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ABSTRACT

Generating graph-structured data is crucial in various domains but remains chal-
lenging due to the complex interdependencies between nodes and edges. While
diffusion models have demonstrated their superior generative capabilities, they
often suffer from unstable training and inefficient sampling. To enhance generation
performance and training stability, we propose GGFlow, a discrete flow matching
generative model incorporating optimal transport for graph structures and it incor-
porates an edge-augmented graph transformer to enable the direct communications
among edges. Additionally, GGFlow introduces a novel goal-guided generation
framework to control the generative trajectory of our model towards desired prop-
erties. GGFlow demonstrates superior performance on both unconditional and
conditional generation tasks, outperforming existing baselines and underscoring its
effectiveness and potential for wider application.

1 INTRODUCTION

Graph structural data generation has become critically important across various domains, including
social networks (Grover et al., 2019), drug design (Bilodeau et al., 2022), and neural architecture
search (NAS) (Lee et al., 2020). Effective modeling of the intrinsic joint distribution and accurate
description of topological structures of graphs are essential for these applications. Deep generative
models have increasingly demonstrated success in graph generation by effectively modeling the
complex structural properties of graphs. These models are typically categorized into autoregressive
and one-shot types. Autoregressive models, such as GraphRNN (You et al., 2018), generate graphs
sequentially, often overlooking the interdependencies among all graph components. In contrast, one-
shot methods generate entire graphs in a single step, more effectively capturing the joint distribution
(Ma et al., 2018; Luo et al., 2023; Niu et al., 2020).

Diffusion models have shown great promise and achieved significant performance in various domains
(Ho et al., 2020; Song et al., 2020; Ho et al., 2022). In the context of graph generation, diffusion
models have been adopted to enhance generative capacity. EDP-GNN and GDSS are among the
first to utilize diffusion models for graph generation, adding continuous Gaussian noise to adjacency
matrices and node types, which may lead to invalid graph structures (Niu et al., 2020; Jo et al., 2022b).
Due to the inherent sparsity and discreteness of graph structures, GSDM enhances model fidelity by
introducing Gaussian noise within a continuous spectrum space of the graph, and DiGress and PPGN
apply discrete diffusion models for graphs (Luo et al., 2023; Vignac et al., 2022; Austin et al., 2021;
Haefeli et al., 2022; Huang et al., 2023).

Despite their potential, diffusion models often face challenges with unstable training and inefficient
sampling. Flow matching generative models offer a more stable and efficient alternative by trans-
forming the generative process from stochastic differential equations (SDEs) to ordinary differential
equations (ODEs), enhancing generative efficiency (Lipman et al., 2022; Song et al., 2024; Yim
et al., 2023). Additionally, the use of optimal transport (OT) straightens the marginal probability
path, reducing training variance and speeding up sampling (Bose et al., 2023; Tong et al., 2023; Klein
et al., 2024; Pooladian et al., 2023). While the application of OT in graph-based systems is often
hampered by significant computational demands, primarily due to the complexity of the OT metric
(Chen et al., 2020b; Petric Maretic et al., 2019).

In this paper, we introduce GGFlow, a novel generative model that leverages discrete flow matching
techniques with optimal transport to improve sampling efficiency and training stability in graph
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generation. The model preserves graph sparsity and permutation invariance, which is essential
for realistic graph generation. Additionally, GGFlow employs a goal-guided framework using
reinforcement learning for conditional generation. GGFlow achieves state-of-the-art results in both
unconditional and conditional graph and molecule generation tasks and surpasses existing methods
with fewer inference steps. Its effectiveness in conditional generation tasks underscores the practical
impact of our approach.

Our contribution can be summarized as:

• GGFlow introduces the first discrete flow matching generative model with optimal transport
for graph data, improving sampling efficiency and training stability. It also incorporates an
edge-augmented graph transformer to enhance generation tasks further.

• GGFlow proposes a novel guidance framework using reinforcement learning to control
probability flow during graph generation, targeting specific properties.

• GGFlow demonstrates state-of-the-art performance in various unconditional and conditional
graph generation tasks, consistently outperforming existing methods across diverse graph
types and complexities.

