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Abstract
Multimodal federated learning in real-world settings often encounters incomplete
and heterogeneous data across clients. This results in misaligned local feature
representations that limit the effectiveness of model aggregation. Unlike prior
work that assumes either differing modality sets without missing input features or a
shared modality set with missing features across clients, we consider a more general
and realistic setting where each client observes a different subset of modalities
and might also have missing input features within each modality. To address the
resulting misalignment in learned representations, we propose a new federated
learning framework featuring locally adaptive representations based on learnable
client-side embedding controls that encode each client’s data-missing patterns.

These embeddings serve as reconfiguration signals that align the globally aggre-
gated representation with each client’s local context, enabling more effective use of
shared information. Furthermore, the embedding controls can be algorithmically
aggregated across clients with similar data-missing patterns to enhance the robust-
ness of reconfiguration signals in adapting the global representation. Empirical
results on multiple federated multimodal benchmarks with diverse data-missing
patterns across clients demonstrate the efficacy of the proposed method, achieving
up to 36.45% performance improvement under severe data incompleteness. The
method is also supported by a theoretical analysis with an explicit performance
bound that matches our empirical observations. Our source codes are provided at
https://github.com/nmduonggg/PEPSY

1 Introduction
Due to the rapid advances in IoT technologies [4, 23] and growing concerns over privacy pro-
tection [52], there are now numerous emerging multimodal federated learning (MMFL) scenar-
ios in which clients observe different subsets of input modalities and must collaborate to train
a common model without sharing data. These scenarios introduce two interrelated data-missing
events: (1) clients may have access to only a subset of feature modalities [8, 45] (e.g., one device
collects audio while another collects physiological signals), and (2) inputs within each modality
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may be partially missing due to sensor failures or intermittent recording [64, 39]. These chal-
lenges fundamentally disrupt the implicit assumption of traditional federated learning (FL) meth-
ods [38, 22, 21, 66, 67, 32, 51, 31, 11, 40, 37, 16, 50, 61, 58, 41], which presume that all local models
are trained on a common set of feature modalities.

Challenge. When local models are optimized over different feature subsets, they tend to map inputs
into incompatible representation spaces. Aggregating such models without proper alignment risks
collapsing informative representations into entangled or degraded ones, ultimately reducing global
performance. This problem is further exacerbated by heterogeneous data-missing patterns across
clients, both in terms of available modalities and partial input observations [42, 56] (see Fig. 1). These
compounded patterns are common in real-world applications such as wearable health monitoring,
distributed environmental sensing, and smart infrastructure, where data collection is increasingly
decentralized and sensor failures occur more frequent. Effectively addressing both missing modalities
and missing features is essential for enabling next-generation distributed computing infrastructures,
where learning must operate over heterogeneous, fragmented, and privacy-preserved data sources.

Limitation of Prior Work. Despite growing interest in multimodal and federated learning, most
existing work focuses on idealized settings where all clients observe the same set of modalities.
As a result, the general MMFL setting, where both events of data-missing occur, remains largely
unaddressed. Existing approaches can be grouped into the following directions:

First, several efforts extend FL to multimodal inputs by designing universal representations [65,
60, 6, 43, 46], but they assume all clients observe the same modalities, ignoring modality het-
erogeneity. Second, centralized data imputation methods, including heuristic imputation [68, 69],
neural imputation [9, 57, 18, 14, 12, 19], deterministic reconstruction using available modali-
ties [63, 7, 47, 36, 20, 44, 39], and generative approaches [17, 25, 2, 62, 30, 29], require access
to all data-missing patterns to ensure consistent imputation, and thus cannot be applied to fed-
erated settings. Third, it is also possible to leverage pre-trained multimodal foundation models
(FMs) [12, 19, 1, 5, 48, 59, 33] to provide consistent data imputation, but in many scientific domains
such as healthcare, there is no FM that spans all feature modalities. Most recently, a few recent
FL-specific works [8, 45, 64, 39] begin to investigate these data-missing challenges in isolation. How-
ever, when both modalities and input features are missing, these methods fail to achieve satisfactory
performance (see Section 4).

Fundamental Gap. In hindsight, what remains missing in these approaches is a mechanism to
capture and communicate how each client’s local view of the data is shaped by its specific patterns of
missing information. Since the server cannot observe the training data, it lacks the context needed to
align or reconfigure representations for any particular client. Conversely, each client is only aware of
its own data-missing context and cannot fully interpret or adapt the aggregated representation to its
local setting. This reveals the need to learn a shareable data-missing profile for each client, which
summarizes the characteristics of its local data-missing patterns, providing more specific instructions
to reconfigure the shared model towards local data contexts.

Solution Vision. The above reasoning motivates the following key insight and hypothesis. It is
possible to learn and internalize specific traits in each client’s data-missing profile into a set of
embedding controls which can be used to reconfigure the shared model towards the local context. In
this view, embeddings with similar content can also be aggregated which enables collaboration among
clients with similar data-missing profiles. This design enables each client to adapt the shared model to
its own incomplete data view, without requiring data sharing or retraining, providing a robust solution
to multimodal federated learning with missing data.

Technical Contributions. To substantiate the above vision, we have made the following contributions:

1. We develop a new multimodal federated learning framework (PEPSY) with a client-side design that
encodes the characteristic traits of each client’s feature modalities, data specifics, and data-missing
patterns into a set of local embedding controls. These local embeddings are communicated to the
server, where they can be aligned and aggregated to capture commonalities across clients with similar
data-missing profiles. The aggregated embeddings then serve as instructions to reconfigure the shared
representation in a manner that is adaptive to each client’s local context (Section 2).

2. We develop a rigorous theoretical analysis which establishes a direct bound on the expected perfor-
mance of PEPSY over random patterns of missing data in terms of the training loss, demonstrating its
stable performance and highlight the effectiveness of the proposed method (Section 3).
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Figure 1: From left to right: (a) Performance comparison showing that FedAvg degrades rapidly with increasing
missing data, while our framework PEPSY remains robust; (b) Illustration of two types of data-missing events in
MMFL systems: (1) missing modalities and (2) missing input features; (c) Conceptual illustration highlighting
the key distinction between our approach and prior work (see Section 2).

3. We evaluate the performance of our proposed framework against existing baselines through
extensive experiments on the PTBXL [53] and SleepEDF [24] datasets. The results show that our
method consistently outperforms existing baselines across numerous multi-modal data missing
scenarios, establishing new SOTA performance in multimodal federated learning (Section 4).

2 Multimodal Federated Learning (MMFL) with Missing Data

2.1 Problem Formulation and Method Overview

Standard Problem Formulation. In a MMFL system, there are K clients, each with a local dataset
Dk consisting of |Dk| multimodal observations (xd,yd), where xd denotes the input instance and
yd represents the corresponding label. Each instance xd may miss some modalities, represented by a
missing set Sd ⊂M, whereM is the full set of modalities. The goal is to learn a global model θ∗

by minimizing the following loss function:

θ∗ = argmin
θ

1

K

K∑
k=1

ℓk (θ) , with ℓk(θ) ≜ L
(
f(Dk;θ)

)
, (1)

where f(Dk;θ) denotes multimodal prediction model with paramterer θ over dataset Dk, and
L
(
f(Dk;θ)

)
is an average loss of θ over dataset Dk. Following [8, 45, 64, 39], θ can be decom-

posed into two main modules: feature extractor θe and post-processing head (including fusion and
prediction) θp. Accordingly, f can be expressed as f(Dk;θ) ≜ fp

(
fe(Dk;θe);θp

)
, where fe(·)

denotes the feature extractor and fp(·) represents the post-processing head.

Reconfigured Problem Formulation. As each client in MMFL only observes its own data-missing
local view, the representations it produces are potentially biased. Based on this, we introduce a
so-called data-missing profileΨ, with τ embedding controls, i.e., Ψ ≜ {ψp}τp=1, to reconfigure these
biases into data-complete features. This results in f(Dk;θ,Ψ) as a reconfigured version of original
prediction model,

f(Dk;θ,Ψ) ≜ fp

(
fe(Dk;θe) ◦ r(Dk; Ψ);θp

)
, (2)

where ◦ denotes set concatenation, and r(Dk; Ψ) represents a so-called relevance function that returns
relevant embeddings for each xd ∈ Dk. Intuitively, this relevance function captures missing pattern
information needed to reconfigure instances in Dk, which can be learned by rewriting Eq. 1 as:

θ∗,Ψ∗ = argmin
θ,Ψ

1

K

K∑
k=1

{
ℓk(θ,Ψ)− uk(θ,Ψ)

}
, (3)

where, ℓk(θ,Ψ) ≜ L
(
f(Dk;θ,Ψ)

)
and uk(θ,Ψ) ≜ R

(
r(Dk; Ψ)

)
. (4)

where R estimates relevance between each instance in Dk and its embeddings selected by r(·).
Intuitively, minimizing ℓk(θ,Ψ) leads to neural components θ that extract data-missing features,
which are reconfigured by Ψ for predictions. Conversely, maximizing uk(θ,Ψ) enables Ψ to adapt to
local context, effectively distilling missing patterns.

Method Overview. An overview of our proposal is in Fig. 2a. Formally, PEPSY operates over
multiple communication rounds, each consisting of client-side training and server-side aggregation.
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(a) Overall Workflow. PEPSY has two stages:
client training and server aggregation. After local
training, client parameters are sent to the server to
perform aggregation, which includes FedAvg [38]
and probabilistic synchronization.

(b) Client Design. Each client 1 extracts modality- and
data-specific features (wins, wmod), then 2 queries the data-
missing profile Ψ to form wmis as the missing-pattern fea-
ture. 3 Finally, wmis reconfigures (wmod,wins) into data-
complete features for downstream tasks.

Figure 2: Overview of the overall server-client workflow of PEPSY and its client design.

On the client side, each client 1 extracts information from its local dataset, potentially with some
modalities missing, and 2 leverages the extracted information to select relevant embeddings from
Ψ for each instance xd, thereby 3 constructing data-complete representations. Further details are
provided in Sections 2.2.1 and 2.2.2, respectively. To ensure final representations are faithfully
data-complete, we enforce these features to be comparable with full-modality features before fusion
and prediction (see Section 2.2.3). On the server side, due to variable size of data-missing profile
per client, we treat the data-missing profile aggregation as a non-parametric clustering problem, as
presented in Section 2.30. This process repeats for T rounds until convergence.

2.2 Client Design

This section explains how clients learn the data-missing profile and use it to reconfigure biases caused
by limited local data views. An overview of the client design is shown in Fig. 2b.

2.2.1 Data-Missing Representations

Intuitions. In the presence of missing modalities, the information within a multimodal instance
can be decomposed into three components: modality-specific (distinguishing different modalities);
data-specific (capturing the integrity of the individual instance); and missing-pattern information
(distinguishing different missing patterns). Based on this decomposition, we extract these components
to construct a comprehensive data-missing profile for each client.

