
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING GRAPH GENERATION WITH
FLOW MATCHING AND OPTIMAL TRANSPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating graph-structured data is crucial in various domains but remains chal-
lenging due to the complex interdependencies between nodes and edges. While
diffusion models have demonstrated their superior generative capabilities, they
often suffer from unstable training and inefficient sampling. To enhance generation
performance and training stability, we propose GGFlow, a discrete flow matching
generative model incorporating optimal transport for graph structures and it incor-
porates an edge-augmented graph transformer to enable the direct communications
among edges. Additionally, GGFlow introduces a novel goal-guided generation
framework to control the generative trajectory of our model towards desired prop-
erties. GGFlow demonstrates superior performance on both unconditional and
conditional generation tasks, outperforming existing baselines and underscoring its
effectiveness and potential for wider application.

1 INTRODUCTION

Graph structural data generation has become critically important across various domains, including
social networks (Grover et al., 2019), drug design (Bilodeau et al., 2022), and neural architecture
search (NAS) (Lee et al., 2020). Effective modeling of the intrinsic joint distribution and accurate
description of topological structures of graphs are essential for these applications. Deep generative
models have increasingly demonstrated success in graph generation by effectively modeling the
complex structural properties of graphs. These models are typically categorized into autoregressive
and one-shot types. Autoregressive models, such as GraphRNN (You et al., 2018), generate graphs
sequentially, often overlooking the interdependencies among all graph components. In contrast, one-
shot methods generate entire graphs in a single step, more effectively capturing the joint distribution
(Ma et al., 2018; Luo et al., 2023; Niu et al., 2020).

Diffusion models have shown great promise and achieved significant performance in various domains
(Ho et al., 2020; Song et al., 2020; Ho et al., 2022). In the context of graph generation, diffusion
models have been adopted to enhance generative capacity. EDP-GNN and GDSS are among the
first to utilize diffusion models for graph generation, adding continuous Gaussian noise to adjacency
matrices and node types, which may lead to invalid graph structures (Niu et al., 2020; Jo et al., 2022b).
Due to the inherent sparsity and discreteness of graph structures, GSDM enhances model fidelity by
introducing Gaussian noise within a continuous spectrum space of the graph, and DiGress and PPGN
apply discrete diffusion models for graphs (Luo et al., 2023; Vignac et al., 2022; Austin et al., 2021;
Haefeli et al., 2022; Huang et al., 2023).

Despite their potential, diffusion models often face challenges with unstable training and inefficient
sampling. Flow matching generative models offer a more stable and efficient alternative by trans-
forming the generative process from stochastic differential equations (SDEs) to ordinary differential
equations (ODEs), enhancing generative efficiency (Lipman et al., 2022; Song et al., 2024; Yim
et al., 2023). Additionally, the use of optimal transport (OT) straightens the marginal probability
path, reducing training variance and speeding up sampling (Bose et al., 2023; Tong et al., 2023; Klein
et al., 2024; Pooladian et al., 2023). While the application of OT in graph-based systems is often
hampered by significant computational demands, primarily due to the complexity of the OT metric
(Chen et al., 2020b; Petric Maretic et al., 2019).

In this paper, we introduce GGFlow, a novel generative model that leverages discrete flow matching
techniques with optimal transport to improve sampling efficiency and training stability in graph

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

generation. The model preserves graph sparsity and permutation invariance, which is essential
for realistic graph generation. Additionally, GGFlow employs a goal-guided framework using
reinforcement learning for conditional generation. GGFlow achieves state-of-the-art results in both
unconditional and conditional graph and molecule generation tasks and surpasses existing methods
with fewer inference steps. Its effectiveness in conditional generation tasks underscores the practical
impact of our approach.

Our contribution can be summarized as:

• GGFlow introduces the first discrete flow matching generative model with optimal transport
for graph data, improving sampling efficiency and training stability. It also incorporates an
edge-augmented graph transformer to enhance generation tasks further.

• GGFlow proposes a novel guidance framework using reinforcement learning to control
probability flow during graph generation, targeting specific properties.

• GGFlow demonstrates state-of-the-art performance in various unconditional and conditional
graph generation tasks, consistently outperforming existing methods across diverse graph
types and complexities.

2 RELATED WORK

2.1 FLOW MATCHING AND DIFFUSION MODELS

Diffusion models have gained widespread popularity in various fields, including computer vision,
natural language processing, and biological sciences, demonstrating notable success in generative
tasks (Ho et al., 2020; Song et al., 2020; Watson et al., 2023; Ingraham et al., 2023; Liu et al., 2024a;
Ren et al., 2024; Zhu et al., 2024). However, these models often suffer from inefficiencies in sampling
due to the complexity of their underlying diffusion processes and the convergence properties of the
generative process.

Flow matching generative models have emerged as a more efficient and stable alternative (details in
Appendix A.1), improving sampling by straightening the generative probability path (Lipman et al.,
2022; Song et al., 2024; Campbell et al., 2024). Some approaches further enhance performance by
incorporating optimal transport. The generative processes of these models are summarized in Figure
1.

Previous works (Campbell et al., 2024; Gat et al., 2024) extended flow matching to discrete spaces,
while Eijkelboom et al. (2024) applied variational flow matching to graphs, but without adequately
addressing key graph-specific properties such as adjacency matrix sparsity. GGFlow tackles these
challenges by introducing a discrete flow matching model with optimal transport tailored for graph
data. Furthermore, we propose a novel framework for guiding the generative process, enhancing its
practical applicability.

Flow	Matching Flow	Matching
+	Optimal	Transport

Diffusion

Figure 1: Illustration of generative trajectories using different methods. The generative trajectories
are learned by the diffusion model (left), flow matching model (center), and flow matching model
with optimal transport (right).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 GRAPH GENERATIVE MODELS

Graph generative models are typically categorized into two main types: autoregressive and one-shot
models. Autoregressive models, such as generative adversarial networks (Wang et al., 2018), recurrent
neural networks (You et al., 2018), variational autoencoders (Jin et al., 2018), normalizing flows (Shi
et al., 2019; Luo et al., 2021) and diffusion model (Kong et al., 2023), generate graphs sequentially.
While effective, these models are often computationally expensive and fail to account for permutation
invariance, a crucial property for graph data, resulting in potential inefficiencies. In contrast, one-shot
models aim to capture the distribution of all graph components simultaneously (De Cao and Kipf,
2018; Ma et al., 2018; Zang and Wang, 2020), better reflecting the inherent interactions within graphs.
Despite the advantages, diffusion-based one-shot models (Niu et al., 2020; Jo et al., 2022b; Vignac
et al., 2022; Chen et al., 2023; Bergmeister et al., 2023; Luo et al., 2023; Haefeli et al., 2022; Yan
et al., 2023; Jang et al., 2023; Madeira et al., 2024; Bergmeister et al., 2024; Chen et al., 2023;
Minello et al., 2024; Zhao et al., 2024; Xu et al., 2024) show promising results in downstream tasks
but remain limited by sampling efficiency. GGFlow addresses these limitations by employing a
discrete flow-matching generative model, achieving superior generative performance with fewer
sampling steps. More comparisons with recent works are presented in Appendix B.

3 METHODS

In this section, we present our methodology, GGFlow. Section 3.1 outlines the discrete flow matching
method for graph generation. Section 3.2 covers optimal transport for graph flow matching. Section
3.3 introduces GraphEvo, our neural network for graph generation. Section 3.4 examines the
permutation properties of GGFlow, and Section 3.5 discusses goal-guided graph generation using
reinforcement learning.

3.1 DISCRETE FLOW MATCHING FOR GRAPH GENERATION

A graph G = (V,E), where V and E denote the sets of nodes and edges, has a distribution denoted
by p(G) = (pV (V), pE(E)). The attribute spaces for nodes and edges are V and E , with cardinalities
n and m, respectively. The attributes of node i and edge ij are denoted by vi ∈ V and eij ∈ E ,
so the node and edge probability mass functions (PMF) are pV (vi = a) and pE(eij = b) where
a ∈ {1, . . . , n} and b ∈ {1, . . . ,m}. The node and edge encodings in the graph are given by
matrices V ∈ Ra×n and E ∈ Ra×a×m, respectively. We denote the transpose of matrix A as A∗

and At represents the state of matrix A at time t. We use discrete flow matching to model the graph
generation process.

Source and target distribution GGFlow aims to transform prior distribution G0 ∼ pref to target
data distribution G1 ∼ pdata. The training data (G0, G1) are sampled from a joint distribution
π(G0, G1), satisfying the marginals constraints pref =

∑
G1 π(G0, G1), pdata =

∑
G0 π(G0, G1).

In the simplest case, the joint distribution π(G0, G1) is modeled as the independent coupling, i.e.
π(G0, G1) = pref · pdata.

To account for graph sparsity, the prior distribution pref = (pVref , p
E
ref) is designed to approximate

the true data distribution closely. To ensure the permutation invariance of the model, the priors are
structured as products of single distributions for all nodes and edges:

∏
i vi ×

∏
ij eij (Vignac et al.,

2022). Further details on the prior can be found in Appendix C.1.

Probability path We define a probability path pt(Gt) that interpolates between source distribution
pref and target distribution pdata i.e. p0 = pref and p1 = pdata. The marginal probability path is
given by:

pt(G
t) =

∑
(G0,G1)∼π

pt(G
t|G0, G1)π(G0, G1), (1)

where

pt(G
t|G0, G1) = Cat

(
tδ{G1, G}+ (1− t)pref

)
= Cat

(
tδ{V 1, V }+ (1− t)pVref , tδ{E1, E}+ (1− t)pEref

)
,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

δ is the Kronecker delta, indicating equality of the indices, and Cat(p) denotes a Categorical
distribution with probabilities p. Given the sparsity of both the prior and data distributions, we can
infer that the intermediate distribution is similarly sparse, aiding model training.