2 RELATED WORK

2.1 FLOW MATCHING AND DIFFUSION MODELS

Diffusion models have gained widespread popularity in various fields, including computer vision,
natural language processing, and biological sciences, demonstrating notable success in generative
tasks (Ho et al., 2020; Song et al., 2020; Watson et al., 2023; Ingraham et al., 2023; Liu et al., 2024a;
Ren et al., 2024; Zhu et al., 2024). However, these models often suffer from inefficiencies in sampling
due to the complexity of their underlying diffusion processes and the convergence properties of the
generative process.

Flow matching generative models have emerged as a more efficient and stable alternative (details in
Appendix A.1), improving sampling by straightening the generative probability path (Lipman et al.,
2022; Song et al., 2024; Campbell et al., 2024). Some approaches further enhance performance by
incorporating optimal transport. The generative processes of these models are summarized in Figure
1.

Previous works (Campbell et al., 2024; Gat et al., 2024) extended flow matching to discrete spaces,
while Eijkelboom et al. (2024) applied variational flow matching to graphs, but without adequately
addressing key graph-specific properties such as adjacency matrix sparsity. GGFlow tackles these
challenges by introducing a discrete flow matching model with optimal transport tailored for graph
data. Furthermore, we propose a novel framework for guiding the generative process, enhancing its
practical applicability.

Flow	Matching Flow	Matching
+	Optimal	Transport

Diffusion

Figure 1: Illustration of generative trajectories using different methods. The generative trajectories
are learned by the diffusion model (left), flow matching model (center), and flow matching model
with optimal transport (right).
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2.2 GRAPH GENERATIVE MODELS

Graph generative models are typically categorized into two main types: autoregressive and one-shot
models. Autoregressive models, such as generative adversarial networks (Wang et al., 2018), recurrent
neural networks (You et al., 2018), variational autoencoders (Jin et al., 2018), normalizing flows (Shi
et al., 2019; Luo et al., 2021) and diffusion model (Kong et al., 2023), generate graphs sequentially.
While effective, these models are often computationally expensive and fail to account for permutation
invariance, a crucial property for graph data, resulting in potential inefficiencies. In contrast, one-shot
models aim to capture the distribution of all graph components simultaneously (De Cao and Kipf,
2018; Ma et al., 2018; Zang and Wang, 2020), better reflecting the inherent interactions within graphs.
Despite the advantages, diffusion-based one-shot models (Niu et al., 2020; Jo et al., 2022b; Vignac
et al., 2022; Chen et al., 2023; Bergmeister et al., 2023; Luo et al., 2023; Haefeli et al., 2022; Yan
et al., 2023; Jang et al., 2023; Madeira et al., 2024; Bergmeister et al., 2024; Chen et al., 2023;
Minello et al., 2024; Zhao et al., 2024; Xu et al., 2024) show promising results in downstream tasks
but remain limited by sampling efficiency. GGFlow addresses these limitations by employing a
discrete flow-matching generative model, achieving superior generative performance with fewer
sampling steps. More comparisons with recent works are presented in Appendix B.

3 METHODS

In this section, we present our methodology, GGFlow. Section 3.1 outlines the discrete flow matching
method for graph generation. Section 3.2 covers optimal transport for graph flow matching. Section
3.3 introduces GraphEvo, our neural network for graph generation. Section 3.4 examines the
permutation properties of GGFlow, and Section 3.5 discusses goal-guided graph generation using
reinforcement learning.

3.1 DISCRETE FLOW MATCHING FOR GRAPH GENERATION

A graph G = (V,E), where V and E denote the sets of nodes and edges, has a distribution denoted
by p(G) = (pV (V ), pE(E)). The attribute spaces for nodes and edges are V and E , with cardinalities
n and m, respectively. The attributes of node i and edge ij are denoted by vi ∈ V and eij ∈ E ,
so the node and edge probability mass functions (PMF) are pV (vi = a) and pE(eij = b) where
a ∈ {1, . . . , n} and b ∈ {1, . . . ,m}. The node and edge encodings in the graph are given by
matrices V ∈ Ra×n and E ∈ Ra×a×m, respectively. We denote the transpose of matrix A as A∗

and At represents the state of matrix A at time t. We use discrete flow matching to model the graph
generation process.