Formally, given an instance xd = {xdi,∀i ∈ M \ Sd} we first construct (1) modality-specific
features {wmod

di } and (2) data-specific features {wins
di }. The former are represented by learnable

embeddings Wmod = {wmod
i }

|M|
i=1 to ensure data invariance and are shared across all instances, i.e.,

wmod
di = wmod

i (∀d). The latter are constructed by mapping and normalizing each observed modality
xdi (∀i ∈M \ Sd) to corresponding representations, denoted as hdi. For missing modalities, we use
a common averaging approach [54, 28] to reconstruct their features, resulting in the formulation:

wins
di ≜ I(i /∈ Sd)hdi + I

(
i ∈ Sd

)( 1

|M| − |Sd|
∑
j /∈Sd

hdj

)
, (5)

where I depicts an indicator function. To ensure the feature reconstruction in Eq. 5 are truly data-
specific, we introduce a data-specific loss that regularizes the features from the same instance’s

0Other neural components can be aggregated effectively using FedAvg [38]
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available modalities to be closer than those from different instances:

Lds(xd, Sd) ≜
∑
i,j /∈Sd

− log
exp(h̃dih̃

⊤
dj)∑|D|

d1,d2 ̸=d1
∑
k1 /∈Sd1

,k2 /∈Sd2
exp(h̃d1k1h̃

⊤
d2k2)

, (6)

where h̃di represents the ℓ2-normalized feature of hdi. Intuitively, minimizing Lds ensures hdi
preserves instance identity across modalities while reducing the impact of missing patterns Sd,
thereby improving prediction consistency and stability. This is justified by the theorem in Section 3.

Remark. While wmod
di encodes modality-specific information and wins

di captures data-specific details
influenced by the missing pattern Sd (Eq. 5), together they comprehensively represent the data-
missing information in xd. This combined information can be distilled into the data-missing profile,
allowing future clients leverage similar data views to handle their local context.

2.2.2 Embedding Controls Selection

Intuition. Since data-missing features reflect the client’s local missing patterns, learning data-missing
profiles requires interaction between these features and embedding controls. We model this interaction
as a query-key matching process that selects the most relevant embeddings for each instance to distill
and reconfigure, formulating the final data-complete features. Details are below.

Given data-missing representations (wmod
di ,w

ins
di ), i ∈M, from xd, we allow it to select the relevant

embeddings from Ψ for reconfiguration. The relevance between each modality xdi and a particular
embedding control ψp (p = 1 . . . τ ), denoted as γ(xdi,ψp), is defined as follows:

γ(xdi,ψp) ≜ e
(
q(xdi),k(ψp)

)
, (7)

where e(·, ·) depicts the cosine similarity, q(xdi) ≜ MLP1([wmod
di ◦wins

di ]) fully captures data-missing
information from xd. Here k(·) is an identity function to distill the original information directly from
xd to ψp, allowing accurate reconfiguration from ψp without distortion. To prevent the model from
distributing data-missing information in xd too broadly and diluting learned data-missing profile, we
only allow κ relevant embedding controls selected for each instance, with κ≪ |Ψ|. To enforce this,
we introduce a regularization term:

R ≜
|D|∑
d

|M|∑
i

∑
v∈Ψdi

γ(xdi,v), (8)

where Ψdi is the set of the κ most relevant embeddings for each modality xdi within the client’s
local data-missing profile. This regularizer encourages each instance to focus on a small, relevant
subset of embedding controls, promoting more precise relevance assessment and better distillation.
We use the averaged embedding to represent the whole selected set Ψdi, resulting in missing-pattern
representation wmis

di . The final representation is then formed as wdi = [wmod
di ◦wins

di ◦wmis
di ].

2.2.3 Reconfiguration Regularization and Modality Fusion

Reconfiguration Regularization. By leveraging the missing profile, we form the final representation
wdi by concatenating three types of information wmod

di ,w
ins
di and wmis

di .To ensure the final represen-
tation faithfully reflects the full-modality information of instance xd, we introduce a contrastive
loss Lrc as a reconfiguration signal. This loss encourages the projected representations ŵdi of wdi

from the same instance xd to be close (similar to Eq. 6). Intuitively, this regularization guides
the data-missing embeddings to reshape representations into data-complete forms, hence ensuring
effective reconfiguration signals. Note that ŵdi, ∀i ∈M, are used solely for regularization.

Modality Fusion. Since ŵdi provides a high-level representation of the original feature, we leverage
the similarity among {ŵdi} as attention weights to fuse {wdi} together and form a so-called cross-
modal representation {ĉdi}: Finally, we combine the cross-modal representation ĉdi and the original
representation wdi to obtain the final representation cdi of instance xd: cdi = αdiĉdi + (1 −
αdi)wdi, where αdi is computed by a learnable function s([wdi ◦ ĉdi]), with ◦ denoting element-
wise concatenation. The resulting representation cdi is then passed to the prediction head, ensuring
that it captures both the completeness of the data and enriched cross-modal contextual information.

1MLP denotes a linear projector
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Training Objective. After producing final prediction using a prediction head, the client model is
evaluated by a task-specific loss function Ltask. Overall, the training objective for the local model
is L ≜ Ltask + λ(Lds + Lrc) − ηR, where λ and η are weighting coefficients that control the
contributions of Lds , Lrc, and the relevanceR, respectively.

2.3 Server Aggregation

While traditional server aggregation algorithms [38] can aggregate common neural components
among clients, it struggles with our data-missing profiles due to alignment issues. Local data-
missing profiles are learned in arbitrary orders across clients, leading to misalignment where identical
embedding positions may represent different data-missing patterns. Consequently, directly merging
these representations can produce suboptimal results. To overcome this, we frame data-missing
profile alignment as a clustering task that groups embeddings from diverse client views into a global
profile. Since each client may select a different number of embeddings within its data-missing profile
ψ, this becomes a non-parametric clustering problem [58, 34, 27]. This study adopts PFPT [58] as the
profile aggregation method, enabling the number of clusters to adapt dynamically to data complexity,
or missingness level in our context. Each client refines the global profile using its private data,
producing locally augmented controllers whose size and complexity reflect the client’s missingness
level. Using PFPT’s non-parametric nature, the server clusters similar controllers and updates the
global profile to reflect the missingness complexity of the whole system, which is then shared with
clients for the next training round. This process allows PEPSY to align missingness profiles across
clients and effectively handle heterogeneous data-missing patterns (see Section 4 for details).

3 Theoretical Analysis

Ideally, we expect the model’s predictions to remain robust even in the absence of certain modalities.
In this section, we present a theoretical analysis of the convergence behavior of our model’s output
for a given instance x under two conditions: when all modalities are available and when some are
missing. Specifically, we demonstrate that our training objectives are designed to minimize the
discrepancy between these two prediction outcomes.

Theorem 3.1 Let x ∈ D be an arbitrary instance with a missing modality pattern S ⊂M, where
M denotes the full set of modalities. Suppose ySx and y∅x represent the model’s outputs at test time
when x is missing modalities in S , and when all modalities are present, respectively. Let Ex,S denote
the expectation over all instances x and all possible missing patterns S. Then, if the client model is
µ-Lipschitz continuous, the distance between ySx and y∅x can be bounded by the empirical training
loss as follows:

Ex,S [|ySx − y∅x|] ≤ O

(
µ|S|

√
Ex,S [Lds(x, S)]
(|M| − |S|)2

+ log
|M|2

(|M| − |S|)2

)
. (9)

Observation 1. Theoretical analysis shows that the expected deviation caused by missing modality
patterns S is controlled by our proposed loss Lds, which is directly minimized during training.
Reducing Lds lowers the model’s dependency on missing data, tightening the theoretical error bound
and ensuring stable, reliable predictions despite incomplete inputs. Thus, our loss design both
mitigates the impact of missing modalities and improves generalization across diverse test conditions.

Observation 2. In the ideal case where the solution is optimal, i.e., Ex,S [Lds(x,S)] = 0, the
right-hand side of Eq. 9 simplifies to O

(
µ|S|

√
logM2 − log(M − |S|)2

)
. When S → ∅, i.e., all

modalities are available, both sides of the bound converge to zero as expected. In the worst-case
scenario, where |S| = |M|−1, the right-hand side becomesO

(
µ(|M|−1)

√
2 log |M|

)
, depending

only on the Lipschitz constant µ. This aligns with the intuition that Lds(·, ·) minimizes modality
discrepancies within a shared embedding space but does not constrain the model’s global behavior,
leaving the remaining deviation governed by the smoothness of the learned function, as reflected in µ.

Overall, the stability of PEPSY to varying missing patterns depends on three factors: the alignment
quality of data-specific features (Lds(·, ·)), the number of missing modalities (|S|), and the smoothness
of the learned model, characterized by the Lipschitz constant µ. Theorem 3.1 supports PEPSY’s
effectiveness in federated learning, which matches our empirical observation.
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Table 1: Performance of baselines on the PTBXL and EDF datasets under various missing patterns in train and
test sets, for both IID and Non-IID scenarios. The best and second-best results are highlighted in bold red and
blue, respectively.

Dataset pm\ps Method IID Non-IID
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

PTBXL

0.2

FedProx [31] 73.43 ± 0.38 73.64 ± 1.01 71.42 ± 1.18 71.37 ± 2.50 69.93 ± 4.61 54.01 ± 3.66 51.15 ± 5.30 50.06 ± 12.22 54.89 ± 1.54 44.17 ± 1.31
MIFL [45] 73.52 ± 1.45 70.95 ± 1.90 71.41 ± 1.46 56.66 ± 22.68 69.99 ± 3.05 50.99 ± 2.38 47.16 ± 3.16 49.39 ± 1.75 51.37 ± 2.55 50.78 ± 4.76
FedInMM [64] 69.78 ± 5.16 69.27 ± 3.21 66.16 ± 3.01 65.49 ± 2.25 65.45 ± 2.70 34.17 ± 6.82 40.48 ± 10.87 41.23 ± 11.34 40.52 ± 11.20 40.31 ± 10.70
FedMSplit [8] 54.84 ± 22.31 53.63 ± 21.72 52.12 ± 21.55 52.50 ± 21.52 55.84 ± 13.22 42.75 ± 3.56 42.58 ± 6.07 41.62 ± 6.06 40.27 ± 3.09 39.39 ± 1.66
FedMAC [39] 78.56 ± 0.47 77.30 ± 0.81 76.25 ± 0.49 75.49 ± 1.07 74.70 ± 0.83 58.26 ± 4.81 58.55 ± 3.02 54.98 ± 7.74 50.94 ± 1.25 48.38 ± 0.59

PEPSY 78.81 ± 0.72 77.43 ± 0.88 76.75 ± 1.47 76.13 ± 0.25 75.41 ± 0.82 71.45 ± 0.39 69.70 ± 2.08 66.92 ± 2.83 68.26 ± 2.56 66.75 ± 5.32

