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In this paper, we investigate the randomized algorithms for block matrix multiplication
from random sampling perspective. Specifically, based on the A-optimal design criterion,
we obtain the optimal sampling probabilities and sampling block sizes. To improve
the practicability of the block sizes, two modified ones with less computation cost are
provided. With respect to the second modified block size, we devise a two step algo-
rithm. Moreover, the probability error bounds for the proposed algorithms are also given.
Extensive numerical results show that our methods outperform the state-of-the-art ones
given in the literature.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

As we know, matrix multiplication is a classical problem in numerical linear algebra. The algorithms of this problem
re well-known and can be found in any book on matrix computations, see e.g., [1]. However, in the age of big data, these
amous algorithms are encountered enormous challenges because of their computation cost. So, some scholars introduced
he randomized ideas into matrix multiplication and proposed some randomized algorithms for this problem.

To the best of our knowledge, Cohen and Lewis [2] first applied the randomized idea to approximate matrix
ultiplication. In 2006, motivated by a fast sampling algorithm for low-rank approximations given in [3], Drineas et al. [4]
roposed the now-famous randomized algorithm for matrix multiplication called the BasicMatrixMultiplication algorithm.
t picks the outer products using the nonuniform sampling probabilities which are derived from the norms of columns
nd rows of the involved matrices M and N , respectively, that is, the following probabilities

pi =
∥M (i)

∥2∥N(i)∥2∑n
i=1 ∥M (i)∥2∥N(i)∥2

, i = 1, . . . , n, (1.1)

where M (i) denotes the ith column of M ∈ Rm×n, N(i) stands for the ith row of N ∈ Rn×p, and ∥ · ∥2 represents the
Euclidean norm of a vector. The specific algorithm is given in Algorithm 1. Later, the BasicMatrixMultiplication algorithm
was extended to the block version by Wu [5]. That is, a set of submatrices were sampled by using the following sampling
probabilities

pk =
∥MkNk∥F∑K
k=1 ∥MkNk∥F

, k = 1, . . . , K , (1.2)
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where Mk
∈ Rm×nk represents the kth block of M =

[
M1 M2

· · · MK
]
, Nk ∈ Rnk×p symbolizes the kth block of

NT
=

[
NT

1 NT
2 · · · NT

K

]
, and ∥ · ∥F denotes the Frobenius norm of a matrix. In 2019, Chang et al. [6] proposed another

block version of the BasicMatrixMultiplication algorithm with the following sampling probabilities

pK =
∥
∑

k∈K MkNk∥F∑
K′ ∥

∑
k∈K MkNk∥F

, (1.3)

here K ⊂ {K′
} and K′ denote the subsets of {1, 2, 3, . . . , K }. Recently, the following sampling probabilities,

pk =
∥Mk

∥F∥Nk∥F∑K
k=1 ∥Mk∥F∥Nk∥F

, k = 1, . . . , K , (1.4)

ere devised for the block matrix multiplication by Charalambides et al. [7]. They are easier to compute compared with
1.2) and (1.3). In addition, there are some other generalizations of the BasicMatrixMultiplication algorithm [8,9] and
ome randomized algorithms for matrix multiplication based on random projection [10–12]. In particular, a block diagonal
andom projection method with different block sizes was developed in [12].

Algorithm 1 BasicMatrixMultiplication Algorithm [4]
Input: M ∈ Rm×n, N ∈ Rn×p, the number of sampling c ∈ Z+ such that 1 ≤ c ≤ n, and {pi}ni=1 given as (1.1).
Output: C ∈ Rm×c and D ∈ Rc×p.

1. for t = 1 to c

• sample it ∈ {1, · · · , n} with Pr(it = s) = ps, s = 1, · · · , n, independently and with replacement.
• set C (t)

=
M(it )
√

cpit
, and D(t) =

N(it )√
cpit

.

2. end
3. return C and D.

In this paper, we consider the randomized algorithms for block matrix multiplication based on random sampling
further by using the technique of optimal subsampling proposed recently in the field of statistics; see e.g., [13–16].
Specifically, we derive the optimal sampling probabilities and sampling block sizes by the A-optimal design criterion [17],
i.e., minimizing the trace of the variance of an estimator. Moreover, unlike [5–7], we do not sample the blocks directly
but sample the outer products on each block with the optimal sampling probabilities and sampling block sizes.

The remainder of this paper is organized as follows. The randomized algorithm framework for block matrix multiplica-
tion, the optimal sampling probabilities, and the optimal sampling block sizes are presented in Section 2. In Section 3, we
modify the block sizes to make them easier to compute and provide a two step algorithm. Furthermore, the probability
error bounds of the corresponding algorithms are also given in Sections 2 and 3, respectively. Extensive numerical
experiments are shown in Section 4. Finally, we make the concluding remarks of the whole paper.

2. Randomized algorithm and optimal sampling criterion

We first rewrite the product of the block matrices M ∈ Rm×n and N ∈ Rn×p appearing in Section 1 as follows

MN =

K∑
k=1

MkNk =

K∑
k=1

nk∑
i=1

Mk(i)Nk(i),

where Mk(i) is viewed as the ith column of the kth block of M and Nk(i) is the ith row of the kth block of N . Then, Algorithm
1 is applied to each block. Thus, we have K estimations for the K blocks as follows

CkDk =

ck∑
t=1

Ck(t)Dk(t) =

ck∑
t=1

Mk(it )Nk(it )

ckpkit
, k = 1, . . . , K ,

here ck represents the number of extracted outer products from the kth block, Ck(t)
=

Mk(it )
√

ckpkit
and Dk(t) =

Nk(it )√
ckpkit

with

kit
being the sampling probability satisfying

∑nk
i=1 pki = 1. Note that these probabilities as well as the sampling block

izes {ck}Kk=1 need to be determined later in this section. Therefore, the final estimation is

CD =

K∑
k=1

CkDk =

K∑
k=1

ck∑
t=1

Ck(t)Dk(t) =

K∑
k=1

ck∑
t=1

Mk(it )Nk(it )

ckpkit
.

