(
Φ⊤ΛΦ+ δIn

)−1
Φ⊤, (51)

is an M × M matrix, independent of f , that fully describes the model’s learning behavior on a
training set D14. The learning transfer matrix is the same as the “reconstruction operator” of Jacot
et al. (2020) viewed as a finite matrix instead of a linear operator. Full understanding of the statistics
of T(D) will give us the statistics of v̂ and thus of f̂ , and so our main objective will be to find the
mean and the covariance of T(D).

H.3 SETTING THE RIDGE AND NOISE TO ZERO

Our setting includes both a nonzero ridge parameter and nonzero noise. However, it is by this point
modern folklore that many small eigenvalues together act as an effective ridge parameter equal to
their sum and that power in zero-eigenvalue modes is effectively noise (see e.g. Canatar et al. (2021)
for a discussion of these). Inverting these equivalences, we should expect to be able to convert δ
into a small increase to many eigenvalues and convert ϵ2 to power in a zero-eigenvalue mode, and
thereby permit ourselves to consider neither ridge nor noise in our derivation and add them back at
the end. Here we explain our method for doing so.

The ridge parameter can be viewed as a uniform increase in all eigenvalues. We first observe that
M−1Φ⊤Φ = In in the discrete case. Letting T(D)(Λ; δ) denote the learning transfer matrix with
eigenvalue matrix Λ and ridge parameter δ, it follows from Equation 51 and this fact that

T(D)(Λ; δ) = Λ

(
Λ+

δ

M
IM

)−1

T(D)

(
Λ+

δ

M
IM ; 0

)
. (52)

14We take this terminology from control theory in which, for a system under study, a “transfer function”
maps inputs to outputs, or driving to response.
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In the continuous case, M−1Φ⊤Φ → In as M → ∞ (since the columns of Φ are uncorrelated),
and since M is very large in the continuous setting, we are again free to use Equation 52.

As for the noise, we simply set ϵ2 = 0 for now and, once we have our final equations, add power ϵ2
to a hypothetical zero-eigenvalue mode.

H.4 ASSUMPTION: THE UNIVERSALITY OF Φ

We wish to take averages over Φ in finding the statistics of T(D). The distribution of Φ is in fact
highly structured (reflecting the eigenstructure of the kernel), and we know only that E[ΦijΦij′ ] =
δjj′ . We neglect this structure, making the “universality” assumption that we may take Φ to be
sampled from a simple Gaussian measure without substantially changing the statistics of T(D). We
henceforth assume Φij

iid∼ N (0, 1).

This universality assumption is also made in comparable works (implicitly by Bordelon et al. (2020);
Canatar et al. (2021) and explicitly by Jacot et al. (2020)). See Appendix A for further references
to relevant literature. The validity of this approximation is ultimately justified by the close match of
our theory with experiment.

H.5 VANISHING OFF-DIAGONALS OF E
[
T(D)

]
We next observe that

EΦ

[
ΛΦ

(
Φ⊤U⊤ΛUΦ

)−1
Φ⊤
]
= EΦ

[
ΛU⊤Φ

(
Φ⊤ΛΦ

)−1
Φ⊤U

]
, (53)

where U is any orthogonal M ×M matrix. Defining U(m) as the matrix such that U(m)
ab ≡ δab(1−

2δam), noting that U(m)ΛU(m) = Λ, and plugging U(m) in as U in Equation 53, we find that

E
[
T

(D)
ab

]
=

((
U(m)

)⊤
E
[
T(D)

]
U(m)

)
ab

= (−1)δam+δbmE
[
T

(D)
ab

]
. (54)

By choosing m = a, we conclude that E
[
T

(D)
ab

]
= 0 if a ̸= b.

H.6 FIXING THE FORM OF E
[
T

(D)
ii

]
H.6.1 ISOLATING THE DESIRED ELEMENT

We now isolate a particular diagonal element of the mean learning transfer matrix. To do so, we
write E

[
T

(D)
ii

]
in terms of λi (the ith eigenvalue), Λ(i) (Λ with its ith row and column removed),

ϕ⊤
i (the ith row of Φ), and Φ(i) (Φ with its ith row removed).