0.8

FedProx [31] 72.76 ± 0.57 70.24 ± 1.61 68.77 ± 2.30 65.24 ± 4.94 33.79 ± 3.39 48.43 ± 1.25 42.08 ± 0.53 34.17 ± 3.14 27.32 ± 1.67 29.97 ± 1.31
MIFL [45] 69.90 ± 1.14 65.36 ± 2.12 55.44 ± 6.44 50.61 ± 14.99 35.39 ± 6.90 44.26 ± 3.87 37.75 ± 12.67 32.67 ± 8.82 28.12 ± 6.03 29.67 ± 2.54
FedInMM [64] 63.10 ± 2.77 61.92 ± 1.53 60.36 ± 0.16 56.95 ± 2.13 35.31 ± 13.56 49.81 ± 17.45 46.41 ± 14.99 42.95 ± 12.72 42.37 ± 12.21 36.70 ± 14.23
FedMSplit [8] 54.77 ± 20.66 49.56 ± 18.20 45.82 ± 16.29 43.97 ± 15.87 23.91 ± 2.18 51.03 ± 2.09 44.51 ± 0.77 38.25 ± 4.49 29.91 ± 6.11 28.33 ± 2.26
FedMAC [39] 74.25 ± 0.48 73.06 ± 0.65 70.36 ± 0.75 67.17 ± 2.98 41.51 ± 6.64 53.05 ± 0.41 51.03 ± 3.19 36.95 ± 0.18 45.90 ± 4.45 43.29 ± 1.54

PEPSY 76.25 ± 0.77 75.96 ± 1.82 76.42 ± 0.98 75.08 ± 1.65 45.07 ± 0.26 63.01 ± 3.95 65.40 ± 1.01 69.19 ± 0.16 60.40 ± 7.11 53.07 ± 2.66

EDF

0.2

FedProx [31] 44.08 ± 0.59 43.54 ± 0.62 43.99 ± 0.57 35.65 ± 12.22 34.02 ± 14.46 34.58 ± 13.80 44.61 ± 0.63 44.02 ± 0.30 32.25 ± 11.94 44.27 ± 0.34
MIFL [45] 44.19 ± 0.73 44.27 ± 0.96 43.15 ± 0.83 43.32 ± 2.19 43.54 ± 0.27 43.17 ± 1.76 43.35 ± 2.26 44.05 ± 0.35 32.74 ± 15.73 44.42 ± 0.33
FedInMM [64] 40.39 ± 0.14 40.39 ± 0.09 40.24 ± 0.11 40.33 ± 0.12 40.37 ± 0.21 40.99 ± 0.98 40.73 ± 0.57 40.46 ± 0.24 40.87 ± 0.94 40.43 ± 0.26
FedMSplit [8] 41.91 ± 2.31 36.47 ± 11.44 43.09 ± 2.20 43.77 ± 1.47 41.42 ± 2.80 42.95 ± 1.37 33.98 ± 14.43 42.88 ± 1.15 26.08 ± 13.54 43.43 ± 1.11
FedMAC [39] 39.00 ± 12.45 40.43 ± 10.29 41.85 ± 7.58 43.58 ± 5.47 43.01 ± 1.39 38.60 ± 12.32 39.44 ± 9.62 41.04 ± 6.87 43.13 ± 4.66 43.96 ± 1.80

PEPSY 48.76 ± 5.41 49.37 ± 4.43 48.70 ± 4.03 49.27 ± 3.30 46.87 ± 2.46 54.84 ± 3.32 50.28 ± 4.11 54.50 ± 0.14 51.07 ± 5.24 53.35 ± 6.13

0.8

FedProx [31] 41.49 ± 3.69 31.15 ± 11.57 33.73 ± 4.92 19.72 ± 6.91 33.53 ± 14.10 43.87 ± 0.44 24.34 ± 14.02 34.56 ± 13.11 34.56 ± 12.99 34.17 ± 11.53
MIFL [45] 44.51 ± 0.45 42.25 ± 1.67 42.99 ± 0.91 41.07 ± 0.61 42.40 ± 1.65 43.42 ± 1.41 43.83 ± 0.90 43.01 ± 0.99 42.99 ± 1.00 42.40 ± 0.70
FedInMM [64] 40.31 ± 0.13 40.29 ± 0.11 40.26 ± 0.14 40.25 ± 0.02 40.22 ± 0.01 40.84 ± 0.77 40.81 ± 0.79 40.50 ± 0.37 40.31 ± 0.14 40.36 ± 0.22
FedMSplit [8] 41.44 ± 3.16 32.99 ± 13.22 42.21 ± 1.42 36.64 ± 6.21 43.02 ± 0.47 35.71 ± 10.75 42.75 ± 1.64 33.54 ± 13.70 41.87 ± 1.94 43.38 ± 0.50
FedMAC [39] 43.77 ± 1.52 42.54 ± 2.39 41.51 ± 0.73 41.80 ± 2.14 26.33 ± 1.47 46.01 ± 0.98 45.73 ± 0.99 45.66 ± 0.49 46.22 ± 0.84 34.21 ± 8.87

PEPSY 54.02 ± 1.41 49.02 ± 0.38 49.23 ± 1.47 52.78 ± 4.49 46.91 ± 3.70 48.95 ± 2.14 51.52 ± 0.60 50.97 ± .44 50.96 ± 1.99 46.07 ± 0.02

4 Empirical Evaluation

4.1 Experimental Settings

Dataset and Missing Modality Simulation. Our approach is evaluated on two datasets: PTBXL [53]
(12 modalities) and Sleep-EDF [24] (5 modalities). Each dataset is split into 80% for training and 20%
for testing, with the former distributed across K clients in both IID and Non-IID settings. Following
[39], we define ps as the ratio of samples with missing modalities, and pm as the ratio of missing
modalities within those samples2. The missing degree is then defined as pm × ps, representing the
overall proportion of instances with missing modalities. Using these definitions, we simulate modality
missing patterns by constructing a binary matrix ϕ(Dk), where ϕ(Dk)[i,m] ∈ {0, 1} indicates whether
modality m is missing (0) or available (1) for sample i. The incomplete dataset D̂k = Dk ⊙ ϕ(Dk),
where ⊙ denotes element-wise multiplication, is then used for the experiments. Details for modality
missing patterns simulation is presented in Appendix B.

Baselines and Evaluation Metrics. We compare PEPSY with five baselines: FedProx [31],
FedMSplit [8], MIFL [45], FedInMM [64], and FedMAC [39]. FedProx disregards missing modali-
ties, FedMSplit and MIFL focus on modality-missing event, while FedInMM and FedMAC address
feature-missing events. These baselines provide a comprehensive benchmark for evaluating our
method. We use accuracy on the server’s dataset as a performance metric for the whole system.
Implementation details are provided in Appendix C.

4.2 Performance under Similar Missing Statistics between Training and Testing

Results under the IID setting. Table 1 shows that PEPSY consistently outperforms other methods in
most experimental scenarios with varying missing statistics in IID settings. For the PTBXL dataset,
when the missing degree is low (e.g., pm = 0.2), the differences are minimal, with all methods
achieving similar accuracy. However, as the missing degree increases (e.g., pm = 0.8), PEPSY
maintains a significant advantage, outperforming other methods. This trend is even more pronounced
in the EDF dataset, where PEPSY surpasses the baselines by up to 11.67% in all missing scenarios.
While most methods experience substantial performance drops, PEPSY remains robust, achieving the
highest accuracy in 40/40 cases. This is because the data-missing profile provides an informative
reconfiguration signal that reprograms feature construction for more robust predictions.

Results under the Non-IID setting. In the complex Non-IID setting, PEPSY again outperforms all
other methods, as shown in Table 1. On the PTBXL dataset, PEPSY surpasses FedMAC and other
approaches by nearly 15.83% in slightly missing scenarios (pm = 0.2), maintaining its advantage
even as missing patterns become more extreme, with 64.69% accuracy at pm/ps = 0.8/0.8. On

2A tuple (pm, ps) is called missing statistic.
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Table 2: Performance of baselines under various missing
statistics, where the missing statistics of the clients and server
are different.

Method Testing missing statistics (pm/ps)

0.2/0.2 0.4/0.4 0.6/0.6 0.8/0.8 1.0/0.4 0.6/1.0 0.8/1.0

Tr
ai

ni
ng

m
is

si
ng

st
at

is
tic

s(
p
m
/
p
s
) 0.

0/
0.

0

FedProx [31] 70.24% 57.75% 38.84% 34.68% 66.46% 29.89% 25.85%
MIFL [45] 75.79% 73.27% 72.38% 65.32% 73.64% 63.05% 46.15%
FedInMM [64] 77.18% 73.90% 68.98% 55.86% 72.63% 51.70% 38.97%
FedMSplit [8] 70.24% 57.76% 38.84% 34.68% 66.46% 29.89% 25.85%
FedMAC [39] 79.07% 79.45% 77.30% 73.39% 77.30% 74.02% 63.68%

PEPSY 79.07% 79.19% 79.57% 77.55% 78.31% 77.93% 76.78%

1.
0/

0.
5

FedProx [31] 77.05% 75.66% 74.02% 66.84% 74.40% 69.61% 54.15%
MIFL [45] 73.77% 74.02% 72.38% 66.58% 73.90% 70.62% 62.55%
FedInMM [64] 44.77% 44.39% 42.12% 42.25% 44.01% 35.06% 31.52%
FedMSplit [8] 77.05% 75.66% 74.02% 66.84% 74.40% 69.61% 59.14%
FedMAC [39] 75.91% 76.55% 76.04% 72.51% 75.79% 73.01% 69.99%

PEPSY 77.68% 75.66% 77.18% 75.91% 75.91% 74.40% 74.15%

0.
5/

1.
0

FedProx [31] 36.57% 33.42% 31.15% 34.43% 36.19% 27.49% 26.61%
MIFL [45] 38.71% 35.81% 31.90% 34.93% 41.11% 27.49% 28.75%
FedInMM [64] 53.47% 50.06% 45.02% 39.34% 54.86% 44.52% 36.70%
FedMSplit [8] 36.57% 33.42% 31.15% 34.43% 36.19% 27.49% 26.61%
FedMAC [39] 59.27% 59.02% 60.40% 59.77% 59.02% 53.85% 44.64%

PEPSY 61.41% 62.17% 60.91% 61.29% 61.67% 59.52% 58.76%

* All experimental results reported in Tab. 2 and Tab. 3 are
conducted under the IID setting. The best and second-best
results are highlighted in bold red and blue, respectively.

Figure 3: Impact of alignment loss on
performance deviation.
Table 3: Ablation studies on different aggre-
gation methods.

pm\ps Method 0.2 0.4 0.6 0.8 1.0

0.2

FedAvg 63.02% 64.19% 65.44% 59.01% 56.75%
FedProx 71.24% 69.48% 68.85% 59.77% 62.55%
SynFedProx 69.86% 61.29% 71.63% 68.10% 62.29%

PEPSY 71.12% 72.64% 69.11% 71.88% 71.12%

0.6

FedAvg 68.60% 64.94% 58.64% 58.13% 41.74%
FedProx 65.45% 62.04% 58.39% 58.26% 45.78%
SynFedProx 71.25% 50.57% 65.83% 65.20% 58.51%

PEPSY 70.87% 69.23% 68.47% 68.98% 58.76%

1.0

FedAvg 69.86% 67.09% 62.54% 61.03% -
FedProx 69.86% 65.32% 57.75% 54.47% -
SynFedProx 66.08% 61.92% 64.31% 50.57% -

PEPSY 71.25% 67.21% 68.60% 59.14% -

the EDF dataset, PEPSY similarly outperforms FedMAC by a significant gap and retains its lead in
challenging scenarios. Across both datasets, PEPSY consistently maintains superior performance as
the degree of missingness increases, highlighting its robustness to data heterogeneity and diverse
missing patterns in federated contexts.

