IMPROVING GRAPH GENERATION WITH FLOW MATCHING AND OPTIMAL TRANSPORT

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

Paper under double-blind review

ABSTRACT

Generating graph-structured data is crucial in various domains but remains challenging due to the complex interdependencies between nodes and edges. While diffusion models have demonstrated their superior generative capabilities, they often suffer from unstable training and inefficient sampling. To enhance generation performance and training stability, we propose GGFlow, a discrete flow matching generative model incorporating optimal transport for graph structures and it incorporates an edge-augmented graph transformer to enable the direct communications among edges. Additionally, GGFlow introduces a novel goal-guided generation framework to control the generative trajectory of our model towards desired properties. GGFlow demonstrates superior performance on both unconditional and conditional generation tasks, outperforming existing baselines and underscoring its effectiveness and potential for wider application.

023 024 1 INTRODUCTION

025 Graph structural data generation has become critically important across various domains, including 026 social networks (Grover et al., 2019), drug design (Bilodeau et al., 2022), and neural architecture 027 search (NAS) (Lee et al., 2020). Effective modeling of the intrinsic joint distribution and accurate description of topological structures of graphs are essential for these applications. Deep generative 029 models have increasingly demonstrated success in graph generation by effectively modeling the complex structural properties of graphs. These models are typically categorized into autoregressive 031 and one-shot types. Autoregressive models, such as GraphRNN (You et al., 2018), generate graphs 032 sequentially, often overlooking the interdependencies among all graph components. In contrast, one-033 shot methods generate entire graphs in a single step, more effectively capturing the joint distribution (Ma et al., 2018; Luo et al., 2023; Niu et al., 2020). 034

Diffusion models have shown great promise and achieved significant performance in various domains 036 (Ho et al., 2020; Song et al., 2020; Ho et al., 2022). In the context of graph generation, diffusion 037 models have been adopted to enhance generative capacity. EDP-GNN and GDSS are among the 038 first to utilize diffusion models for graph generation, adding continuous Gaussian noise to adjacency 039 matrices and node types, which may lead to invalid graph structures (Niu et al., 2020; Jo et al., 2022b). Due to the inherent sparsity and discreteness of graph structures, GSDM enhances model fidelity by 040 introducing Gaussian noise within a continuous spectrum space of the graph, and DiGress and PPGN 041 apply discrete diffusion models for graphs (Luo et al., 2023; Vignac et al., 2022; Austin et al., 2021; 042 Haefeli et al., 2022; Huang et al., 2023). 043

044 Despite their potential, diffusion models often face challenges with unstable training and inefficient sampling. Flow matching generative models offer a more stable and efficient alternative by transforming the generative process from stochastic differential equations (SDEs) to ordinary differential 046 equations (ODEs), enhancing generative efficiency (Lipman et al., 2022; Song et al., 2024; Yim 047 et al., 2023). Additionally, the use of optimal transport (OT) straightens the marginal probability 048 path, reducing training variance and speeding up sampling (Bose et al., 2023; Tong et al., 2023; Klein 049 et al., 2024; Pooladian et al., 2023). While the application of OT in graph-based systems is often 050 hampered by significant computational demands, primarily due to the complexity of the OT metric 051 (Chen et al., 2020b; Petric Maretic et al., 2019). 052

In this paper, we introduce GGFlow, a novel generative model that leverages discrete flow matching techniques with optimal transport to improve sampling efficiency and training stability in graph

generation. The model preserves graph sparsity and permutation invariance, which is essential
 for realistic graph generation. Additionally, GGFlow employs a goal-guided framework using
 reinforcement learning for conditional generation. GGFlow achieves state-of-the-art results in both
 unconditional and conditional graph and molecule generation tasks and surpasses existing methods
 with fewer inference steps. Its effectiveness in conditional generation tasks underscores the practical
 impact of our approach.

- Our contribution can be summarized as:
 - GGFlow introduces the first discrete flow matching generative model with optimal transport for graph data, improving sampling efficiency and training stability. It also incorporates an edge-augmented graph transformer to enhance generation tasks further.
 - GGFlow proposes a novel guidance framework using reinforcement learning to control probability flow during graph generation, targeting specific properties.
 - GGFlow demonstrates state-of-the-art performance in various unconditional and conditional graph generation tasks, consistently outperforming existing methods across diverse graph types and complexities.
 - 2 RELATED WORK
- 073 074 075

076

094 095

096

062

063

064

065

066

067

069

071 072

2.1 FLOW MATCHING AND DIFFUSION MODELS

Diffusion models have gained widespread popularity in various fields, including computer vision, natural language processing, and biological sciences, demonstrating notable success in generative tasks (Ho et al., 2020; Song et al., 2020; Watson et al., 2023; Ingraham et al., 2023; Liu et al., 2024a; Ren et al., 2024; Zhu et al., 2024). However, these models often suffer from inefficiencies in sampling due to the complexity of their underlying diffusion processes and the convergence properties of the generative process.

Flow matching generative models have emerged as a more efficient and stable alternative (details in Appendix A.1), improving sampling by straightening the generative probability path (Lipman et al., 2022; Song et al., 2024; Campbell et al., 2024). Some approaches further enhance performance by incorporating optimal transport. The generative processes of these models are summarized in Figure 1.

Previous works (Campbell et al., 2024; Gat et al., 2024) extended flow matching to discrete spaces,
 while Eijkelboom et al. (2024) applied variational flow matching to graphs, but without adequately
 addressing key graph-specific properties such as adjacency matrix sparsity. GGFlow tackles these
 challenges by introducing a discrete flow matching model with optimal transport tailored for graph
 data. Furthermore, we propose a novel framework for guiding the generative process, enhancing its
 practical applicability.

Figure 1: Illustration of generative trajectories using different methods. The generative trajectories are learned by the diffusion model (left), flow matching model (center), and flow matching model with optimal transport (right).

108 2.2 GRAPH GENERATIVE MODELS

110 Graph generative models are typically categorized into two main types: autoregressive and one-shot models. Autoregressive models, such as generative adversarial networks (Wang et al., 2018), recurrent 111 neural networks (You et al., 2018), variational autoencoders (Jin et al., 2018), normalizing flows (Shi 112 et al., 2019; Luo et al., 2021) and diffusion model (Kong et al., 2023), generate graphs sequentially. 113 While effective, these models are often computationally expensive and fail to account for permutation 114 invariance, a crucial property for graph data, resulting in potential inefficiencies. In contrast, one-shot 115 models aim to capture the distribution of all graph components simultaneously (De Cao and Kipf, 116 2018; Ma et al., 2018; Zang and Wang, 2020), better reflecting the inherent interactions within graphs. 117 Despite the advantages, diffusion-based one-shot models (Niu et al., 2020; Jo et al., 2022b; Vignac 118 et al., 2022; Chen et al., 2023; Bergmeister et al., 2023; Luo et al., 2023; Haefeli et al., 2022; Yan 119 et al., 2023; Jang et al., 2023; Madeira et al., 2024; Bergmeister et al., 2024; Chen et al., 2023; 120 Minello et al., 2024; Zhao et al., 2024; Xu et al., 2024) show promising results in downstream tasks 121 but remain limited by sampling efficiency. GGFlow addresses these limitations by employing a 122 discrete flow-matching generative model, achieving superior generative performance with fewer sampling steps. More comparisons with recent works are presented in Appendix B. 123

3 Methods

In this section, we present our methodology, GGFlow. Section 3.1 outlines the discrete flow matching
 method for graph generation. Section 3.2 covers optimal transport for graph flow matching. Section
 3.3 introduces GraphEvo, our neural network for graph generation. Section 3.4 examines the
 permutation properties of GGFlow, and Section 3.5 discusses goal-guided graph generation using
 reinforcement learning.

132 133

134

124 125

126

3.1 DISCRETE FLOW MATCHING FOR GRAPH GENERATION

A graph G = (V, E), where V and E denote the sets of nodes and edges, has a distribution denoted by $p(G) = (p^V(V), p^E(E))$. The attribute spaces for nodes and edges are \mathcal{V} and \mathcal{E} , with cardinalities n and m, respectively. The attributes of node i and edge ij are denoted by $v_i \in \mathcal{V}$ and $e_{ij} \in \mathcal{E}$, so the node and edge probability mass functions (PMF) are $p^V(v_i = a)$ and $p^E(e_{ij} = b)$ where $a \in \{1, \ldots, n\}$ and $b \in \{1, \ldots, m\}$. The node and edge encodings in the graph are given by matrices $\mathbf{V} \in \mathbb{R}^{a \times n}$ and $\mathbf{E} \in \mathbb{R}^{a \times a \times m}$, respectively. We denote the transpose of matrix A as \mathbf{A}^* and \mathbf{A}^t represents the state of matrix A at time t. We use discrete flow matching to model the graph generation process.

142 143 144 144 145 146 147 142 142 142 144 145 146 147 146 147 147 147 Source and target distribution GGFlow aims to transform prior distribution $G^0 \sim p_{ref}$ to target 146 data distribution $G^1 \sim p_{data}$. The training data (G^0, G^1) are sampled from a joint distribution 147 $\pi(G^0, G^1)$, satisfying the marginals constraints $p_{ref} = \sum_{G^1} \pi(G^0, G^1), p_{data} = \sum_{G^0} \pi(G^0, G^1)$. 148 In the simplest case, the joint distribution $\pi(G^0, G^1)$ is modeled as the independent coupling, i.e. 149 $\pi(G^0, G^1) = p_{ref} \cdot p_{data}$.

To account for graph sparsity, the prior distribution $p_{ref} = (p_{ref}^V, p_{ref}^E)$ is designed to approximate the true data distribution closely. To ensure the permutation invariance of the model, the priors are structured as products of single distributions for all nodes and edges: $\prod_i v_i \times \prod_{ij} e_{ij}$ (Vignac et al., 2022). Further details on the prior can be found in Appendix C.1.

Probability path We define a probability path $p_t(G^t)$ that interpolates between source distribution p_{ref} and target distribution p_{data} i.e. $p_0 = p_{ref}$ and $p_1 = p_{data}$. The marginal probability path is given by:

155 156

157

159

161

$$p_t(G^t) = \sum_{(G^0, G^1) \sim \pi} p_t(G^t | G^0, G^1) \pi(G^0, G^1),$$
(1)

158 where

$$p_t(G^t|G^0, G^1) = \operatorname{Cat}\left(t\delta\{G^1, G\} + (1-t)p_{\operatorname{ref}}\right)$$
$$= \operatorname{Cat}\left(t\delta\{V^1, V\} + (1-t)p_{\operatorname{ref}}^V, t\delta\{E^1, E\} + (1-t)p_{\operatorname{ref}}^E\right),$$

¹⁶² δ is the Kronecker delta, indicating equality of the indices, and Cat(p) denotes a Categorical ¹⁶³ distribution with probabilities p. Given the sparsity of both the prior and data distributions, we can ¹⁶⁴ infer that the intermediate distribution is similarly sparse, aiding model training.

We define a probability velocity field $u_t(G, G^t) = (u_t^V(V, V^t), u_t^E(E, E^t))$ for GGFlow, which generates the probability path from Equation 1. The probability velocity field $u_t(G, G^t)$ is derived from the conditional probability velocity field $u_t(G, G^t|G^0, G^1)$, and can be expressed as:

 $p_t(G^0, G^1|G^t) = p_{1|t}(G^1|G^t, G^0) \frac{p_t(G^t|G^0, G^1)\pi(G^0, G^1)}{\sum_{G^0 G^1} p_t(G^t|G^0, G^1)\pi(G^0, G^1)}.$

$$u_t(G, G^t) = \sum_{(G^0, G^1) \sim \pi} u_t(G, G^t | G^0, G^1) p_t(G^0, G^1 | G^t),$$
(2)

(3)

169 170

175 176 177

184

187

GGFlow chooses the conditional marginal probability $u_t(G, G^t | G^0, G^1)$ as:

$$u_t(G, G^t | G^0, G^1) = \frac{1}{\mathbf{Z}_t(1-t)p_{\text{ref}}} \delta\{G, G^1\}(1 - \delta\{G^t, G^1\}), G_t \neq G,$$
(4)

where ReLU(a) = max(a,0) and $\mathbf{Z}_t = |\{G^t : p_t(G^t|G^0, G^1) > 0\}|$. More details about the conditional vector field are provided in Appendix C.2.