We define a probability velocity field ut(G,Gt) = (uVt (V, V
t), uEt (E,E

t)) for GGFlow, which
generates the probability path from Equation 1. The probability velocity field ut(G,Gt) is derived
from the conditional probability velocity field ut(G,Gt|G0, G1), and can be expressed as:

ut(G,G
t) =

∑
(G0,G1)∼π

ut(G,G
t|G0, G1)pt(G

0, G1|Gt), (2)

pt(G
0, G1|Gt) = p1|t(G

1|Gt, G0)
pt(G

t|G0, G1)π(G0, G1)∑
G0,G1 pt(Gt|G0, G1)π(G0, G1)

. (3)

GGFlow chooses the conditional marginal probability ut(G,Gt|G0, G1) as:

ut(G,G
t|G0, G1) =

1

Zt(1− t)pref
δ{G,G1}(1− δ{Gt, G1}), Gt ̸= G, (4)

where ReLU(a) = max(a, 0) and Zt = |{Gt : pt(G
t|G0, G1) > 0}|. More details about the

conditional vector field are provided in Appendix C.2.

Training objective Given the intractability of the posterior distribution p1|t(G1|Gt, G0), we ap-
proximate it as p̂1|t(G1|Gt, G0) using neural network, as detailed in Section 3.3. The training
objective is formulated as:

L = Epdata(G1)U(t;0,1)π(G0,G1)pt(Gt|G0,G1)[log p̂1|t(G
1|Gt, G0)], (5)

where U(t; 0, 1) is a uniform distribution on [0, 1].

Sampling Procedure In the absence of the data distributionG1 during sampling, we reparameterize
the conditional probability pt(G0, G1|Gt) as:

pt(G
0, G1|Gt) = p1|t(G

1|Gt, G0)
pt(G

t|G0)p(G0)∑
G0 pt(Gt|G0)p(G0)

.

pt(G
t|G0) = Cat

(
tδ{V 1, V }+ (1− t)prefV , tδ{E1, E}+ (1− t)prefE

)
And we can simplify the generative process pt+∆t|t(G

t+∆t|Gt, G0) without the calculation of the
full expectation over conditional vector field ut(G,Gt|G0, G1):

pt+∆t|t(G
t+∆t|Gt, G0) = Ep̂t(G1|Gt,G0)[δ(G

t, Gt+∆t) + ut(G
t, Gt+∆t|G0, G1)∆t]

=
∑
G1

pt+∆t|t(G
t+∆t|G1, Gt, G0)p̂1|t(G

1|Gt, G0). (6)

We first sample the Ĝ1 using the approximate distribution p̂1|t(G1|Gt, G0) and then sample the next
state Gt+∆t using sampled Ĝ1. The sampling procedure pt+∆t|t(G

t+∆t|G1, Gt, G0) can thus be
formulated as:

Gt+∆t ∼ δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t.

Further details on the sampling and training procedures are provided in Algorithms 1 and 4.

3.2 OPTIMAL TRANSPORT FOR GRAPH FLOW MATCHING

Optimal transport (OT) has been effectively applied to flow matching generative models in continuous
variable spaces, to improve generative performance (Tong et al., 2023; Bose et al., 2023; Song et al.,
2024). To generalize this for graphs, we extend the joint distribution π(G0, G1) from independent
coupling to the 2-Wasserstein OT map ϕ∗, which minimizes the 2-Wasserstein distance between pref
and pdata. To optimize the computational efficiency of OT, we define the distance via the Hamming
distance H(G1, G0) (Bookstein et al., 2002):

ϕ∗(p0, p1) = arg inf
ϕ∈Φ

∫
Rd×Rd

H(G0, G1)dϕ(G0, G1), (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Sampling Procedure of GGFlow

Require: t = 0, G0 ∼ (prefV , prefE), ut(G,Gt|G0, G1), Nsteps

1: ∆t = 1/Nsteps

2: for n ∈ {0, . . . , Nsteps − 1} do
3: p̂1|t(G

1|G0, Gt) = GraphEvo(Gt, G0, t)

4: Ĝ1 ∼ p̂1|t(·|G0, Gt)
5: // Sampling from the conditional velocity field
6: Gt+∆t ∼ δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t
7: t = t+∆t
8: end for
9: return G1 = (V 1, E1)

where
H(G0, G1) =

∑
i

δ(v0i , v
1
i) + λ

∑
i,j

δ(e0ij , e
1
ij). (8)

Here Φ represents the set of all joint probability measures on Rd × Rd that are consistent with the
marginal distributions p0 and p1, where GK = (V K = {vKi }, EK = {eKij }ij), K = 0, 1.

The practical application of OT to large datasets is computationally intensive, often requiring cubic
time complexity and quadratic memory (Tong et al., 2020; Villani, 2009). To address these challenges,
we use a minibatch approximation of OT (Fatras et al., 2021). A detailed time analysis of optimal
transport during the training procedure is provided in Appendix E..

3.3 GRAPHEVO: EDGE-AUGMENTED GRAPH TRANSFORMER

Our neural network, GraphEvo, predicts the posterior distribution p̂1|t(G1|Gt, G0) using the interme-
diate graph Gt and initial noise graph G0. In graph-structured data, edge and structural information
are as critical as node attributes, and incorporating edge relations enhances link generation tasks
(Hussain et al., 2024; Hou et al., 2024; Jumper et al., 2021). To capture these relations, GraphEvo
extends the graph transformer by introducing a triangle attention mechanism for edge updates, along
with additional graph features y, such as cycles and the number of connected components (Vignac
et al., 2022). This enables GraphEvo to efficiently and accurately capture the joint distribution of all
graph components. The key self-attention mechanisms are outlined in Algorithm 2, where node, edge,
and graph features are represented as X ∈ Rbs×n×dx, E ∈ Rbs×n×dx, and y ∈ Rbs×n×dy , where bs
denotes batch size, n is the number of nodes, and dx and dy are the feature dimensions for node and
global features, respectively. Further details are provided in Appendix D.

Algorithm 2 Self-attention Mechanism in GraphEvo

Require: X ∈ Rbs×n×dx,E ∈ Rbs×n×dx,y ∈ Rbs×n×dy

1: Q,K,V← Linear(X)

2: Y ← Q×K√
dY

// Calculation attention score for node embedding
3: Y ← FiLM(Y,E) // Incorporate edge features to self-attention scores
4: E← Y
5: Qe,Ke,Ve,b,g← Linear(E)

6: Ye ← Qe×Ke√
dYe

+ b // Calculation triangle attention score for edge embedding

7: E← Ye ∗Ve ∗ sigmoid(g)

8: E← Linear
(
FiLM(E,y)

)
// Incorporate global structural features to edge embedding

9: X← Y ∗V
10: X← Linear

(
FiLM(X,y)

)
// Incorporate global structural features to node embedding

11: y← Linear
(
Linear(y) + PNA(X) + PNA(E)

)
12: return X,E,y

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.4 PERMUTATION PROPERTY ANALYSIS

Graphs are invariant to random node permutations, and GGFlow preserves this property. To ensure
permutation invariance, we analyze the permutation properties of our neural network, training
objectives, and conditional probabilities path. First, we analyze the permutation invariance of the
training objectives (Vignac et al., 2022). Since the source and target distributions are permutation
invariant, the independent coupling also exhibits this invariance. Our optimal transport map, derived
from Equation 7, similarly demonstrates invariance to identical permutations. Further clarifications
regarding optimal transport can be found in Appendix C.4.

Theorem 1. If the distributions p(G0) and p(G1) are permutation invariant, and the cost function
maintains invariance under identical permutations, i.e., H(G0, G1) = H(πG0, πG1) for any per-
mutation π, then the optimal transport map ϕ also exhibits invariance under identical permutations,
such that ϕ(G0, G1) = ϕ(πG0, πG1).

Proof of this theorem can be found in Appendix C.4. To ensure that the generated graph retains
its identity under random permutations, the generated distribution must remain exchangeable, and
GraphEvo must be permutation equivariant.

Proposition 1. The distribution generated by the conditional flow is exchangeable with respect to
nodes and graphs, i.e. p(V,E) = p(π∗V, π∗Eπ), where π is a permutation operator.

Proposition 2. GraphEvo is permutation equivariant.

The proofs of Proposition 1 and 2 are provided in Appendix C.3 and Appendix D.1, respectively.

3.5 GOAL-GUIDED FRAMEWORK FOR CONDITIONAL GENERATION

For practical applications such as drug discovery, we propose a goal-guided framework for discrete
flow matching, employing reinforcement learning (RL) to guide graph flow matching models for
non-differentiable objectives. The goal of the guidance method is to map the noise distribution p0 to
a preference data distribution p∗1 using a reward functionR(Gt, t).

We formulate the inference process of flow matching as a Markov Decision Process (MDP),
where (Gt, t) and Gt+∆t are the state space st and action space at, p0 is an initial noise distri-
bution, pt+∆t|t(G

t+∆t|Gt, t) is the transition dynamics and policy network π(at|st), R(Gt, t) =

r(G1)I[t = 1] is the reward function

To enable exploration, we introduce a temperature parameter T for the policy network during
sampling, allowing the model to explore a broader space at higher temperatures:

π(at|st) = pt+∆t|t(G
t+∆t|Gt, t) = Cat

(
(δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t)/T

)
(9)

The goal of RL training is to maximize the reward function. To prevent overfitting to the reward
preference distribution, we add a Kullback–Leibler (KL) divergence term between the Reinforcement
learning fine-tuned model pRL

θ (·) and pre-trained model pθ(·) (Ouyang et al., 2022).

We employ the policy gradient method to update the network, where the policy is refined to π(at|st) =
p
(T)
θ (G1|Gt)q(Gt+∆t|G1) to π(at|st) = p

(T)
θ (G1|Gt) (Sutton et al., 1999; Liu et al., 2024b), directly

increasing the probability of generatingG1 with higher rewards at all timestep t. The training objective
is:

LRL = −Epθ(G0:t:1)[αR(G1)

t=1∑
t=0

log pRL
θ (G1|Gt, G0)− β

t=1∑
t=0

KL(pRL
θ (G1|Gt, G0)||pθ(G1|Gt, G0))]

(10)
where pθ(G0:t:1) represents pdata(G1)U(t; 0, 1)π(G0, G1)pt(G

t|G0, G1). Using this optimization
objective, we fine-tune the pre-trained flow matching model to generate data following the preference
distribution. By integrating optimal transport, we optimize the pairing of prior data and high-reward
training data (Chen et al., 2020a). The pseudo-code for the guided GGFlow training is provided in
Algorithm 5 and a toy example is shown in Appendix G.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENT

To validate the performance of our method, we compare GGFlow with state-of-the-art graph gener-
ative baselines on generic graph generation and molecule generation, over several benchmarks in
Section 4.1 and Section 4.2, respectively. The ability of GGFlow to perform conditional generation is
analyzed in Section 4.3. Finally, we conduct detailed ablation studies presented in Section 4.4.