4.3 Performance under Different Missing Statistics between Training and Testing

We evaluated the effectiveness of our proposal by conducting more experiments with varying missing
statistics between clients and servers in the IID setting. Table 2 shows that PEPSY outperforms other
methods across different missing statistics. When clients have no missing data (pm/ps = 0.0/0.0),
PEPSY achieves the highest accuracy in most testing missing scenarios, surpassing other baselines
by an average of 3.45%. This trend continues with high client missing rates (pm/ps = 1.0/0.5),
demonstrating robustness to extreme missing patterns. In the challenging inter-client missing scenario
(pm/ps = 0.5/1.0), PEPSY outperforms competitors by up to 14%, highlighting PEPSY’s ability to
maintain consistent performance across diverse and complex client-server missing patterns.

4.4 Ablation Studies

Impact of Server Aggregation Algorithms. We conduct an ablation study on server aggregation
methods to assess the effectiveness of probabilistic alignment (denoted as Syn) in our proposed
framework (see Tab. 3). Denoting probabilistic synchronization as Syn, we compare FedAvg [38],
FedProx [31], and their probabilistic alignment variants SynFedAvg (which is used in PEPSY)
and SynFedProx. The results show that combining FedAvg and Syn significantly improves both
performance and robustness in PEPSY, surpassing others and persists at higher missing rates. This is
because the probabilistic synchronization mitigates inconsistent modality patterns, while skewed data
distributions have less impact in this setting, then can be handled by FedAvg. These results highlight
the effectiveness of server aggregation of PEPSY across diverse missing patterns.

Impact of Alignment Loss. Fig. 3 illustrates the effect of alignment loss on PEPSY’s performance by
varying the alignment weight. The model is trained in a full-modality scenario (pm/ps = 0.0/0.0) and
tested on both full-modality (pm/ps = 0.0/0.0) and extreme-missing scenarios (pm/ps = 0.8/1.0).
We assess the performance gap between these scenarios to evaluate the impact of alignment loss. As
expected, increasing the alignment weight reduces the performance gap in both IID and Non-IID
settings, demonstrating the contrastive regularizer’s effectiveness in instance-aware alignment and
improving model robustness. Importantly, these results support the theoretical bound outlined in 3.

Impact of Data-Missing Profile. To demonstrate the effectiveness of our proposed data-missing
profile in handling data-missing events, we compare PEPSY with its variant, PEPSY-NP (No Profile),
where the data-missing profile is excluded, across various missing statistics. As shown in Fig. 5a,
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Figure 4: Modality representations of different methods under multiple missing scenarios. We train and provide
t-SNE 2D visualizations of modality representations constructed by three methods, including our proposal, in
different pm/ps settings. All experiments are conducted on EDF dataset, nonIID setting.

(a) Impact of control pool
on proposal’s performance
under different missing
scenarios.

(b) Visualization of global control embeddings after 500 training iterations under
different missing scenarios. The reduced distance between consecutive iterations
indicates convergence, while the variation shows that the embeddings capture differ-
ent aspects from each client.

Figure 5: Ablation studies on our proposed data-missing profile.

incorporating missing profile consistently enhances PEPSY’s performance in all test cases, with
significant gains as the number of modalities missed increase. This is because more missing modalities
causes greater variation data-missing patterns across clients, making the shared data-missing profile
essential to reconfigure those variability.

Data-Missing Profile Diversity and Convergence. To analyze the behavior of the learned data-
missing profile, we visualize the 2D t-SNE embeddings of global profile for the PTBXL dataset
over 500 communication rounds under different missing settings (see Fig. 5b). The centroids of the
embeddings, computed every 25 iterations, are marked by stars, with their update trajectory shown
by a dashed red spline curve. As training progresses, the distance between successive centroids
decreases, indicating convergence. Additionally, the spread of the embeddings gradually expands
relative to their centroid, reflecting their adaptation to the diverse missing patterns across clients,
suggesting that these embeddings are effectively optimized to handle varying client’s local context.
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Modality Alignment Analysis. Fig. 4 compares modality alignment among our proposed PEPSY
and two baselines, FedProx and FedMAC, representing a standard FL method and the next-best
performer in most experiments. Both FedProx and FedMAC fail to align modalities, reflecting their
dependence on specific data-missing patterns - FedProx lacks an alignment mechanism, while
FedMAC discards modality-specific cues. In contrast, PEPSY, guided by a shareable data-missing
profile, reduces sensitivity to missing patterns and achieves clear modality alignment after training.
More experimental results can be found in Appendix F.

5 Related Works

Multimodal Learning and Missing Modalities. Multimodal learning has gained attention for its
potential to improve knowledge in centralized settings, particularly in the medical domain, where
combining modalities is crucial for diagnostic accuracy [4, 23, 13, 55]. However, most methods
assume full modality availability, which is often not the case in real-world scenarios with missing
modalities. To address this, several approaches have been proposed: Zhang et al. [68] and Zhou et
al. [69] use heuristic and statistical imputation, while neural imputation methods [9, 57, 18, 14, 12]
learn imputation models before inference. Pretrained foundation models [12, 19, 1, 5, 48, 59, 33, 10]
can be leveraged to transfer knowledge to imputation embeddings, and generative techniques such
as VAEs, GANs, or diffusion models [17, 25, 9, 57, 2, 18, 62, 14, 30, 29] can build new imputation
models. However, both approaches have clear limitations: the first requires large public datasets,
often unavailable in sensitive domains like healthcare, while the second requires full-modality data at
the outset. Other works [63, 7, 47, 36, 20, 44, 54] rely on available modalities to extract or reconstruct
missing representations by decomposing each modality into modality- and data-specific features.

Multimodal Federated Learning. Driven by growing concerns over data privacy, security and
transfer ineffectiveness, federated learning (FL) [38], a collaborative learning paradigm is introduced
to allow multiple devices to train a shared model while keeping their local data private. This approach
preserves privacy and reduces data transfer overhead [32, 51, 31, 15, 11, 40, 26, 35, 61] have, however,
mostly focused on uni-modal data (e.g., image or text) while the rapid advancement of mobile phones
and Internet of Things (IoT) devices [4, 23] has increasingly led to the collection of multimodal
datasets. Therefore, prior works [23, 60, 42, 56] have extensively explored multimodal federated
learning (MMFL), ranging from modality fusion to feature construction to enable richer and more
comprehensive representations, which in turn enhances model performance and robustness. This new
multimodal data paradigm has motivated a growing body of research on MMFL.

Tackling Missing in Multimodal Federated Learning. A key challenge in MMFL is inconsistent
learning progress across clients due to heterogeneous modality combinations, arising from modality
missing (inter-client missing) and input feature missing (intra-client missing) [43, 39]. Modality
missing occurs when clients have different modality combinations, each dataset remaining com-
plete [42, 45, 56], while input feature missing reflects the absence of specific modalities within an
individual client’s dataset, mimicking real-world scenarios [43, 39]. Initial efforts [8, 45] focused on
modality missing, and recent approaches such as FedInMM [64] and FedMAC [39] have addressed
input feature missing but failed when both data-missing events occur, limiting their applications. This
highlights the need for solutions that effectively manage these data-missing events in multimodal
federated learning, ensuring stable and robust solution under different levels of heterogeneity.

6 Conclusion

This paper presents a novel solution to the challenge of missing modalities in multimodal federated
learning. We propose PEPSY, a method that captures each client’s local data-missing view in a
data-missing profile. This profile is then used to reconfigure data-missing biased representations
to be faithfully data-complete. On the server side, these profiles are aggregated probabilistically
into a global data-missing profile for the entire system, allowing collaboration among clients with
similar data views. Theoretical analysis confirms PEPSY’s stability across diverse missing modality
scenarios, while empirical results demonstrate that it outperforms existing methods by up to 36.45%
in addressing missing modalities in heterogeneous settings. PEPSY thus offers a flexible and stable
solution for complex federated systems, with strong potential for real-world applications.
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A Broader Statement of Impact

This research addresses the challenge of heterogeneous missing data in multimodal federated learning.
Our novel design and theoretical analysis help bridge gaps between incomplete multimodal clients
in fragmented systems by effectively handling diverse missing data patterns. This enables practical
applications in privacy-sensitive multimodal settings with highly incomplete data. While the potential
real-world use of our methods could raise ethical concerns, these are indirect and unpredictable
consequences beyond the scope of this work. Our experiments rely solely on publicly available
datasets, and no ethical issues arise from our evaluation process.

B Missing Modality Simulation

This section details how we simulate missing modality in a comprehensive and controllable way.
Following [39], we define two types of ratio in missing modality, denoted as ps and pm. First, ps,
namely sample ratio, is the ratio of samples with missing modalities over a given dataset. Second, pm
is modality ratio, and used as the ratio of missing modalities within those samples. For simplicity, a
pair of (pm, ps) can be called missing statistics, since it reflects statisitcs of modality missing in both
detailed and overall views (see Fig. 6. The missing degree is then defined as pm × ps, representing
the overall proportion of instances with missing modalities. These missing statistic can remodel the
an arbitrary dataset D via a missing matrix:

ϕ(D) =


b11 . . . b

|M|
1

...
. . .

...
b1|D| . . . b

|M|
|D|

 , (10)

where bdm ∈ {0, 1} indicates whether modality m is missing (0) or available (1) for the d - th sample.
Here, |M| is the cardinality ofM, and |D| is the number of samples. The incomplete dataset D̂ can
be obtained by multiplying D by the missing matrix:

x̂i = [xd1, . . . , xd|M|]⊙ [bd1, . . . , bd|M|], (11)

where ⊙ represents element-wise multiplication. Examples of incomplete datasets are shown in
Fig. 6. In this work, we apply the same (pm/ps) pairs for all clients in our experiments.

C Implementation Details

Dataset Preparation. All baselines use data from the PTBXL and EDF datasets. The PTBXL
dataset contains 3,963 clinical samples across five classes. Each sample includes 12 modalities,
corresponding to electrocardiogram (ECG) recordings, and is labeled with a single class. Details can
be found in [45]. The EDF dataset consists of 197 full-night polysomnographic (PSG) recordings
with five key modalities (excluding rectal temperature and biomarkers). Each recording is segmented
into multiple sleep stages, including Wake and stages S1–S4. For this work, we relabel S1 and S2
as N1 and N2, and merge S3 and S4 into N3, resulting in a 5-class classification problem [24]. We
segment all sleep recordings into individual signals, each representing a sleep pattern, creating a
unified dataset of 8,755 signals. This unified dataset is used for all experiments. Both datasets are
divided into training and testing sets with ratio 80/20. The testing are used for evaluation on the server
side, while the training sets are split to all clients following IID or NonIID settings. For NonIID
setting, we use Dirichlet distribution with α = 0.5 to distribute training data points. All modalities in
this work are signal-based modality.