Source and target distribution GGFlow aims to transform prior distribution G0 ∼ pref to target
data distribution G1 ∼ pdata. The training data (G0, G1) are sampled from a joint distribution
π(G0, G1), satisfying the marginals constraints pref =

∑
G1 π(G0, G1), pdata =

∑
G0 π(G0, G1).

In the simplest case, the joint distribution π(G0, G1) is modeled as the independent coupling, i.e.
π(G0, G1) = pref · pdata.

To account for graph sparsity, the prior distribution pref = (pVref , p
E
ref) is designed to approximate

the true data distribution closely. To ensure the permutation invariance of the model, the priors are
structured as products of single distributions for all nodes and edges:

∏
i vi ×

∏
ij eij (Vignac et al.,

2022). Further details on the prior can be found in Appendix C.1.

Probability path We define a probability path pt(Gt) that interpolates between source distribution
pref and target distribution pdata i.e. p0 = pref and p1 = pdata. The marginal probability path is
given by:

pt(G
t) =

∑
(G0,G1)∼π

pt(G
t|G0, G1)π(G0, G1), (1)

where

pt(G
t|G0, G1) = Cat

(
tδ{G1, G}+ (1− t)pref

)
= Cat

(
tδ{V 1, V }+ (1− t)pVref , tδ{E1, E}+ (1− t)pEref

)
,

3
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δ is the Kronecker delta, indicating equality of the indices, and Cat(p) denotes a Categorical
distribution with probabilities p. Given the sparsity of both the prior and data distributions, we can
infer that the intermediate distribution is similarly sparse, aiding model training.

We define a probability velocity field ut(G,Gt) = (uVt (V, V
t), uEt (E,E

t)) for GGFlow, which
generates the probability path from Equation 1. The probability velocity field ut(G,Gt) is derived
from the conditional probability velocity field ut(G,Gt|G0, G1), and can be expressed as:

ut(G,G
t) =

∑
(G0,G1)∼π

ut(G,G
t|G0, G1)pt(G

0, G1|Gt), (2)

pt(G
0, G1|Gt) = p1|t(G

1|Gt, G0)
pt(G

t|G0, G1)π(G0, G1)∑
G0,G1 pt(Gt|G0, G1)π(G0, G1)

. (3)

GGFlow chooses the conditional marginal probability ut(G,Gt|G0, G1) as:

ut(G,G
t|G0, G1) =

1

Zt(1− t)pref
δ{G,G1}(1− δ{Gt, G1}), Gt ̸= G, (4)

where ReLU(a) = max(a, 0) and Zt = |{Gt : pt(G
t|G0, G1) > 0}|. More details about the

conditional vector field are provided in Appendix C.2.

Training objective Given the intractability of the posterior distribution p1|t(G1|Gt, G0), we ap-
proximate it as p̂1|t(G1|Gt, G0) using neural network, as detailed in Section 3.3. The training
objective is formulated as:

L = Epdata(G1)U(t;0,1)π(G0,G1)pt(Gt|G0,G1)[log p̂1|t(G
1|Gt, G0)], (5)

where U(t; 0, 1) is a uniform distribution on [0, 1].

Sampling Procedure In the absence of the data distributionG1 during sampling, we reparameterize
the conditional probability pt(G0, G1|Gt) as:

pt(G
0, G1|Gt) = p1|t(G

1|Gt, G0)
pt(G

t|G0)p(G0)∑
G0 pt(Gt|G0)p(G0)

.

pt(G
t|G0) = Cat

(
tδ{V 1, V }+ (1− t)prefV , tδ{E1, E}+ (1− t)prefE

)
And we can simplify the generative process pt+∆t|t(G

t+∆t|Gt, G0) without the calculation of the
full expectation over conditional vector field ut(G,Gt|G0, G1):

pt+∆t|t(G
t+∆t|Gt, G0) = Ep̂t(G1|Gt,G0)[δ(G

t, Gt+∆t) + ut(G
t, Gt+∆t|G0, G1)∆t]

=
∑
G1

pt+∆t|t(G
t+∆t|G1, Gt, G0)p̂1|t(G

1|Gt, G0). (6)

We first sample the Ĝ1 using the approximate distribution p̂1|t(G1|Gt, G0) and then sample the next
state Gt+∆t using sampled Ĝ1. The sampling procedure pt+∆t|t(G

t+∆t|G1, Gt, G0) can thus be
formulated as:

Gt+∆t ∼ δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t.