4.1 GENERIC GRAPH GENERATION

We evaluated GGFlow on five generic graph generation benchmarks of varying sizes: Ego-small,
Community-small, Grid, Planar and Enzymes. We employ the same train/test split as GraphRNN
(You et al., 2018), utilizing 80% of each dataset for training and the remaining for testing. We
compared GGFlow’s performance against well-known autoregressive models: DeepGMG (Li et al.,
2018), GraphRNN (You et al., 2018), GraphAF (Shi et al., 2019), and GraphDF (Luo et al., 2021)
and one-shot models: GraphVAE (Simonovsky and Komodakis, 2018), GNF (Liu et al., 2019), EDP-
GNN (Niu et al., 2020), GDSS (Jo et al., 2022a), DiGress (Vignac et al., 2022), GRASP (Minello
et al., 2024), GSDM (Luo et al., 2023), GruM (Jo et al., 2024), and SwinGNN (Yan et al., 2023).
Consistent with previous studies, we generated an equal number of graphs as the test set to compare
distributions of graph statistics, including degree distribution (Deg.), clustering coefficient (Clus.),
and the frequency of 4 node orbits (Orbit). Detailed descriptions of datasets, baselines, and metrics
are provided in Appendix I.

Table 1 presents our results, showing that GGFlow achieves superior performance across most metrics.
Additionally, GGFlow demonstrates comparable performance compared to state-of-the-art models in
generating large graphs on the Grid dataset. These findings underscore the effectiveness of GGFlow
at capturing the local characteristics and data distributions of graphs. Additional metrics and dataset
experimental results are included in Appendix H, and we visualize the generated graphs in Appendix
K.

Table 1: Generation results on the generic graph datasets. Results are the means of 3 different runs.
The best results and the second-best results are marked bold and bold.

Method Ego-small Community-small Grid Step
Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg.

Training Set 0.014 0.022 0.004 0.013 0.003 0.009 0.001 0.005 0.000 0.000 0.000 0.000 -

DeepGMG 0.040 0.100 0.020 0.053 0.220 0.950 0.400 0.523 - - - - -
GraphRNN 0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.080 0.064 0.043 0.021 0.043 -
GraphAF 0.031 0.107 0.001 0.046 0.178 0.204 0.022 0.135 - - - - -
GraphDF 0.039 0.128 0.012 0.046 0.060 0.116 0.030 0.069 - - - - -
GNF 0.030 0.100 0.001 0.044 0.200 0.200 0.110 0.170 - - - - -
GraphVAE 0.137 0.166 0.051 0.118 0.358 0.969 0.551 0.626 1.594 0.000 0.904 0.833 -
EDP-GNN 0.054 0.092 0.007 0.051 0.050 0.159 0.027 0.079 0.460 0.243 0.316 0.340 1000
GDSS 0.027 0.033 0.008 0.022 0.044 0.098 0.009 0.058 0.133 0.009 0.123 0.088 1000
GSDM - - - - 0.020 0.050 0.005 0.053 0.002 0.000 0.000 0.001 1000
DiGress 0.028 0.046 0.008 0.027 0.032 0.047 0.009 0.025 0.037 0.046 0.069 0.051 500
SwinGNN 0.017 0.060 0.003 0.027 0.006 0.125 0.018 0.050 0.000 0.000 0.000 0.000 500

GGFlow 0.005 0.033 0.004 0.014 0.011 0.030 0.002 0.014 0.030 0.000 0.016 0.015 500

4.2 MOLEUCLE GRAPH GENERATION

We evaluated GGFlow on two standard molecular datasets, QM9 (Ramakrishnan et al., 2014)
and ZINC250k (Irwin et al., 2012), using several metrics: Validity, Validity without correction,
Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) Maximum Mean Discrepancy (MMD),
and Frechet ChemNet Distance (FCD). To calculate these metrics, we sampled 10,000 molecules.
We compared GGFlow against various molecule generation models, including GraphAF, GraphDF,
MolFlow (Zang and Wang, 2020), EDP-GNN, GraphEBM (Liu et al., 2021), GDSS, PS-VAE (Kong
et al., 2022), MolHF (Zhu et al., 2023), GruM, SwinGNN, DiGress, and GSDM. Detailed descriptions
of the datasets, baselines and metrics are provided in Appendix I.

The results, presented in Table 2, indicate that GGFlow effectively captures the distribution of molec-
ular data, showing significant improvements over the baselines. The high Validity without correction

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

suggests that GGFlow successfully learns chemical valency rules. Additionally, GGFlow achieves su-
perior NSPDK and FCD scores on both datasets, demonstrating its ability to generate molecules with
distributions closely resembling those of natural molecules. Visualizations of molecules generated by
different models are shown in Figure 2, with additional results on GGFlow provided in Appendix K.

Table 2: Generation results on the QM9 and ZINC250k datasets. Results are the means of 3 different
runs. The best results and the second-best results are marked bold and bold.

Method QM9 ZINC250k Step
Val. Val. w/o

corr.
NSPDK FCD Val. Val. w/o

corr.
NSPDK FCD

Training Set 100 100 0.0001 0.040 100 100 0.0001 0.062 -

GraphAF 100 67.14 0.0218 5.246 100 67.92 0.0432 16.128 -
GraphDF 100 83.14 0.0647 10.451 100 89.72 0.1737 33.899 -
MolFlow 100 92.03 0.0169 4.536 100 63.76 0.0468 20.875 -
GraphEBM 100 8.78 0.0287 6.402 100 5.29 0.2089 35.467 -
PS-VAE - - 0.0077 1.259 - - 0.0112 6.320 -
MolHF - - - - 100 93.62 0.0387 23.940 -
EDP-GNN 100 47.69 0.0052 2.683 100 83.16 0.0483 16.819 1000
GDSS 100 96.17 0.0033 2.565 100 97.12 0.0192 14.032 1000
GSDM 100 99.90 0.0034 2.614 100 92.57 0.0168 12.435 1000
GruM 100 99.69 0.0002 0.108 100 98.32 0.0023 2.235 1000
SwinGNN 100 99.66 0.0003 0.118 100 86.16 0.0047 4.398 500
DiGress 100 98.29 0.0003 0.095 100 94.98 0.0021 3.482 500

GGFlow 100 99.91 0.0002 0.148 100 99.63 0.0010 1.455 500

QM9

ZINC250k

GDSSGruMDiGressGFlow

Figure 2: Visualization of generated samples of different models in different molecular datasets

4.3 CONDITIONAL GENERATION

To further evaluate the performance of our model, we conducted conditional generation experiments
on the QM9 dataset, focusing on generating molecules with molecular properties µ that closely match
a target value µ∗. In the experiment, we set the target value as 1, i.e. µ∗ = 1.

For the experiment, we employed a reinforcement learning-based guidance method and compared it
to the guided version of DiGress, which also proposes an effective approach for discrete diffusion
models in conditional generation tasks. The reward function was defined as |µ− µ∗|, and the model
was trained over 10,000 steps using the training settings detailed in Section 4.2. To evaluate the
effectiveness of our guidance method, we compared it against three baselines: (1) Guidance for
DiGress (Vignac et al., 2022). (2) Direct supervised training (ST) (3) Supervised fine-tuning (SFT).
Additionally, we calculated the mean and variance of |µ− µ∗|for samples generated unconditionally
by both DiGress and GGFlow to provide a baseline comparison. Further details of the experiment are
provided in Appendix I.5.

The results, detailed in Table 3, demonstrate the superiority of our reinforcement learning-based
conditional generation method over both ST and SFT approaches. Notably, our method surpasses the
guidance techniques used in diffusion models, showcasing its enhanced ability to steer the generative

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

process toward desired outcomes. Additionally, our approach achieves higher validity in conditional
generated tasks, highlighting its robustness and superior performance in goal-directed generation.

Table 3: Mean absolute error of molecular property µ on conditional generation on the QM9 dataset.

Methods DiGress GGFlow

Uncondition +Guidance Unconditition Supervised Training +SFT +RL

Mean 1.562 1.092 1.569 1.184 1.223 0.672
Variance 1.641 0.894 1.987 1.579 1.893 0.647
Val. w/o corr. 96.54 74.2 98.93 86.1 87.0 92.2

4.4 ABLATION STUDIES

To validate the efficiency and effectiveness of GGFlow, we conducted a series of ablation experiments
using the Community-small and Planar datasets, focusing on: (1) the results of varying inference steps,
(2) the model performance without the integration of Optimal Transport (OT), denoted as GGFlow
(w/o OT), and (3) the model performance without the GraphEvo module, denoted as GGFlow (w/o
Evo). (4) the model performance without the GraphEvo module and optimal transport, denoted as
GGFlow (w/o both). The results of these studies are depicted in Figure 3 and detailed in Table 4.
Additional details about the experimental settings are provided in Appendix J.2.

0 200 400 600 800 1000
Inference Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e

GDSS
GFlow (w/o OT)
GFlow
DiGress

Figure 3: Ablation Studies of varying inference
steps on Community-small dataset.

The results for varying inference steps are il-
lustrated in Figure 3. Our findings indicate
that GGFlow outperforms other diffusion-based
models with fewer inference steps, such as 100
and 200, highlighting GGFlow’s enhanced sam-
pling efficiency. Furthermore, the integration of
Optimal Transport significantly boosts sampling
efficiency and enhances generative performance
and stability, as evidenced by performance gains
in both generic graph generation tasks. Further
inference results for the Planar dataset, which
reinforce the advantages of Optimal Transport,
can be found in Appendix J.2. Moreover, the
GraphEvo module improves the performance of
GGFlow. The triangle attention mechanism for edges in GraphEvo captures more complex node and
edge features, leading to substantial performance improvements. Moreover, even without the com-
bined use of GraphEvo and Optimal Transport, our methods still outperform DiGress, highlighting
the advantages of flow matching over traditional diffusion models. A detailed analysis of the training
procedure, which illustrates the stability provided by Optimal Transport, is also included in Appendix
J.2..