The specific algorithm is presented in Algorithm 2.
2
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Algorithm 2 Sampling Algorithm for Block Matrix Multiplication

Input: M ∈ Rm×n and N ∈ Rn×p set as in Section 1, {nk}
K
k=1 such that

∑K
k=1 nk = n, {ck}Kk=1 with ck ∈ Z+ and 1 ≤ ck ≤ nk such that

K
k=1 ck = c for c ∈ Z+, and {pki }

nk
i=1 with pki ≥ 0 such that

∑nk
i=1 pki = 1 for k = 1, · · · , K .

utput: C ∈ Rm×c , D ∈ Rc×p, and CD.

1. for k ∈ 1, · · · , K do

• [Ck,Dk] =BasicMatrixMultiplication(Mk,Nk, ck, {pki }
nk
i=1).

2. end
3. C =

[
C1 C2

· · · CK
]
, DT

=
[
DT
1 DT

2 · · · DT
K

]
.

4. CD =
∑K

k=1 C
kDk.

5. return C , D, and CD.

In the following, we discuss the asymptotic properties of the estimation obtained by Algorithm 2. Based on these
asymptotic properties and the A-optimal design criterion [17], we can construct the optimal sampling probabilities and
sampling block sizes. One condition and two lemmas are first listed as follows, which are necessary for the proof of the
main theorem, i.e., Theorem 2.1 below. More specifically, the condition is used to derive the Lyapunov’s condition listed
in the first lemma, while the lemma is applied to arrive the conclusion in Theorem 2.1. For the second lemma, its main
aim is to simplify the proof of Theorem 2.1.

Condition 2.1.
nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2

c2k pki
< C0, (2.1)

d1n
−(1+α1)
k ≤ pki ≤ d2n

−(1+α1)
k , (2.2)

ℓ1n
α2
k ≤ ck ≤ ℓ2n

α2
k , (2.3)

where Mk
(h,i) with h = 1, . . . ,m and i = 1, . . . , nk stand for the elements at the (h, i)-th position of the kth block of M, Nk(i,f )

ith f = 1, . . . , p and i = 1, . . . , nk denote the elements at the (i, f )-th position of the kth block of N, C0 is a large enough
ositive constant, k = 1, . . . , K, 0 ≤ α1 < 1, and 0 ≤ α2 < 1.

emark 2.1. Combining (2.1), (2.2), and (2.3), we can get
nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2 < C0ℓ
2
2n

2α2
k d2n

−(1+α1)
k = C0ℓ

2
2d2n

2α2−1−α1
k ,

which yields that

α2 >
1
2

⎛⎜⎝1 +

ln
∑nk

i=1
(Mk

(h,i))
2(Nk(i,f ))2

C0ℓ22d2

lnnk
+ α1

⎞⎟⎠ . (2.4)

rom the above discussion, we get that (2.1) holds if (2.4) is satisfied. Furthermore, due to α1 < 1 +

ln
∑nk

i=1

(Mk
(h,i))

2(Nk(i,f ))
2

C0ℓ22d2
lnnk

,
it is straightforward to have α2 > α1 from (2.4).

In addition, assuming

τ1n ≤ nk ≤ τ2n (2.5)

ith 0 < τ1 ≤ τ2 and k = 1, . . . , K , we can transform (2.2) and (2.3) into

d1τ
−(1+α1)
2 n−(1+α1) ≤ pki ≤ d2τ

−(1+α1)
1 n−(1+α1) (2.6)

nd

ℓ τ
α2nα2 ≤ c ≤ ℓ τ

α2nα2 . (2.7)
1 1 k 2 2

3
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Lemma 2.1 ([18]). Assume that X1, . . . , Xn are independent and identically distributed random variables, which satisfy that
ach expected value µi and variance ρ2

i with i = 1, . . . , n are finite. Set

ρ2
=

n∑
i=1

ρ2
i ,

hen, when the Lyapunov’s condition

lim
n→∞

∑n
i=1 E[|Xi − µi|

3
]

ρ3 = 0

is satisfied, we have∑n
i=1(Xi − µi)

ρ

L
−→ N(0, 1), as n → ∞,

where
L

−→ denotes the convergence in distribution.

emma 2.2. The matrices C and D constructed by Algorithm 2 satisfy

E[(CD)(h,f )] = (MN)(h,f )

and

Var[(CD)(h,f )] =

K∑
k=1

nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2

ckpki
−

K∑
k=1

((MkNk)(h,f ))2

ck
,

where (CD)(h,f ) represents the element at the (h, f )-th position of CD, (MN)(h,f ) denotes the element at the (h, f )-th position of
MN, h = 1, . . . ,m, and f = 1, . . . , p.

Proof. The proof can be completed easily along the line of the proof of [4, Lemma 3].

Now we present the asymptotic distribution of the estimation errors of matrix elements.

Theorem 2.1. Assume that (2.1), (2.2), (2.3), and (2.5) hold, and set

µ1L ≤ |M(h,i)| ≤ µ2L, (2.8)

µ1L ≤ |N(i,f )| ≤ µ2L, (2.9)
K∑

k=1

((MkNk)(h,f ))2

ck
≤ α

K∑
k=1

nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2

ckpki
, (2.10)

here 0 < µ1 ≤ µ2, L ≥ 0, and 0 ≤ α < 1. Then the matrices C and D constructed by Algorithm 2 satisfy

(CD)(h,f ) − (MN)(h,f )
σ

L
−→ N(0, 1), as n → ∞, c → ∞, (2.11)

here

σ 2
=

K∑
k=1

nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2

ckpki
−

K∑
k=1

((MkNk)(h,f ))2

ck
.

Proof. Note that

(CD)(h,f ) − (MN)(h,f ) =

K∑
k=1

ck∑
t=1

(
Mk(it )Nk(it )

ckpkit
)(h,f ) −

K∑
k=1

nk∑
i=1

(Mk(i)Nk(i))(h,f )

=

K∑
k=1

ck∑
t=1

[(
Mk(it )Nk(it )

ckpkit
)(h,f ) −

nk∑
i=1

(
Mk(i)Nk(i)

ck
)(h,f )].