Further details on the sampling and training procedures are provided in Algorithms 1 and 4.

3.2 OPTIMAL TRANSPORT FOR GRAPH FLOW MATCHING

Optimal transport (OT) has been effectively applied to flow matching generative models in continuous
variable spaces, to improve generative performance (Tong et al., 2023; Bose et al., 2023; Song et al.,
2024). To generalize this for graphs, we extend the joint distribution π(G0, G1) from independent
coupling to the 2-Wasserstein OT map ϕ∗, which minimizes the 2-Wasserstein distance between pref
and pdata. To optimize the computational efficiency of OT, we define the distance via the Hamming
distance H(G1, G0) (Bookstein et al., 2002):

ϕ∗(p0, p1) = arg inf
ϕ∈Φ

∫
Rd×Rd

H(G0, G1)dϕ(G0, G1), (7)
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Algorithm 1 Sampling Procedure of GGFlow

Require: t = 0, G0 ∼ (prefV , prefE ), ut(G,Gt|G0, G1), Nsteps

1: ∆t = 1/Nsteps

2: for n ∈ {0, . . . , Nsteps − 1} do
3: p̂1|t(G

1|G0, Gt) = GraphEvo(Gt, G0, t)

4: Ĝ1 ∼ p̂1|t(·|G0, Gt)
5: // Sampling from the conditional velocity field
6: Gt+∆t ∼ δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t
7: t = t+∆t
8: end for
9: return G1 = (V 1, E1)

where
H(G0, G1) =

∑
i

δ(v0i , v
1
i ) + λ

∑
i,j

δ(e0ij , e
1
ij). (8)

Here Φ represents the set of all joint probability measures on Rd × Rd that are consistent with the
marginal distributions p0 and p1, where GK = (V K = {vKi }, EK = {eKij }ij), K = 0, 1.

The practical application of OT to large datasets is computationally intensive, often requiring cubic
time complexity and quadratic memory (Tong et al., 2020; Villani, 2009). To address these challenges,
we use a minibatch approximation of OT (Fatras et al., 2021). A detailed time analysis of optimal
transport during the training procedure is provided in Appendix E..

3.3 GRAPHEVO: EDGE-AUGMENTED GRAPH TRANSFORMER

Our neural network, GraphEvo, predicts the posterior distribution p̂1|t(G1|Gt, G0) using the interme-
diate graph Gt and initial noise graph G0. In graph-structured data, edge and structural information
are as critical as node attributes, and incorporating edge relations enhances link generation tasks
(Hussain et al., 2024; Hou et al., 2024; Jumper et al., 2021). To capture these relations, GraphEvo
extends the graph transformer by introducing a triangle attention mechanism for edge updates, along
with additional graph features y, such as cycles and the number of connected components (Vignac
et al., 2022). This enables GraphEvo to efficiently and accurately capture the joint distribution of all
graph components. The key self-attention mechanisms are outlined in Algorithm 2, where node, edge,
and graph features are represented as X ∈ Rbs×n×dx, E ∈ Rbs×n×dx, and y ∈ Rbs×n×dy , where bs
denotes batch size, n is the number of nodes, and dx and dy are the feature dimensions for node and
global features, respectively. Further details are provided in Appendix D.

Algorithm 2 Self-attention Mechanism in GraphEvo

Require: X ∈ Rbs×n×dx,E ∈ Rbs×n×dx,y ∈ Rbs×n×dy

1: Q,K,V← Linear(X)

2: Y ← Q×K√
dY

// Calculation attention score for node embedding
3: Y ← FiLM(Y,E) // Incorporate edge features to self-attention scores
4: E← Y
5: Qe,Ke,Ve,b,g← Linear(E)

6: Ye ← Qe×Ke√
dYe

+ b // Calculation triangle attention score for edge embedding

7: E← Ye ∗Ve ∗ sigmoid(g)