Table 4: Ablation studies on the OT and GraphEvo on the Commuinty-small and Planar datasets.
Results are the means of 3 different runs. The best results are marked bold.

Method Community-small Planar Step
Deg. Clus. Orbit Deg. Clus. Orbit Spec. Val.&Nov.&Uni.

DiGress 0.032 0.047 0.009 0.0003 0.0372 0.0098 0.0106 87.5 500

GGFlow (w/o both) 0.029 0.076 0.003 0.0023 0.1076 0.0053 0.0099 92.5 500
GGFlow (w/o OT) 0.028 0.027 0.007 0.0015 0.0431 0.0020 0.0067 97.0 500
GGFlow (w/o Evo) 0.018 0.075 0.004 0.0020 0.0763 0.0034 0.0124 94.5 500

GGFlow 0.001 0.084 0.004 0.0156 0.0196 0.0019 0.0091 97.5 500

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

In this paper, we introduced GGFlow, a discrete flow matching generative model for graphs that
incorporates optimal transport and an innovative graph transformer network. GGFlow achieves state-
of-the-art performance in unconditional graph generation tasks. Additionally, we presented a novel
guidance method using reinforcement learning to control the generative trajectory toward a preferred
distribution. Furthermore, our model demonstrates the ability to achieve the best performance across
various tasks with fewer inference steps compared to other baselines which highlights the practical
impact of our guidance method. A primary limitation is scalability to larger graphs (|V| > 500),
attributable to the increased time complexity from triangle attention updates and spectral feature
computations. Generation times for different graph scales are provided in Appendix J.3. Future work
will focus on enhancing our model’s scalability in larger graphs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
Denoising Diffusion Models in Discrete State-Spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient and
Scalable Graph Generation through Iterative Local Expansion. arXiv preprint arXiv:2312.11529,
2023.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. In The Twelfth International
Conference on Learning Representations, 2024.

Camille Bilodeau, Wengong Jin, Tommi Jaakkola, Regina Barzilay, and Klavs F Jensen. Generative
models for molecular discovery: Recent advances and challenges. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 12(5):e1608, 2022.

Abraham Bookstein, Vladimir A Kulyukin, and Timo Raita. Generalized Hamming Distance.
Information Retrieval, 5:353–375, 2002.

Joey Bose, Tara Akhound-Sadegh, Kilian FATRAS, Guillaume Huguet, Jarrid Rector-Brooks, Cheng-
Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M Bronstein, and Alexander Tong.
SE (3)-Stochastic Flow Matching for Protein Backbone Generation. In The Twelfth International
Conference on Learning Representations, 2023.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-
Design. arXiv preprint arXiv:2402.04997, 2024.

Liqun Chen, Ke Bai, Chenyang Tao, Yizhe Zhang, Guoyin Wang, Wenlin Wang, Ricardo Henao, and
Lawrence Carin. Sequence generation with optimal-transport-enhanced reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 7512–7520,
2020a.

Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu. Graph optimal
transport for cross-domain alignment. In International Conference on Machine Learning, pages
1542–1553. PMLR, 2020b.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and Degree-Guided Graph Generation
via Discrete Diffusion Modeling. In Proceedings of the 40th International Conference on Machine
Learning, pages 4585–4610, 2023.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular graphs.
ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models,
2018.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation. arXiv preprint arXiv:2406.04843,
2024.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60, 1960.

Kilian Fatras, Younes Zine, Szymon Majewski, Rémi Flamary, Rémi Gribonval, and Nicolas Courty.
Minibatch optimal transport distances; analysis and applications. arXiv preprint arXiv:2101.01792,
2021.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative Generative Modeling of Graphs.
In International conference on machine learning, pages 2434–2444. PMLR, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffusion
models for graphs benefit from discrete state spaces. In NeurIPS 2022 Workshop: New Frontiers
in Graph Learning, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video Diffusion Models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022.

Xiaoyang Hou, Tian Zhu, Milong Ren, Bo Duan, Chunming Zhang, Dongbo Bu, and Shiwei Sun.
Gtam: A molecular pretraining model with geometric triangle awareness. Bioinformatics, page
btae524, 2024.

Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based on discrete graph
structures for molecular graph generation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 4302–4311, 2023.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Triplet interaction
improves graph transformers: Accurate molecular graph learning with triplet graph transformers. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=iPFuWc1TV2.

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
space with a programmable generative model. Nature, pages 1–9, 2023.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. ZINC: A
Free Tool to Discover Chemistry for Biology. Journal of chemical information and modeling, 52
(7):1757–1768, 2012.

Yunhui Jang, Seul Lee, and Sungsoo Ahn. A Simple and Scalable Representation for Graph
Generation. In The Twelfth International Conference on Learning Representations, 2023.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Variational Autoencoder for
Molecular Graph Generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based Generative Modeling of Graphs via the
System of Stochastic Differential Equations. arXiv:2202.02514, 2022a. URL https://arxiv.
org/abs/2202.02514.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based Generative Modeling of Graphs via the
System of Stochastic Differential Equations. In International Conference on Machine Learning,
pages 10362–10383. PMLR, 2022b.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. In
Forty-first International Conference on Machine Learning, 2024.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International conference on machine
learning, pages 17391–17408. PMLR, 2023.

Xiangzhe Kong, Wenbing Huang, Zhixing Tan, and Yang Liu. Molecule generation by principal
subgraph mining and assembling. Advances in Neural Information Processing Systems, 35:
2550–2563, 2022.

12

https://openreview.net/forum?id=iPFuWc1TV2
https://openreview.net/forum?id=iPFuWc1TV2
https://arxiv.org/abs/2202.02514
https://arxiv.org/abs/2202.02514

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid Neural Architecture Search by Learning
to Generate Graphs from Datasets. In International Conference on Learning Representations,
2020.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning Deep Generative
Models of Graphs. arXiv preprint arXiv:1803.03324, 2018.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow Matching
for Generative Modeling. In The Eleventh International Conference on Learning Representations,
2022.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph Normalizing Flows.
Advances in Neural Information Processing Systems, 32, 2019.

Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. GraphEBM: Molecular Graph Generation
with Energy-Based Models. arXiv preprint arXiv:2102.00546, 2021.

Shiwei Liu, Tian Zhu, Milong Ren, Chungong Yu, Dongbo Bu, and Haicang Zhang. Predicting muta-
tional effects on protein-protein binding via a side-chain diffusion probabilistic model. Advances
in Neural Information Processing Systems, 36, 2024a.

Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Wei Chen, and Min Lin. Graph Diffusion Policy
Optimization. arXiv preprint arXiv:2402.16302, 2024b.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast Graph Generation via Spectral Diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A Discrete Flow Model for Molecular Graph
Generation. In International conference on machine learning, pages 7192–7203. PMLR, 2021.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained Generation of Semantically Valid Graphs via
Regularizing Variational Autoencoders. Advances in Neural Information Processing Systems, 31,
2018.

Manuel Madeira, Clement Vignac, Dorina Thanou, and Pascal Frossard. Generative modelling of
structurally constrained graphs. arXiv preprint arXiv:2406.17341, 2024.

Giorgia Minello, Alessandro Bicciato, Luca Rossi, Andrea Torsello, and Luca Cosmo. Graph
generation via spectral diffusion. arXiv preprint arXiv:2402.18974, 2024.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation Invariant Graph Generation via Score- Based Generative Modeling. In International
Conference on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. Got: an
optimal transport framework for graph comparison. Advances in Neural Information Processing
Systems, 32, 2019.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch couplings.
arXiv preprint arXiv:2304.14772, 2023.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Milong Ren, Tian Zhu, and Haicang Zhang. Carbonnovo: Joint design of protein structure and
sequence using a unified energy-based model. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=FSxTEvuFa7.

13

https://openreview.net/forum?id=FSxTEvuFa7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn, and
Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments. Nucleic
acids research, 32(suppl 1):D431–D433, 2004.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective Classification in Network Data. AI magazine, 29(3):93–93, 2008.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. GraphAF: a
Flow-based Autoregressive Model for Molecular Graph Generation. In International Conference
on Learning Representations, 2019.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using
Variational Autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pages 412–422. Springer, 2018.

Daniel GA Smith, Lori A Burns, Andrew C Simmonett, Robert M Parrish, Matthew C Schieber,
Raimondas Galvelis, Peter Kraus, Holger Kruse, Roberto Di Remigio, Asem Alenaizan, et al.
PSI4 1.4: Open-source software for high-throughput quantum chemistry. The Journal of chemical
physics, 152(18), 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations, 2020.

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou, and
Wei-Ying Ma. Equivariant Flow Matching with Hybrid Probability Transport for 3D Molecule
Generation. Advances in Neural Information Processing Systems, 36, 2024.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods
for Reinforcement Learning with Function Approximation. Advances in neural information
processing systems, 12, 1999.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
A dynamic optimal transport network for modeling cellular dynamics. In International conference
on machine learning, pages 9526–9536. PMLR, 2020.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
FATRAS, Guy Wolf, and Yoshua Bengio. Improving and Generalizing Flow-Based Generative
Models with Minibatch Optimal Transport. In ICML Workshop on New Frontiers in Learning,
Control, and Dynamical Systems, 2023.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Cédric Villani. Optimal Transport, volume 338 of. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], page 71, 2009.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. GraphGAN: Graph Representation Learning With Generative Adversarial Nets. In
Proceedings of the AAAI conference on artificial intelligence, 2018.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
structure and function with RFdiffusion. Nature, 620(7976):1089–1100, 2023.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Ma-
hashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph generation.
arXiv preprint arXiv:2405.11416, 2024.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permutation
invariance in diffusion models for graph generation. arXiv preprint arXiv:2307.01646, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
Realistic Graphs with Deep Auto-regressive Models. In International conference on machine
learning, pages 5708–5717. PMLR, 2018.