Now, let ηk(t) = (M
k(it )Nk(it )
ckpkit

)(h,f ) −
∑nk

i=1(
Mk(i)Nk(i)

ck
)(h,f ) with k = 1, . . . , K and t = 1, . . . , ck. Thus, based on Lemma 2.2, it is

easy to deduce that

E[η ] = 0 (2.12)
k(t)

4
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and

Var[ηk(t)] =

nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2

c2k pki
−

((MkNk)(h,f ))2

c2k
< C0, (2.13)

here (2.13) is from (2.1). Then, considering that ηk(t) are independent for the given matrices M and N , and noting (2.12),
e find that, to prove (2.11), it suffices to show that

lim
c→∞

∑K
k=1

∑ck
t=1 E[|ηk(t)|

3
]

σ 3 = 0 (2.14)

olds, where

σ 2
=

K∑
k=1

ck∑
t=1

Var[ηk(t)] =

K∑
k=1

nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2

ckpki
−

K∑
k=1

((MkNk)(h,f ))2

ck
.

Now, we prove (2.14). By the basic triangle inequality, we have
K∑

k=1

ck∑
t=1

E[|ηk(t)|
3
] =

K∑
k=1

ck∑
t=1

E[|
Mk

(h,it )Nk(it ,f )

ckpkit
−

nk∑
i=1

Mk
(h,i)Nk(i,f )

ck
|
3
]

≤

K∑
k=1

1
c2k

[

nk∑
i=1

|Mk
(h,i)|

3
|Nk(i,f )|

3

p2ki
+ 4(

nk∑
i=1

|Mk
(h,i)∥Nk(i,f )|)3

+ 3
nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2

pki
(

nk∑
i=1

|Mk
(h,i)∥Nk(i,f )|)].

While, combining (2.6), (2.7), (2.8), (2.9), and (2.10), we can get∑K
k=1

1
c2k

∑nk
i=1

|Mk
(h,i)|

3
|Nk(i,f )|

3

p2ki

σ 3

≤

µ2
2L

2 ∑K
k=1

∑nk
i=1

(Mk
(h,i))

2(Nk(i,f ))2

c2k p
2
ki

(1 − α)
3
2 (

∑K
k=1

∑nk
i=1

(Mk
(h,i))

2(Nk(i,f ))2

ckpki
)
3
2

by (2.8), (2.9), and (2.10)

≤

µ2
2L

2(d1ℓ1)−1τ
−α2
1 τ

1+α1
2 n1+α1−α2

∑K
k=1

∑nk
i=1

(Mk
(h,i))

2(Nk(i,f ))2

ckpki

(1 − α)
3
2 (

∑K
k=1

∑nk
i=1

(Mk
(h,i))

2(Nk(i,f ))2

ckpki
)1+

1
2

by (2.6) and (2.7)

=
µ2

2L
2(d1ℓ1)−1τ

−α2
1 τ

1+α1
2 n1+α1−α2

(1 − α)
3
2 (

∑K
k=1

∑nk
i=1

(Mk
(h,i))

2(Nk(i,f ))2

ckpki
)
1
2

≤
µ2

2

µ2
1(1 − α)

3
2

(d1ℓ1)−1τ
−α2
1 τ

1+α1
2 n1+α1−α2

(nd−1
2 τ

1+α1
1 n1+α1ℓ−1

2 τ
−α2
2 n−α2 )

1
2

by (2.6), (2.7), (2.8), and (2.9)

=
µ2

2

µ2
1(1 − α)

3
2

(d1ℓ1)−1τ
−

1+α1
2 −α2

1 τ
1+α1+

α2
2

2

(d2ℓ2)−
1
2

n
α1−α2

2 , (2.15)

hich together with α2 > α1 (see Remark 2.1) implies

lim
c→∞

∑K
k=1

1
c2k

∑nk
i=1

|Mk
(h,i)|

3
|Nk(i,f )|

3

p2ki

σ 3 = 0.

Analogously, we can get

lim
c→∞

∑K
k=1

1
c2k
(
∑nk

i=1 |Mk
(h,i)∥Nk(i,f )|)3

σ 3 = 0,

lim

∑K
k=1

1
c2k

∑nk
i=1

(Mk
(h,i))

2(Nk(i,f ))2

pki
(
∑nk

i=1 |Mk
(h,i)∥Nk(i,f )|)

= 0.

c→∞ σ 3

5
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Thus, put the above discussions together, we find that the Lyapunov’s condition in Lemma 2.1 is satisfied, namely, (2.14)
holds. As a result, we gain (2.11).

Remark 2.2. Note that by Theorem 2.1, we can construct the confidence interval for (CD)(h,f )−(MN)(h,f ) with h = 1, . . . ,m
nd f = 1, . . . , p. Whereas, large n leads σ 2 to be prohibitive. Thus, we can use σ 2

∗
established by randomized sampling,

.e.,

σ 2
∗

=

K∑
k=1

ck∑
t=1

(Mk
(h,it ))

2(Nk(it ,f ))
2

c2k p
2
kit

−

K∑
k=1

1
c3k

(
ck∑
t=1

Mk
(h,it )Nk(it ,f )

pkit
)2,

o replace σ 2.

Combining the A-optimal design criterion [17] and the sum of asymptotic variances of elements, i.e., by minimizing
m
h=1

∑p
f=1 σ 2, we can obtain the optimal sampling probabilities {pki}

nk
i=1 with k = 1, . . . , K and the optimal sampling

lock sizes {ck}Kk=1 for Algorithm 2.

heorem 2.2. For Algorithm 2, the sum of the asymptotic variances,
m∑

h=1

p∑
f=1

σ 2

ttains its minimum when

pOPLki =
∥Mk(i)

∥2∥Nk(i)∥2∑nk
i=1 ∥Mk(i)∥2∥Nk(i)∥2

, for k = 1, . . . , K and i = 1, . . . , nk, (2.16)

nd

cOPLk = c
[(
∑nk

i=1 ∥Mk(i)
∥2∥Nk(i)∥2)2 − ∥MkNk∥

2
F ]

1
2∑K

k=1[(
∑nk

i=1 ∥Mk(i)∥2∥Nk(i)∥2)2 − ∥MkNk∥
2
F ]