Hyperparmeter Settings. All methods in this work use an Inception Network as the modality
encoder, following [45]. Experiments are run on an A6000 GPU with 48GB of memory. For
classification, we use Cross Entropy Loss for Ltask. The embedding dimension is set to C = 128.
There are K = 32 clients in total, with 10 clients randomly selected to participate in each training
round. Each selected client trains the model for E = 3 epochs per round. Optimization is done using
Stochastic Gradient Descent (SGD) [49]. Communication with the server occurs over T = 1000
rounds. Both the alignment contrastive weight (λ) and the relevance regularization weight (η) are
set to 0.1 for all experiments. However, λ is increased to 0.2 when pm ∈ {0.8, 1.0}, corresponding
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Figure 6: Examples of incomplete datasets D̂ with varying missing statistics (pm/ps). By controlling these
missing statistics, we create diverse evaluation scenarios that reflect real-world conditions.

Table 4: Hyperparameter setting for all baselines and our PEPSY
Dataset Method p_m Batch

Size
Communication

Round (T )
Eps. in

Local Training (E)
Contrastive
Weight (λ)

Optimizer
& Learning Rate

Total
Clients (K)

Sampled
Clients

PTBXL

FedProx
MIFL

FedInMM
FedMSplit
FedMAC
PEPSY

0.2 32 1000 3 0.1 SGD
lr: 0.01 32 10

0.4 32 1000 3 0.1 SGD
lr: 0.01 32 10

0.6 32 1000 3 0.1 SGD
lr: 0.01 32 10

0.8 32 1000 3 0.2 SGD
lr: 0.01 32 10

1.0 32 1000 3 0.2 SGD
lr: 0.01 32 10

EDF

FedProx
MIFL

FedInMM
FedMSplit
FedMAC
PEPSY

0.2 128 500 3 0.1 SGD
lr: 0.1 32 10

0.4 128 500 3 0.1 SGD
lr: 0.1 32 10

0.6 128 500 3 0.1 SGD
lr: 0.1 32 10

0.8 128 500 3 0.2 SGD
lr: 0.1 32 10

1.0 128 500 3 0.2 SGD
lr: 0.1 32 10

to extreme missing modality scenarios that require stronger alignment. Detailed hyperparameter
settings are listed in Tab. 4. Unless otherwise specified, we use the original configurations from the
referenced papers.

D Theorem Proof

D.1 Theorem Setup

This section provides the initial setup for our proof for Theorem 3.1. From now on, we remove the
subscript indicating instance index in our notation for simplicity. Following notations in Section 1,
our proposed method described in Section 2 can be expressed as composition of two internal
functions: ŷ = fp

(
{wi}|M|

i=1

)
= fp

(
{fe(xi)}|M|

i=1

)
. Here, fp(·) and fe(·) are post-process head and

feature extractor, respectively. In specific, fe(·) takes each modality xi as input and generates a
modality representation wi (as shown in Section 2) by concatenating three types of information
including modality-specific (wmod

i ), data-specific (wins
i ) and missing-pattern (wmis

i ) features, i.e.,
wi = [wmod

i ◦wins
i ◦wcon

i ]. In addition, to make the proof easy to follow, we denote hi and u as
extraction for present modalities and imputation for missing modalities, respectively, as described in
Section 2.2.1, leading to follow-up notation of modality representations wi and wi(u). To clarify, if
the notation hi is used for missing modality, i.e., i ∈ S, it means that hi here is the "true" feature if
that modality presents. We use this notation in our proof from now on.
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Assumption D.1 The post-processing head fp is Lipschitz continuous with respect to the input vector
x, i.e., there exists a constant L > 0 such that for all x,y ∈ Rn, the following condition holds:

∥fp(xi)− fp(xj)∥ ≤ L∥xi − xj∥,

where fp : Rn → Rm is the post-processing head, ∥ · ∥ denotes the chosen norm (here the ℓ2-norm),
and L is a Lipschitz constant.

Assumption D.2 During test time, all parameters of the proposed framework are bounded. Specifi-
cally, for any weight matrix A, we have:

ϵ−A ≤ ∥A∥ ≤ ϵ
+
A,

where ∥ · ∥ denotes the ℓ2-norm and ϵ−A and ϵ+A are positive constants that bound the spectral norm
of A. This assumption similarly applies to the output representations that are transformed by the
learned weight matrices.

In Assumption D.1, we assume that the neural network used as the post-processing head in our
proposed design is Lipschitz continuous. This assumption is widely accepted in the machine learning
community due to its relevance in ensuring stable and smooth behavior of the model.

Assumption D.2 states that the learned parameters of the network are bounded during test time. This
assumption is reasonable and holds true in most real-world scenarios, where the model parameters
are deterministic and constrained within known ranges during inference. Such bounds are typically
enforced either through explicit regularization during training or through implicit constraints imposed
by the training process itself (e.g., gradient clipping or weight normalization). Therefore, this
assumption is not only theoretically sound but also consistent with common practices in machine
learning.

Remark D.3 (Bounded Extracted Representations) In our data-specific representation extraction,
each output feature hi of modality i is normalized to zero mean and unit variance (via Batch Normal-
ization layer), followed by a learned scaling (γ) and shift (β) parameters. When Assumption D.2
holds, we have ϵ−γ ≤ ∥γ∥ ≤ ϵ+γ and ϵ−β ≤ ∥β∥ ≤ ϵ

+
β and derive:

∥hi∥ = ∥γh̄i + β∥ ≤ ∥γ∥ · ∥h̄i∥+ ∥β∥. (12)

where h̄i is batch-normalized hi. Since the normalized term has unit variance, its norm is bounded
by
√
C, where C is the feature dimension. Hence,

max(ϵ−γ
√
C − ϵ+β , 0) ≤ ∥hi∥ ≤ ϵ

+
γ

√
C + ϵ+β , (13)

Let ϵ−γβ ≜ max(ϵ−γ
√
C − ϵ+β , 0) and ϵ+γβ ≜ ϵ+γ

√
C + ϵ+β , Eq. 13 shows that ∥hi∥ is bounded within

a deterministic range. Consequently, the imputation feature derived by taking average of available
modalities is bounded for the same reason.

D.2 Theoretical Analysis in Simple Case

In this section, we first investigate the behavior of PEPSY in a simple case of missing modality before
further generalization. Let consider the deviations of our proposal when feeding full-modality input
and one missing the first |S| out ofM modalities, i.e., Sf = {1, . . . , |S|} as follows:

∥yS − y∅∥ (14)

=

∥∥∥∥fp({wi}|M|
i=|S|+1, {wj(u)}|S|

j=1

)
− fp

(
{wi}|M|

i=1

)∥∥∥∥ (15)

=

∥∥∥∥ 1

|S|

(∥∥w1(u)−w1

∥∥∇w1(u)fp(w1) + · · ·+
∥∥w|M|(u)−w|M|

∥∥∇w|M|(u)fp(w|M|)

)∥∥∥∥
(16)

=
1

|S|

|S|∑
i=1

∥∥wi(u)−wi

∥∥∇wi(u)fp(wi) (17)
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Here, we use first-order Taylor approximation |S| times to transform Eq, 15 to Eq. 16. Since fp(·) is
L-Lipschitz (see Assumption D.1), Eq 17 can be transformed as:

∥ySf − y∅∥ (18)

≤ L
|M|∑
i=1

∥wi(u)−wi∥ (19)

≤ L
|M|∑
i=1

∥
[
wmod
i ◦ u ◦wcon

i

]
−
[
wmod
i ◦ hi ◦wcon

i

]
∥ (20)

= L

|M|∑
i=1

∥∥∥0 ◦ (u− hi) ◦ argmax
ψp

(
e
(
q(wmod

i ◦ u), ψp
))
− argmax

ψp

(
e
(
q(wmod

i ◦ hi), ψp
))∥∥∥ (21)

wherewi(u) is the imputed representation for modality i, obtained using the imputation data-specific
feature uins, and wi is the original modality feature. Here, we represent the query-key matching
function argmax

ψp

e(q(wmod
i ◦ winsi

i ),ψp) as an approximate attention selecting the ψp with the

highest weight, by using softmax function σ(·, ·) ≜ softmax(e(q(·), ·). For simplicity, we use σ̃
as a Lipschitz constant of this approximated similarity function. Considering individual modality
component ∥wi(u)− wi∥, these lead to the following derivations:

∥wi(u)−wi∥ (22)

≈
∥∥∥0 ◦ (u− hi) ◦

{ τ∑
p=1

[
σ
(
wmod
i ◦ u,ψp

)
− σ

(
wmod
i ◦ hi,ψp

)]
⊙ψp

}∥∥∥ (23)

≤ ∥u− hi∥+
τ∑
p=1

∥∥σ(wmod
i ◦ u,ψp

)
− σ

(
wmod
i ◦ hi,ψp

)∥∥⊙ ∥ψp∥. (24)

≤ ∥u− hi∥+ σ̃

τ∑
p=1

∥u− hi∥ × ∥ψp∥ (25)

≤
(
1 + σ̃τmax

ψp

(ϵ+ψp
)
)
∥u− hi∥ (26)

≤ µ
√
∥u∥2 + ∥hi∥2 − 2uh⊤

i . (27)

where µ = 1 + σ̃τmax
ψp

(ϵ+ψp
) and ϵ+ψp

denotes upperbound of embedding controls, which is fixed in

test time. Taking the summation over all i, we obtain:

|S|∑
i=1

∥wi(u)−wi∥ (28)

≤ µ
|S|∑
i=1

√
∥u∥2 + ∥hi∥2 − 2uh⊤

i (29)

≤ µ
|S|∑
i=1


∥∥∥∥∥∥ 1

|M| − |S|

|M|∑
j=|S|+1

hj

∥∥∥∥∥∥
2

+ ∥hi∥2 −
2

|M| − |S|

|M|∑
j=|S|+1

hjh
⊤
i


1
2

. (30)

Here, u represents the imputed data-specific representation, computed as the mean of corresponding
features from the available modalities (see Section 2.2.1). This justifies the transformation from
Eq. 29 to Eq. 30. Based on Remark D.3, we have:

|S|∑
i=1

∥wi(u)−wi∥ (31)
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≤ µ
|S|∑
i=1

(
2

|M| − |S|
(|M| − |S|)ϵ+2

γβ + ϵ+
2

γβ −
2

|M| − |S|

|M|∑
j=|S|+1

hjh
⊤
i

) 1
2

. (32)

≤ µ
|S|∑
i=1

(
3ϵ+

2
γβ −

2

|M| − |S|

|M|∑
j=|S|+1

hjh
⊤
i

) 1
2

(33)

≤ µ
|S|∑
i=1

(
3ϵ+

2
γβ −

2

|M| − |S|

|M|∑
j=|S|+1

hjh
⊤
i

) 1
2

(34)

≤ µ
S∑
i=1

(
1

|M| − |S|

|M|∑
j=|∫ |+1

3ϵ+
2

γβ −
1

|M| − |S|

M∑
j=|S|+1

2hjh
⊤
i

) 1
2

(35)

≤

√
µ2

|M| − |S|

S∑
i=1

( M∑
j=|S|+1

3ϵ+
2

γβ − 2hjh
⊤
i

) 1
2

(36)

Here, the bound on ∥wi(u)−wi∥ highlights how the interaction terms between hj and hi contribute
to the overall norm. Furthermore, the right-handed side of 36 is non-negative showing the validity of
this transformation. If we further substitute Eq. 36 in Eq. 19, we obtain an intermediate inequality:

∥ySf − y∅∥ ≤

√
µ2

|M| − |S|

|S|∑
i=1

( |M|∑
j=|S|+1

3ϵ2γβ − 2hjh
⊤
i

) 1
2

(37)

where we restate µ2 ← µ2L without loss of generalization since both µ and L are constant.