Chengxi Zang and Fei Wang. MoFlow: an invertible flow model for generating molecular graphs.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 617–626, 2020.

Lingxiao Zhao, Xueying Ding, and Leman Akoglu. Pard: Permutation-invariant autoregressive
diffusion for graph generation. arXiv preprint arXiv:2402.03687, 2024.

Tian Zhu, Milong Ren, and Haicang Zhang. Antibody design using a score-based diffusion
model guided by evolutionary, physical and geometric constraints. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
1YsQI04KaN.

Yiheng Zhu, Zhenqiu Ouyang, Ben Liao, Jialu Wu, Yixuan Wu, Chang-Yu Hsieh, Tingjun Hou, and
Jian Wu. Molhf: a hierarchical normalizing flow for molecular graph generation. In Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, pages 5002–5010,
2023.

15

https://openreview.net/forum?id=1YsQI04KaN
https://openreview.net/forum?id=1YsQI04KaN

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

A BACKGROUND

A.1 CONTINUOUS FLOW MATCHING GENERATIVE MODEL

The generative model aims to establish a mapping f : Rd → Rd that transforms a noise distribution
q0 into a target data distribution q1. This transformation is dependent on a density function p0
over Rd, and an integration map ψt, which induces a pushforward transformation pt = [ψt]#(p0).
This denotes the density of points x ∼ p0 transported from time 0 to time t along a vector field
u : [0, 1]× Rd → Rd.

The vector field u is formulated as:
dx = ut(x)dt.

The solution ψt(x) to this ODE, with the initial condition ψ0(x) = x, represents the trajectory of the
point x governed by u from time 0 to time t.

The evolution of the density pt, viewed as a function p : [0, 1] × Rd → R, is encapsulated by the
continuity equation:

∂p

∂t
= −∇ · (ptut),

with the initial condition given by p0. Here, u is the probability flow ODE for the path of marginal
probabilities p, generated over time.

In practical applications, if the probability path pt(x) and the generating vector field ut(x) are known
and pt(x) is tractably sampled, we leverage a time-dependent neural network vθ(·, ·) : [0, 1]×Rd →
Rd to approximate u. The neural network is trained using the flow matching objective:

LFM(θ) = Et∼U(0,1),x∼pt(x)∥vθ(t, x)− ut(x)∥
2, (11)

which enhances the model’s capability to simulate the target dynamics accurately. Avoiding the
explicit construction of the intractable vector field, recent works express the probability path as a
marginal over a joint involving a latent variable z: p(xt) =

∫
p(z)pt|z(xt|z). (Lipman et al., 2022;

Tong et al., 2023) and the pt|z(xt|z) is a conditional probability path, satisfying some boundary
conditions at t = 0 and t = 1.

The conditional probability path also satisfies the transport equation with the conditional vector field
ut(x|x1):

∂pt(x|xt)
∂t

= −∇ · (ut(x|x1)pt(xt|x1)). (12)

We can construct the marginal vector field ut(x) via the conditional probability path pt|1(xt|x1) as:

ut(x) = Ex1∼p1|t [ut(x|x1)]. (13)

We can replace the flow matching loss LFM with an equivalent loss regressing the conditional vector
field ut(x|x1) and marginalizing x1 instead:

LCFM(θ) = EU(t;0,1),x1∼q,xt∼pt(x|x1)[uθ(t, x)− ut(x|x1)].
∇θLFM(θ) = ∇θLCFM(θ).

So we can use LCFM(θ) instead to train the parametric vector field uθ.

B RELATED WORKS

B.1 COMPARISON WITH DISCRETE FLOW MATCHING

Campbell et al. (2024) first introduced flow matching in discrete spaces using a continuous-time
Markov chain. Building on this, Gat et al. (2024) expanded the framework to encompass general

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

source and target couplings, including U-coupling and C-coupling. GGFlow advances discrete flow
matching and its source-target coupling to suit graph-structured data. Our approach innovatively
incorporates efficient optimal transport for graphs within the flow matching framework. To address
the inherent sparsity and permutation invariance of graphs, we employ a tailored prior distribution.
Additionally, we implement an edge-augmented graph transformer to enhance generative performance
and adopt a goal-guided framework for conditional generation. These advancements collectively
enhance the practical applicability of GGFlow.

B.2 COMPARISON WITH GRAPH DISCRETE DIFFUSION MODEL

DiGress (Vignac et al., 2022) and PPGN (Haefeli et al., 2022) were among the first to apply discrete
diffusion models to graph generation, highlighting the advantages of discrete state spaces. DiGress
further introduced an optimal prior distribution and global structural features specifically designed to
enhance graph generation. Their forward and generative processes are expressed as:

q(Gt|G0) = Cat(Gt, p = G0Q̄t), with Q̄t = Q1Q2 . . . Qt, (14)

q(Gt−1|Gt, G0) =
q(Gt|Gt−1, G0)q(Gt−1|G0)

q(Gt|G0)
= Cat(Gt−1; p =

GtQT
t ⊙G0Q̄t−1

G0Q̄tGt∗), (15)

where Gt represents the noisy graph at time t, and Qt is the time-dependent transition matrix.
These methods require maintaining convergence properties of transition matrix and cumulative matrix
products, constraining the choice of prior distributions and destabilizing training. In contrast, GGFlow
employs a simpler interpolation between the prior and data distributions during training, avoiding
cumulative products and improving both training stability and the ease of selecting appropriate priors.

B.3 COMPARISON WITH GRAPH DISCRETE FLOW MODEL

GraphDF (Luo et al., 2021) uses a discrete flow model to generate molecular graphs by sequentially
sampling discrete latent variables and mapping them to nodes and edges via invertible modulo-shift
transforms. GGFlow simplifies this by transforming the invertible modulo-shift into a conditional
vector field that interpolates between the prior and data distributions, bypassing the need for complex
invertible mappings. Furthermore, while GraphDF adopts an autoregressive process for graph
generation, GGFlow generates the entire graph in a one-shot manner, capturing holistic relationships
among nodes and edges more efficiently.

B.4 COMPARISON WITH GRAPH VARIATIONAL FLOW MATCHING

CatFlow (Eijkelboom et al., 2024) employs variational inference to apply flow matching to categorical
data, but it only considers the conditional vector field under the assumption of independent coupling
in the joint distribution π(G0, G1) and fails to consider the inherent sparsity of graph structures.
GGFlow extends this by generalizing π(G0, G1) as a 2-Wasserstein optimal transport map and
incorporating an optimal prior distribution tailored for graph structures, improving performance in
generation tasks. Additionally, GGFlow introduces a novel goal-directed approach for discrete flow
matching in conditional generation tasks, enhancing its practical applicability.

C PROOFS

C.1 OPTIMAL PRIOR DISTRIBUTION

This prior is structured as a product of a single distribution v for all nodes and a single distribution e
for all edges,

∏
i v ×

∏
i,j e, to ensure exchangeability across the graph components.

Theorem 2 (Optimal prior distribution). Consider the class C = {
∏

i u×
∏

i,j v, (u, v) ∈ P(V)×
P(E)} of distributions over graphs, which factorize as the product of a uniform distribution v over
node attribute space V and a uniform distribution e over edge attribute space E . Given any arbitrary
distribution P over graphs (viewed as a tensor of order n + n2), with qV and qE as its marginal
distributions for node and edge attributes respectively, then the orthogonal projection of P onto C is

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

defined as ϕG =
∏

i qV ×
∏

i,j qE . This projection minimizes the Euclidean distance:

ϕG ∈ arg min
(v,e)∈C

∥P −
∏

1≤i≤n

v ×
∏

1≤i,j≤n

e∥22.

The details and proof of Theorem 2 are extensively discussed in DiGress (Vignac et al., 2022).

C.2 CHOICE OF CONDITIONAL VELOCITY FIELD

In GGFlow, the conditional vector field for discrete flow matching is defined as (Campbell et al.,
2024):

ut(G,G
t|G0, G1) =

ReLU(∂tpt|1(G|G1)− ∂tpt|1(Gt|G1))

Zt · pt|1(Gt|G1)

=
1

Zt(1− t)pref
δ{G,G1}(1− δ{Gt, G1}), Gt ̸= G,

where ReLU(a) = max(a, 0) and Zt = |{Gt : pt(G
t|G0, G1) > 0}|. ut(G,Gt|G0, G1) = 0 when

pt(G|G1, G0) = 0 and pt(Gt|G1, G0) = 0. When Gt = G, the rate matrix R(Gt, Gt|G0, G1) =
−
∑

Gt ̸=GR(G
t, G|G0, G1). For simplification, the graph G is denoted as variable x

Proof. Consider the conditional probability pt|1(xt|x1, x0) = pt(x
t|x1, x0) = Cat

(
tδ{x1, xt} +

(1− t)qx
)

, where qx is the prior distribution. We derive its time derivative:

∂tpt|1(x
t|x1, x0) = δ{x1, xt} − qx, (16)

We then construct the conditional rate matrix ut(xt, x|x1, x0) as:

ut(x
t, x|x1, x0) =

ReLU(∂tpt|1(x|x1, x0)− ∂tpt|1(xt|x1, x0))
Zt · pt|1(xt|x1, x0)

=
ReLU(δ{x, x1} − qx − δ{xt, x1}+ qx)

Zt(tδ{x1, xt}+ (1− t)qx)

=
ReLU(δ{x, x1} − δ{xt, x1})
Zt(tδ{x1, xt}+ (1− t)qx)

.

The expression simplifies under the assumption that xt ̸= x. The only non-zero values occur when
x = x1 and xt ̸= x1, thus yielding:

ut(x
t, x|x1) = 1

Zt(1− t)qx
δ{x, x1}(1− δ{xt, x1}), xt ̸= j (17)

where Zt = |{xt : pt(xt|x1, x0) > 0}|.

C.3 PROOF OF PROPOSITION 1

Proof. The Kolmogorov forward equations for discrete flow matching are expressed as:

∂tpt = utpt, (18)

If we establish the permutation invariance of the prior distributions pref and the permutation equivari-
ance of conditional flow probabilities, then it follows that p(G1) is permutation exchangeable.