1
2
, for k = 1, . . . , K . (2.17)

Proof. Considering

(
nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2)2 − ∥MkNk∥

2
F ≥ 0

and by the Cauchy–Schwarz inequality, it is easy to get
m∑

h=1

p∑
f=1

σ 2
=

K∑
k=1

nk∑
i=1

∥Mk(i)
∥
2
2∥Nk(i)∥

2
2

ckpki
−

K∑
k=1

∥MkNk∥
2
F

ck

=

K∑
k=1

nk∑
i=1

pki

nk∑
i=1

∥Mk(i)
∥
2
2∥Nk(i)∥

2
2

ckpki
−

K∑
k=1

∥MkNk∥
2
F

ck

≥

K∑
k=1

1
ck

(
nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2)2 −

K∑
k=1

∥MkNk∥
2
F

ck
(2.18)

=

K∑
k=1

ck
c

K∑
k=1

1
ck

[(
nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2)2 − ∥MkNk∥

2
F ]

≥ [

K∑
k=1

1
√
c
((

nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2)2 − ∥MkNk∥

2
F )

1
2 ]

2,

where the equality in the inequality (2.18) holds if and only if

pki = W1∥Mk(i)
∥2∥Nk(i)∥2

for some constant W1 ≥ 0, and the equality in the last inequality holds if and only if

ck = W2[(
nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2)2 − ∥MkNk∥

2
F ]

1
2

for some W ≥ 0. Thus, considering
∑K c = c and

∑nk p = 1, the desired results are derived.
2 k=1 k i=1 ki

6
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Remark 2.3. It is not a complicated matter to find that
m∑

h=1

p∑
f=1

σ 2
=

m∑
h=1

p∑
f=1

Var[(CD)(h,f )] = E[∥MN − CD∥
2
F ],

ence, the statistical criterion in Theorem 2.2 for getting the optimal sampling probabilities and sampling block sizes is
quivalent to the optimization criterion used in [4].
In addition, if we only want to find the optimal sampling probabilities and sampling block sizes, it suffices to calculate

he sum of variance of all elements. In this case, Condition 2.1 is not needed because it is mainly used to find the
symptotic distribution in Theorem 2.1.

emark 2.4. Supposing that

vk

nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2 = ∥MkNk∥F , (2.19)

here 0 ≤ vk < 1 and θ1 ≤ 1 − v2
k ≤ θ2 with 0 < θ1 ≤ θ2 ≤ 1 and k = 1, . . . , K , and considering (2.16) and (2.17), the

sum of asymptotic variances of elements can be rewritten as
m∑

h=1

p∑
f=1

σ 2
OPL =

K∑
k=1

nk∑
i=1

∥Mk(i)
∥
2
2∥Nk(i)∥

2
2

cOPLk pOPLki

−

K∑
k=1

∥MkNk∥
2
F

cOPLk
(2.20)

=
1
c
[

K∑
k=1

(1 − v2
k )

1
2

nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2]

2.

Remark 2.5. Considering (2.5), (2.8), and (2.9), we can deduce that

µ2
1

nkµ
2
2

=

√
mpµ2

1L
2

nk
√
mpµ2

2L2
≤ pOPLki ≤

√
mpµ2

2L
2

nk
√
mpµ2

1L2
=

µ2
2

nkµ
2
1
,

which indicates that, with α1 = 0, d1 = (µ1
µ2

)2, and d2 = (µ2
µ1

)2, the condition (2.2) holds.
On the other hand, assuming

c = τ0nα2 (2.21)

with 0 < τ0 < 1, and noting (2.5), (2.8), (2.9), and (2.19), it is easy to get

cOPLk = c
(1 − v2

k )
1
2
∑nk

i=1 ∥Mk(i)
∥2∥Nk(i)∥2∑K

k=1(1 − v2
k )

1
2
∑nk

i=1 ∥Mk(i)∥2∥Nk(i)∥2

by (2.19)

≤ c
θ

1
2
2

∑nk
i=1 ∥Mk(i)

∥2∥Nk(i)∥2

θ
1
2
1

∑K
k=1

∑nk
i=1 ∥Mk(i)∥2∥Nk(i)∥2

≤ c
θ

1
2
2 nk

√
mpµ2

2L
2

θ
1
2
1 n

√
mpµ2

1L2
by (2.8) and (2.9)

≤ c
θ

1
2
2 µ2

2τ2n

θ
1
2
1 µ2

1n
=

θ
1
2
2 τ0τ2µ

2
2

θ
1
2
1 µ2

1

nα2 by (2.5) and (2.21)

≤
θ

1
2
2 τ0τ2µ

2
2

θ
1
2
1 τ

α2
1 µ2

1

nα2
k . by (2.5)

Similarly, we have

cOPLk ≥
θ

1
2
1 τ0τ1µ

2
1

θ
1
2
2 τ

α2
2 µ2

2

nα2
k .

Thus, for cOPLk , with ℓ1 =
θ

1
2
1 τ0τ1µ2

1
1
2 α2 2

and ℓ2 =
θ

1
2
2 τ0τ2µ2

2
1
2 α2 2

, the condition (2.3) holds.

θ2 τ2 µ2 θ1 τ1 µ1

7
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Next, we present the error bounds of the estimation obtained by Algorithm 2. To make the analysis more general, we
onsider a set of sampling probabilities {pki}

nk
i=1 such that pki ≥

β∥Mk(i)
∥2∥Nk(i)∥2∑nk

i=1 ∥Mk(i)∥2∥Nk(i)∥2
with a positive constant β ≤ 1, which

can be named as the nearly optimal sampling probabilities.

Theorem 2.3. Assume that (2.19) holds, and let ϕ =
(θ2−θ1β+θ2θ1β)

1
2

(θ2θ1)1/4
with β ≤ 1. Then, for Algorithm 2 with pki ≥

β∥Mk(i)
∥2∥Nk(i)∥2∑nk

i=1 ∥Mk(i)∥2∥Nk(i)∥2
and ck = cOPLk , the sum of the asymptotic variances satisfies

m∑
h=1

p∑
f=1

σ 2
OPL ≤

ϕ2

βc
∥M∥

2
F∥N∥

2
F .

Furthermore, setting δ ∈ (0, 1) and η = ϕ + ( θ2
θ1
)
1
2
√
(8/β) log(1/δ),

∥MN − CD∥
2
F ≤

η2

βc
∥M∥

2
F∥N∥

2
F (2.22)

olds with the probability at least 1 − δ.

roof. Similar to the proof of [4, Theorem 1], we can derive the desired results. The specific proof is presented in
Appendix.