D.3 Theoretical Analysis Generalization

In this section, we extend the bound in Eq. 37, originally derived assuming the first |S| modalities out
ofM are missing. The current bound assumes the missing modalities are the first |S| in order. We
generalize this to the case where any subset S ⊂M of size |S| is missing. To do this, we generalize
bound in Eq. 37 over missing modality set S, and over all instances of an arbitrary dataset D.

D.3.1 Generalize over Missing Modality Set.

GivenM is the set of all modalities, with cardinality |M|, we define S ⊆M as a subset representing
the missing modalities, with cardinality of |S|. For each missing modality i ∈ S , we define a random
variable ZiS as follows:

ziS =
∑
j /∈S

(3ϵ2γβ − 2hjh
⊤
i ), (38)

The expected value of
√
ZiS , averaged over all possible missing subsets S, is then computed as the

following equation:

E
[√

ZiS

]
=

1

|S|
(|M|
|S|
) ∑

S⊆M

∑
i∈S

√
ziS (39)

≤
√

1

|S|
(|M|
|N|
) ∑

S⊆M

∑
i∈S

∑
j /∈S

(3ϵ2γβ − 2hjh
⊤
i ) (40)

where
(|M|
|S|
)

denotes the number of ways to choose |S| elements fromM. To derive Eq.40 from
Eq. 39, we apply the Jensen’s inequality due to the concavity of square root function.

Observation. The term
∑

S⊆M
∑
i∈S
∑
j /∈S(3ϵ

2
γβ − 2hjh

⊤
i ) means that we are summing over all

subsets S ⊆M of fixed size |S|. For each subset, we sum over all ordered pairs (i, j) where i ∈ S
and j /∈ S. For a fixed pair (i, j) with i ̸= j, the number of subsets S that include i and exclude j
depends only on i and j. In other words, once i and j are fixed, the remaining |S| − 1 elements of S
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must be chosen from the remaining |M| − 2 elements (excluding i and j), giving exactly
(|M|−2
|S|−1

)
subsets. Therefore, each term (3ϵ2γβ − 2hjh

⊤
i ) appears precisely

(|M|−2
|S|−1

)
times in the sum. This lets

us rewrite the original triple sum as a double sum over all ordered pairs (i, j) with i ̸= j, multiplied
by the constant

(
M−2
N−1

)
, simplifying into:∑

S⊆M

∑
i∈S

∑
j /∈S

(3ϵ+
2

γβ − 2hjh
⊤
i ) =

|M|∑
i=1

|M|∑
j=1
j ̸=i

(
|M| − 2

|S| − 1

)
(3ϵ2 − 2hih

⊤
j ). (41)

Substituting Eq. 41 into Eq. 40, we obtain:

Ei,S
[√

ZiS

]
(42)

≤

√√√√√√ 1

|S|
(|M|
|S|
) |M|∑
i=1

|M|∑
j=1
j ̸=i

(
|M| − 2

|S| − 1

)
(3ϵ+2

γβ − 2hih
⊤
j ) (43)

=

√√√√√√ |S|!(|M| − |S|)!|M|!|S|
× (|M| − 2)!

(|S| − 1)!(|M| − |S| − 1)!

|M|∑
i=1

|M|∑
j=1
j ̸=i

(3ϵ2γβ − 2hjh
⊤
j ) (44)

=

√√√√√√ |M| − |S|
|M|(M− 1)

|M|∑
i=1

|M|∑
j=1
j ̸=i

(3ϵ2γβ − 2hjh
⊤
j ) (45)

=

√
|M| − |S|
|M|(|M| − 1)

×

√√√√√√
|M|∑
i=1

|M|∑
j=1
j ̸=i

(3ϵ+2

γβ − 2hjh
⊤
j ). (46)

We now bound the expectation of Eq. 37 over all possible missing modality patterns (S) as follows:

ES

[
∥yS − y∅∥

]
=

1(|M|
|S|
) ∑

S⊆M

∥∥∥yS − y∅
∥∥∥ (47)

≤

√
µ2|S|2
|M| − |S|

1

|S|
(|M|
|S|
) ∑

S⊆M

∑
i∈S

∑
j /∈S

(3ϵ+
2

γβ − hih
⊤
j )

 1
2

 (48)

≤

√
µ2|S|2
|M| − |S|

Ei,S
[√

ZiS

]
(49)

≤

√
µ2|S|2
|M| − |S|

√
|M| − |S|
|M|(|M| − 1)

√√√√√√
|M|∑
i=1

|M|∑
j=1
j ̸=i

(3ϵ+
2

γβ − 2hih
⊤
j ) (50)

≤

√
µ2|S|2

|M|(|M| − 1)

√√√√√√
|M|∑
i=1

|M|∑
j=1
j ̸=i

(3ϵ+
2

γβ − 2hih
⊤
j ). (51)

In summary, in this section, we derive an upper bound for the expected outcome deviation in missing-
and full-modality scenarios over the missing scenarios (S) as:

ES

[
∥yS − y∅∥

]
≤

√
µ2|S|2

|M|(|M| − 1)

√√√√√√
|M|∑
i=1

|M|∑
j=1
j ̸=i

(3ϵ+
2

γβ − 2hih
⊤
j ) (52)
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D.3.2 Generalize over Instances

This section describes how we generalize the bound in Eq. 52 to batch- or dataset-level. Furthermore,
we reveal the connection between our theoretical bound and the training loss function that we propose,
indicating the effectiveness of training loss in our proposal. To address this, we start by considering
the mean difference over a dataset D with cardinality |D|:

1

|D|

|D|∑
d=1

ES
[
∥yS
xd
− y∅

xd
∥
]
≤

√
µ2|S|2

|M|(|M| − 1)

1

|D|

|D|∑
d

√√√√√√
|M|∑
i=1

|M|∑
j=1
j ̸=i

(3ϵ+
2

γβ − 2hdih
⊤
dj) (53)

≤
√
|D|µ|S|

|D|
√
|M|(|M| − 1)

√√√√ |D|∑
d=1

|M|∑
i=1

|M|∑
j ̸=i

(3ϵ2γβ − 2hdih
⊤
dj) (54)

in which Eq. 53 is transformed to Eq. 54 by using triangle inequality. To avoid confusion, we analyze
the right-hand term separately, as it plays a central role in the transformation process. Let h̃di denote
the ℓ2-normalized feature, i.e., h̃di = hdi/∥hdi∥.

|D|∑
d=1

|M|∑
i=1

|M|∑
j=1
j ̸=i

(3ϵ+
2

γβ − 2hdih
⊤
dj) (55)

≤ ϵ−2
γβ

|D|∑
d

|M|∑
i=1

|M|∑
j=1
j ̸=i

(3
ϵ+

2
γβ

ϵ−
2

γβ

− 2h̃dih̃
⊤
dj) (56)

≤ 3|D||M|(|M| − 1)ϵ+
2

γβ

+ 2ϵ−
2

γβ

|D|∑
d=1

|M|∑
i=1

|M|∑
j=1
j ̸=i

(
− h̃dih̃

⊤
dj + log

(
|D|(|D| − 1)|M|2

)
−
ϵ+

2
γβ

ϵ−
2

γβ

+
ϵ+

2
γβ

ϵ−
2

γβ

)
(57)

≤ 5|D||M|(|M| − 1)ϵ+
2

γβ + 2ϵ−
2

γβ

∑
d,i,j ̸=i

(
− h̃dih̃

⊤
dj + log

(
|D|(|D| − 1)|M|2

)
−
ϵ+

2
γβ

ϵ−
2

γβ

)
(58)

≤ 5|D||M|(|M| − 1)ϵ+
2

γβ

+ 2ϵ−
2

γβ

∑
d,i,j ̸=i

(
− h̃dih̃

⊤
dj + log

(
|D|(|D| − 1)|M|2 exp(−(

ϵ+γβ
ϵ−γβ

)2)
))

(59)

≤ 5|D||M|(|M| − 1)ϵ+
2

γβ

+ 2ϵ−
2

γβ

∑
d,i,j ̸=i

(
− log exp(h̃dih̃

⊤
dj) + log

( |D|∑
d1

|D|∑
d2 ̸=x1

|M|∑
k1

|M|∑
k2

exp(−(
ϵ+γβ
ϵ−γβ

)2)
))

(60)

≤ 5|D||M|(|M| − 1)ϵ+
2

γβ + 2ϵ−
2

γβ

∑
d,i,j ̸=i

− log
exp(h̃dih̃

⊤
dj)∑|D|

d1

∑|D|
d2 ̸=d1

∑|M|
k1

∑|M|
k2

exp(−( ϵ
+
γβ

ϵ−γβ

)2)
) (61)

≤ 5|D||M|(|M| − 1)ϵ+
2

γβ + 2ϵ−
2

γβ

∑
d,i,j ̸=i

− log
exp(h̃dih̃

⊤
dj)∑|D|

d1

∑|D|
d2 ̸=d1

∑M
k1

∑M
k2

exp(h̃d1k1h̃
⊤
d2k2)

(62)

≤ 5|D||M|(|M| − 1)ϵ+
2

γβ + 2ϵ−
2

γβ |D|Lds(xd, ∅) (63)

where Lds(·, ·) is defined in Section 2.2.1). Substitute Eq. 63 into Eq. 54, we have:

1

|D|

|D|∑
d=1

ES

[
∥yS
xd
− y∅

xd
∥
]
≤ µ|S|

√√√√5ϵ+
2

γβ +
2ϵ−

2
γβ

|D||M|(|M| − 1)

|D|∑
d=1

Lds(xd, ∅) (64)
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We now investigate how the presence of missing modalities impacts the bound, and consequently, the
effectiveness of our approach. Assume each instance xd ∈ D has a missing set Sd with the same
cardinality |S|, i.e., S ⊂M , |Sd| = |S| ∀d. Hence,

|D|∑
d=1

Lds(xd, ∅) =
∑
d,i,j ̸=i

− log
exp(h̃dih̃

⊤
dj)∑|D|

d1

∑|D|
d2 ̸=d1

∑|M|
d1

∑|M|
d2

exp(h̃d1k1h̃
⊤
d2k2)

(65)

=
∑
d,i,j ̸=i

log exp(−h̃dih̃
⊤
dj) + log

( |D|∑
d1

|D|∑
d2 ̸=d1

|M|∑
k1

|M|∑
k2

exp(h̃d1k1h̃
⊤
d2k2)

)
(66)

Let A1 ≜
∑
d,i,j ̸=i−h̃dih̃

⊤
dj and A2 ≜

∑|D|
d1

∑|D|
d2 ̸=d1

∑|M|
k1

∑|M|
k2

exp(h̃d1k1h̃
⊤
d2k2), we now

further expand each term as follows:

Consider A1:

A1 =

|D|∑
d

|M|∑
i,j ̸=i

−h̃dih̃
⊤
dj (67)

=
|M|(|M| − 1)

(|M| − |S|)|S|
(|M| − |S|)|S|
|M|(|M| − 1)

|D|∑
d

|M|∑
i,j ̸=i

−h̃dih̃
⊤
dj (68)

=
|M|(|M| − 1)

(|M| − |S|)|S|
(|M| − |S|)!|S|!

|M|!
(|M| − 2)!