Training objective Given the intractability of the posterior distribution $p_{1|t}(G^1|G^t, G^0)$, we approximate it as $\hat{p}_{1|t}(G^1|G^t, G^0)$ using neural network, as detailed in Section 3.3. The training objective is formulated as:

$$\mathcal{L} = \mathbb{E}_{p_{\text{data}}(G^1)\mathcal{U}(t;0,1)\pi(G^0,G^1)p_t(G^t|G^0,G^1)}[\log \hat{p}_{1|t}(G^1|G^t,G^0)],\tag{5}$$

where $\mathcal{U}(t; 0, 1)$ is a uniform distribution on [0, 1].

Sampling Procedure In the absence of the data distribution G^1 during sampling, we reparameterize the conditional probability $p_t(G^0, G^1|G^t)$ as:

$$p_t(G^0, G^1|G^t) = p_{1|t}(G^1|G^t, G^0) \frac{p_t(G^t|G^0)p(G^0)}{\sum_{G^0} p_t(G^t|G^0)p(G^0)}.$$
$$p_t(G^t|G^0) = \operatorname{Cat}\left(t\delta\{V^1, V\} + (1-t)p_V^{\operatorname{ref}}, t\delta\{E^1, E\} + (1-t)p_E^{\operatorname{ref}}\right)$$

And we can simplify the generative process $p_{t+\Delta t|t}(G^{t+\Delta t}|G^t, G^0)$ without the calculation of the full expectation over conditional vector field $u_t(G, G^t|G^0, G^1)$:

$$p_{t+\Delta t|t}(G^{t+\Delta t}|G^{t},G^{0}) = \mathbb{E}_{\hat{p}_{t}(G^{1}|G^{t},G^{0})}[\delta(G^{t},G^{t+\Delta t}) + u_{t}(G^{t},G^{t+\Delta t}|G^{0},G^{1})\Delta t]$$
$$= \sum_{G^{1}} p_{t+\Delta t|t}(G^{t+\Delta t}|G^{1},G^{t},G^{0})\hat{p}_{1|t}(G^{1}|G^{t},G^{0}).$$
(6)

199 200

201

202

203

204

205 206

215

194

195 196 197

We first sample the \hat{G}^1 using the approximate distribution $\hat{p}_{1|t}(G^1|G^t, G^0)$ and then sample the next state $G^{t+\Delta t}$ using sampled \hat{G}^1 . The sampling procedure $p_{t+\Delta t|t}(G^{t+\Delta t}|G^1, G^t, G^0)$ can thus be formulated as:

 $G^{t+\Delta t} \sim \delta\{\cdot, G^t\} + u_t(\cdot, G^t | G^0, \hat{G}^1) \Delta t.$

Further details on the sampling and training procedures are provided in Algorithms 1 and 4.

207 3.2 Optimal transport for graph flow matching

Optimal transport (OT) has been effectively applied to flow matching generative models in continuous variable spaces, to improve generative performance (Tong et al., 2023; Bose et al., 2023; Song et al., 2024). To generalize this for graphs, we extend the joint distribution $\pi(G^0, G^1)$ from independent coupling to the 2-Wasserstein OT map ϕ^* , which minimizes the 2-Wasserstein distance between p_{ref} and p_{data} . To optimize the computational efficiency of OT, we define the distance via the Hamming distance $H(G^1, G^0)$ (Bookstein et al., 2002):

$$\phi^*(p_0, p_1) = \arg\inf_{\phi \in \Phi} \int_{\mathbb{R}^d \times \mathbb{R}^d} H(G^0, G^1) \mathrm{d}\phi(G^0, G^1), \tag{7}$$

Algorithm 1 Sampling Procedure of GGFlow

where

$$H(G^{0}, G^{1}) = \sum_{i} \delta(v_{i}^{0}, v_{i}^{1}) + \lambda \sum_{i,j} \delta(e_{ij}^{0}, e_{ij}^{1}).$$
(8)

Here Φ represents the set of all joint probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ that are consistent with the marginal distributions p_0 and p_1 , where $G^K = \{V_i^K\}, E^K = \{e_{ij}^K\}_{ij}\}, K = 0, 1.$

The practical application of OT to large datasets is computationally intensive, often requiring cubic time complexity and quadratic memory (Tong et al., 2020; Villani, 2009). To address these challenges, we use a minibatch approximation of OT (Fatras et al., 2021). A detailed time analysis of optimal transport during the training procedure is provided in Appendix E..

3.3 GRAPHEVO: EDGE-AUGMENTED GRAPH TRANSFORMER

Our neural network, GraphEvo, predicts the posterior distribution $\hat{p}_{1|t}(G^1|G^t, G^0)$ using the interme-diate graph G^t and initial noise graph G^0 . In graph-structured data, edge and structural information are as critical as node attributes, and incorporating edge relations enhances link generation tasks (Hussain et al., 2024; Hou et al., 2024; Jumper et al., 2021). To capture these relations, GraphEvo extends the graph transformer by introducing a triangle attention mechanism for edge updates, along with additional graph features y, such as cycles and the number of connected components (Vignac et al., 2022). This enables GraphEvo to efficiently and accurately capture the joint distribution of all graph components. The key self-attention mechanisms are outlined in Algorithm 2, where node, edge, and graph features are represented as $\mathbf{X} \in \mathbb{R}^{bs \times n \times dx}$, $\mathbf{E} \in \mathbb{R}^{bs \times n \times dx}$, and $\mathbf{y} \in \mathbb{R}^{bs \times n \times dy}$, where bs denotes batch size, n is the number of nodes, and dx and dy are the feature dimensions for node and global features, respectively. Further details are provided in Appendix D.

Rec	nuire: $\mathbf{X} \in \mathbb{R}^{bs \times n \times dx}$, $\mathbf{E} \in \mathbb{R}^{bs \times n \times dx}$, $\mathbf{v} \in \mathbb{R}^{bs \times n \times dy}$
1:	$\mathbf{Q}, \mathbf{K}, \mathbf{V} \leftarrow ext{Linear}(\mathbf{X})$
2:	$\mathbf{Y} \leftarrow \frac{\mathbf{Q} \times \mathbf{K}}{\sqrt{d_{\mathbf{X}}}}$ // Calculation attention score for node embedding
3:	$\mathbf{Y} \leftarrow \widetilde{FiLM}(\mathbf{Y}, \mathbf{E})$ // Incorporate edge features to self-attention scores
4:	$\mathbf{E} \leftarrow \mathbf{Y}$
5:	$\mathbf{Q}_{\mathbf{e}}, \mathbf{K}_{\mathbf{e}}, \mathbf{V}_{\mathbf{e}}, \mathbf{b}, \mathbf{g} \leftarrow \operatorname{Linear}(\mathbf{E})$
6:	$\mathbf{Y}_{\mathbf{e}} \leftarrow \frac{\mathbf{Q}_{\mathbf{e}} \times \mathbf{K}_{\mathbf{e}}}{\sqrt{d_{\mathbf{Y}_{\mathbf{e}}}}} + \mathbf{b}$ // Calculation triangle attention score for edge embedding
7:	$\mathbf{E} \leftarrow \mathbf{Y}_{\mathbf{e}} * \mathbf{V}_{\mathbf{e}} * \operatorname{sigmoid}(\mathbf{g})$
8:	$\mathbf{E} \leftarrow \operatorname{Linear}(\operatorname{FiLM}(\mathbf{E}, \mathbf{y}))$ // Incorporate global structural features to edge embedding
9:	$\mathbf{X} \leftarrow \mathbf{Y} * \mathbf{V}$
10:	$\mathbf{X} \leftarrow \operatorname{Linear}\left(\operatorname{FiLM}(\mathbf{X}, \mathbf{y})\right)$ // Incorporate global structural features to node embedding
11:	$\mathbf{y} \leftarrow \text{Linear}(\text{Linear}(\mathbf{y}) + \text{PNA}(\mathbf{X}) + \text{PNA}(\mathbf{E}))$
12:	return X, E, y

2703.4PERMUTATION PROPERTY ANALYSIS271

Graphs are invariant to random node permutations, and GGFlow preserves this property. To ensure permutation invariance, we analyze the permutation properties of our neural network, training objectives, and conditional probabilities path. First, we analyze the permutation invariance of the training objectives (Vignac et al., 2022). Since the source and target distributions are permutation invariant, the independent coupling also exhibits this invariance. Our optimal transport map, derived from Equation 7, similarly demonstrates invariance to identical permutations. Further clarifications regarding optimal transport can be found in Appendix C.4.

Theorem 1. If the distributions $p(G^0)$ and $p(G^1)$ are permutation invariant, and the cost function maintains invariance under identical permutations, i.e., $H(G^0, G^1) = H(\pi G^0, \pi G^1)$ for any permutation π , then the optimal transport map ϕ also exhibits invariance under identical permutations, such that $\phi(G^0, G^1) = \phi(\pi G^0, \pi G^1)$.

Proof of this theorem can be found in Appendix C.4. To ensure that the generated graph retains its identity under random permutations, the generated distribution must remain exchangeable, and GraphEvo must be permutation equivariant.

Proposition 1. The distribution generated by the conditional flow is exchangeable with respect to nodes and graphs, i.e. $p(\mathbf{V}, \mathbf{E}) = \mathbf{p}(\pi^* \mathbf{V}, \pi^* \mathbf{E}\pi)$, where π is a permutation operator.

289 Proposition 2. GraphEvo is permutation equivariant.290

²⁹¹ The proofs of Proposition 1 and 2 are provided in Appendix C.3 and Appendix D.1, respectively.

292 293

294

306 307 3.5 GOAL-GUIDED FRAMEWORK FOR CONDITIONAL GENERATION

For practical applications such as drug discovery, we propose a goal-guided framework for discrete flow matching, employing reinforcement learning (RL) to guide graph flow matching models for non-differentiable objectives. The goal of the guidance method is to map the noise distribution p_0 to a preference data distribution p_1^* using a reward function $\mathcal{R}(G^t, t)$.

We formulate the inference process of flow matching as a Markov Decision Process (MDP), where (G^t, t) and $G^{t+\Delta t}$ are the state space \mathbf{s}_t and action space \mathbf{a}_t , p_0 is an initial noise distribution, $p_{t+\Delta t|t}(G^{t+\Delta t}|G^t, t)$ is the transition dynamics and policy network $\pi(\mathbf{a}_t|\mathbf{s}_t)$, $\mathcal{R}(G^t, t) = r(G^1)\mathbb{I}[t=1]$ is the reward function

To enable exploration, we introduce a temperature parameter T for the policy network during sampling, allowing the model to explore a broader space at higher temperatures:

$$\pi(\mathbf{a}_t|\mathbf{s}_t) = p_{t+\Delta t|t}(G^{t+\Delta t}|G^t, t) = \operatorname{Cat}\left((\delta\{\cdot, G^t\} + u_t(\cdot, G^t|G^0, \hat{G}^1)\Delta t)/T\right)$$
(9)

The goal of RL training is to maximize the reward function. To prevent overfitting to the reward preference distribution, we add a Kullback–Leibler (KL) divergence term between the Reinforcement learning fine-tuned model $p_{\theta}^{RL}(\cdot)$ and pre-trained model $p_{\theta}(\cdot)$ (Ouyang et al., 2022).