. Modification of the optimal criterion

Note that calculating (2.17) requires to figure out the matrix multiplication MkNk. This cost may be prohibitive for
massive data. In this section, we develop two low-cost alternatives, ĉk and c̃k, to replace the optimal sampling block size
cOPLk in (2.17). Besides, a two step algorithm is also provided with respect to c̃k.

3.1. Modification with adjusting variance

The size ĉk is derived from a small modification of the proof of Theorem 2.2. That is, we first let
m∑

h=1

p∑
f=1

σ 2
=

K∑
k=1

nk∑
i=1

∥Mk(i)
∥
2
2∥Nk(i)∥

2
2

ĉkpki
−

K∑
k=1

∥MkNk∥
2
F

ĉk

≤

K∑
k=1

nk∑
i=1

∥Mk(i)
∥
2
2∥Nk(i)∥

2
2

ĉkpki
,

nd then find two sets {ĉk}Kk=1 and {pki}
nk
i=1 to make the above upper bound achieve minimum. Similar to the proof of

heorem 2.2, we have

ĉk = c
∑nk

i=1 ∥Mk(i)
∥2∥Nk(i)∥2∑K

k=1
∑nk

i=1 ∥Mk(i)∥2∥Nk(i)∥2
(3.1)

nd pOPLki
as in (2.16). Obviously, ĉk is much easier to compute compared with (2.17).

emark 3.1. It is easy to find that when θ2 = θ1, ĉk = cOPLk . Moreover, noting (2.5), (2.8), (2.9), and (2.21), and considering
he results in Remark 2.5, we gain

τ0τ1µ
2
1

τ
α2
2 µ2

2
nα2
k ≤ ĉk ≤

τ0τ2µ
2
2

τ
α2
1 µ2

1
nα2
k ,

which implies that, for ĉk, with ℓ1 =
τ0τ1µ2

1
τ
α2
2 µ2

2
and ℓ2 =

τ0τ2µ2
2

τ
α2
1 µ2

1
, the condition (2.3) holds.

Below we provide the asymptotic distribution of the estimation errors of matrix elements and probability error bound
f Ĉ D̂ constructed by putting (2.16) and (3.1) into Algorithm 2. The asymptotic distribution is first given as follows.

heorem 3.1. Assume that (2.5), (2.8), (2.9), (2.10), and (2.21) hold. Then, the matrices Ĉ and D̂ constructed by Algorithm 2
ith pki = pOPLki

and ck = ĉk satisfy

(Ĉ D̂)(h,f ) − (MN)(h,f ) L
−→ N(0, 1), as n → ∞, c → ∞,
σ̂

8
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where

σ̂ 2
=

K∑
k=1

nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2

ĉkpOPLki

−

K∑
k=1

((MkNk)(h,f ))2

ĉk
. (3.2)

roof. From Remark 3.1, we have that the conditions (2.2) and (2.3) hold when pki = pOPLki
and ck = ĉk. In addition,

ollowing the conclusions in Remarks 2.1 and 2.5, we get that, when

α2 >
1
2
(1 +

ln
∑nk

i=1
(Mk

(h,i))
2(Nk(i,f ))2

C0ℓ22d2

lnnk
), (3.3)

he condition (2.1) holds. Thus, the proof can be completed along the line of the proof of Theorem 2.1.

emark 3.2. From (2.20) and (3.2), it is easy to see that the difference between σ 2
OPL and σ̂ 2 lies in the sampling block

izes, cOPLk and ĉk.

Now, we present the probability error bound of Ĉ D̂.

heorem 3.2. Assume that (2.19) holds, and let ϕ̂ = (1 − β(1 − θ2))
1
2 with β ≤ 1. Then, for Algorithm 2 with

pki ≥
β∥Mk(i)

∥2∥Nk(i)∥2∑nk
i=1 ∥Mk(i)∥2∥Nk(i)∥2

and ck = ĉk, the sum of the asymptotic variances satisfies

m∑
h=1

p∑
f=1

σ̂ 2
≤

ϕ̂2

βc
∥M∥

2
F∥N∥

2
F .

Furthermore, setting δ ∈ (0, 1) and η = ϕ̂ +
√
(8/β) log(1/δ),

∥MN − Ĉ D̂∥
2
F ≤

η2

βc
∥M∥

2
F∥N∥

2
F (3.4)

olds with the probability at least 1 − δ.

roof. The proof can be completed along the line of the proof of Theorem 2.3.

emark 3.3. Letting θ2 = θ1 < 1 and β = 1 in Theorem 3.2, we have

η = (θ2)1/2 +

√
(8/β) log(1/δ).

In this case, the probability error bound (3.4) is the same as the one in Theorem 2.3.

3.2. Modification with the BasicMatrixMultiplication algorithm

The size c̃k is derived by the BasicMatrixMultiplication algorithm. Specifically, we use C0kD0k constructed by Algorithm
1 with the same sampling size [c0/K ] and a set of sampling probabilities {p0ki}

nk
i=1 to approximate MkNk, where c0 denotes

the total sample size and p0ki with i = 1, . . . , nk are allowed to be uniform probabilities or nonuniform probabilities.
Considering that (

∑nk
i=1 ∥Mk(i)

∥2∥Nk(i)∥2)2 − ∥C0kD0k∥
2
F ≥ 0 may not hold,1 we propose c̃k as follows

c̃k = c
|(
∑nk

i=1 ∥Mk(i)
∥2∥Nk(i)∥2)2 − ∥C0kD0k∥

2
F |

1
2∑K

k=1 |(
∑nk

i=1 ∥Mk(i)∥2∥Nk(i)∥2)2 − ∥C0kD0k∥
2
F |

1
2
.