Using the Sherman-Morrison matrix inversion formula, we find that

(
Φ⊤ΛΦ

)−1
=
(
Φ⊤

(i)Λ(i)Φ(i) + λiϕiϕ
⊤
i

)−1

=
(
Φ⊤

(i)Λ(i)Φ(i)

)−1

−
λi

(
Φ⊤

(i)Λ(i)Φ(i)

)−1

ϕiϕ
⊤
i

(
Φ⊤

(i)Λ(i)Φ(i)

)−1

1 + λiϕ⊤
i

(
Φ⊤

(i)Λ(i)Φ(i)

)−1

ϕi

.
(55)
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Inserting this into the expectation of T(D), we find that

E
[
T

(D)
ii

]
= EΦ(i),ϕi

[
λiϕ

⊤
i

(
Φ⊤ΛΦ

)−1
ϕi

]

= EΦ(i),ϕi

λiϕ⊤
i

(
Φ⊤

(i)Λ(i)Φ(i)

)−1

ϕi −
λ2i

[
ϕ⊤

i

(
Φ⊤

(i)Λ(i)Φ(i)

)−1

ϕi

]2
1 + λiϕ⊤

i

(
Φ⊤

(i)Λ(i)Φ(i)

)−1

ϕi



= EΦ(i),ϕi

 λi

λi +

[
ϕ⊤

i

(
Φ⊤

(i)Λ(i)Φ(i)

)−1

ϕi

]−1


= EΦ(i),ϕi

[
λi

λi + κ(Φ(i),ϕi)

]
,

(56)

where κ(Φ(i),ϕi) ≡ κ
(Φ)
i ≡

[
ϕ⊤

i

(
Φ⊤

(i)Λ(i)Φ(i)

)−1

ϕi

]−1

is a nonnegative scalar.

H.7 CONCENTRATION AND MODE-INDEPENDENCE OF κ
(Φ)
i

Important quantities in statistical mechanics systems are typically self-averaging (i.e. concentrating
about their expectation) in the thermodynamic limit. Self-averaging quantities are the focus of
random matrix theory, and generalization metrics in machine learning also tend to be self-averaging
under most circumstances (e.g. resampling the data and rerunning a training procedure will typically
yield a similar generalization error). Here we argue that κ(Φ)

i is self-averaging in the thermodynamic
limit and can be replaced by its expectation.

This could be shown rigorously by means of random matrix theory. Here we opt to simply observe
that, if κ(Φ)

i were not self-averaging, then for modes i such that λi ∼ κ
(Φ)
i , T(D)

ii and thus L(D)(ϕi)

would not be self-averaging either. However, because L(D)(ϕi) is a generalization metric like MSE,
we should in general expect that it is self-averaging at large n. Our experimental results (Figure 2)
confirm that fluctuations in L(D)(ϕi) are indeed small in practice, especially at large n. We thus
replace κ(Φ)

i with its expectation κi ≡ EΦ

[
κ
(Φ)
i

]
.

We next argue that κi is approximately independent of i, so we can replace it with a mode-
independent constant κ. This, too, could be argued rigorously by means of random matrix the-
ory. We opt instead for an eigenmode-removal argument inspired by the cavity method of statistical
physics (Del Ferraro et al., 2014). Observe that, in the thermodynamic limit, the addition or removal
of a single eigenmode should have a negligible effect on any observable and thus on κi. We shall
here show that, by inserting one eigenmode and removing another, we can transform κi into κj for
any i and j, implying that κi ≈ κj .

Assume that the addition or removal of a single eigenmode negligibly affects κi. Concretely, assume
that κi ≈ κ+i , where κ+i is κi computed with the addition of one extra eigenmode of arbitrary
eigenvalue. We choose the additional eigenmode to have eigenvalue λi, and we insert it at index i,
effectively reinserting the missing mode i into Φ(i) and Λ(i).