8: E← Linear
(
FiLM(E,y)

)
// Incorporate global structural features to edge embedding

9: X← Y ∗V
10: X← Linear

(
FiLM(X,y)

)
// Incorporate global structural features to node embedding

11: y← Linear
(
Linear(y) + PNA(X) + PNA(E)

)
12: return X,E,y

5
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3.4 PERMUTATION PROPERTY ANALYSIS

Graphs are invariant to random node permutations, and GGFlow preserves this property. To ensure
permutation invariance, we analyze the permutation properties of our neural network, training
objectives, and conditional probabilities path. First, we analyze the permutation invariance of the
training objectives (Vignac et al., 2022). Since the source and target distributions are permutation
invariant, the independent coupling also exhibits this invariance. Our optimal transport map, derived
from Equation 7, similarly demonstrates invariance to identical permutations. Further clarifications
regarding optimal transport can be found in Appendix C.4.

Theorem 1. If the distributions p(G0) and p(G1) are permutation invariant, and the cost function
maintains invariance under identical permutations, i.e., H(G0, G1) = H(πG0, πG1) for any per-
mutation π, then the optimal transport map ϕ also exhibits invariance under identical permutations,
such that ϕ(G0, G1) = ϕ(πG0, πG1).

Proof of this theorem can be found in Appendix C.4. To ensure that the generated graph retains
its identity under random permutations, the generated distribution must remain exchangeable, and
GraphEvo must be permutation equivariant.

Proposition 1. The distribution generated by the conditional flow is exchangeable with respect to
nodes and graphs, i.e. p(V,E) = p(π∗V, π∗Eπ), where π is a permutation operator.

Proposition 2. GraphEvo is permutation equivariant.

The proofs of Proposition 1 and 2 are provided in Appendix C.3 and Appendix D.1, respectively.

3.5 GOAL-GUIDED FRAMEWORK FOR CONDITIONAL GENERATION

For practical applications such as drug discovery, we propose a goal-guided framework for discrete
flow matching, employing reinforcement learning (RL) to guide graph flow matching models for
non-differentiable objectives. The goal of the guidance method is to map the noise distribution p0 to
a preference data distribution p∗1 using a reward functionR(Gt, t).

We formulate the inference process of flow matching as a Markov Decision Process (MDP),
where (Gt, t) and Gt+∆t are the state space st and action space at, p0 is an initial noise distri-
bution, pt+∆t|t(G

t+∆t|Gt, t) is the transition dynamics and policy network π(at|st), R(Gt, t) =

r(G1)I[t = 1] is the reward function

To enable exploration, we introduce a temperature parameter T for the policy network during
sampling, allowing the model to explore a broader space at higher temperatures:

π(at|st) = pt+∆t|t(G
t+∆t|Gt, t) = Cat

(
(δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t)/T

)
(9)

The goal of RL training is to maximize the reward function. To prevent overfitting to the reward
preference distribution, we add a Kullback–Leibler (KL) divergence term between the Reinforcement
learning fine-tuned model pRL

θ (·) and pre-trained model pθ(·) (Ouyang et al., 2022).

We employ the policy gradient method to update the network, where the policy is refined to π(at|st) =
p
(T )
θ (G1|Gt)q(Gt+∆t|G1) to π(at|st) = p

(T )
θ (G1|Gt) (Sutton et al., 1999; Liu et al., 2024b), directly

increasing the probability of generatingG1 with higher rewards at all timestep t. The training objective
is:

LRL = −Epθ(G0:t:1)[αR(G1)

t=1∑
t=0

log pRL
θ (G1|Gt, G0)− β

t=1∑
t=0

KL(pRL
θ (G1|Gt, G0)||pθ(G1|Gt, G0))]

(10)
where pθ(G0:t:1) represents pdata(G1)U(t; 0, 1)π(G0, G1)pt(G

t|G0, G1). Using this optimization
objective, we fine-tune the pre-trained flow matching model to generate data following the preference
distribution. By integrating optimal transport, we optimize the pairing of prior data and high-reward
training data (Chen et al., 2020a). The pseudo-code for the guided GGFlow training is provided in
Algorithm 5 and a toy example is shown in Appendix G.
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4 EXPERIMENT

To validate the performance of our method, we compare GGFlow with state-of-the-art graph gener-
ative baselines on generic graph generation and molecule generation, over several benchmarks in
Section 4.1 and Section 4.2, respectively. The ability of GGFlow to perform conditional generation is
analyzed in Section 4.3. Finally, we conduct detailed ablation studies presented in Section 4.4.