Based on the above idea, we devise a two step algorithm summarized in Algorithm 3.

Remark 3.4. Similar to (2.19), we suppose

v̂k

nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2 = ∥C0kD0k∥F , (3.5)

1 The main reason is that C0kD0k may not be a good approximation of MkNk if c0/K is not large enough. In this case, the difference may be
maller than zero.
9
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S

T
3

P

where 0 < θ̂1 ≤ |1 − v̂2
k | ≤ θ̂2 with k = 1, . . . , K . Thus, we can get

c̃k = c
|1 − v̂2

k |
1
2
∑nk

i=1 ∥Mk(i)
∥2∥Nk(i)∥2∑K

k=1 |1 − v̂2
k |

1
2
∑nk

i=1 ∥Mk(i)∥2∥Nk(i)∥2

≥ c
θ̂

1
2
1

∑nk
i=1 ∥Mk(i)

∥2∥Nk(i)∥2

θ̂
1
2
2

∑K
k=1

∑nk
i=1 ∥Mk(i)∥2∥Nk(i)∥2

= (
θ̂1

θ̂2
)
1
2 ĉk,

c̃k = c
|1 − v̂2

k |
1
2
∑nk

i=1 ∥Mk(i)
∥2∥Nk(i)∥2∑K

k=1 |1 − v̂2
k |

1
2
∑nk

i=1 ∥Mk(i)∥2∥Nk(i)∥2

≤ c
θ̂

1
2
2

∑nk
i=1 ∥Mk(i)

∥2∥Nk(i)∥2

θ̂
1
2
1

∑K
k=1

∑nk
i=1 ∥Mk(i)∥2∥Nk(i)∥2

= (
θ̂2

θ̂1
)
1
2 ĉk.

Following the results in Remark 3.1, we find that, when (2.5), (2.8), (2.9), and (2.21) are satisfied, for c̃k, with ℓ1 =
θ̂

1
2
1 τ0τ1µ2

1

θ̂

1
2
2 τ

α2
2 µ2

2

and ℓ2 =
θ̂

1
2
2 τ0τ2µ2

2

θ̂

1
2
1 τ

α2
1 µ2

1

, the condition (2.3) is satisfied.

Algorithm 3 Two Step Algorithm for Block Matrix Multiplication

Input: M ∈ Rm×n and N ∈ Rn×p set as in Section 1, {nk}
K
k=1such that

∑K
k=1 nk = n, c ∈ Z+, c0 ∈ Z+ with 1 ≤ c0 ≤ c ≤ n, and {p0ki }

nk
i=1

with p0ki ≥ 0 such that
∑nk

i=1 p0ki = 1 for k = 1, · · · , K .
Output: C̃ ∈ Rm×c , D̃ ∈ Rc×p, and C̃ D̃.
Step 1:

1. for k ∈ 1, · · · , K do

• update [C0k,D0k] =BasicMatrixMultiplication(Mk,Nk, [c0/K ], {p0ki }
nk
i=1).

• update pki =
∥Mk(i)

∥2∥Nk(i)∥2∑nk
i=1 ∥Mk(i)∥2∥Nk(i)∥2

, i = 1, · · · , nk.

2. end

3. replace MkNk in (2.17) by C0kD0k, i.e., c̃k = c |(
∑nk

i=1 ∥Mk(i)
∥2∥Nk(i)∥2)2−∥C0kD0k∥

2
F |

1
2∑K

k=1 |(
∑nk

i=1 ∥Mk(i)∥2∥Nk(i)∥2)2−∥C0kD0k∥
2
F |

1
2
.

4. return c̃k and pki , for k = 1, · · · , K and i = 1, · · · , nk.

tep 2:

1. for k ∈ 1, · · · , K do

• [̃Ck, D̃k] =BasicMatrixMultiplication(Mk,Nk, c̃k, {pki }
nk
i=1).

2. end
3. C̃ =

[̃
C1 C̃2

· · · C̃K
]
, D̃T

=
[̃
DT
1 D̃T

2 · · · D̃T
K

]
.

4. C̃ D̃ =
∑K

k=1 C̃
kD̃k.

5. return C̃ , D̃, and C̃ D̃.

Now, we provide the asymptotic distribution of the estimation errors of matrix elements of C̃ D̃ obtained by Algorithm 3.

heorem 3.3. To the assumption of Theorem 3.1, add that (3.5) holds. Then, the matrices C̃ and D̃ constructed by Algorithm
with pki = pOPLki

and ck = c̃k, satisfy

(̃CD̃)(h,f ) − (MN)(h,f )
σ̃

L
−→ N(0, 1), as n → ∞, c → ∞,

where

σ̃ 2
=

K∑
k=1

nk∑
i=1

(Mk
(h,i))

2(Nk(i,f ))2

c̃kpOPLki

−

K∑
k=1

((MkNk)(h,f ))2

c̃k
. (3.6)

roof. Following the discussions in Remarks 2.5 and 3.4, we obtain that, when pki = pOPLki
and ck = c̃k, the conditions (2.2)

and (2.3) hold. Besides, when α2 is as in (3.3), the condition (2.1) also holds. Thus, the proof can be completed along the
line of the proof of Theorem 2.1.
10
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Table 1
Description of five experiments.
Number Comparison c K c0 (Algorithm 3) Results

1 Algorithm 2, UNSSM, and SSM 5 × 104 to 5 × 105 10 Null Fig. 1
2 Algorithm 2, UNSSM, and SSM 5 × 104 10 to 500 Null Fig. 2
3 Algorithms 2 and 3 1000 to 5 × 104 10 1000 Fig. 3
4 Algorithms 2 and 3 1 × 104 10 to 500 5000 Fig. 4
5 Algorithms 2 and 3 5000 10 100 to 5 × 104 Fig. 5

Remark 3.5. Analogously, based on (2.20) and (3.6), we also observe that the difference between σ 2
OPL and σ̃ 2 also lies

n the sampling block sizes, cOPLk and c̃k.