To clarify the random variables in play, we shall adopt a more explicit notation, writing out Φ(i) in
terms of its row vectors as Φ(i) = [ϕ1, ...,ϕi−1,ϕi+1, ...,ϕM ]⊤. Using this notation, we find upon
adding the new eigenmode that
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κi ≡ EΦ(i),ϕi

[[
ϕ⊤

i

(
Φ⊤

(i)Λ(i)Φ(i)

)−1

ϕi

]−1
]

(57)

≡ E{ϕk}M
k=1

[[
ϕ⊤

i

(
[ϕ1, ...,ϕi−1,ϕi+1, ...,ϕM ]Λ(i)[ϕ1, ...,ϕi−1,ϕi+1, ...,ϕM ]⊤

)−1
ϕi

]−1
]

(58)

≈ κ+i ≡ E{ϕk}M
k=1,ϕ̃i

[[
ϕ⊤

i

(
[ϕ1, ...,ϕi−1, ϕ̃i,ϕi+1, ...,ϕM ]Λ[ϕ1, ...,ϕi−1, ϕ̃i,ϕi+1, ...,ϕM ]⊤

)−1

ϕi

]−1
]
,

(59)

where Λ is the original eigenvalue matrix and ϕ̃⊤
i is the design matrix row corresponding to the new

mode.

We can also perform the same manipulation with κj (j ̸= i), this time adding an additional eigen-
value λj at index j, yielding that

κj ≡ EΦ(j),ϕj

[[
ϕ⊤

j

(
Φ⊤

(j)Λ(j)Φ(j)

)−1

ϕj

]−1
]

(60)

≡ E{ϕk}M
k=1

[[
ϕ⊤

j

(
[ϕ1, ...,ϕj−1,ϕj+1, ...,ϕM ]Λ(j)[ϕ1, ...,ϕj−1,ϕj+1, ...,ϕM ]⊤

)−1
ϕj

]−1
]

(61)

≈ κ+j ≡ E{ϕk}M
k=1,ϕ̃j

[[
ϕ⊤

j

(
[ϕ1, ...,ϕj−1, ϕ̃j ,ϕj+1, ...,ϕM ]Λ[ϕ1, ...,ϕj−1, ϕ̃j ,ϕj+1, ...,ϕM ]⊤

)−1

ϕj

]−1
]
.

(62)

We now compare Equations 59 and 62. Each is an expectation overM+1 vectors from the isotropic
measure . T he statistics of these M + 1 vectors are symmetric under exchange, so we are free to
relabel them. Equation 59 is identical to Equation 62 upon relabeling ϕi → ϕj , ϕ̃i → ϕi, and
ϕj → ϕ̃j , so they are equivalent, and κ+i = κ+j . This in turn implies that κi ≈ κj . In light of this,
we now replace all κi with a mode-independent (but as-yet-unknown) constant κ and conclude that

E
[
T

(D)
ij

]
= δij

λi
λi + κ

. (63)

In summary, we have argued that κi is not significantly changed by the addition or removal of
single eigenmodes, and two such changes permit us to transform κi into κj , so they are therefore
approximately equal.

Our argument here is similar to the cavity method of statistical physics (Del Ferraro et al., 2014),
which essentially compares the behavior of a weakly-interacting system with and without a single
element. The cavity method is often used as a simpler and more intuitive alternative to the replica
method, a role it reprises here (contrast our approach with the replica approach of Canatar et al.
(2021)).