We employ the policy gradient method to update the network, where the policy is refined to $\pi(\mathbf{a}_t|\mathbf{s}_t) = p_{\theta}^{(T)}(G^1|G^t)q(G^{t+\Delta t}|G^1)$ to $\pi(\mathbf{a}_t|\mathbf{s}_t) = p_{\theta}^{(T)}(G^1|G^t)$ (Sutton et al., 1999; Liu et al., 2024b), directly increasing the probability of generating G^1 with higher rewards at all timestep t. The training objective is:

316
317
318

$$\mathcal{L}_{RL} = -\mathbb{E}_{p_{\theta}(G^{0:t:1})}[\alpha \mathcal{R}(G^{1})\sum_{t=0}^{t=1}\log p_{\theta}^{RL}(G^{1}|G^{t},G^{0}) - \beta \sum_{t=0}^{t=1}\mathrm{KL}(p_{\theta}^{RL}(G^{1}|G^{t},G^{0})||p_{\theta}(G^{1}|G^{t},G^{0}))$$
319
(10)

where $p_{\theta}(G^{0:t:1})$ represents $p_{data}(G^1)\mathcal{U}(t;0,1)\pi(G^0,G^1)p_t(G^t|G^0,G^1)$. Using this optimization objective, we fine-tune the pre-trained flow matching model to generate data following the preference distribution. By integrating optimal transport, we optimize the pairing of prior data and high-reward training data (Chen et al., 2020a). The pseudo-code for the guided GGFlow training is provided in Algorithm 5 and a toy example is shown in Appendix G.

³²⁴ 4 EXPERIMENT

330

To validate the performance of our method, we compare GGFlow with state-of-the-art graph generative baselines on generic graph generation and molecule generation, over several benchmarks in Section 4.1 and Section 4.2, respectively. The ability of GGFlow to perform conditional generation is analyzed in Section 4.3. Finally, we conduct detailed ablation studies presented in Section 4.4.

331 4.1 GENERIC GRAPH GENERATION332

We evaluated GGFlow on five generic graph generation benchmarks of varying sizes: Ego-small, 333 Community-small, Grid, Planar and Enzymes. We employ the same train/test split as GraphRNN 334 (You et al., 2018), utilizing 80% of each dataset for training and the remaining for testing. We 335 compared GGFlow's performance against well-known autoregressive models: DeepGMG (Li et al., 336 2018), GraphRNN (You et al., 2018), GraphAF (Shi et al., 2019), and GraphDF (Luo et al., 2021) 337 and one-shot models: GraphVAE (Simonovsky and Komodakis, 2018), GNF (Liu et al., 2019), EDP-338 GNN (Niu et al., 2020), GDSS (Jo et al., 2022a), DiGress (Vignac et al., 2022), GRASP (Minello 339 et al., 2024), GSDM (Luo et al., 2023), GruM (Jo et al., 2024), and SwinGNN (Yan et al., 2023). 340 Consistent with previous studies, we generated an equal number of graphs as the test set to compare 341 distributions of graph statistics, including degree distribution (Deg.), clustering coefficient (Clus.), 342 and the frequency of 4 node orbits (Orbit). Detailed descriptions of datasets, baselines, and metrics are provided in Appendix I. 343

Table 1 presents our results, showing that GGFlow achieves superior performance across most metrics.
 Additionally, GGFlow demonstrates comparable performance compared to state-of-the-art models in
 generating large graphs on the Grid dataset. These findings underscore the effectiveness of GGFlow
 at capturing the local characteristics and data distributions of graphs. Additional metrics and dataset
 experimental results are included in Appendix H, and we visualize the generated graphs in Appendix
 K.

Ego-small Community-small Grid Method Step Deg. Deg. Deg. Clus. Orbit Clus. Orbit Clus. Orbit Avg. Avg. Avg. Training Set 0.014 0.022 0.004 0.013 0.003 0.009 0.001 0.005 0.000 0.000 0.000 0.000 0.040 0.100 0.020 0.053 0.220 0.950 0.400 0.523 DeepGMG GraphRNN 0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.0800.064 0.043 0.021 0.043 GraphAF 0.107 0.001 0.178 0.022 0.031 0.046 0.204 0.135 GraphDF 0.039 0.060 0.030 0.128 0.012 0.046 0.116 0.069 0.030 0 1 0 0 0.001 0.044 0.200 0.200 0 1 7 0 GNF 0.110 GraphVAE 1 594 0.000 0 9 0 4 0.137 0.166 0.051 0.118 0.358 0.969 0.551 0.626 0.833 EDP-GNN 0.054 0.092 0.007 0.051 0.050 0.159 0.027 0.079 0.460 0.243 0.316 0.340 1000 GDSS 0.027 0.033 0.008 0.022 0.044 0.098 0.009 0.058 0.133 0.009 0.123 0.088 1000 GSDM 0.020 0.050 0.005 0.053 0.002 0.000 0.000 0.001 1000 0.028 0.046 0.008 0.027 DiGress 0.032 0.047 0.009 0.025 0.037 0.046 0.069 0.051 500 SwinGNN 0.017 0.060 0.003 0.027 0.006 0.125 0.018 0.050 0.000 0.000 0.000 0.000 500 GGFlow 0.005 0.033 0.004 0.014 0.011 0.030 0.002 0.014 0.030 0.000 0.016 0.015 500

Table 1: Generation results on the generic graph datasets. Results are the means of 3 different runs. The best results and the second-best results are marked **bold** and bold.

366 367

368

364

350

351

352 353

354

355

356

357

358

359

360

361

362

4.2 MOLEUCLE GRAPH GENERATION

We evaluated GGFlow on two standard molecular datasets, QM9 (Ramakrishnan et al., 2014) 369 and ZINC250k (Irwin et al., 2012), using several metrics: Validity, Validity without correction, 370 Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) Maximum Mean Discrepancy (MMD), 371 and Frechet ChemNet Distance (FCD). To calculate these metrics, we sampled 10,000 molecules. 372 We compared GGFlow against various molecule generation models, including GraphAF, GraphDF, 373 MolFlow (Zang and Wang, 2020), EDP-GNN, GraphEBM (Liu et al., 2021), GDSS, PS-VAE (Kong 374 et al., 2022), MolHF (Zhu et al., 2023), GruM, SwinGNN, DiGress, and GSDM. Detailed descriptions 375 of the datasets, baselines and metrics are provided in Appendix I. 376

377 The results, presented in Table 2, indicate that GGFlow effectively captures the distribution of molecular data, showing significant improvements over the baselines. The high Validity without correction

suggests that GGFlow successfully learns chemical valency rules. Additionally, GGFlow achieves superior NSPDK and FCD scores on both datasets, demonstrating its ability to generate molecules with distributions closely resembling those of natural molecules. Visualizations of molecules generated by different models are shown in Figure 2, with additional results on GGFlow provided in Appendix K.

Table 2: Generation results on the QM9 and ZINC250k datasets. Results are the means of 3 different runs. The best results and the second-best results are marked **bold** and <u>bold</u>.

Method		Q	M9			ZIN	C 250k		Sten
, icinou	Val.	Val. w/o	NSPDK	FCD	Val.	Val. w/o	NSPDK	FCD	Step
		corr.				corr.			
Training Set	100	100	0.0001	0.040	100	100	0.0001	0.062	-
GraphAF	100	67.14	0.0218	5.246	100	67.92	0.0432	16.128	-
GraphDF	100	83.14	0.0647	10.451	100	89.72	0.1737	33.899	-
MolFlow	100	92.03	0.0169	4.536	100	63.76	0.0468	20.875	-
GraphEBM	100	8.78	0.0287	6.402	100	5.29	0.2089	35.467	-
PS-VAE	-	-	0.0077	1.259	-	-	0.0112	6.320	-
MolHF	-	-	-	-	100	93.62	0.0387	23.940	-
EDP-GNN	100	47.69	0.0052	2.683	100	83.16	0.0483	16.819	1000
GDSS	100	96.17	0.0033	2.565	100	97.12	0.0192	14.032	1000
GSDM	100	99.90	0.0034	2.614	100	92.57	0.0168	12.435	1000
GruM	100	99.69	0.0002	0.108	100	98.32	0.0023	2.235	1000
SwinGNN	100	99.66	0.0003	0.118	100	86.16	0.0047	4.398	500
DiGress	100	98.29	0.0003	0.095	100	94.98	<u>0.0021</u>	3.482	500
GGFlow	100	99.91	0.0002	0.148	100	99.63	0.0010	1.455	500

Figure 2: Visualization of generated samples of different models in different molecular datasets

416 4.3 CONDITIONAL GENERATION

To further evaluate the performance of our model, we conducted conditional generation experiments on the QM9 dataset, focusing on generating molecules with molecular properties μ that closely match a target value μ^* . In the experiment, we set the target value as 1, i.e. $\mu^* = 1$.

For the experiment, we employed a reinforcement learning-based guidance method and compared it to the guided version of DiGress, which also proposes an effective approach for discrete diffusion models in conditional generation tasks. The reward function was defined as $|\mu - \mu^*|$, and the model was trained over 10,000 steps using the training settings detailed in Section 4.2. To evaluate the effectiveness of our guidance method, we compared it against three baselines: (1) Guidance for DiGress (Vignac et al., 2022). (2) Direct supervised training (ST) (3) Supervised fine-tuning (SFT). Additionally, we calculated the mean and variance of $|\mu - \mu^*|$ for samples generated unconditionally by both DiGress and GGFlow to provide a baseline comparison. Further details of the experiment are provided in Appendix I.5.

The results, detailed in Table 3, demonstrate the superiority of our reinforcement learning-based
 conditional generation method over both ST and SFT approaches. Notably, our method surpasses the
 guidance techniques used in diffusion models, showcasing its enhanced ability to steer the generative

process toward desired outcomes. Additionally, our approach achieves higher validity in conditional generated tasks, highlighting its robustness and superior performance in goal-directed generation.

Table 3: Mean absolute error of molecular property μ on conditional generation on the QM9 dataset.

Methods	DiG	ess		GGFlow		
111001000	Uncondition	+Guidance	Unconditition	Supervised Training	+SFT	+RL
Mean	1.562	1.092	1.569	1.184	1.223	0.672
Variance	1.641	0.894	1.987	1.579	1.893	0.647
Val. w/o corr.	96.54	74.2	98.93	86.1	87.0	92.2

4.4 ABLATION STUDIES

To validate the efficiency and effectiveness of GGFlow, we conducted a series of ablation experiments using the Community-small and Planar datasets, focusing on: (1) the results of varying inference steps, (2) the model performance without the integration of Optimal Transport (OT), denoted as GGFlow (w/o OT), and (3) the model performance without the GraphEvo module, denoted as GGFlow (w/o Evo). (4) the model performance without the GraphEvo module and optimal transport, denoted as GGFlow (w/o both). The results of these studies are depicted in Figure 3 and detailed in Table 4. Additional details about the experimental settings are provided in Appendix J.2.

The results for varying inference steps are il-lustrated in Figure 3. Our findings indicate that GGFlow outperforms other diffusion-based models with fewer inference steps, such as 100 and 200, highlighting GGFlow's enhanced sam-pling efficiency. Furthermore, the integration of Optimal Transport significantly boosts sampling efficiency and enhances generative performance and stability, as evidenced by performance gains in both generic graph generation tasks. Further inference results for the Planar dataset, which reinforce the advantages of Optimal Transport, can be found in Appendix J.2. Moreover, the GraphEvo module improves the performance of

Figure 3: Ablation Studies of varying inference steps on Community-small dataset.

GGFlow. The triangle attention mechanism for edges in GraphEvo captures more complex node and
 edge features, leading to substantial performance improvements. Moreover, even without the com bined use of GraphEvo and Optimal Transport, our methods still outperform DiGress, highlighting
 the advantages of flow matching over traditional diffusion models. A detailed analysis of the training
 procedure, which illustrates the stability provided by Optimal Transport, is also included in Appendix
 J.2..

Table 4: Ablation studies on the OT and GraphEvo on the Community-small and Planar datasets. Results are the means of 3 different runs. The best results are marked **bold**.