According to the Theorem 2, we deduce the permutation invariance of the prior distribution pref .
Given the conditional probabilities p(Gt+∆t|Gt) = Cat

(
δ{Gt, Gt+∆t} + ût(G

t, Gt+∆t)∆t
)

, it

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

suffices to demonstrate the permutation equivariance of the conditional probabilities. This requires
showing the permutation equivariance of the vector field ut. Consider the case for nodes:

πuVt (V
t
i , V

t+∆t
i) = π

(
Ep̂V

1|t(V
1
i |V t

i)[u
V
t (V

t
i , V

t+∆t
i |V 1

i , V
0
i)]

)
,

LHS = uVt (V
t
π−1(i), V

t+∆t
π−1(i)),

RHS =
(
Ep̂V

1|t(V
1
π−1(i)

|V t
π−1(i)

)[u
V
t (V

t
π−1(i), V

t+∆t
π−1(i)|V

1
π−1(i), V

0
π−1(i))]

)
,

= uVt (V
t
π−1(i), V

t+∆t
π−1(i)) = LHS.

where π is a permutation operator. This establishes the permutation equivariance of ut and the
exchangeability of the generated distribution.

C.4 PROOF OF THEOREM 1

First, we want to clarify the rationale and foundation of our theorem. The goal of optimal transport is
to pair source and target data points with minimal cost during training, which is beneficial for our
interpolation (Bose et al., 2023; Song et al., 2024). Thus, we design our optimal transport approach
from the perspective of interpolation.

We define the node order of the graph G as the order of the nodes and edges in matrix representation.
For example, if the node set ofG is {A,B,C}, the possible node orders include (A,B,C), (B,A,C)
or (C,B,A).

In the interpolation process, we transform the graph representation to a matrix representation before
performing interpolation. For example, for source data G0 = (V 0, E0), V 0 ∈ Ra×n, E0 ∈ Ra×a×m

and target data G1 = (V 1, E1), V 1 ∈ Ra×n, E1 ∈ Ra×a×m, where a is the number of nodes, n is
the class number of nodes, and m is the class number of edges, the node orders of G0 and G1 have
been fixed. Therefore, interpolation is performed directly on these fixed node orders.

The optimal transport aims to find pairs with the minimum cost for interpolation, and the interpolation
is conducted on a fixed node order. Additionally, during optimal transport calculations, we also
utilize the matrix representation of these graphs and our prior distribution is permutation invariant.
Therefore, we aim to match source data with the target data G1 whose node order is fixed, to achieve
minimal transport cost. Furthermore, we assume that all pairs of source and target data share the same
node order during optimal transport, which also facilitates the identification of pairs with minimal
cost.

Regarding the permutation of the intermediate graph Gt, we have πGt = tπG0 + (1 − t)πG1,
where G0 and G1 share an identical permutation. Our network p̂1(G1|G0, Gt) needs to maintain
permutation equivariance, such that p̂1(G1|πG0, πGt) = πp̂1(G1|G0, Gt) for any permutation π to
approximate πG1. So we prove the invariance of optimal transport under identical permutations, i.e.
ϕ(G0, G1) = ϕ(πG0, πG1).

Proof. Building on the foundations established in Theorem 2 and Proposition 1, we confirm the
permutation invariance of both the target and source distributions. The Hamming distance is invariance
under identical permutations π, as shown by:

H(G0, G1) =
∑
i

δ(v0i , v
1
i) +

1

2

∑
i,j

δ(e0ij , e
1
ij)

=
∑
i

δ(v0π−1(i), v
1
π−1(i)) +

1

2

∑
i,j

δ(e0π−1(i)π−1(j), e
1
π−1(i)π−1(j))

= H(πG0, πG1)

This property of the Hamming distance ensures the invariance of the optimal transport map ϕ∗ under
identical permutations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Additionally, the prior distribution is permutation invariant and our GraphEvo is permutation equiv-
ariance, all permutations of graphs are generated with equal probability (Eijkelboom et al., 2024).

Lemma 1. Let p0(G) be an exchangeable distribution and our model p̂1|t(G1|Gt, G0) is permutation
equivariant. Then, all permutations of generated graphs with equal probability.

Proof. As the permutation equivariance of our model p̂1|t(G1|Gt, G0), implies the equivariance of
our vector fields ut. Moreover, the sampling procedure exhibits permutation equivariance, where π is
a permutation.

p̂1|t(G
1|πG0) = πp̂1|t(G

1|G0), t = 0

p∆t|0(G
∆t|πĜ1, πG0) = δ{·, πG0}+ u0(·, πG0|πG0, πĜ1)∆t

= π[δ{·, G0}+ u0(·, G0|G0, Ĝ1)∆t] = πp∆t|0(G
∆t|Ĝ1, G0), t = 0

pt+∆t|t(G
∆t+t|πĜ1, πGt, πG0) = δ{·, πGt}+ ut(·, πGt|πG0, πĜ1)∆t

= π[δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t] = πpt+∆t|t(G
∆t+t|Ĝ1, Gt, G0), t = ∆t, . . . , 1−∆t

Therefore, since p0 assigns equal density of all permutations of G, the resulting distribution p1
preservers this property.

D DETAILS OF GRAPHEVO

GraphEvo is a novel edge-augmented graph transformer model designed for graph data. To enhance
the generative capabilities of GGFlow, GraphEvo introduces a triangle update mechanism, which
significantly improves the exchange of edge information. We incorporate FiLM and PNA layers into
our architecture (Vignac et al., 2022):

FiLM(X1, X2) = X1(Linear(X2) + 1) + Linear′(X2)

PNA(X) = Linear
(
Cat(max(X),min(X),mean(X), std(X))

)
.

The full architecture of GraphEvo is illustrated in Algorithm 3 and is permutation equivariant. The
time complexity of GraphEvo is O(N3).

Algorithm 3 Architecture of GraphEvo

Require: G, t,Nlayer

1: V,E← G
2: y← ExtractFeature(G), t← TimeEmbedding(t)
3: y← y + t
4: X,E,y← Linear(V),Linear(E),Linear(y)
5: for t = 0, 1, . . . , Nlayer do
6: X′,E′,y′ ← SelfAttention(X,E,y)

7: X← ReLU
(
LayerNorm(X+Dropout(X′))

)
8: E← ReLU

(
LayerNorm(E+Dropout(E′))

)
9: y← ReLU

(
LayerNorm(y +Dropout(y′))

)
10: end for
11: p̂V1|t(V

1|V t, V 0), p̂E1|t(E
1|Et, E0),y← Linear(V),Linear(E),Linear(y)

12: return p̂V1|t(V
1|V t, V 0), p̂E1|t(E

1|Et, E0),y

GraphEvo integrates global structural features to improve generation performance, including both
graph-theoretic and domain-specific attributes:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Graph-theoretic features: These encompass node-level properties such as the number of k-cycles
(k ≤ 5) containing this point and an estimate of the largest connected component, alongside graph-
level metrics like the total number of k-cycles (k ≤ 6) and connected components.

Molecular features: These account for the current valency of each atom and the molecular weight of
the entire molecule.

D.1 PROOF OF PROPOSITION 2

Proof. Let Gt = (V t, Et) is a intermediate graph, and πGt = (π∗V, π∗Eπ) is the permutation. To
prove the permutation properties of the graph, we need to consider two aspects: additional structural
features and the model architecture.

First, the spectral and structural features are permutation equivariant for node-level features and
invariant for graph-level features. Additionally, the FiLM blocks and Linear layers are permutation
equivariant, while the PNA pooling function is permutation invariant. Layer normalization is also
permutation equivariant.

As GraphEvo is built using permutation equivariant components, we conclude that the overall model
is permutation equivariant.

E TIME COMPLEXITY OF OPTIMAL TRANSPORT

To analyze the time complexity of optimal transport (OT), we compared the training time of OT
with that of DiGress, using identical architectures on an NVIDIA A100 80G GPU. We evaluated the
effects of model size, batch size, and number of nodes by measuring the duration of single training
steps across three different datasets. Our results indicate that the time required for OT accounts for
only 5% of the total training time, highlighting the efficiency of our optimal transport.

Table S1: Time Complexity of Optimal Transport

Dataset Planar Zinc250k Community-small

DiGress Training Time (s) 0.1647 0.1690 0.0456
GGFlow Training Time (s) 0.1264 0.1301 0.0408
Optimal Transport Time (s) 0.0025 0.0070 0.0024
Percentage of OT 1.9% 5.3% 5.6%
Model Size (M) 3.6 4.6 6.4
Batch Size 64 128 80
Number of Nodes 64 [6,38] [12,20]

F SOURCE CODE

The code will be made publicly available upon the publication of this paper.

G TOY EXAMPLE OF GOAL-GUIDED GRAPH GENERATION

We demonstrate the utility of our goal-guided framework of flow matching with a toy example,
depicted in Figure S1: (a) shows a trained unconditional flow matching model mapping noise
distribution p0 to data distribution p1. (b, c) illustrate the effect of temperature T on the exploration,
with higher temperatures resulting in broader data point distribution. (d) shows how fine-tuning
according to Equation 10 concentrates data in regions with higher rewards. (e-f) illustrate the
corresponding flow matching trajectories.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

（a） （b） （c） （d）

（e） （f） （g） （h）

Figure S1: (a-d) Data distribution of the flow matching model, π0 is the original distribution (orange),
π1 is the target data distribution (blue), and the red dots are the data distribution generated by the
model. (e-h) In reinforcement learning, the flow matching model conducts exploration/sampling
trajectories

H ADDITIONAL EXPERIMENTS RESULTS

In this section, we present additional metrics including Spectre (Spec.) and Valid-
ity&Novelty&Uniquess (Val.&Nov.&Uni.) across general graph datasets including the Planar and
Enzymes datasets, as summarized in Tables S2, S3 and S4. The MMD kernel in the planar dataset
followed the GruM (Jo et al., 2024). We also include the standard deviation of our results in Table S5,
illustrating the consistency and superior performance of our method.

To further compare GGFlow with baseline models, we measured the MMD between the test datasets
and a set of 1,024 generated graphs in the Ego-small and Community-small datasets. The results in
Table S6 demonstrate that GGFlow achieves the highest performance across all metrics, significantly
outperforming other baseline models.