H.8 DETERMINING κ

We can determine the value of κ by observing that, using the ridgeless case of Theorem 3.2,∑
i

E
[
T

(D)
ii

]
=
∑
i

λi
λi + κ

= n. (64)

This is a much more straightforward method of fixing this constant than used in comparable works.
The ability to use the ridgeless version of Theorem 3.2 is the main motivation for setting δ = 0 at
the start of the derivation.
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H.9 DIFFERENTIATING W.R.T. Λ TO OBTAIN THE COVARIANCE OF T(D)

Here we obtain expressions for the covariance of T(D) and thereby the covariance of v̂. Remarkably,
we shall need no further approximations beyond those already made in approximating E

[
T(D)

]
,

which lends credence to our thesis that understanding modewise learnabilities is sufficient for un-
derstanding more interesting statistics of f̂ .

We begin with a calculation that will later be of use: differentiating both sides of the constraint on κ
with respect to a particular eigenvalue, we find that

∂

∂λi

M∑
j=1

λj
λj + κ

=

M∑
j=1

−λj
(λj + κ)2

∂κ

∂λi
+

κ

(λi + κ)2
= 0, (65)

yielding that

∂κ

∂λi
=

κ2

q(λi + κ)2
where q ≡

M∑
j=1

κλj
(λj + κ)2

. (66)

We now factor T(D) into two matrices as

T(D) = ΛZ, where Z ≡ Φ
(
Φ⊤ΛΦ

)−1
Φ⊤. (67)

Unlike T(D), the matrix Z has the advantage of being symmetric and containing only one factor of
Λ. We will find the second-order statistics of Z, which will trivially give these statistics for T(D).
From Equation 63, we find that the expectation of Z is

E[Z] = (Λ+ κIM )−1. (68)

We also define a modified Z-matrix Z(U) ≡ Φ
(
Φ⊤U⊤ΛUΦ

)−1
Φ⊤, where U is an orthogo-

nal M ×M matrix. Because the measure over which Φ is averaged is rotation-invariant, we can
equivalently average over Φ̃ ≡ UΦ with the same measure, giving

EΦ

[
Z(U)

]
= EΦ̃

[
U⊤Φ̃

(
Φ̃⊤ΛΦ̃

)−1

Φ̃⊤U

]
= EΦ

[
U⊤ZU

]
= U⊤(Λ+ κIM )−1U. (69)

It is similarly the case that

EΦ

[
(Z(U))ij(Z

(U))kℓ

]
= EΦ

[(
U⊤ZU

)
ij

(
U⊤ZU

)
kℓ

]
. (70)

Our aim will be to calculate expectations of the form EΦ[ZijZkℓ]. With a clever choice of U, a
symmetry argument quickly shows that most choices of the four indices make this expression zero.
We define U

(m)
ab ≡ δab(1 − 2δam) and observe that, because Λ is diagonal, (U(m))⊤ΛU(m) = Λ

and thus Z(U(m)) = Z. Equation 70 then yields that

EΦ[ZijZkℓ] = (−1)δim+δjm+δkm+δℓmEΦ[ZijZkℓ] , (71)

from which it follows that EΦ[ZijZkℓ] = 0 if any index is repeated an odd number of times. In light
of the fact that Zij = Zji, there are only three distinct nontrivial cases to consider:

1. EΦ[ZiiZii],
2. EΦ[ZijZij ] with i ̸= j, and
3. EΦ[ZiiZjj ] with i ̸= j.
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We note that we are not using the Einstein convention of summation over repeated indices.

Cases 1 and 2. We now consider differentiating Z with respect to a particular element of the matrix
Λ. This yields

∂Ziℓ

∂Λjk
= −ϕ⊤

i

(
Φ⊤ΛΦ

)−1
ϕjϕ

⊤
k

(
Φ⊤ΛΦ

)−1
ϕℓ = −ZijZkℓ, (72)

where as before ϕi is the i-th row of Φ. This gives us the useful expression that

E[ZijZkℓ] = − ∂

∂Λjk
E[Ziℓ] . (73)

We now set ℓ = i, k = j and evaluate this expression using Equation 68, concluding that

E[ZijZij ] = E[ZijZji] = − ∂

∂λj

(
1

λi + κ

)
=

1

(λi + κ)2

(
δij +

∂κ

∂λj

)
(74)

and thus

Cov[Zij ,Zij ] = Cov[Zij ,Zji] =
1

(λi + κ)2
∂κ

∂λj
=

κ2

q(λi + κ)2(λj + κ)2
. (75)

We did not require that i ̸= j, and so Equation 74 holds for Case 1 as well as Case 2.