Method	Com	munity-	small	Planar						
	Deg.	Clus.	Orbit	Deg.	Clus.	Orbit	Spec.	Val.&Nov.&Uni.	Step	
DiGress	0.032	0.047	0.009	0.0003	0.0372	0.0098	0.0106	87.5	500	
GGFlow (w/o both)	0.029	0.076	0.003	0.0023	0.1076	0.0053	0.0099	92.5	500	
GGFlow (w/o OT)	0.028	0.027	0.007	0.0015	0.0431	0.0020	0.0067	97.0	500	
GGFlow (w/o Evo)	0.018	0.075	0.004	0.0020	0.0763	0.0034	0.0124	94.5	500	
GGFlow	0.001	0.084	0.004	0.0156	0.0196	0.0019	0.0091	97.5	500	

486 5 CONCLUSION

In this paper, we introduced GGFlow, a discrete flow matching generative model for graphs that incorporates optimal transport and an innovative graph transformer network. GGFlow achieves state-of-the-art performance in unconditional graph generation tasks. Additionally, we presented a novel guidance method using reinforcement learning to control the generative trajectory toward a preferred distribution. Furthermore, our model demonstrates the ability to achieve the best performance across various tasks with fewer inference steps compared to other baselines which highlights the practical impact of our guidance method. A primary limitation is scalability to larger graphs ($|\mathcal{V}| > 500$), attributable to the increased time complexity from triangle attention updates and spectral feature computations. Generation times for different graph scales are provided in Appendix J.3. Future work will focus on enhancing our model's scalability in larger graphs.

540 REFERENCES

548

570

571

572

573

577

578

579

- Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 Denoising Diffusion Models in Discrete State-Spaces. *Advances in Neural Information Processing Systems*, 34:17981–17993, 2021.
- Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient and
 Scalable Graph Generation through Iterative Local Expansion. *arXiv preprint arXiv:2312.11529*, 2023.
- Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
 and scalable graph generation through iterative local expansion. In *The Twelfth International Conference on Learning Representations*, 2024.
- Camille Bilodeau, Wengong Jin, Tommi Jaakkola, Regina Barzilay, and Klavs F Jensen. Generative
 models for molecular discovery: Recent advances and challenges. *Wiley Interdisciplinary Reviews: Computational Molecular Science*, 12(5):e1608, 2022.
- Abraham Bookstein, Vladimir A Kulyukin, and Timo Raita. Generalized Hamming Distance. *Information Retrieval*, 5:353–375, 2002.
- Joey Bose, Tara Akhound-Sadegh, Kilian FATRAS, Guillaume Huguet, Jarrid Rector-Brooks, Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M Bronstein, and Alexander Tong. SE (3)-Stochastic Flow Matching for Protein Backbone Generation. In *The Twelfth International Conference on Learning Representations*, 2023.
- Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
 Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co Design. *arXiv preprint arXiv:2402.04997*, 2024.
- Liqun Chen, Ke Bai, Chenyang Tao, Yizhe Zhang, Guoyin Wang, Wenlin Wang, Ricardo Henao, and
 Lawrence Carin. Sequence generation with optimal-transport-enhanced reinforcement learning.
 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 7512–7520,
 2020a.
 - Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu. Graph optimal transport for cross-domain alignment. In *International Conference on Machine Learning*, pages 1542–1553. PMLR, 2020b.
- Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and Degree-Guided Graph Generation
 via Discrete Diffusion Modeling. In *Proceedings of the 40th International Conference on Machine Learning*, pages 4585–4610, 2023.
 - Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs. *ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models*, 2018.
- Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem van de Meent. Variational flow matching for graph generation. *arXiv preprint arXiv:2406.04843*, 2024.
- Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. *Publ. math. inst. hung. acad. sci*, 5(1):17–60, 1960.
- 587 Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval, and Nicolas Courty.
 588 Minibatch optimal transport distances; analysis and applications. *arXiv preprint arXiv:2101.01792*, 2021.
- Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
 Yaron Lipman. Discrete flow matching. *arXiv preprint arXiv:2407.15595*, 2024.
- 593 Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative Generative Modeling of Graphs. In *International conference on machine learning*, pages 2434–2444. PMLR, 2019.

614

621

630

634

- Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffusion
 models for graphs benefit from discrete state spaces. In *NeurIPS 2022 Workshop: New Frontiers in Graph Learning*, 2022.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
 Video Diffusion Models. *Advances in Neural Information Processing Systems*, 35:8633–8646, 2022.
- Kiaoyang Hou, Tian Zhu, Milong Ren, Bo Duan, Chunming Zhang, Dongbo Bu, and Shiwei Sun.
 Gtam: A molecular pretraining model with geometric triangle awareness. *Bioinformatics*, page btae524, 2024.
- Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based on discrete graph
 structures for molecular graph generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 4302–4311, 2023.
- Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Triplet interaction improves graph transformers: Accurate molecular graph learning with triplet graph transformers. In *Forty-first International Conference on Machine Learning*, 2024. URL https://openreview. net/forum?id=iPFuWc1TV2.
- John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein space with a programmable generative model. *Nature*, pages 1–9, 2023.
- John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. ZINC: A
 Free Tool to Discover Chemistry for Biology. *Journal of chemical information and modeling*, 52 (7):1757–1768, 2012.
- Yunhui Jang, Seul Lee, and Sungsoo Ahn. A Simple and Scalable Representation for Graph Generation. In *The Twelfth International Conference on Learning Representations*, 2023.
- Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Variational Autoencoder for
 Molecular Graph Generation. In *International conference on machine learning*, pages 2323–2332.
 PMLR, 2018.
- Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based Generative Modeling of Graphs via the
 System of Stochastic Differential Equations. arXiv:2202.02514, 2022a. URL https://arxiv.
 org/abs/2202.02514.
- Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based Generative Modeling of Graphs via the
 System of Stochastic Differential Equations. In *International Conference on Machine Learning*,
 pages 10362–10383. PMLR, 2022b.
 - Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. In *Forty-first International Conference on Machine Learning*, 2024.
- John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873):583–589, 2021.
- Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. *Advances in Neural Information Processing Systems*, 36, 2024.
- Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
 Autoregressive diffusion model for graph generation. In *International conference on machine learning*, pages 17391–17408. PMLR, 2023.
- Kiangzhe Kong, Wenbing Huang, Zhixing Tan, and Yang Liu. Molecule generation by principal subgraph mining and assembling. *Advances in Neural Information Processing Systems*, 35: 2550–2563, 2022.

648 649 650	Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets. In <i>International Conference on Learning Representations</i> , 2020.
651 652	Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning Deep Generative Models of Graphs. <i>arXiv preprint arXiv:1803.03324</i> , 2018.
654 655 656	Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow Matching for Generative Modeling. In <i>The Eleventh International Conference on Learning Representations</i> , 2022.
658 659	Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph Normalizing Flows. Advances in Neural Information Processing Systems, 32, 2019.
660 661	Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. GraphEBM: Molecular Graph Generation with Energy-Based Models. <i>arXiv preprint arXiv:2102.00546</i> , 2021.
662 663 664 665	Shiwei Liu, Tian Zhu, Milong Ren, Chungong Yu, Dongbo Bu, and Haicang Zhang. Predicting muta- tional effects on protein-protein binding via a side-chain diffusion probabilistic model. <i>Advances</i> <i>in Neural Information Processing Systems</i> , 36, 2024a.
666 667	Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Wei Chen, and Min Lin. Graph Diffusion Policy Optimization. <i>arXiv preprint arXiv:2402.16302</i> , 2024b.
669 670	Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast Graph Generation via Spectral Diffusion. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2023.
671 672 673	Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A Discrete Flow Model for Molecular Graph Generation. In <i>International conference on machine learning</i> , pages 7192–7203. PMLR, 2021.
674 675 676	Tengfei Ma, Jie Chen, and Cao Xiao. Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders. <i>Advances in Neural Information Processing Systems</i> , 31, 2018.
677 678 679	Manuel Madeira, Clement Vignac, Dorina Thanou, and Pascal Frossard. Generative modelling of structurally constrained graphs. <i>arXiv preprint arXiv:2406.17341</i> , 2024.
680 681	Giorgia Minello, Alessandro Bicciato, Luca Rossi, Andrea Torsello, and Luca Cosmo. Graph generation via spectral diffusion. <i>arXiv preprint arXiv:2402.18974</i> , 2024.
682 683 684 685	Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per- mutation Invariant Graph Generation via Score- Based Generative Modeling. In <i>International</i> <i>Conference on Artificial Intelligence and Statistics</i> , pages 4474–4484. PMLR, 2020.
686 687 688 689	Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. <i>Advances in neural information processing systems</i> , 35:27730–27744, 2022.
690 691 692 693	Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. Got: an optimal transport framework for graph comparison. <i>Advances in Neural Information Processing Systems</i> , 32, 2019.
694 695 696	Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch couplings. <i>arXiv preprint arXiv:2304.14772</i> , 2023.
697 698 699	Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum chemistry structures and properties of 134 kilo molecules. <i>Scientific data</i> , 1(1):1–7, 2014.
700 701	Milong Ren, Tian Zhu, and Haicang Zhang. Carbonnovo: Joint design of protein structure and sequence using a unified energy-based model. In <i>Forty-first International Conference on Machine Learning</i> , 2024. URL https://openreview.net/forum?id=FSxTEvuFa7.

702 703 704	Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn, and Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments. <i>Nucleic acids research</i> , 32(suppl_1):D431–D433, 2004.
705 706 707	Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective Classification in Network Data. <i>AI magazine</i> , 29(3):93–93, 2008.
708 709 710	Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation. In <i>International Conference on Learning Representations</i> , 2019.
711 712 713 714 715	Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, pages 412–422. Springer, 2018.
716 717 718 719	Daniel GA Smith, Lori A Burns, Andrew C Simmonett, Robert M Parrish, Matthew C Schieber, Raimondas Galvelis, Peter Kraus, Holger Kruse, Roberto Di Remigio, Asem Alenaizan, et al. PSI4 1.4: Open-source software for high-throughput quantum chemistry. <i>The Journal of chemical</i> <i>physics</i> , 152(18), 2020.
720 721 722 722	Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In International Conference on Learning Representations, 2020.
724 725 726	Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou, and Wei-Ying Ma. Equivariant Flow Matching with Hybrid Probability Transport for 3D Molecule Generation. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.
727 728 729	Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods for Reinforcement Learning with Function Approximation. <i>Advances in neural information processing systems</i> , 12, 1999.
730 731 732 733	Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet: A dynamic optimal transport network for modeling cellular dynamics. In <i>International conference</i> <i>on machine learning</i> , pages 9526–9536. PMLR, 2020.
734 735 736 737	Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian FATRAS, Guy Wolf, and Yoshua Bengio. Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport. In <i>ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems</i> , 2023.
738 739 740 741	Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard. Digress: Discrete denoising diffusion for graph generation. <i>arXiv preprint arXiv:2209.14734</i> , 2022.
742 743	Cédric Villani. Optimal Transport, volume 338 of. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], page 71, 2009.
744 745 746 747	Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and Minyi Guo. GraphGAN: Graph Representation Learning With Generative Adversarial Nets. In <i>Proceedings of the AAAI conference on artificial intelligence</i> , 2018.
748 749 750	Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein structure and function with RFdiffusion. <i>Nature</i> , 620(7976):1089–1100, 2023.
751 752 753 754	Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Ma- hashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph generation. <i>arXiv preprint arXiv:2405.11416</i> , 2024.
755	Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permutation invariance in diffusion models for graph generation. <i>arXiv preprint arXiv:2307.01646</i> , 2023.