4.1 GENERIC GRAPH GENERATION

We evaluated GGFlow on five generic graph generation benchmarks of varying sizes: Ego-small,
Community-small, Grid, Planar and Enzymes. We employ the same train/test split as GraphRNN
(You et al., 2018), utilizing 80% of each dataset for training and the remaining for testing. We
compared GGFlow’s performance against well-known autoregressive models: DeepGMG (Li et al.,
2018), GraphRNN (You et al., 2018), GraphAF (Shi et al., 2019), and GraphDF (Luo et al., 2021)
and one-shot models: GraphVAE (Simonovsky and Komodakis, 2018), GNF (Liu et al., 2019), EDP-
GNN (Niu et al., 2020), GDSS (Jo et al., 2022a), DiGress (Vignac et al., 2022), GRASP (Minello
et al., 2024), GSDM (Luo et al., 2023), GruM (Jo et al., 2024), and SwinGNN (Yan et al., 2023).
Consistent with previous studies, we generated an equal number of graphs as the test set to compare
distributions of graph statistics, including degree distribution (Deg.), clustering coefficient (Clus.),
and the frequency of 4 node orbits (Orbit). Detailed descriptions of datasets, baselines, and metrics
are provided in Appendix I.

Table 1 presents our results, showing that GGFlow achieves superior performance across most metrics.
Additionally, GGFlow demonstrates comparable performance compared to state-of-the-art models in
generating large graphs on the Grid dataset. These findings underscore the effectiveness of GGFlow
at capturing the local characteristics and data distributions of graphs. Additional metrics and dataset
experimental results are included in Appendix H, and we visualize the generated graphs in Appendix
K.

Table 1: Generation results on the generic graph datasets. Results are the means of 3 different runs.
The best results and the second-best results are marked bold and bold.

Method Ego-small Community-small Grid Step
Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg.

Training Set 0.014 0.022 0.004 0.013 0.003 0.009 0.001 0.005 0.000 0.000 0.000 0.000 -

DeepGMG 0.040 0.100 0.020 0.053 0.220 0.950 0.400 0.523 - - - - -
GraphRNN 0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.080 0.064 0.043 0.021 0.043 -
GraphAF 0.031 0.107 0.001 0.046 0.178 0.204 0.022 0.135 - - - - -
GraphDF 0.039 0.128 0.012 0.046 0.060 0.116 0.030 0.069 - - - - -
GNF 0.030 0.100 0.001 0.044 0.200 0.200 0.110 0.170 - - - - -
GraphVAE 0.137 0.166 0.051 0.118 0.358 0.969 0.551 0.626 1.594 0.000 0.904 0.833 -
EDP-GNN 0.054 0.092 0.007 0.051 0.050 0.159 0.027 0.079 0.460 0.243 0.316 0.340 1000
GDSS 0.027 0.033 0.008 0.022 0.044 0.098 0.009 0.058 0.133 0.009 0.123 0.088 1000
GSDM - - - - 0.020 0.050 0.005 0.053 0.002 0.000 0.000 0.001 1000
DiGress 0.028 0.046 0.008 0.027 0.032 0.047 0.009 0.025 0.037 0.046 0.069 0.051 500
SwinGNN 0.017 0.060 0.003 0.027 0.006 0.125 0.018 0.050 0.000 0.000 0.000 0.000 500

GGFlow 0.005 0.033 0.004 0.014 0.011 0.030 0.002 0.014 0.030 0.000 0.016 0.015 500

4.2 MOLEUCLE GRAPH GENERATION

We evaluated GGFlow on two standard molecular datasets, QM9 (Ramakrishnan et al., 2014)
and ZINC250k (Irwin et al., 2012), using several metrics: Validity, Validity without correction,
Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) Maximum Mean Discrepancy (MMD),
and Frechet ChemNet Distance (FCD). To calculate these metrics, we sampled 10,000 molecules.
We compared GGFlow against various molecule generation models, including GraphAF, GraphDF,
MolFlow (Zang and Wang, 2020), EDP-GNN, GraphEBM (Liu et al., 2021), GDSS, PS-VAE (Kong
et al., 2022), MolHF (Zhu et al., 2023), GruM, SwinGNN, DiGress, and GSDM. Detailed descriptions
of the datasets, baselines and metrics are provided in Appendix I.