Table S2: Additional generation results on the generic graph datasets. Results are the means of 3
different runs. The best results are marked bold.

Method Ego-small Community-small Grid Step
Spec. Nov.&Uni. Spec. Nov.&Uni. Spec. Nov.&Uni.

Training Set 0.006 100 0.012 100 0.009 25 -

GDSS 0.034 27.5 0.053 100.0 0.043 100.0 1000
GSDM - - 0.024 0.0 0.015 0.0 1000
DiGress 0.017 100.0 0.055 100.0 0.025 100.0 500
SwinGNN 0.016 52.5 0.025 55.0 0.008 100.0 500

GGFlow 0.006 32.5 0.031 100.0 0.022 100.0 500

I IMPLEMENT DETAILS

I.1 ALGORITHMS OF GGFLOW

Details of the training procedure and guided training procedure are provided in Algorithm 4 and 5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table S3: Generation results on the planar graph datasets. The best results are marked bold. σ
denotes the standard deviation.

Method Planar Step
Deg. Clus. Orbit Spec. Val.&Nov.&Uni.

Training Set 0.0002 0.0165 0.0002 0.0050 100 -

GDSS 0.0039 0.2593 0.1732 0.0370 0.0 1000
GRASP 0.0022 0.2749 0.0055 0.0098 0.0 200
DiGress 0.0003 0.0372 0.0098 0.0106 87.5 500
GruM 0.0004 0.0382 0.0095 0.0069 75.0 1000

GGFlow 0.0156 0.0196 0.0019 0.0091 97.5 500
σ 0.0064 0.0037 0.0006 0.0012 2.5 -

Table S4: Generation results on the Enzymes graph datasets. The best results are marked bold. σ
denotes the standard deviation.

Method Enzymes Step
Deg. Clus. Orbit Avg.

Training Set 0.008 0.096 0.012 0.039 -

GraphRNN 0.017 0.043 0.021 0.043 -
GraphAF 1.669 1.283 0.266 1.073 -
GraphDF 1.503 1.061 0.202 0.922 -
GraphVAE 1.369 0.629 0.191 0.730 -
EDP-GNN 0.023 0.268 0.082 0.124 1000
GDSS 0.026 0.102 0.009 0.046 1000
GSDM 0.013 0.088 0.010 0.037 1000
DiGress 0.010 0.046 0.002 0.019 500

GGFlow 0.008 0.026 0.002 0.012 500
σ 0.0041 0.0106 0.0008 0.0130 -

Table S5: Standard deviation and mean of generation results on the general graph datasets. µ and σ
denote the mean and standard deviation, respectively

Metric Ego-small Community-small Grid
Deg. Clus. Orbit Sepc. Deg. Clus. Orbit Sepc. Deg. Clus. Orbit Sepc.

µ 0.005 0.033 0.005 0.008 0.011 0.030 0.002 0.031 0.030 0.000 0.016 0.022
σ 0.007 0.012 0.003 0.001 0.006 0.012 0.002 0.002 0.008 0.000 0.003 0.001

I.2 BASELINES IMPLEMENTATION

To benchmark the performance of GGFlow, we ensure consistency by using identical splits of training
and test sets across all datasets. Below, we provide the implementation details for each baseline
model. To guarantee a fair comparison, most baseline models are retrained three times, and the
average results from these runs are reported as the final outcomes in unconditional generation tasks.
The results of the DeepGMG, GraphRNN and GNF for Ego-small and Community-small dataset are
taken from their original papers.

GraphAF (Shi et al., 2019) We follow the implementation guidelines provided in the TorchDrug
tutorials (https://torchdrug.ai/docs/tutorials/generation.html).

GraphDF (Shi et al., 2019) Model scripts are sourced from the DiG repository (https://
github.com/divelab/DIG/tree/dig-stable/examples/ggraph/GraphDF).

23

https://torchdrug.ai/docs/tutorials/generation.html
https://github.com/divelab/DIG/tree/dig-stable/examples/ggraph/GraphDF
https://github.com/divelab/DIG/tree/dig-stable/examples/ggraph/GraphDF

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table S6: Generation results on the generic graph datasets with 1024 generated graphs. The best
results are marked bold.

Method Ego-small Community-small Step
Deg. Clus. Orbit Sepc. Deg. Clus. Orbit Spec.

GraphRNN 0.040 0.050 0.060 - 0.030 0.010 0.010 - -
GNF 0.010 0.030 0.001 - 0.120 0.150 0.200 - -
EDP-GNN 0.010 0.025 0.003 - 0.006 0.127 0.018 - 1000
GDSS 0.023 0.020 0.005 0.047 0.029 0.068 0.004 0.151 1000
GSDM - - - - 0.003 0.008 0.0009 0.011 1000
DiGress 0.017 0.038 0.006 0.021 0.013 0.040 0.004 0.055 500
SwinGNN 0.004 0.023 0.003 0.023 0.003 0.088 0.010 0.016 500

GGFlow 0.004 0.004 0.0008 0.009 0.004 0.003 0.0006 0.018 500

Algorithm 4 Training Procedure of GGFlow

Require: G = (V,E), qV , qE ,
1: for n ∈ {0, . . . , Niter − 1} do
2: t ∈ U(0, 1), G1 = G
3: G0 = (V 0, E0) ∼ pref
4: (G0, G1) ∼ OptimalTransport(G0, G1)
5: // Sample from conditional probability flow.
6: V t = (tδ{V 1, ·}+ (1− t)V 0) and Et = (tδ{E1, ·}+ (1− t)E0)
7: p̂V1|t(V

1|V t, V 0), p̂E1|t(E
1|Et, E0),y = GraphEvoθn(V

t, Et, t, f t)

8: L = Epdata(G1)U(t;0,1)π(G0,G1)pt(Gt|G0,G1)[log p̂1|t(G
1|Gt, G0)]

9: θn+1 = optimizer update(θn,L)
10: end for
11: θ∗ = θNiter

12: return θ∗

GraphVAE (Shi et al., 2019) Scripts are obtained from the GraphVAE section of
the GraphRNN repository (https://github.com/JiaxuanYou/graph-generation/
tree/master/baselines/graphvae).

MoFlow (Zang and Wang, 2020) Implementation scripts are taken from the MoFlow repository
(https://github.com/calvin-zcx/moflow).

GraphEBM (Liu et al., 2021) We use the implementation available in the GraphEBM repository
(https://github.com/biomed-AI/GraphEBM).

EDP-GNN (Niu et al., 2020) The model is implemented according to the scripts in the EDP-GNN
repository (https://github.com/ermongroup/GraphScoreMatching).

GDSS (Jo et al., 2022b) Implementation details are sourced from the GDSS repository (https:
//github.com/harryjo97/GDSS).

GSDM (Luo et al., 2023) Scripts are implemented from the GSDM repository (https://
github.com/ltz0120/Fast_Graph_Generation_via_Spectral_Diffusion).

PS-VAE (Kong et al., 2022) Implementation details are sourced from the PS-VAE repository
(https://github.com/THUNLP-MT/PS-VAE).

MolHF (Zhu et al., 2023) The model is implemented according to the scripts in the MolHF
repository (https://github.com/violet-sto/MolHF).

GRASP (Minello et al., 2024) Implementation details are sourced from the GRASP repository
(https://github.com/lcosmo/GRASP).

SwinGNN (Yan et al., 2023) Implementation details are sourced from the SwinGNN repository
(https://github.com/DSL-Lab/SwinGNN). The authors employ the ’gaussian tv’ MMD

24

https://github.com/JiaxuanYou/graph-generation/tree/master/baselines/graphvae
https://github.com/JiaxuanYou/graph-generation/tree/master/baselines/graphvae
https://github.com/calvin-zcx/moflow
https://github.com/biomed-AI/GraphEBM
https://github.com/ermongroup/GraphScoreMatching
https://github.com/harryjo97/GDSS
https://github.com/harryjo97/GDSS
https://github.com/ltz0120/Fast_Graph_Generation_via_Spectral_Diffusion
https://github.com/ltz0120/Fast_Graph_Generation_via_Spectral_Diffusion
https://github.com/THUNLP-MT/PS-VAE
https://github.com/violet-sto/MolHF
https://github.com/lcosmo/GRASP
https://github.com/DSL-Lab/SwinGNN

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 5 Training Procedure of Guided GGFlow by Reinforcement Learning

Require: θ0, θ, α, β, T , Nsteps, traj, G0 ∼ pref , ut(Gt, G|G1, G0), T , Ntrain

1: θ ← θ0
2: for i ∈ {1, . . . , Ntrain} do
3: ∆t = 1/Nsteps

4: Collect flow trajectory
(
G0, t = 0,R(G0)

)
.

5: for n ∈ {0, . . . , Nsteps − 1} do
6: p̂V1|t(V

1|V t, V 0), p̂E1|t(E
1|Et, E0),y = GraphEvo(V t, Et, t)

7: Get Gt+∆t by sampling from Equation 9.
8: (V t+∆t, Et+∆t) = Gt+∆t

9: t = t+∆t
10: Compute the reward functionR(Gt+∆t).
11: Collect flow trajectory

(
Gt+∆t, t+∆t,R(Gt+∆t)

)
.

12: end for
13: Update network using Equation 10.
14: t = 0
15: end for
16: return Guided flow matching model θ∗

kernel, whereas other methods use ’gaussian emd’ or ’gaussian’. To ensure a fair comparison, we
adopt the same kernel.

GruM (Jo et al., 2024) Scripts are implemented from the GruM repository (https://github.
com/harryjo97/GruM/).

DiGress (Vignac et al., 2022) The implementation is based on the DiGress repository (https:
//github.com/cvignac/DiGress).

I.3 DETAILS OF GENERIC DATASETS

I.3.1 DATASET

Ego-small This dataset consists of 200 small one-hop ego graphs derived from the Citeseer network
(Sen et al., 2008). Each graph contains between 4 and 18 nodes.

Community-small This dataset includes 100 random community graphs, each formed by two
communities of equal size generated using the E-R model (Erdős et al., 1960) with a probability
parameter of p = 0.7. The graphs range in size from 12 to 20 nodes.