756 757 758 750	Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast protein backbone generation with se (3) flow matching. <i>arXiv preprint arXiv:2310.05297</i> , 2023.
759 760 761	Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. In <i>International conference on machine learning</i> , pages 5708–5717. PMLR, 2018.
762 763 764 765	Chengxi Zang and Fei Wang. MoFlow: an invertible flow model for generating molecular graphs. In <i>Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining</i> , pages 617–626, 2020.
766 767 768	Lingxiao Zhao, Xueying Ding, and Leman Akoglu. Pard: Permutation-invariant autoregressive diffusion for graph generation. <i>arXiv preprint arXiv:2402.03687</i> , 2024.
769 770 771 772	Tian Zhu, Milong Ren, and Haicang Zhang. Antibody design using a score-based diffusion model guided by evolutionary, physical and geometric constraints. In <i>Forty-first International Conference on Machine Learning</i> , 2024. URL https://openreview.net/forum?id=lysQI04KaN.
773 774 775 776	Yiheng Zhu, Zhenqiu Ouyang, Ben Liao, Jialu Wu, Yixuan Wu, Chang-Yu Hsieh, Tingjun Hou, and Jian Wu. Molhf: a hierarchical normalizing flow for molecular graph generation. In <i>Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence</i> , pages 5002–5010, 2023.
777	
778	
779	
780	
781	
782	
783	
784	
700	
700	
788	
780	
790	
791	
792	
793	
794	
795	
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
806	
807	
808	
808	

- 810 APPENDIX 811
- 812

815

A BACKGROUND

A.1 CONTINUOUS FLOW MATCHING GENERATIVE MODEL

The generative model aims to establish a mapping $f : \mathbb{R}^d \to \mathbb{R}^d$ that transforms a noise distribution q_0 into a target data distribution q_1 . This transformation is dependent on a density function p_0 over \mathbb{R}^d , and an integration map ψ_t , which induces a pushforward transformation $p_t = [\psi_t]_{\#}(p_0)$. This denotes the density of points $x \sim p_0$ transported from time 0 to time t along a vector field $u : [0, 1] \times \mathbb{R}^d \to \mathbb{R}^d$.

The vector field u is formulated as:

822 823

828 829

835 836

844 845 846

847

848 849

850

851 852 853

854

855 856 $\mathrm{d}x = u_t(x)\mathrm{d}t.$

The solution $\psi_t(x)$ to this ODE, with the initial condition $\psi_0(x) = x$, represents the trajectory of the point x governed by u from time 0 to time t.

The evolution of the density p_t , viewed as a function $p: [0,1] \times \mathbb{R}^d \to \mathbb{R}$, is encapsulated by the continuity equation:

$$\frac{\partial p}{\partial t} = -\nabla \cdot (p_t u_t),$$

with the initial condition given by p_0 . Here, u is the probability flow ODE for the path of marginal probabilities p, generated over time.

In practical applications, if the probability path $p_t(x)$ and the generating vector field $u_t(x)$ are known and $p_t(x)$ is tractably sampled, we leverage a time-dependent neural network $v_{\theta}(\cdot, \cdot) : [0, 1] \times \mathbb{R}^d \to \mathbb{R}^d$ to approximate u. The neural network is trained using the flow matching objective:

$$\mathcal{L}_{\mathrm{FM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}(0,1), x \sim p_t(x)} \| v_\theta(t,x) - u_t(x) \|^2, \tag{11}$$

which enhances the model's capability to simulate the target dynamics accurately. Avoiding the explicit construction of the intractable vector field, recent works express the probability path as a marginal over a joint involving a latent variable z: $p(x_t) = \int p(z)p_{t|z}(x_t|z)$. (Lipman et al., 2022; Tong et al., 2023) and the $p_{t|z}(x_t|z)$ is a conditional probability path, satisfying some boundary conditions at t = 0 and t = 1.

The conditional probability path also satisfies the transport equation with the conditional vector field $u_t(x|x_1)$:

$$\frac{\partial p_t(x|x_t)}{\partial t} = -\nabla \cdot (u_t(x|x_1)p_t(x_t|x_1)).$$
(12)

We can construct the marginal vector field $u_t(x)$ via the conditional probability path $p_{t|1}(x_t|x_1)$ as:

$$u_t(x) = \mathbb{E}_{x_1 \sim p_{1|t}}[u_t(x|x_1)].$$
(13)

We can replace the flow matching loss \mathcal{L}_{FM} with an equivalent loss regressing the conditional vector field $u_t(x|x_1)$ and marginalizing x_1 instead:

$$\mathcal{L}_{\mathrm{CFM}}(\theta) = \mathbb{E}_{\mathcal{U}(t;0,1),x_1 \sim q, x_t \sim p_t(x|x_1)} [u_{\theta}(t,x) - u_t(x|x_1)].$$
$$\nabla_{\theta} \mathcal{L}_{\mathrm{FM}}(\theta) = \nabla_{\theta} \mathcal{L}_{\mathrm{CFM}}(\theta).$$

So we can use $\mathcal{L}_{\text{CFM}}(\theta)$ instead to train the parametric vector field u_{θ} .

B RELATED WORKS

857 858 859

861

862

B.1 COMPARISON WITH DISCRETE FLOW MATCHING

Campbell et al. (2024) first introduced flow matching in discrete spaces using a continuous-time Markov chain. Building on this, Gat et al. (2024) expanded the framework to encompass general

source and target couplings, including U-coupling and C-coupling. GGFlow advances discrete flow
 matching and its source-target coupling to suit graph-structured data. Our approach innovatively
 incorporates efficient optimal transport for graphs within the flow matching framework. To address
 the inherent sparsity and permutation invariance of graphs, we employ a tailored prior distribution.
 Additionally, we implement an edge-augmented graph transformer to enhance generative performance
 and adopt a goal-guided framework for conditional generation. These advancements collectively
 enhance the practical applicability of GGFlow.

871 872

873

878 879 880

882

883

884

885

886

887

889

897

898

906 907

908

B.2 COMPARISON WITH GRAPH DISCRETE DIFFUSION MODEL

DiGress (Vignac et al., 2022) and PPGN (Haefeli et al., 2022) were among the first to apply discrete
diffusion models to graph generation, highlighting the advantages of discrete state spaces. DiGress
further introduced an optimal prior distribution and global structural features specifically designed to
enhance graph generation. Their forward and generative processes are expressed as:

$$q(G^{t}|G^{0}) = \operatorname{Cat}(G^{t}, p = G^{0}\bar{Q}_{t}), \text{ with } \bar{Q}_{t} = Q_{1}Q_{2}\dots Q_{t},$$
(14)

$$q(G^{t-1}|G^t, G^0) = \frac{q(G^t|G^{t-1}, G^0)q(G^{t-1}|G^0)}{q(G^t|G^0)} = \operatorname{Cat}(G^{t-1}; p = \frac{G^t Q_t^T \odot G^0 \bar{Q}_{t-1}}{G^0 \bar{Q}_t G^{t*}}), \quad (15)$$

where G^t represents the noisy graph at time t, and Q_t is the time-dependent transition matrix. These methods require maintaining convergence properties of transition matrix and cumulative matrix products, constraining the choice of prior distributions and destabilizing training. In contrast, GGFlow employs a simpler interpolation between the prior and data distributions during training, avoiding cumulative products and improving both training stability and the ease of selecting appropriate priors.

B.3 COMPARISON WITH GRAPH DISCRETE FLOW MODEL

GraphDF (Luo et al., 2021) uses a discrete flow model to generate molecular graphs by sequentially
 sampling discrete latent variables and mapping them to nodes and edges via invertible modulo-shift
 transforms. GGFlow simplifies this by transforming the invertible modulo-shift into a conditional
 vector field that interpolates between the prior and data distributions, bypassing the need for complex
 invertible mappings. Furthermore, while GraphDF adopts an autoregressive process for graph
 generation, GGFlow generates the entire graph in a one-shot manner, capturing holistic relationships
 among nodes and edges more efficiently.

B.4 COMPARISON WITH GRAPH VARIATIONAL FLOW MATCHING

CatFlow (Eijkelboom et al., 2024) employs variational inference to apply flow matching to categorical data, but it only considers the conditional vector field under the assumption of independent coupling in the joint distribution $\pi(G^0, G^1)$ and fails to consider the inherent sparsity of graph structures. GGFlow extends this by generalizing $\pi(G^0, G^1)$ as a 2-Wasserstein optimal transport map and incorporating an optimal prior distribution tailored for graph structures, improving performance in generation tasks. Additionally, GGFlow introduces a novel goal-directed approach for discrete flow matching in conditional generation tasks, enhancing its practical applicability.

C PROOFS

909 910 C.1 Optimal Prior Distribution

This prior is structured as a product of a single distribution v for all nodes and a single distribution efor all edges, $\prod_i v \times \prod_{i,j} e$, to ensure exchangeability across the graph components.

Theorem 2 (Optimal prior distribution). Consider the class $C = \{\prod_i u \times \prod_{i,j} v, (u, v) \in \mathcal{P}(\mathcal{V}) \times \mathcal{P}(\mathcal{E})\}$ of distributions over graphs, which factorize as the product of a uniform distribution v over node attribute space \mathcal{V} and a uniform distribution e over edge attribute space \mathcal{E} . Given any arbitrary distribution P over graphs (viewed as a tensor of order $n + n^2$), with q_V and q_E as its marginal distributions for node and edge attributes respectively, then the orthogonal projection of P onto C is 918 defined as $\phi^G = \prod_i q_V \times \prod_{i,j} q_E$. This projection minimizes the Euclidean distance:

$$\phi^G \in \arg\min_{(v,e)\in\mathcal{C}} \|P - \prod_{1 \le i \le n} v \times \prod_{1 \le i,j \le n} e\|_2^2$$

The details and proof of Theorem 2 are extensively discussed in DiGress (Vignac et al., 2022).

C.2 CHOICE OF CONDITIONAL VELOCITY FIELD

In GGFlow, the conditional vector field for discrete flow matching is defined as (Campbell et al., 2024):

$$u_t(G, G^t | G^0, G^1) = \frac{\text{ReLU}(\partial_t p_{t|1}(G | G^1) - \partial_t p_{t|1}(G^t | G^1))}{\mathbf{Z}_t \cdot p_{t|1}(G^t | G^1)}$$
$$= \frac{1}{\mathbf{Z}_t(1-t)p_{\text{ref}}} \delta\{G, G^1\}(1-\delta\{G^t, G^1\}), G_t \neq G_t$$

where ReLU(a) = max(a, 0) and $\mathbf{Z}_t = |\{G^t : p_t(G^t|G^0, G^1) > 0\}|$. $u_t(G, G^t|G^0, G^1) = 0$ when $p_t(G|G^1, G^0) = 0$ and $p_t(G^t|G^1, G^0) = 0$. When $G^t = G$, the rate matrix $R(G^t, G^t|G^0, G^1) = -\sum_{G^t \neq G} R(G^t, G|G^0, G^1)$. For simplification, the graph G is denoted as variable x

Proof. Consider the conditional probability $p_{t|1}(x^t|x^1, x^0) = p_t(x^t|x^1, x^0) = \text{Cat}\left(t\delta\{x^1, x^t\} + (1-t)q_x\right)$, where q_x is the prior distribution. We derive its time derivative:

$$\partial_t p_{t|1}(x^t | x^1, x^0) = \delta\{x^1, x^t\} - q_x, \tag{16}$$

We then construct the conditional rate matrix $u_t(x^t, x|x^1, x^0)$ as:

$$u_t(x^t, x|x^1, x^0) = \frac{\operatorname{ReLU}(\partial_t p_{t|1}(x|x^1, x^0) - \partial_t p_{t|1}(x^t|x^1, x^0))}{\mathbf{Z}_t \cdot p_{t|1}(x^t|x^1, x^0)}$$
$$= \frac{\operatorname{ReLU}(\delta\{x, x^1\} - q_x - \delta\{x^t, x^1\} + q_x)}{\mathbf{Z}_t(t\delta\{x^1, x^t\} + (1 - t)q_x)}$$
$$\operatorname{ReLU}(\delta\{x, x^1\} - \delta\{x^t, x^1\})$$

$$= \frac{\text{ReLU}(\delta\{x, x^1\} - \delta\{x^t, x^1\})}{\mathbf{Z}_t(t\delta\{x^1, x^t\} + (1-t)q_x)}$$

The expression simplifies under the assumption that $x^t \neq x$. The only non-zero values occur when $x = x^1$ and $x^t \neq x^1$, thus yielding:

$$u_t(x^t, x|x^1) = \frac{1}{\mathbf{Z}_t(1-t)q_x} \delta\{x, x^1\} (1 - \delta\{x^t, x^1\}), x_t \neq j$$
(17)

where
$$\mathbf{Z}_t = |\{x^t : p_t(x^t | x^1, x^0) > 0\}|.$$

963 C.3 PROOF OF PROPOSITION 1

Proof. The Kolmogorov forward equations for discrete flow matching are expressed as:

 $\partial_t p_t = u_t p_t,\tag{18}$

If we establish the permutation invariance of the prior distributions p_{ref} and the permutation equivariance of conditional flow probabilities, then it follows that $p(G^1)$ is permutation exchangeable.