(|S| − 1)!(|M| − |S| − 1)!

|D|∑
d

|M|∑
i,j ̸=i

−h̃dih̃
⊤
dj (69)

=
|M|(|M| − 1)

(|M| − |S|)|S|
1(|M|
|S|
)(|M| − 2

|S| − 1

) |D|∑
d

|M|∑
i,j ̸=i

−h̃dih̃
⊤
dj (70)

=
|M|(|M| − 1)

(|M| − |S|)|S|
ESd

[ |D|∑
d

∑
i∈Sd

∑
j /∈Sd

−h̃dih̃
⊤
dj

]
(71)

Under missing modality scenarios, i.e., Sd ̸= ∅, h̃di,∀ i ∈ Sd is approximated as 1
|M|−|S|

∑
j /∈Sd

h̃dj .
In other words, we can express Eq. 71 as:

A1 =
|M|(|M| − 1)

(|M| − |S|)|S|
ESd

[ |D|∑
d

∑
i∈Sd

∑
j /∈Sd

−h̃dih̃
⊤
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]
(72)

=
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d

∑
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∑
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1

|M| − |S|
∑
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−h̃dkh̃
⊤
dj

]
(73)
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(|M| − |S|)2|S|
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]
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(76)

Consider A2:

A2 =

|D|∑
d1

|D|∑
d2

|M|∑
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|M|∑
k2

exp(h̃d1k1h̃
⊤
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⊤
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]
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=
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=
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Observation. Exponential is a convex function, hence we apply Jensen’s inequality to the followings:

1. |S|2 exp( 1
(|M|−|S|)2

∑
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⊤
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which derive Eq. 82 into:
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[
1 + 2

|S|
|M| − |S|

+
( |S|
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+ 1
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≤
( |M|
|M| − |S|

)2 |D|∑
d1,d2 ̸=d1

∑
j1 /∈Sd1

j2 /∈Sd2

exp(h̃d1j1h̃
⊤
d2j2) (85)

Substitute Eq. 71 and 85 into Eq. 66, we have:
|D|∑
d=1

Lds(xd, ∅) (86)
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Substitute Eq. 91 in Eq. 97, we have:
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which is equivalent to:
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≤ µ|S|

√√√√5ϵ+
2

γβ +
2ϵ−

2
γβ
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Ex,S
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γβ log
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≤ O

(
µ|S|

√
Ex,S [Lds(x,S)]
(|M| − |S|)2

+ log
|M|2

(|M| − |S|)2

)
(97)

E Complexity Analysis

E.1 Analysis

We start by introducing the time complexity of traditional FL algorithms, such as FedAvg, FedProx
as a baseline to analyze the time complexity of PEPSY. Let:

• d: feature extractor size
• τ : number of embedding controls in local data-missing profile.
• m:
• dp: embedding control dimensionality.
• dk: key vector dimensionality
• κ: number of embedding controls selected per query (small constant)
• E: local epochs
• B: batch size
• nk: local data size
• M : number of optimization iterations of PFPT-based clustering

Table 5: Comparison of Time and Communication Complexity of PEPSY and traditional FL

Component Traditional FL PEPSY

Local Computation O
(
E · nk

B · d
)

O
(
nk

B · E [(d+m · dp) + τ · dk]
)

Client Communication O(d) O(d+ pdp)

Server Aggregation O(Kd) O(Kd+MK2p2d2p)

Traditional FL. Each client updates its local parameters over E iterations, with batch size of B
using a model of size d. This cost: Tlocal = O(E · nk

B · d) Subsequently, the modal parameters
of all clients are sent to the server costing: Tcom = O(d) On the server side, all parameters of K
clients are combined, typically using variants of weighted average leading to aggregation time cost:
Tserver = O(K · d)
PEPSY Modification. In PEPSY, the added cost comes from each client’s data-missing profile and
the PFPT-based clustering [58]. The time complexities are as follows:

Embedding Controls Selection. Each client computes a key vector q ∈ Rdk per batch, compares it
with τ controls, and selects top-κ controls. If done once per batch, this addsO

(
nk

B · p · dk
)

per round.
The selected controls are injected into the model and used during both forward and backward passes.
This adds gradient updates with cost O(d+ κ · dp). Over E · nk

B steps, the total local computation
cost is: Tlocal = O

(
nk

B · E · [(d+m · dp) + τ · dk]
)

Communication Cost. Clients also send their p with p ≤ τ selected control embeddings (a subset of
data-missing profile), adding to the model upload cost: Tcom = O(d+ p · dp)
Server Aggregation and Clustering. Model aggregation stays at O(Kd), but PFPT adds overhead
from bi-level optimization (over M iterations) and Hungarian matching. Clustering over Kp points
add more time complexity to the cost: Tserver = O(Kd+MK3p3d3p)

Discussion. While reducing the cost associated with the data-missing profile is nontrivial, the
computational cost of the PFPT-based clustering algorithm can be optimized. If we fix the model
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Table 6: Empirical computational overhead of baselines and proposal comparison.

Method Computation Metric 0.2/0.2 0.2/0.4 0.2/0.6 0.2/0.8 0.2/1.0

FedProx

Training time per round (s) 50.21 50.43 50.41 49.8 49.77

Inference time (s) 3.56 3.57 3.6 3.74 3.59

GPU for training (GB) 2.72 2.72 2.72 2.72 2.72

MIFL

Training time per round (s) 94.11 94.04 93.92 92.98 93.34

Inference time (s) 4.11 4.12 4.13 4.1 4.16

GPU for training (GB) 3.26 3.26 3.26 3.26 3.26

FedInMM

Training time per round (s) 100.23 97.71 97.95 99.28 96.44

Inference time (s) 4.89 4.86 4.83 4.95 4.89

GPU for training (GB) 2.55 2.55 2.55 2.55 2.55

FedMSplit

Training time per round (s) 86.34 86.63 86.56 86.67 86.18

Inference time (s) 3.59 3.58 3.6 3.6 3.6

GPU for training (GB) 3.21 3.21 3.21 3.21 3.21

FedMAC

Training time per round (s) 51.77 51.11 51.07 51.19 51.21

Inference time (s) 4.56 4.98 4.69 4.69 4.88

GPU for training (GB) 1.99 1.99 1.99 1.99 1.99

PEPSY

Training time per round (s) 141.12 153.95 137.66 140.12 146.48

Inference time (s) 4.69 4.99 4.9 4.73 4.87

GPU for training (GB) 2.61 2.63 2.15 2.86 2.8

architecture and instead adopt a standard federated learning (FL) approach on the server side, the
clustering step is removed, and the total server cost becomes O(Kd +Kτdp), where each client
sends its full data-missing profile of size τ .

E.2 Empirical Overhead

As shown in Table 6, we compared the computational overhead of PEPSY with existing baselines in
different pm/ps scenarios and found that the additional cost in PEPSY is primarily incurred during
training, regardless of the missingness scenario. This aligns with the time complexity analysis,
as the PFPT-based clustering algorithm requires more time for clustering. In contrast, PEPSY’s
inference time and GPU usage remain comparable to other methods, while still delivering superior
performance. This is because the data-missing profile is relatively small compared to the model size,
adding minimal overhead to each forward pass.

E.3 Recommended Solution

To improve PEPSY’s computational efficiency to match that of traditional FL, we can tune the PFPT
clustering cost to stay within this bound. Specifically, by setting O(MK3p3d3p) = O(Kτdp). We
can solve for p to determine the number of selected controls each client needs to send. Assuming

M , K, and dp are fixed system parameters, this yields: p = O
(

3

√
τ

MKdp

)
. In practice, this can be

implemented by having each client transmit only the top-p most frequently selected controls from its
profile.
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Table 7: Impact of top-p most frequently selected controls from each client’s profile on overall performance.
Experiments are conducted on EDF datasets.

Method Overall Accuracy (%)
FedProx 43.24
MIFL 43.18
FedInMM 40.56
FedMSplit 45.18
FedMAC 49.8
PEPSY (p = 5) 50.77
PEPSY (p = 10) 50.45
PEPSY (p = 20) 51.51
PEPSY (no limit) 56.36

As can be seen from Table 7, our method still outperforms the baselines substantially even when p is
reduced to match the cost of FedAvg. This is run on the EDF dataset, with 0.2/0.2 missingness, and
for each client, we only take p most selected embedding controls to sent to the server.

F Additional Experimental Results

F.1 Additional Comparison with Baselines

Extensive Missing Scenarios Analysis. In addition to the results in the main text, we conducted
further experiments comparing the performance of PEPSY (our method) with baselines under more
varied missing modality scenarios. Specifically, we expanded the values of pm and ps to include 0.4,
0.6, and 1.0, covering a range from 0.2 to 1.0. The results are shown in Tab. 8 and Tab. 10.

As can be seen in these tables, PEPSY consistently outperforms all baselines across all testing
scenarios. For the PTBXL dataset (see Tab. 8), the performance gap is small (3% - 4%) when the
missing degree is low, e.g., pm = 0.2. However, as the missing degree increases (e.g., pm = 0.8
and pm = 1.0), PEPSY maintains a clear advantage over other methods in both IID and NonIID
settings, with a significant gap of approximate 11% in accuracy. Similarly, for the EDF dataset,
PEPSY outperforms baselines by a significant margin - up to nearly 10% - across additional missing
modality scenarios. This demonstrates the effectiveness and robustness of our approach to missing
modalities in federated learning systems, regardless of data heterogeneity.