In the following, the probability error bound of C̃ D̃ is shown.

heorem 3.4. Assume that (2.19) and (3.5) hold, and let ϕ̃ =
(θ̂2−θ̂1β+θ2 θ̂1β)

1
2

(θ̂2 θ̂1)1/4
with β ≤ 1. Then, for Algorithm 3 with

ki ≥
β∥Mk(i)

∥2∥Nk(i)∥2∑nk
i=1 ∥Mk(i)∥2∥Nk(i)∥2

and ck = c̃k, the sum of the asymptotic variances satisfies

m∑
h=1

p∑
f=1

σ̃ 2
≤

ϕ̃2

βc
∥M∥

2
F∥N∥

2
F .

Furthermore, setting δ ∈ (0, 1) and η = ϕ̃ + ( θ̂2
θ̂1
)
1
2
√
(8/β) log(1/δ),

∥MN − C̃ D̃∥
2
F ≤

η2

βc
∥M∥

2
F∥N∥

2
F

holds with the probability at least 1 − δ.

Proof. The proof can be completed along the line of the proof of Theorem 2.3.

Remark 3.6. When θ̂2 > 1, θ̂1 ≤ 1, and 1 − θ2 = o(1), the bound in Theorem 3.4 is a little weaker than the one in
Theorem 3.2. This is because the η in Theorem 3.4 is larger than 1+

√
(8/β) log(1/δ), while η in Theorem 3.2 is extremely

close to 1 +
√
(8/β) log(1/δ).

emark 3.7. The bounds in Theorems 2.3, 3.2, and 3.4 are close to the one in [4], which implies that the block sampling
ith the sampling probabilities and sampling block sizes proposed in this paper can achieve the similar estimation
ccuracy compared with the direct sampling.

emark 3.8. For the two alternatives of cOPLk , i.e., ĉk and c̃k, it is difficult to compare them in theory. Numerical results also
show that the algorithms with one alternative cannot be consistently superior to the algorithms with another alternative.

4. Numerical experiments

In this section, two kinds of block matrices are used to test our methods. For the first one, the matrix entries are
uniform, while the entries of the second kind of matrices are nonuniform. The specific setting is given in the following.
Without loss of generality, we set the sizes of the blocks of the involved block matrices M and N to be the same, namely
nk = n/K for k = 1, . . . , K . To construct the following matrices M and N , we let m = 30, p = 50, n = 5 × 105,
Σ1 = (1 × 0.7|i−j|) with 1 ≤ i, j ≤ m, and Σ2 = (2 × 0.7|i−j|) with 1 ≤ i, j ≤ p. As for m, n, and p, their values can be set
almost arbitrarily if the basic conditions, i.e., n ≫ m and n ≫ p, hold. The constraints on Σ1 and Σ2 are also quite loose.
Our specific setting is taken from [16].

Case I: The ith column of M with 1 ≤ i ≤ m, M (i), is generated from a multivariate normal distribution, that is,
M (i)

∼ N(0, Σ1). Similarly, set N(j) ∼ N(0, Σ2).
Case II: The ith column of M with 1 ≤ i ≤ m, M (i), is generated from a multivariate t distribution with 1 degree of

freedom, that is, M (i)
∼ t1(1, Σ1). Similarly, set N(j) ∼ t1(1, Σ2).

For the above matrices, by setting suitable values of K , c0, and c , we do five specific experiments summarized in
Table 12 and report the numerical results in log scale on accuracy, i.e., ∥CD−MN∥

2
F

∥M∥
2
F ∥N∥

2
F
, and CPU time in Figs. 1–5. Note that all

2 To make the cases be diverse, we set the values of K , c0, and c to be quite different in different experiments. For the specific values of the
parameters, the constraints are quite loose, and they can even be set arbitrarily. Of course, some extreme cases, e.g., the case on c and c0 being
very small, the case on K being very large, etc., should be avoided.
11
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t
C

Fig. 1. Comparison of Algorithm 2, UNSSM, and SSM varying with c .

he experiments are implemented on a laptop running MATLAB software with 16 GB random-access memory and Intel
ore i5-10210U processor, all the numerical results are based on 100 replications,3 and in these figures, UNSSM represents

3 For the 100 replications, we have used parallel computing by MATLAB’s parfor and 4 threads on a single laptop. In addition, all the algorithms
are run in the same setting and we do not apply any compiler optimizations.
12
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Fig. 2. Comparison of Algorithm 2, UNSSM, and SSM varying with K .

he method from [5], whose sampling probabilities are as in (1.2), SSM denotes the method from [7], whose sampling
robabilities are given in (1.4), and other notations, i.e., ONU, ONMCNR, OPL, ONC, and UU, describe Algorithms 2 or 3
ith different pki , ck, and p0ki , respectively; see Table 2 for more details.
In the first two experiments, we compare Algorithm 2 with UNSSM and SSM for different c and K , respectively. The

orresponding numerical results are shown in Figs. 1–2. From these figures, we can find that for Case II, OPL and ONC
utperform UNSSM and SSM in accuracy for different c or different K , however, they need more computing time. While,
he improvement in accuracy is more than the increasement in computing time. For Case I, the four methods have similar
13
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Table 2
Explanation of sampling methods with different sampling probabilities and sampling block sizes.
Method pki ck p0ki
ONU (from Algorithm 3) (2.16) c̃k 1

nk

ONMCNR (from Algorithm 3) (2.16) c̃k
∥Mk(i)

∥2∥Nk(i)∥2∑nk
i=1 ∥Mk(i)∥2∥Nk(i)∥2

OPL (from Algorithm 2) (2.16) (2.17) Null
ONC (from Algorithm 2) (2.16) ĉk Null
UU (from Algorithm 2) 1

nk
c
K Null

performance in accuracy, and OPL and ONC are a little expensive. These findings are consistent with the theoretical results
of these methods. Furthermore, it is interesting to find that UU may be superior to SSM in accuracy for Case II.