According to the Theorem 2, we deduce the permutation invariance of the prior distribution p_{ref} . Given the conditional probabilities $p(G^{t+\Delta t}|G^t) = \text{Cat}\left(\delta\{G^t, G^{t+\Delta t}\} + \hat{u}_t(G^t, G^{t+\Delta t})\Delta t\right)$, it

suffices to demonstrate the permutation equivariance of the conditional probabilities. This requires showing the permutation equivariance of the vector field u_t . Consider the case for nodes:

$$\pi u_t^V(V_i^t, V_i^{t+\Delta t}) = \pi \left(\mathbb{E}_{\hat{p}_{1|t}^V(V_i^1|V_i^t)} [u_t^V(V_i^t, V_i^{t+\Delta t}|V_i^1, V_i^0)] \right),$$

 $= u_t^V(V_{\pi^{-1}(i)}^t, V_{\pi^{-1}(i)}^{t+\Delta t}) = LHS.$

$$\begin{aligned} \mathsf{LHS} &= u_t^{*} \; (V_{\pi^{-1}(i)}^{*}, V_{\pi^{-1}(i)}^{*}), \\ \mathsf{RHS} &= \left(\mathbb{E}_{\hat{p}_{1|t}^{V}(V_{\pi^{-1}(i)}^{1}|V_{\pi^{-1}(i)}^{t})} [u_t^{V}(V_{\pi^{-1}(i)}^{t}, V_{\pi^{-1}(i)}^{t+\Delta t}|V_{\pi^{-1}(i)}^{1}, V_{\pi^{-1}(i)}^{0})] \right), \end{aligned}$$

975 976 977

980

983 984

986

where π is a permutation operator. This establishes the permutation equivariance of u_t and the exchangeability of the generated distribution.

985 C.4 PROOF OF THEOREM 1

First, we want to clarify the rationale and foundation of our theorem. The goal of optimal transport is to pair source and target data points with minimal cost during training, which is beneficial for our interpolation (Bose et al., 2023; Song et al., 2024). Thus, we design our optimal transport approach from the perspective of interpolation.

We define the node order of the graph G as the order of the nodes and edges in matrix representation. For example, if the node set of G is $\{A, B, C\}$, the possible node orders include (A, B, C), (B, A, C)or (C, B, A).

In the interpolation process, we transform the graph representation to a matrix representation before performing interpolation. For example, for source data $G^0 = (V^0, E^0), V^0 \in \mathbb{R}^{a \times n}, E^0 \in \mathbb{R}^{a \times a \times m}$ and target data $G^1 = (V^1, E^1), V^1 \in \mathbb{R}^{a \times n}, E^1 \in \mathbb{R}^{a \times a \times m}$, where *a* is the number of nodes, *n* is the class number of nodes, and *m* is the class number of edges, the node orders of G^0 and G^1 have been fixed. Therefore, interpolation is performed directly on these fixed node orders.

The optimal transport aims to find pairs with the minimum cost for interpolation, and the interpolation is conducted on a fixed node order. Additionally, during optimal transport calculations, we also utilize the matrix representation of these graphs and our prior distribution is permutation invariant. Therefore, we aim to match source data with the target data G^1 whose node order is fixed, to achieve minimal transport cost. Furthermore, we assume that all pairs of source and target data share the same node order during optimal transport, which also facilitates the identification of pairs with minimal cost.

1006 Regarding the permutation of the intermediate graph G^t , we have $\pi G^t = t\pi G^0 + (1-t)\pi G^1$, 1007 where G^0 and G^1 share an identical permutation. Our network $\hat{p}^1(G^1|G^0, G^t)$ needs to maintain 1008 permutation equivariance, such that $\hat{p}^1(G^1|\pi G^0, \pi G^t) = \pi \hat{p}^1(G^1|G^0, G^t)$ for any permutation π to 1009 approximate πG^1 . So we prove the invariance of optimal transport under identical permutations, i.e. 1010 $\phi(G^0, G^1) = \phi(\pi G^0, \pi G^1)$.

1011

1012 *Proof.* Building on the foundations established in Theorem 2 and Proposition 1, we confirm the 1013 permutation invariance of both the target and source distributions. The Hamming distance is invariance 1014 under identical permutations π , as shown by:

1015 1016

1017

$$H(G^{0}, G^{1}) = \sum_{i} \delta(v_{i}^{0}, v_{i}^{1}) + \frac{1}{2} \sum_{i,j} \delta(e_{ij}^{0}, e_{ij}^{1})$$

$$=\sum_{i}\delta(v^{0}_{\pi^{-1}(i)},v^{1}_{\pi^{-1}(i)})+\frac{1}{2}\sum_{i,j}\delta(e^{0}_{\pi^{-1}(i)\pi^{-1}(j)},e^{1}_{\pi^{-1}(i)\pi^{-1}(j)})$$

1020 1021

1022 $= H(\pi G^0, \pi G^1)$

This property of the Hamming distance ensures the invariance of the optimal transport map ϕ^* under identical permutations.

 $\hat{p}_{1|t}(G^1|\pi G^0) = \pi \hat{p}_{1|t}(G^1|G^0), \quad t = 0$

 $p_{\Delta t|0}(G^{\Delta t}|\pi \hat{G}^1, \pi G^0) = \delta\{\cdot, \pi G^0\} + u_0(\cdot, \pi G^0|\pi G^0, \pi \hat{G}^1)\Delta t$

 $=\pi[\delta\{\cdot, G^0\} + u_0(\cdot, G^0|G^0, \hat{G}^1)\Delta t] = \pi p_{\Delta t|0}(G^{\Delta t}|\hat{G}^1, G^0), \quad t=0$

 $p_{t+\Delta t|t}(G^{\Delta t+t}|\pi \hat{G}^{1}, \pi G^{t}, \pi G^{0}) = \delta\{\cdot, \pi G^{t}\} + u_{t}(\cdot, \pi G^{t}|\pi G^{0}, \pi \hat{G}^{1})\Delta t$

Additionally, the prior distribution is permutation invariant and our GraphEvo is permutation equivariance, all permutations of graphs are generated with equal probability (Eijkelboom et al., 2024).

1029 1030

1031 1032

1033

1034

Lemma 1. Let $p_0(G)$ be an exchangeable distribution and our model $\hat{p}_{1|t}(G^1|G^t, G^0)$ is permutation equivariant. Then, all permutations of generated graphs with equal probability.

Proof. As the permutation equivariance of our model $\hat{p}_{1|t}(G^1|G^t, G^0)$, implies the equivariance of our vector fields u_t . Moreover, the sampling procedure exhibits permutation equivariance, where π is a permutation.

1035 1036 1037

1038 1039 1040

1041 1042

1043 1044

Therefore, since p_0 assigns equal density of all permutations of G, the resulting distribution p_1 preservers this property.

 $=\pi[\delta\{\cdot, G^t\} + u_t(\cdot, G^t | G^0, \hat{G}^1)\Delta t] = \pi p_{t+\Delta t | t}(G^{\Delta t+t} | \hat{G}^1, G^t, G^0), \quad t = \Delta t, \dots, 1 - \Delta t$

1045 1046 1047

D DETAILS OF GRAPHEVO

1049 1050 1051

1052

1053

1054 1055 1056

1057

GraphEvo is a novel edge-augmented graph transformer model designed for graph data. To enhance the generative capabilities of GGFlow, GraphEvo introduces a triangle update mechanism, which significantly improves the exchange of edge information. We incorporate FiLM and PNA layers into our architecture (Vignac et al., 2022):

$$FiLM(X_1, X_2) = X_1(Linear(X_2) + 1) + Linear'(X_2)$$
$$PNA(X) = Linear\Big(Cat(max(X), min(X), mean(X), std(X))\Big).$$

¹⁰⁵⁸ The full architecture of GraphEvo is illustrated in Algorithm 3 and is permutation equivariant. The time complexity of GraphEvo is $O(N^3)$.

1061 Algorithm 3 Architecture of GraphEvo

1062 **Require:** G, t, N_{layer} 1063 1: $\mathbf{V}, \mathbf{E} \leftarrow G$ 1064 2: $\mathbf{y} \leftarrow \text{ExtractFeature}(G), \mathbf{t} \leftarrow \text{TimeEmbedding}(t)$ 3: $\mathbf{y} \leftarrow \mathbf{y} + \mathbf{t}$ 4: $\mathbf{X}, \mathbf{E}, \mathbf{y} \leftarrow \text{Linear}(V), \text{Linear}(\mathbf{E}), \text{Linear}(\mathbf{y})$ 5: for $t = 0, 1, \ldots, N_{\text{layer}}$ do 1067 1068 $\mathbf{X}', \mathbf{E}', \mathbf{y}' \leftarrow \text{SelfAttention}(\mathbf{X}, \mathbf{E}, \mathbf{y})$ 6: 1069 $\mathbf{X} \leftarrow \text{ReLU}(\text{LayerNorm}(\mathbf{X} + \text{Dropout}(\mathbf{X}')))$ 7: 1070 $\mathbf{E} \leftarrow \text{ReLU}(\text{LayerNorm}(\mathbf{E} + \text{Dropout}(\mathbf{E}')))$ 8: 1071 $\mathbf{y} \leftarrow \operatorname{ReLU}(\operatorname{LayerNorm}(\mathbf{y} + \operatorname{Dropout}(\mathbf{y}')))$ 1072 9: 1073 10: end for 1074 11: $\hat{p}_{1|t}^V(V^1|V^t, V^0), \hat{p}_{1|t}^E(E^1|E^t, E^0), \mathbf{y} \leftarrow \text{Linear}(V), \text{Linear}(\mathbf{E}), \text{Linear}(\mathbf{y})$ 1075 12: return $\hat{p}_{1|t}^V(V^1|V^t, V^0), \hat{p}_{1|t}^E(E^1|E^t, E^0), \mathbf{y}$ 1076 1077

¹⁰⁷⁹ GraphEvo integrates global structural features to improve generation performance, including both graph-theoretic and domain-specific attributes:

1080 **Graph-theoretic features**: These encompass node-level properties such as the number of k-cycles $(k \le 5)$ containing this point and an estimate of the largest connected component, alongside graph-1082 level metrics like the total number of k-cycles ($k \le 6$) and connected components.

Molecular features: These account for the current valency of each atom and the molecular weight of 1084 the entire molecule.

1086 D.1 PROOF OF PROPOSITION 2 1087

1088 *Proof.* Let $G^t = (V^t, E^t)$ is a intermediate graph, and $\pi G^t = (\pi^* V, \pi^* E \pi)$ is the permutation. To 1089 prove the permutation properties of the graph, we need to consider two aspects: additional structural 1090 features and the model architecture.