Case 3. We now aim to calculate E[ZiiZjj ] for i ̸= j. We might hope to use Equation 73 in
calculating E[ZiiZjj ], but this approach is stymied by the fact that we would need to take a derivative
with respect to Λij , but we only have an approximation for Z for diagonal Λ. We can circumvent
this by means of Z(U). From the definition of Z(U), we find that

(
∂

∂Uij
− ∂

∂Uji

)
Z(U)

∣∣∣∣∣
U=IM

= −ϕ⊤
i

(
Φ⊤ΛΦ

)−1 [
ϕjλiϕ

⊤
i − ϕiλjϕ

⊤
j + ϕiλiϕ

⊤
j − ϕjλjϕ

⊤
i

] (
Φ⊤ΛΦ

)−1
ϕj

= (λj − λi)
(
Z2

ij + ZiiZjj

)
. (76)

Differentiating with respect to both Uij and Uji with opposite signs ensures that the derivative is
taken within the manifold of orthogonal matrices. Now, using Equation 69, we find that

(
∂

∂Uij
− ∂

∂Uji

)
E
[
Z(U)

] ∣∣∣∣∣
U=IM

=

(
∂

∂Uij
− ∂

∂Uji

)
U⊤(Λ+ κIM )−1U

∣∣∣
U=IM

=
1

λi + κ
− 1

λj + κ
.

(77)

Taking the expectation of Equation 76, plugging in Equation 74 for E
[
Z2

ij

]
, comparing to 77, and

performing some algebra, we conclude that

E[ZiiZjj ] =
1

(λi + κ)(λj + κ)
− κ2

q(λi + κ)2(λj + κ)2
(78)

and thus that Zii,Zjj are anticorrelated with covariance
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Cov[Zii,Zjj ] = − κ2

q(λi + κ)2(λj + κ)2
. (79)

Cases 1-3 can be summarized as

Cov[Zij ,Zkℓ] =
κ2 (δikδjℓ + δiℓδjk − δijδkℓ)

q(λi + κ)(λj + κ)(λk + κ)(λℓ + κ)
. (80)

Using the fact that T
(D)
ij = λiZij , defining Li ≡ λi(λi + κ)−1, and noting that q =

(
∑

i Li(1− Li))
−1, we find that

Cov
[
T

(D)
ij ,T

(D)
kℓ

]
=

Li(1− Lj)Lk(1− Lℓ)

n−
∑M

m=1 L2
m

(δikδjℓ + δiℓδjk − δijδkℓ). (81)

Noting that E(f) = E
[
|v − v̂|2

]
, recalling that v̂ = T(D)v, and using Equation 81 to evaluate a

sum over eigenmodes, we find that expected MSE is given by

E(f) = n

n−
∑

m L2
m

∑
i

(1− Li)
2 v2

i . (82)

Taking a sum over indices of v, we find that the covariance of the predicted function can be written
simply in terms of MSE as

Cov[v̂i, v̂j ] =
L2
i E(f)
n

δij . (83)

H.10 ADDING BACK THE RIDGE AND NOISE

We have thus far assumed δ = 0. We can now add the ridge parameter back using Equation 52.
To add a ridge parameter δ, we need merely replace λi → λi +

δ
M and then change T

(D)
ij →

λi(λi +
δ
M )−1T

(D)
ij . This yields that

E
[
T

(D)
ii

]
=

δijλi

λi +
δ
M + κ

, (84)

Cov
[
T

(D)
ij ,T

(D)
kℓ

]
=

κ (δikδjℓ + δiℓδjk − δijδkℓ)

q(λi +
δ
M + κ)(λj +

δ
M + κ)(λk + δ

M + κ)(λℓ +
δ
M + κ)

, (85)

where κ ≥ 0 satisfies
∑
i

λi +
δ
M

λi +
δ
M + κ

= n and q ≡
M∑
j=1

λj +
δ
M

(λj +
δ
M + κ)2

. (86)

Taking either δ = 0 or M → ∞, we find that

n =
∑
i

λi
λi + κ

+
δ

κ
(87)

and the mean and covariance of T(D) are again given by Equations 63 and 81.