Table 8: Performance of baselines on the PTBXL dataset under various missing patterns in train and test sets,
for both IID and Non-IID scenarios. The best and second-best results are highlighted in bold red and blue,
respectively. We use a hyphen (–) to denote pm/ps = 1.0/1.0, indicating that all modalities are missing and
these cases are excluded from evaluation.

pm\ps Method IID NonIID

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.4

FedProx 71.63% 63.81% 65.57% 64.69% 45.76% 47.79% 45.27% 39.97% 33.67% 37.58%
MIFL 71.37% 65.95% 66.46% 45.02% 53.85% 52.59% 39.22% 37.33% 38.08% 37.20%
FedInMM 69.61% 68.35% 64.69% 63.43% 64.19% 63.43% 66.33% 62.29% 61.66% 59.52%
FedMSplit 70.62% 62.93% 60.28% 60.66% 38.97% 53.97% 48.17% 43.17% 46.27% 34.30%
FedMAC 75.79% 74.02% 73.52% 73.64% 67.84% 69.48% 52.21% 45.65% 43.76% 47.41%

PEPSY 78.44% 77.55% 76.04% 76.29% 71.37% 71.12% 71.12% 68.10% 70.87% 70.62%

0.6

FedProx 72.38% 69.74% 65.07% 63.18% 47.41% 44.01% 38.08% 37.45% 28.75% 29.00%
MIFL 70.99% 67.59% 55.61% 49.81% 25.47% 56.75% 43.76% 43.00% 35.69% 25.60%
FedInMM 67.21% 61.79% 59.14% 58.26% 25.60% 62.42% 59.14% 49.56% 56.36% 49.43%
FedMSplit 69.10% 63.81% 51.45% 40.48% 37.07% 40.73% 47.29% 38.71% 35.43% 26.48%
FedMAC 75.28% 74.02% 73.52% 73.64% 56.75% 51.45% 50.44% 50.06% 27.87% 46.15%

PEPSY 76.55% 74.53% 74.15% 74.15% 57.63% 70.87% 69.23% 68.47% 68.98% 58.76%

1.0

FedProx 75.03% 72.63% 68.73% 58.51% - 61.03% 51.57% 42.62% 33.29% -
MIFL 73.52% 71.37% 66.09% 47.54% - 59.64% 50.44% 39.60% 33.67% -
FedInMM 62.80% 62.42% 53.97% 49.68% - 59.02% 54.85% 50.06% 41.86% -
FedMSplit 72.13% 68.10% 66.46% 54.48% - 57.25% 52.08% 45.02% 33.92% -
FedMAC 75.16% 74.40% 72.38% 69.74% - 59.52% 44.51% 51.32% 41.74% -

PEPSY 76.04% 77.05% 75.03% 72.76% - 71.25% 67.21% 68.60% 59.14% -
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Figure 7: Modality representations of different methods under multiple missing scenarios. We train and provide
t-SNE 2D visualizations of modality representations constructed by three methods, including our proposal, in
different pm/ps settings. All experiments are conducted on EDF dataset, nonIID setting.

Table 9: Ablation studies on crucial components of PEPSY under different missing statistics (pm/ps). We
report top-1 accuracy across multiple experiments on the EDF dataset, in NonIID setting.

Method 0.8/0.2 0.8/0.4 0.8/0.6 0.8/0.8 0.8/1.0
PEPSY-NP 46.49% 47.92% 52.42% 52.08% 43.98%
PEPSY-NR 43.30% 43.47% 43.47% 43.58% 19.97%
PEPSY 51.80% 51.06% 55.05% 52.25% 46.09%

Modality Alignment Analysis. Fig. 7 compares modality alignment of our proposed PEPSY and
two other baselines, namely FedProx and FedMAC, which correspond to traditional FL method and
second-best approach in most evaluation experiments. Intuitively, to achieve high performance
regardless of available modalities, an optimal solution should align modalities well in a representation
space, which hence discards reliance on present modalities. As can be seen from Fig. 7, FedProx and
FedMAC fail to align different modalities, indicating their strong dependence on different available
modality sets. This is because FedProx does not have a mechanism for modality alignment, while
FedMAC discards modality-specific information. In contrast, our proposed PEPSY integrates both
modality- and data-specific information, which are futher reconfigured by a shareable data-missing
profile leading to less reliance on modalities. The figures show how all modalities are aligned after
PEPSY’s training, highlighting effectiveness of the proposal under missing modality scenarios.

F.2 Additional Ablation Studies

In this section, we conduct additional ablation studies on two crucial components in our design: data-
missing profile, along with the relevance loss term, and modality fusion, along with the reconfiguration
regularization. Correspondingly, we introduce two variants of PEPSY, namely PEPSY-NP (No Profile)
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Figure 8: Stability of modality representations under different missing modality scenarios. Ideally, a modality’s
representation should remain stable regardless of which other modalities are missing. This stability is not
achieved when either the data-missing profile is removed (-NP version) or the reconfiguration signal is omitted
(-NR version) from our proposed PEPSY.

Table 10: Performance of baselines on the EDF dataset under various missing patterns in train and test sets,
for both IID and Non-IID scenarios. The best and second-best results are highlighted in bold red and blue,
respectively. We use a hyphen (–) to denote pm/ps = 1.0/1.0, indicating that all modalities are missing and
these cases are excluded from evaluation.

pm\ps Method IID NonIID

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.4

FedProx 44.38% 44.25% 43.70% 44.95% 43.07% 45.00% 44.55% 44.61% 44.55% 44.72%
MIFL 43.35% 44.72% 43.72% 44.89% 44.66% 44.61% 44.67% 44.72% 44.49% 40.27%
FedInMM 40.50% 40.50% 40.67% 40.56% 40.90% 40.62% 42.38% 40.50% 40.45% 41.19%
FedMSplit 44.95% 45.10% 44.61% 44.61% 44.67% 44.43% 44.38% 44.61% 44.10% 44.21%
FedMAC 50.49% 48.26% 48.09% 50.03% 41.93% 49.80% 46.49% 46.66% 44.72% 46.83%

PEPSY 55.68% 55.33% 54.54% 55.45% 49.91% 58.02% 52.54% 49.80% 48.32% 51.97%

0.6

FedProx 34.91% 34.23% 33.14% 29.89% 42.61% 41.24% 42.50% 42.56% 43.18% 40.45%
MIFL 44.32% 42.84% 43.98% 44.78% 44.61% 45.18% 44.38% 44.38% 44.10% 44.27%
FedInMM 40.67% 40.44% 40.56% 40.62% 40.45% 41.47% 41.7% 40.73% 40.62% 40.67%
FedMSplit 44.38% 44.55% 44.61% 44.44% 43.47% 44.15% 44.55% 44.15% 42.27% 43.53%
FedMAC 50.99% 49.40% 48.66% 48.20% 16.71% 47.80% 47.46% 45.58% 43.64% 38.62%

PEPSY 51.28% 50.54% 50.26% 50.60% 44.66% 48.66% 51.12% 49.67% 51.85% 45.07%

1.0

FedProx 36.22% 35.14% 33.89% 31.72% - 44.38% 44.67% 44.44% 43.75% -
MIFL 42.56% 42.90% 41.19% 41.47% - 44.15% 43.75% 44.27% 44.21% -
FedInMM 40.45% 40.56% 40.50% 40.22% - 40.56% 40.39% 40.38% 40.27% -
FedMSplit 43.47% 43.47% 42.56% 41.42% - 42.44% 43.98% 43.70% 44.89% -
FedMAC 40.22% 40.45% 40.96% 38.11% - 47.22% 46.83% 46.44% 46.15% -

PEPSY 54.93% 52.48% 48.49% 45.41% - 50.09% 48.26% 49.67% 49.96% -

and PEPSY-NR (No Reconfiguration). To evaluate their contributions in our proposal, we analyse
both quantiative and qualitative results.

Quantitative Results. Tab. 9 shows impacts of different components on the final components.
First, when we remove data-missing profile (see PEPSY-NP variant), the performance drops from
0.2% to 4%, indicating the importance data-missing profile to stablize output performance. In this
variant, the reconfiguration supervision signal, a contrastive alignment - based loss, is preserved,
hence ensuring modalities are aligned, which are eventually similar to modality fusion in previous
works [54, 39]. On the other hand, omitting reconfiguration signal and modality fusion, which results
in PEPSY-NR variant, worsen final performance by a larger margin, up to more than 26%. This is
because without the reconfiguration signal, the data-missing profile lacks guidance to reconfigure
the biased information generated from raw data into complete ones, hence failing to handle missing
modalities efficiently. In summary, both components are crucial in our design to ensure robust and
stable performance in multimodal federated learning.

Qualitative Results. We further visualize representations that each PEPSY variant constructs for an
individual modality under different missing scenarios, given the same trained backbone. In particular,
each variant is trained on a specific missing statistic pm/ps = 0.8/0.8 in NonIID setting and tested on
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Table 11: Performance of baselines under image-sensor modality settings, conduced on EDF dataset across
two representative missing scenarios. The best and second-best results are highlighted in bold red and blue,
respectively.

pm/ps FedProx MIFL FedInMM FedMSplit FedMAC PEPSY
0.2/0.2 44.32 44.89 40.22 43.93 39.70 44.95
0.8/0.8 41.76 43.07 40.21 42.56 38.16 44.78

handcrafted missing tests, including: Miss 1 (modality 1 is missed); Miss 1, 4; Missing 1, 4, 5; Miss
1, 3, 4, 5; Full modality. Intuitively, a representation constructed for modality 1 should remain closely
aligned across all tests. As can be seen in Fig. 8, while two ablated variants PEPSY-NP and PEPSY-NR
fail to ensure this stability, our proposed PEPSY can construct closely aligned representations in
all settings, highlighting its stable feature construction. This is because our data-missing profile
effectively distills data-missing information from raw data, which are used later for reconfiguration.
These visualizations further emphasize completeness of our design.

F.3 Ablation on different forms of modality

To evaluate our proposed PEPSY framework more comprehensively, we conduct an additional experi-
ment in an image-sensor multi-modal setting to show the broad generality of the proposal, instead
of sensor-based modality settings as the original benchmark datasets. In specific, we converted one
signal-based modality into an image showing fluctuation of the signal, leading to an image-based
modality. Our algorithm has access to this image-based modality but not the original signal-based
modality. It will learn to combine this image-based modality with other signal-based modality to
make accurate predictions. We further replaced the corresponding feature extractor as a simple
convolutional neural network to handle image-based modality, and run several experiments to show
the efficiency of our algorithm on different modality domains. Each image modality is of size
128× 64, and normalized to scale from 0 to 1, as presented in Table 11.

Table 11 shows that even under missing settings with different modality forms, PEPSY still outper-
forms all other baselines. This additional experiment futher emphasizes the superiority of PEPSY in
the ability to handle severe missingness.

G Limitations

Although PEPSY outperforms prior methods in handling heterogeneous data-missing patterns in mul-
timodal federated learning, it may face challenges when downstream task domains vary significantly.
Large domain shifts can create distinct, domain-specific missing data profiles that require more train-
able embeddings for effective adaptation. A key open question is whether we can quantify these shifts
and bound the number of embeddings needed for reconfiguration—an issue beyond this work’s scope
but important for future research, especially in federated settings with clients operating in diverse
domains and missing data patterns. Moreover, this study relies on training models from scratch and
does not leverage pretrained foundation models. Future efforts could explore incorporating pretrained
encoders to build shareable missing data profiles, improving representation learning efficiency and
effectiveness.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions are detailed in Section 2, 3 and 4

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

32



Justification: Please refer to Section 3 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experiment protocol is described in Section 4. The implementation details
are described in Appendix B and C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: All the used datasets are publicly available. Upon acceptance, we will release
our code.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Such details can be found in Section 4, Appendix C and B.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided error bars for main results.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources are in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and do not find our work violate any
aspects of the code

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a statement of impact in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work do not create new dataset or create new pre-trained NLP or vision
models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the source of all datasets and baselines used in our experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our contributions do not involve LLMs as important components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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