1091 First, the spectral and structural features are permutation equivariant for node-level features and 1092 invariant for graph-level features. Additionally, the FiLM blocks and Linear layers are permutation 1093 equivariant, while the PNA pooling function is permutation invariant. Layer normalization is also 1094 permutation equivariant. 1095

As GraphEvo is built using permutation equivariant components, we conclude that the overall model 1096 is permutation equivariant.

1102 TIME COMPLEXITY OF OPTIMAL TRANSPORT E 1103

To analyze the time complexity of optimal transport (OT), we compared the training time of OT 1105 with that of DiGress, using identical architectures on an NVIDIA A100 80G GPU. We evaluated the 1106 effects of model size, batch size, and number of nodes by measuring the duration of single training 1107 steps across three different datasets. Our results indicate that the time required for OT accounts for 1108 only 5% of the total training time, highlighting the efficiency of our optimal transport. 1109

1110

1098

1099 1100 1101

1104

1111 1112 Table S1: Time Complexity of Optimal Transport

112	Dataset	Planar	Zinc250k	Community-small
114	DiGress Training Time (s)	0.1647	0.1690	0.0456
115	GGFlow Training Time (s)	0.1264	0.1301	0.0408
116	Optimal Transport Time (s)	0.0025	0.0070	0.0024
110	Percentage of OT	1.9%	5.3%	5.6%
117	Model Size (M)	3.6	4.6	6.4
118	Batch Size	64	128	80
119	Number of Nodes	64	[6,38]	[12.20]
100			L - 74 - 41	r .)= -1

1120 1121

1122 F SOURCE CODE 1123

1124 The code will be made publicly available upon the publication of this paper. 1125

1126 1127

1128

G TOY EXAMPLE OF GOAL-GUIDED GRAPH GENERATION

1129 We demonstrate the utility of our goal-guided framework of flow matching with a toy example, 1130 depicted in Figure S1: (a) shows a trained unconditional flow matching model mapping noise distribution p_0 to data distribution p_1 . (b, c) illustrate the effect of temperature T on the exploration, 1131 with higher temperatures resulting in broader data point distribution. (d) shows how fine-tuning 1132 according to Equation 10 concentrates data in regions with higher rewards. (e-f) illustrate the 1133 corresponding flow matching trajectories.

Figure S1: (a-d) Data distribution of the flow matching model, π_0 is the original distribution (orange), π_1 is the target data distribution (blue), and the red dots are the data distribution generated by the model. (e-h) In reinforcement learning, the flow matching model conducts exploration/sampling trajectories

1156 H ADDITIONAL EXPERIMENTS RESULTS

1157

In this section, we present additional metrics including Spectre (Spec.) and Validity&Novelty&Uniquess (Val.&Nov.&Uni.) across general graph datasets including the Planar and Enzymes datasets, as summarized in Tables S2, S3 and S4. The MMD kernel in the planar dataset followed the GruM (Jo et al., 2024). We also include the standard deviation of our results in Table S5, illustrating the consistency and superior performance of our method.

To further compare GGFlow with baseline models, we measured the MMD between the test datasets and a set of 1,024 generated graphs in the Ego-small and Community-small datasets. The results in Table S6 demonstrate that GGFlow achieves the highest performance across all metrics, significantly outperforming other baseline models.

1167 1168

Table S2: Additional generation results on the generic graph datasets. Results are the means of 3 different runs. The best results are marked **bold**.

Method	Eg	go-small	Comm	unity-small		Step	
	Spec.	Nov.&Uni.	Spec.	Nov.&Uni.	Spec.	Nov.&Uni.	Step
Training Set	0.006	100	0.012	100	0.009	25	-
GDSS	0.034	27.5	0.053	100.0	0.043	100.0	1000
GSDM	-	-	0.024	0.0	0.015	0.0	1000
DiGress	0.017	100.0	0.055	100.0	0.025	100.0	500
SwinGNN	0.016	52.5	0.025	55.0	0.008	100.0	500
GGFlow	0.006	32.5	0.031	100.0	0.022	100.0	500

I IMPLEMENT DETAILS

ALGORITHMS OF GGFLOW

1185 1186 I.1

1186 1187

1184

Details of the training procedure and guided training procedure are provided in Algorithm 4 and 5.

Method			Pla	anar		Sten
niciliou	Deg.	Clus.	Orbit	Spec.	Val.&Nov.&Uni.	Step
Training Set	0.0002	0.0165	0.0002	0.0050	100	-
GDSS	0.0039	0.2593	0.1732	0.0370	0.0	1000
GRASP	0.0022	0.2749	0.0055	0.0098	0.0	200
DiGress	0.0003	0.0372	0.0098	0.0106	87.5	500
GruM	0.0004	0.0382	0.0095	0.0069	75.0	1000
GGFlow	0.0156	0.0196	0.0019	0.0091	97.5	500
σ	0.0064	0.0037	0.0006	0.0012	2.5	-

Table S3: Generation results on the planar graph datasets. The best results are marked **bold**. σ denotes the standard deviation.

Table S4: Generation results on the Enzymes graph datasets. The best results are marked **bold**. σ denotes the standard deviation.

1205						
1206	Method		Sten			
1207		Deg.	Clus.	Orbit	Avg.	Stop
1208	Training Set	0.008	0.096	0.012	0.039	
1209		0.000	0.070	0.012	0.027	
1210	GraphRNN	0.017	0.043	0.021	0.043	-
1211	GraphAF	1.669	1.283	0.266	1.073	-
1010	GraphDF	1.503	1.061	0.202	0.922	-
1212	GraphVAE	1.369	0.629	0.191	0.730	-
1213	EDP-GNN	0.023	0.268	0.082	0.124	1000
1214	GDSS	0.026	0.102	0.009	0.046	1000
1215	GSDM	0.013	0.088	0.010	0.037	1000
1216	DiGress	0.010	0.046	0.002	0.019	500
1217		0.000	0.000	0.000	0.040	
1218	GGFlow	0.008	0.026	0.002	0.012	500
1210	σ	0.0041	0.0106	0.0008	0.0130	-
1213						

Table S5: Standard deviation and mean of generation results on the general graph datasets. μ and σ denote the mean and standard deviation, respectively

Metric		Ego-	small		(Commur	ity-smal	11		G	rid	
	Deg.	Clus.	Orbit	Sepc.	Deg.	Clus.	Orbit	Sepc.	Deg.	Clus.	Orbit	Sepc.
μ	0.005	0.033	0.005	0.008	0.011	0.030	0.002	0.031	0.030	0.000	0.016	0.022
σ	0.007	0.012	0.003	0.001	0.006	0.012	0.002	0.002	0.008	0.000	0.003	0.001

BASELINES IMPLEMENTATION I.2

To benchmark the performance of GGFlow, we ensure consistency by using identical splits of training and test sets across all datasets. Below, we provide the implementation details for each baseline model. To guarantee a fair comparison, most baseline models are retrained three times, and the average results from these runs are reported as the final outcomes in unconditional generation tasks. The results of the DeepGMG, GraphRNN and GNF for Ego-small and Community-small dataset are taken from their original papers.

GraphAF (Shi et al., 2019) We follow the implementation guidelines provided in the TorchDrug tutorials (https://torchdrug.ai/docs/tutorials/generation.html).

GraphDF (Shi et al., 2019) Model scripts are sourced from the DiG repository (https:// github.com/divelab/DIG/tree/dig-stable/examples/ggraph/GraphDF).

Method	Ego-small			Community-small				Sten	
	Deg.	Clus.	Orbit	Sepc.	Deg.	Clus.	Orbit	Spec.	Siep
GraphRNN	0.040	0.050	0.060	-	0.030	0.010	0.010	-	-
GNF	0.010	0.030	0.001	-	0.120	0.150	0.200	-	-
EDP-GNN	0.010	0.025	0.003	-	0.006	0.127	0.018	-	100
GDSS	0.023	0.020	0.005	0.047	0.029	0.068	0.004	0.151	100
GSDM	-	-	-	-	0.003	0.008	0.0009	0.011	100
DiGress	0.017	0.038	0.006	0.021	0.013	0.040	0.004	0.055	500
SwinGNN	0.004	0.023	0.003	0.023	0.003	0.088	0.010	0.016	500
GGFlow	0.004	0.004	0.0008	0.009	0.004	0.003	0.0006	0.018	500

Table S6: Generation results on the generic graph datasets with 1024 generated graphs. The best results are marked **bold**.

Swin	3 SNN 0.	.017	0.038	0.008	0.021	0.013	0.040 0.088	0.004 0.010	0.055	500 500
GGFI	ow 0.	.004	0.004	0.0008	0.009	0.004	0.003	0.0006	0.018	500
Algorithm Require: 1: for n 2: $t \in$ 3: G^0 4: (G 5: // S 6: V^t 7: $\hat{p}_{1 }^V$ 8: \mathcal{L} 9: θ_n 10: end for 11: $\theta^* =$ 12: reture	$ \begin{array}{c} \hline \mathbf{n} \ 4 \ \mathrm{Trainin} \\ \hline G = (V, I) \\ \in \{0, \dots, U(0, 1), G \\ = (V^0, E) \\ = (V^0, E) \\ \stackrel{0}{\to} G^1 \sim G \\ \stackrel{1}{\to} G^1 = Optim \\ \stackrel{0}{\to} G^1 \\ \stackrel{0}$	$\begin{array}{c} \text{ng Pro}\\ E), q_V\\ N_{\text{iter}}\\ \mathcal{G}^1 = 0\\ \mathcal{O}^0) \sim \\ \mathcal{O}^0) \sim \\ \text{order}\\ \text{micon}\\ \mathcal{O}^0, \hat{p}\\ \mathcal{O}^1, \hat{p}\\ \mathcal{O}$	because $q_{r}, q_{E}, = -1$ de G p^{ref} hal Trans ditional $(1-t)^{2}$ $1 _{t}(E^{1} H)$ $0,1)\pi(G^{0}, -1)$ Lupdate	of GGFlow sport(G^0 , probabilit V^0) and E^t , E^0), \mathbf{y} $G^{1}p_t(G^t \mathcal{O}(\theta_n, \mathcal{L}))$	G^1) y flow. $C^t = (t\delta)$ = Grap G^{0}, G^1 [log	$\{E^1, \cdot\} +$ hEvo _{θ_n} ($g \hat{p}_{1 t} (G^1)$	-(1-t) V^t, E^t, t $+ G^t, G^0 angle$	$E^0)$ $t, f^t)$		
GraphV the Grapl tree/ma MoFlow	E (Shi NRNN repo ster/ba	et al ositor asel: Wang	l., 2019 y (http ines/g g,2020)	9) Script ps://gi graphvae Implem	s are o thub.c e).	obtained com/Jia scripts a	from taxuanYo	the Grap ou/grap from the	hVAE s h-gene MoFlow	ection ratio
(https: GraphEH	//githu SM (Liu et	b.cc	021) V	vin-zcx Ve use the	/moflo implem	ow).	available	in the Gr	aphEBM	reposit
(https:	//githu	b.cc	om/bion	med-AI/	Graph	EBM).				10post
EDP-GN repository	N (Niu et a (https:	al., 201 //gi	20) Th ithub.	e model is com/ern	s implem	ented acc	cording to phScor	o the scrip eMatch	ots in the ling).	EDP-G
GDSS (Jo //githu) et al., 20 2 1b.com/h	22b) harry	Implen yjo97/	mentation of GDSS).	details ar	e source	d from th	ne GDSS 1	repositor	y(htt
GSDM (github	L <mark>uo et al.</mark> , .com/ltz	, 202 z012	3) Scri 0/Fast	pts are ir Graph_	nplemen _Gener	ted from ation_	n the GS via_Sp	DM repo	o sitory (h Diffu	nttps sion).
PS-VAE (https:	(Kong et a //githu	al., 20 b.cc	022) In om/THU	mplement	ation der PS-VAR	tails are E).	sourced	from the	PS-VAE	reposit
MolHF (repository	Zhu et al., (https:	, 2023 //gi	3) The	e model is com/vic	s implen	nented a	ccording HF).	to the sc	ripts in t	he Mo
GRASP() (https:	Minello et	t al., 2 .b . cc	2024) om/lco:	Implemer smo/GRA	ntation d	etails are	sourced	from the	GRASP	reposi
SwinGNI (https:	Ŋ(Yan et a //githu	al., 20 b.cc	23) In om/DSL	nplementa -Lab/Sw	tion deta	ails are so . The au	ourced fr thors em	om the Sy ploy the '	winGNN gaussian	reposi _tv' M