To summarize this simplification: in the continuous setting (M → ∞), we recover the results of
prior work. In the discrete setting with zero ridge, we find that these expressions apply unmodi-
fied. In the discrete setting with positive ridge, we find that these expressions contain corrections
with perturbative parameter δ

M . In the main text, we report the expressions with δ
M = 0, and our

experiments obey this condition.
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Modifying v so as to place power ϵ2 into an eigenmode with zero eigenvalue, Equation 82 for MSE
becomes

E(f) = E0

(∑
i

(1− Li)
2v2

i + ϵ2

)
. (88)

H.11 PROPERTIES OF κ

In experimental settings, κ is in general easy to find numerically, but for theoretical study, we antic-
ipate it being useful to have some analytical bounds on κ in order to, for example, prove that certain
eigenmodes are or are not asymptotically learned for particular spectra. To that end, the following
lemma gives some properties of κ.

Lemma H.1. For κ ≥ 0 solving
∑M

i=1
λi

λi+κ + δ
κ = n, with positive eigenvalues {λi}Mi=1 ordered

from greatest to least, the following properties hold:

(a) κ = ∞ when n = 0, and κ = 0 when n→M and δ = 0.

(b) κ is strictly decreasing with n.

(c) κ ≤ 1
n−ℓ

(
δ +

∑M
i=ℓ+1 λi

)
for all ℓ ∈ {0, ..., n− 1}.

(d) κ ≥ λℓ
(
ℓ
n − 1

)
for all ℓ ∈ {n, ...,M}.

Proof of property (a): Because
∑M

i=1
λi

λi+κ + δ
κ is strictly decreasing with κ for κ ≥ 0, there can

only be one solution for a given n. The first statement follows by inspection, and the second follows
by inspection and our assumption that all eigenvalues are strictly positive.

Proof of property (b): Differentiating the constraint on κ with respect to n yields[
M∑
i=1

−λi
(λi + κ)2

+
−δ
κ2

]
dκ

dn
= 1, which implies that

dκ

dn
= −

[
M∑
i=1

λi
(λi + κ)2

+
δ

κ2

]−1

< 0.

(89)

Proof of property (c): We observe that n =
∑M

i=1
λi

λi+κ + δ
κ ≤ ℓ +

∑M
i=ℓ+1

λi

κ + δ
κ . The desired

property follows.

Proof of property (d): We set δ = 0 and consider replacing λi with λℓ if i ≤ ℓ and 0 if i > ℓ. Noting
that this does not increase any term in the sum, we find that n =

∑M
i=1

λi

λi+κ ≥
∑ℓ

i=1
λℓ

λℓ+κ = ℓλℓ

λℓ+κ .
The desired property in the ridgeless case follows. A positive ridge parameter only increases κ, so
the property holds in general. We note that a positive ridge parameter can be incorporated into the
bound, giving

κ ≥ 1

2n

[
(ℓ− n)λℓ + δ +

√
((ℓ− n)λℓ + δ)

2
+ 4nδλℓ

]
. (90)

We also note that, as observed by Jacot et al. (2020) and Spigler et al. (2020), the asymptotic scaling
of κ can be fixed if the kernel eigenvalues follow a power law spectrum. Specifically, if λi ∼ i−α

for some α > 1, then Jacot et al. (2020)15 show that

κ = Θ(δ n−1 + n−α). (91)

15Jacot et al. (2020) scale the ridge parameter proportional to n in their definition of kernel ridge regression;
our reproduction of their result accounts for this and applies to our convention.
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