Enzymes The dataset comprises 587 protein graphs, with each graph representing the tertiary
structure of enzymes sourced from the BRENDA database (Schomburg et al., 2004), which have
between 10 and 125 nodes.

Grid The dataset consists of 100 standard 2D grid graphs with 100 ≤ |V | ≤ 400.

Planar The dataset consists of 200 planar graphs, each with 64 nodes, generated using Delaunay
triangulation on uniformly distributed random points.

Table S7: Statistics of the generic graph datasets

Dataset type Number of graphs Number of nodes

Ego-small Real 200 [4, 18]
Community-small Synthetic 100 [12, 20]
Enzymes Real 587 [10, 125]
Planar Synthetic 200 64
Grid Synthetic 100 [100,400]

25

https://github.com/harryjo97/GruM/
https://github.com/harryjo97/GruM/
https://github.com/cvignac/DiGress
https://github.com/cvignac/DiGress

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

I.4 DETAILS OF MOLECULE DATASETS

I.4.1 DATASET

QM9 It is a subset of the GDB-17 database and consists of 134,000 stable organic molecules, each
containing up to 9 heavy atoms: carbon, oxygen, nitrogen, and fluorine (Ramakrishnan et al., 2014).
The dataset includes 12 tasks related to quantum properties. We follow the train/test split from GDSS,
using 12,000 molecules for training and the remaining 1,000 for testing.

ZINC250k It contains 250,000 drug-like molecules with a maximum of 38 atoms per molecule
(Irwin et al., 2012). It includes 9 atom types and 3 edge types. For a fair comparison, we use the
same train/test split as previous works, such as GDSS and GSDM.

Table S8: Statistics of the molecular graph datasets

Dataset type Number of graphs Number of nodes Number of node types Number of edge types

QM9 Real 133,885 [1, 9] 4 3
ZINC250k Real 249,455 [6, 38] 9 3

I.4.2 METRICS

For generic graph datasets, we employ Maximum Mean Discrepancy (MMD) to assess the distri-
butions of graph statistics, specifically degree distribution, clustering coefficient, the number of
occurrences of 4-node orbits, and eigenvalues of the normalized graph Laplacian. In alignment
with prior research (Jo et al., 2022b), we utilize specialized kernels for MMD calculations: the
Gaussian Earth Mover’s Distance (EMD) kernel for degree distribution and clustering coefficient,
the Gaussian Total Variation (TV) kernel for eigenvalues of the normalized graph Laplacian, and a
standard Gaussian kernel for the 4-node orbits. To ensure a fair comparison, the size of the prediction
set matches that of the test set.

Validity We permit atoms to exhibit formal charges during valency checks because of the presence
of formal charges in the training molecules. It is the fraction of valid molecules after valency
correction or edge resampling.

Validity w/o correction This metric explicitly evaluates the quality of molecule generation before
any correction phase, providing a baseline for raw generation performance.

FCD FCD quantifies the functional connectivity density within a molecule by computing distances
and connectivity between atoms, based on both structural and chemical features. It describes the
three-dimensional structure, topological features, and chemical properties of molecules, making it
valuable in fields such as drug design, compound screening, and molecular simulations.

NSPDK NSPDK assesses molecular similarity by comparing shortest paths within their graphical
structures. It captures connectivity patterns and chemical environments, effectively describing
relationships and similarities between molecules. For two distributions p and q, the MMD using
NSPDK is calculated as:

MMD2
NSPDK(p, q) =

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

kNSPDK(Xi,Xj) +
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

kNSPDK(Yi,Yj) (19)

− 2

mn

n∑
i=1

m∑
j=1

kNSPDK(Xi,Yj) (20)

Here, kNSPDK(·) denotes the NSPDK kernel function. X is the set of molecules from distribution p.
Y is the set of molecules from distribution q. n and m represent the number of samples drawn from
distributions p and q, respectively. This formula quantifies the difference between the distributions p
and q using the NSPDK kernel.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

I.5 DETAILS OF CONDITIONAL GENERATION

We included three guidance baselines in our conditional generation task:

DiGress model with guidance Utilizing the guidance method integrated into the DiGress model
(Vignac et al., 2022).

Direct supervised training (ST) It involved selecting training samples from the dataset that
satisfied |µ− µ∗| < 1.0 and retraining them using supervised learning settings identical to those in
Section 4.2.

Supervised fine-tuning (SFT) This method involved fine-tuning a pre-trained GGFlow model on
molecules generated with |µ− µ∗| < 1.0, maintaining the same training settings as in Section 4.2.

These models were trained over 10,000 steps using the training settings detailed in Section 4.2. We
then generated 1,000 samples to calculate the results for each guidance method and the unconditional
method, with the values of µ estimated using Psi4 (Smith et al., 2020). We set the hyperparameters α
and β as 0.999 and 0.001.

J EXPERIMENT SETTINGS

J.1 HYPERPARAMETER SETTINGS

Table S9 presents the hyperparameters employed in our experimental setup. For each dataset, the
final resutls in Table 1 and Table 2 are the means of 5 different runs.

Table S9: Hyperparameter settings of different datasets

Hyperparameter Ego-small Community-small Grid Planar Enzymes QM9 ZINC250k

Number of layers 5 7 5 4 6 9 9
Hidden dimension of X 256 256 256 256 256 256 128
Hidden dimension of E 128 128 128 128 128 128 64
Hidden dimension of y 128 128 128 128 128 128 64
Optimizer Adamw Adamw Adamw Adamw Adamw Adamw Adamw
Learning rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Batch size 64 128 4 64 8 512 128
Number of epochs 2000 3000 5000 5000 10000 1000 1000
Number of sampling steps 500 500 500 500 500 500 500

J.2 ABLATION STUDIES SETTINGS

For the evaluation of varying inference steps, we followed the same experimental settings as outlined
in Sections 4.1 and 4.2. Samples were generated for 10 runs. The results were then visualized using
the mean and variance across these 10 runs. It is important to note that in DiGress, the number of
inference steps is constrained by its predefined diffusion steps (N = 500), so the DiGress curve
terminates at 500 inference steps.

For the ablation studies of GGFlow without Optimal Transport (GGFlow w/o OT), GGFlow without
GraphEvo (GGFlow w/o Evo) and GGFlow without GraphEvo and optimal transport (GGFlow w/o
both), we adhered to the settings described in Sections 4.1 and 4.2. The final results were obtained by
averaging the outcomes from five different runs.

To further investigate the advantages of optimal transport, we present generation results with varying
inference steps on the Community-small and Planar datasets. As shown in Figure S2, GGFlow
demonstrates superior generation quality compared to GGFlow (w/o OT), exhibiting narrower
confidence intervals and comparable performance with fewer inference steps, which suggests that
optimal transport enhances sampling both efficiency and stability.

We provide training loss and average values on Community-small datasets compared to DiGress,
which shares the same training objectives. For fair comparisons, we use GGFlow (w/o both) and
GGFlow (w/o Evo) to demonstrate the superiority of the flow matching framework and optimal

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Inference Step

0.01

0.02

0.03

0.04

Av
er

ag
e

GGFlow (w/o OT)
GGFlow

(a) Community-small dataset

0 200 400 600 800 1000
Inference Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
l.&

N
ov

.&
U

ni
.

GGFlow (w/o OT)
GGFlow

(b) Planar dataset

Figure S2: Ablation studies of varying inference steps on Community-small and Planar datasets

transport. The average values are calculated as in Section 4.1 using checkpoints saved every 100
epochs.

Figure S3 demonstrates that GGFlow (w/o both) and GGFlow (w/o Evo) achieve faster and more
effective convergence than DiGress. Furthermore, GGFlow (w/o Evo) outperforms both GGFlow
(w/o both) and DiGress in average metrics, demonstrating the benefits of flow matching and optimal
transport. These results indicate that optimal transport and flow matching framework contribute to
greater training stability.

0 1000 2000 3000 4000 5000
Steps

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

GGFlow w/o both
GGFlow w/o Evo
DiGress

(a) Training loss

0 1000 2000 3000 4000 5000
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

Va
lu

es

GGFlow w/o both
GGFlow w/o Evo
DiGress

(b) Average values

Figure S3: Training stability analysis of flow matching and optimal transport in Community-small
dataset

J.3 GENERATION TIMES WITH DIFFERENT GRAPH SCALES

We conducted experiments to evaluate generation times across various graph scales using the Enzymes
dataset. The GraphEvo model was configured with six layers, and generation time was measured for
a single graph on an NVIDIA A100 80G GPU.

Table S10: Generation times with different graph scales.

Number of Nodes 10 50 100 200 400

Time (s) 1.92 4.24 12.15 48.59 235.8

K VISUALIZATION

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Community	Small

Grid

QM9

ZINC250k

Figure S4: Visualization of generated samples of our model in different datasets

29

	Introduction
	Related Work
	Flow Matching and Diffusion Models
	Graph Generative Models

	Methods
	Discrete Flow Matching for Graph Generation
	Optimal transport for graph flow matching
	GraphEvo: Edge-augmented Graph Transformer
	Permutation Property Analysis
	Goal-Guided Framework for Conditional Generation

	Experiment
	Generic Graph Generation
	Moleucle Graph Generation
	Conditional Generation
	Ablation studies

	Conclusion
	Background
	Continuous Flow Matching Generative Model

	Related Works
	Comparison with Discrete Flow Matching
	Comparison with Graph Discrete Diffusion Model
	Comparison with Graph Discrete Flow Model
	Comparison with Graph Variational Flow Matching

	Proofs
	Optimal Prior Distribution
	Choice of conditional velocity field
	Proof of Proposition 1
	Proof of Theorem 1

	Details of GraphEvo
	Proof of Proposition 2

	Time Complexity of Optimal Transport
	Source Code
	Toy example of goal-guided graph generation
	Additional Experiments Results
	Implement Details
	Algorithms of GGFlow
	Baselines Implementation
	Details of Generic Datasets
	Dataset

	Details of Molecule Datasets
	Dataset
	Metrics

	Details of Conditional Generation

	Experiment Settings
	Hyperparameter Settings
	Ablation Studies Settings
	Generation Times with Different Graph Scales

	Visualization