Algo	rithm 5 Training Proce	edure of Guided G	GFlow by Reinforce	ment Learning	
Req	uire: $\theta_0, \theta, \alpha, \beta, T, N_s$	$_{\rm teps}$, traj, $G^0 \sim p$	$p_{\text{ref}}, u_t(G^t, G G^1, G^0)$), T , $N_{\rm train}$	
1:	$\theta \leftarrow \theta_0$				
2: 1	$\{ \text{or } i \in \{1, \dots, N_{\text{train}} \} \\ \Lambda t = 1/N.$	do			
5.	$\Delta t = 1/N_{\rm steps}$	$\left(\alpha^{0} \right) = \alpha^{0} \sigma^{0}$	(0)		
4:	Collect flow trajector	$\mathbf{y}\left(G^{\circ}, t=0, \mathcal{R}(0)\right)$	(G°)).		
5:	for $n \in \{0, \ldots, N_{\text{step}}\}$	$p_{\rm ps} - 1$ do			
6:	$\hat{p}_{1 t}^{v}(V^{1} V^{t},V^{0}),\hat{p}$	$\delta_{1 t}^{E}(E^{1} E^{i},E^{0}),\mathbf{y}$	$V = \text{GraphEvo}(V^{\iota}, I)$	$E^{t},t)$	
7:	Get $G^{t+\Delta t}$ by sam	pling from Equation $C_{t+\Delta t}$	ion 9.		
8: 0:	$(V^{e+\Delta e}, E^{e+\Delta e}) = t - t + \Delta t$	$=G^{r+\Delta r}$			
9. 10:	$t = t + \Delta t$ Compute the rewar	rd function $\mathcal{R}(G^{t-}$	$+\Delta t$).		
11.	Collect flow traject	tory $\left(C^{t+\Delta t}, t+\right)$	$\Delta t \mathcal{P}(C^{t+\Delta t})$		
11.	and for	(G, ι_{+})	$\Delta \iota, \mathcal{K}(G)$		
12:	Undate network using	Fountion 10			
14:	t = 0	5 Equation 10.			
15: 0	end for				
16: 1	return Guided flow ma	atching model θ^*			
1.	.1 1	. 1		T	
kern	el, whereas other method	ods use í gaussian	_emd' or 'gaussian'.	To ensure a fair com	parison, we
auop	t the same kerner.				
Gru	\mathbf{M} (Jo et al., 2024) So	cripts are impleme	ented from the GruM	repository (https:/	//github.
COIII	/narryjo9//GruM/).			
DiG	ress (Vignac et al., 202	2) The implem	entation is based on	the DiGress repositor	ry(https:
//g	ithub.com/cvigna	ic/DiGress).			
1.2		- D			
1.3	DETAILS OF GENERIC	C DATASETS			
I.3.1	DATASET				
Faa	small This dataset co	nsists of 200 small	one hon ago graphs	larived from the Cites	aar natwork
(Sen	et al., 2008). Each grar	oh contains betwe	en 4 and 18 nodes.	terrived from the Cites	
Com	munity and I This	dotogot iz -1 1 1	00 rondom	ity manha and free	nad her tore
COM	munities of equal size	uataset includes 1	he E-R model (Erdő	ity graphs, each forr	neu by two
para	meter of $p = 0.7$. The s	raphs range in siz	the from 12 to 20 node	s et al., 1700) with a S.	probability
r		, _T	in marks 14 1	an an an the second	the traction
Enzy	mes The dataset control ture of enzymes source	nprises 58 / prote	n graphs, with each	n graph representing	which have
betw	een 10 and 125 nodes		INDA UALAUASE (SCIIO	mourg et al., 2004),	which have
0	The late	6 100 1 1 12		$00 < \mathbf{I}_{1} < 400$	
Gric	The dataset consists	of 100 standard 2	D grid graphs with 1	$ V \le 400.$	
Plan	ar The dataset consis	sts of 200 planar g	graphs, each with 64 i	nodes, generated usin	g Delaunay
trian	gulation on uniformly d	listributed random	n points.		
	T - 1	hla 67. 64-4-4	of the concert1	lataata	
	Ta	Die S /: Statistics	of the generic graph of	latasets	
	Detect	tuna	Number of graphs	Number of podes	
	Dataset	type	number of graphs		
	Ego-small	Real	200	[4, 18]	
	Community-sr	nall Synthetic	100	[12, 20]	
	Planar	Synthetic	200	64	
	Grid	Synthetic	100	[100,400]	
		-		_	

1349

1350 I.4 DETAILS OF MOLECULE DATASETS

1352 I.4.1 DATASET

QM9 It is a subset of the GDB-17 database and consists of 134,000 stable organic molecules, each containing up to 9 heavy atoms: carbon, oxygen, nitrogen, and fluorine (Ramakrishnan et al., 2014).
The dataset includes 12 tasks related to quantum properties. We follow the train/test split from GDSS, using 12,000 molecules for training and the remaining 1,000 for testing.

ZINC250k It contains 250,000 drug-like molecules with a maximum of 38 atoms per molecule
(Irwin et al., 2012). It includes 9 atom types and 3 edge types. For a fair comparison, we use the same train/test split as previous works, such as GDSS and GSDM.

1	3	6	1
1	3	6	2
1	3	6	3

1364 1365

1353

Table S8: Statistics of the molecular graph datasets

Dataset	type	Number of graphs	Number of nodes	Number of node types	Number of edge types
QM9	Real	133,885	[1, 9]	4	3
ZINC250k	Real	249,455	[6, 38]	9	3

1367 1368

1370

1369 I.4.2 METRICS

For generic graph datasets, we employ Maximum Mean Discrepancy (MMD) to assess the distributions of graph statistics, specifically degree distribution, clustering coefficient, the number of occurrences of 4-node orbits, and eigenvalues of the normalized graph Laplacian. In alignment with prior research (Jo et al., 2022b), we utilize specialized kernels for MMD calculations: the Gaussian Earth Mover's Distance (EMD) kernel for degree distribution and clustering coefficient, the Gaussian Total Variation (TV) kernel for eigenvalues of the normalized graph Laplacian, and a standard Gaussian kernel for the 4-node orbits. To ensure a fair comparison, the size of the prediction set matches that of the test set.

1378
 1379
 1380
 1381
 1381
 1381
 1382
 1384
 1384
 1385
 1386
 1386
 1386
 1387
 1388
 1388
 1388
 1388
 1389
 1381
 1381
 1381
 1382
 1383
 1384
 1384
 1384
 1385
 1386
 1386
 1386
 1387
 1388
 1388
 1388
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 1381
 <li

Validity w/o correction This metric explicitly evaluates the quality of molecule generation before any correction phase, providing a baseline for raw generation performance.

FCD FCD quantifies the functional connectivity density within a molecule by computing distances and connectivity between atoms, based on both structural and chemical features. It describes the three-dimensional structure, topological features, and chemical properties of molecules, making it valuable in fields such as drug design, compound screening, and molecular simulations.

1388
1389NSPDK NSPDK assesses molecular similarity by comparing shortest paths within their graphical
structures. It captures connectivity patterns and chemical environments, effectively describing
relationships and similarities between molecules. For two distributions p and q, the MMD using
NSPDK is calculated as:

1392 1393 1394

$$\mathrm{MMD}_{\mathrm{NSPDK}}^{2}(p,q) = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j\neq i}^{n} k_{\mathrm{NSPDK}}(\mathcal{X}_{i},\mathcal{X}_{j}) + \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j\neq i}^{m} k_{\mathrm{NSPDK}}(\mathcal{Y}_{i},\mathcal{Y}_{j})$$
(19)

1395 1396

$$-\frac{2}{mn}\sum_{i=1}^{n}\sum_{j=1}^{m}k_{\text{NSPDK}}(\mathcal{X}_{i},\mathcal{Y}_{j})$$
(20)

1398 1399 1400

1401 Here, $k_{\text{NSPDK}}(\cdot)$ denotes the NSPDK kernel function. \mathcal{X} is the set of molecules from distribution p. 1402 \mathcal{Y} is the set of molecules from distribution q. n and m represent the number of samples drawn from 1403 distributions p and q, respectively. This formula quantifies the difference between the distributions pand q using the NSPDK kernel.

1404 I.5 DETAILS OF CONDITIONAL GENERATION

¹⁴⁰⁶ We included three guidance baselines in our conditional generation task:

DiGress model with guidance Utilizing the guidance method integrated into the DiGress model (Vignac et al., 2022).

1410 **Direct supervised training (ST)** It involved selecting training samples from the dataset that 1411 satisfied $|\mu - \mu^*| < 1.0$ and retraining them using supervised learning settings identical to those in 1412 Section 4.2.

1413 Supervised fine-tuning (SFT) This method involved fine-tuning a pre-trained GGFlow model on 1414 molecules generated with $|\mu - \mu^*| < 1.0$, maintaining the same training settings as in Section 4.2.

These models were trained over 10,000 steps using the training settings detailed in Section 4.2. We then generated 1,000 samples to calculate the results for each guidance method and the unconditional method, with the values of μ estimated using Psi4 (Smith et al., 2020). We set the hyperparameters α and β as 0.999 and 0.001.

1419 1420

1422

1424

1427

1428

1421 J EXPERIMENT SETTINGS

1423 J.1 Hyperparameter Settings

Table S9 presents the hyperparameters employed in our experimental setup. For each dataset, the final results in Table 1 and Table 2 are the means of 5 different runs.

Table S9: Hyperparameter settings of different datasets

Hyperparameter	Ego-small	Community-small	Grid	Planar	Enzymes	QM9	ZINC250k
Number of layers	5	7	5	4	6	9	9
Hidden dimension of X	256	256	256	256	256	256	128
Hidden dimension of E	128	128	128	128	128	128	64
Hidden dimension of y	128	128	128	128	128	128	64
Optimizer	Adamw						
Learning rate	2×10^{-4}						
Batch size	64	128	4	64	8	512	128
Number of epochs	2000	3000	5000	5000	10000	1000	1000
Number of sampling steps	500	500	500	500	500	500	500

1437

1438 1439 1440

J.2 ABLATION STUDIES SETTINGS

For the evaluation of varying inference steps, we followed the same experimental settings as outlined in Sections 4.1 and 4.2. Samples were generated for 10 runs. The results were then visualized using the mean and variance across these 10 runs. It is important to note that in DiGress, the number of inference steps is constrained by its predefined diffusion steps (N = 500), so the DiGress curve terminates at 500 inference steps.

For the ablation studies of GGFlow without Optimal Transport (GGFlow w/o OT), GGFlow without GraphEvo (GGFlow w/o Evo) and GGFlow without GraphEvo and optimal transport (GGFlow w/o both), we adhered to the settings described in Sections 4.1 and 4.2. The final results were obtained by averaging the outcomes from five different runs.

1451To further investigate the advantages of optimal transport, we present generation results with varying
inference steps on the Community-small and Planar datasets. As shown in Figure S2, GGFlow
demonstrates superior generation quality compared to GGFlow (w/o OT), exhibiting narrower
confidence intervals and comparable performance with fewer inference steps, which suggests that
optimal transport enhances sampling both efficiency and stability.

We provide training loss and average values on Community-small datasets compared to DiGress,
which shares the same training objectives. For fair comparisons, we use GGFlow (w/o both) and
GGFlow (w/o Evo) to demonstrate the superiority of the flow matching framework and optimal