The third and fourth experiments are utilized to compare Algorithms 2 and 3 for different c and different K ,
espectively. Based on the numerical results presented in Figs. 3–4, we get that for Case II, OPL always performs best
n accuracy but needs the most CPU time in most of cases. For different c , ONMCNR has the similar performance in
ccuracy to OPL, however, for large K , i.e., small c0/K , it has the worst accuracy. This is because when c0/K is very small,
0kD0k may not be a good approximation of MkNk and hence c̃k will not be a good alternative of the optimal sampling
lock size cOPLk . In this case, the performance of ONMCNR will be unsatisfactory. In addition, ONC always performs quite
ell. It needs the least CPU time but has the similar accuracy to OPL. For Case I, the four methods perform similarly in
ccuracy.
In the last experiment, we compare Algorithms 2 and 3 for different c0. The corresponding numerical results are shown

n Fig. 5. From this figure, it is easy to see that, for Case II, OPL and ONMCNR have the almost identical performance in
ccuracy for large c0, i.e., large c0/K , but the latter consumes less CPU time. In addition, as before, ONC always performs
uite well. For Case I, the four methods show the similar accuracy for different c0.
In a word, for matrices whose row or column norms are nonuniform, OPL performs best in accuracy in all cases but

orst in CPU time in most cases. When c0/K is large, OPL and ONMCNR have almost the same performance in accuracy.
urthermore, ONC always performs quite well.

. Concluding remarks

In this paper, we present the optimal sampling probabilities and sampling block sizes in the randomized sampling
lgorithm for block matrix multiplication. Modified sampling block sizes and a two step algorithm for reducing the
omputation cost are also provided. Numerical experiments show that our new methods outperform the UNSSM method
n [5] and the SSM method in [7] in accuracy with a little extra computation cost.

It is easy to see that the blocks of the matrices can be regarded as the single matrices scattered at multiple locations.
o, the proposed methods are applicable to distributed data and distributed computations and hence should have many
otential applications in the age of big data.
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ppendix. Proof of Theorem 2.3

We first deduce that
m∑

h=1

p∑
f=1

σ 2
OPL =

K∑
k=1

nk∑
i=1

∥Mk(i)
∥
2
2∥Nk(i)∥

2
2

cOPLk pki
−

K∑
k=1

∥MkNk∥
2
F

cOPLk

≤
1
βc

(
θ2

θ1
)
1
2 (

K∑
k=1

nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2)2 −

(1 − θ2)
c

(
θ1

θ2
)
1
2 (

K∑
k=1

nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2)2

≤
θ2 − θ1β + θ2θ1β

βc(θ2θ1)1/2
∥M∥

2
F∥N∥

2
F

=
ϕ2

βc
∥M∥

2
F∥N∥

2
F ,
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w
T

Fig. 3. Comparison of Algorithms 2 and 3 varying with c .

here the first inequality follows from (2.19), and the second inequality is derived from the Cauchy–Schwarz inequality.
o prove (2.22), we define a event θ as

∥MN − CD∥F ≤
η

√
βc

∥M∥F∥N∥F .

Thus, as long as getting Pr[θ ] ≥ 1 − δ, (2.22) is proved. To explain easily, we define a function
2
G(x) = ∥MN − CD∥F

15
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r

x

N

Fig. 4. Comparison of Algorithms 2 and 3 varying with K .

with random variable x = (1(i1), . . . , 1(ic1 ), 2(i1), . . . , 2(ic2 ), . . . , K (i1), . . . , K (icK )) standing for the positions of sampled

esults, where k(it ) denotes the picked it-th column (row) from the kth block of M (N), for k = 1, . . . , K and t = 1, . . . , ck.

It will be shown that changing one coordinate k(it ) at a time does not change the value of G too much. Considering x and
′ differing only in the k(it )-th coordinate, we can construct corresponding ∥MN − CD∥

2
F and ∥MN − C ′D′

∥
2
F , respectively.

ote that C ′ (D′) differs from C (D) in only a single column (row). So, based on (2.19) and the Cauchy–Schwarz inequality,
16
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w

Fig. 5. Comparison of Algorithms 2 and 3 varying with c0.

e have

∥CD − C ′D′
∥F = ∥

Mk(it )Nk(it )

cOPLk pkit
−

Mk(it′ )Nk(it′ )

cOPLk pkit′
∥F

≤
1

cOPLp
∥Mk(it )Nk(it )∥F +

1
cOPLp

∥Mk(it′ )Nk(it′ )∥F

k kit k kit′
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≤
2

cOPLk

∥Mk(r)Nk(r)∥F

pkr

≤
2
βc

(
θ2

θ1
)
1
2

K∑
k=1

nk∑
i=1

∥Mk(i)
∥2∥Nk(i)∥2 by (2.19)

≤
2
βc

(
θ2

θ1
)
1
2 ∥M∥F∥N∥F , by the Cauchy–Schwarz inequality

where ∥Mk(r)Nk(r)∥F
pkr

= maxit=1,...,nk

∥Mk(it )Nk(it )
∥F

pkit
. Furthermore, since

∥MN − CD∥F ≤ ∥MN − C ′D′
∥F + ∥CD − C ′D′

∥F

≤ ∥MN − C ′D′
∥F +

2
βc

(
θ2

θ1
)
1
2 ∥M∥F∥N∥F

and

∥MN − C ′D′
∥F ≤ ∥MN − CD∥F + ∥CD − C ′D′

∥F

≤ ∥MN − CD∥F +
2
βc

(
θ2

θ1
)
1
2 ∥M∥F∥N∥F ,

we have |G(x) − G(x′)| ≤ ∥CD− C ′D′
∥F . For convenience, let ∆ denote 2

βc (
θ2
θ1
)
1
2 ∥M∥F∥N∥F and γ =

√
2c log(1/δ)∆. Noting

the associated Doob martingale, and by Hoeffding-Azuma inequality [19], the probability inequality

Pr[∥MN − CD∥F ≥
ϕ

√
βc

∥M∥F∥N∥F + γ ] ≤ exp(−
γ 2

2c∆2 ) = δ

is attained and the theorem follows.

Remark A.1. Letting θ2 = θ1 < 1 and β = 1, we have η = (θ2)
1
2 +

√
8 log(1/δ) in Theorem 2.3. It is smaller than the one

in [4, Theorem 1], i.e., η = 1 +
√
8 log(1/δ). This is because when computing the upper bound of

∑m
h=1

∑p
f=1 σ 2, we do

not throw away the second item −
∑K

k=1
∥MkNk∥

2
F

ck
.
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