The results, presented in Table 2, indicate that GGFlow effectively captures the distribution of molec-
ular data, showing significant improvements over the baselines. The high Validity without correction
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suggests that GGFlow successfully learns chemical valency rules. Additionally, GGFlow achieves su-
perior NSPDK and FCD scores on both datasets, demonstrating its ability to generate molecules with
distributions closely resembling those of natural molecules. Visualizations of molecules generated by
different models are shown in Figure 2, with additional results on GGFlow provided in Appendix K.

Table 2: Generation results on the QM9 and ZINC250k datasets. Results are the means of 3 different
runs. The best results and the second-best results are marked bold and bold.

Method QM9 ZINC250k Step
Val. Val. w/o

corr.
NSPDK FCD Val. Val. w/o

corr.
NSPDK FCD

Training Set 100 100 0.0001 0.040 100 100 0.0001 0.062 -

GraphAF 100 67.14 0.0218 5.246 100 67.92 0.0432 16.128 -
GraphDF 100 83.14 0.0647 10.451 100 89.72 0.1737 33.899 -
MolFlow 100 92.03 0.0169 4.536 100 63.76 0.0468 20.875 -
GraphEBM 100 8.78 0.0287 6.402 100 5.29 0.2089 35.467 -
PS-VAE - - 0.0077 1.259 - - 0.0112 6.320 -
MolHF - - - - 100 93.62 0.0387 23.940 -
EDP-GNN 100 47.69 0.0052 2.683 100 83.16 0.0483 16.819 1000
GDSS 100 96.17 0.0033 2.565 100 97.12 0.0192 14.032 1000
GSDM 100 99.90 0.0034 2.614 100 92.57 0.0168 12.435 1000
GruM 100 99.69 0.0002 0.108 100 98.32 0.0023 2.235 1000
SwinGNN 100 99.66 0.0003 0.118 100 86.16 0.0047 4.398 500
DiGress 100 98.29 0.0003 0.095 100 94.98 0.0021 3.482 500

GGFlow 100 99.91 0.0002 0.148 100 99.63 0.0010 1.455 500

QM9

ZINC250k

GDSSGruMDiGressGFlow

Figure 2: Visualization of generated samples of different models in different molecular datasets

4.3 CONDITIONAL GENERATION

To further evaluate the performance of our model, we conducted conditional generation experiments
on the QM9 dataset, focusing on generating molecules with molecular properties µ that closely match
a target value µ∗. In the experiment, we set the target value as 1, i.e. µ∗ = 1.

For the experiment, we employed a reinforcement learning-based guidance method and compared it
to the guided version of DiGress, which also proposes an effective approach for discrete diffusion
models in conditional generation tasks. The reward function was defined as |µ− µ∗|, and the model
was trained over 10,000 steps using the training settings detailed in Section 4.2. To evaluate the
effectiveness of our guidance method, we compared it against three baselines: (1) Guidance for
DiGress (Vignac et al., 2022). (2) Direct supervised training (ST) (3) Supervised fine-tuning (SFT).
Additionally, we calculated the mean and variance of |µ− µ∗|for samples generated unconditionally
by both DiGress and GGFlow to provide a baseline comparison. Further details of the experiment are
provided in Appendix I.5.

The results, detailed in Table 3, demonstrate the superiority of our reinforcement learning-based
conditional generation method over both ST and SFT approaches. Notably, our method surpasses the
guidance techniques used in diffusion models, showcasing its enhanced ability to steer the generative
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process toward desired outcomes. Additionally, our approach achieves higher validity in conditional
generated tasks, highlighting its robustness and superior performance in goal-directed generation.

Table 3: Mean absolute error of molecular property µ on conditional generation on the QM9 dataset.

Methods DiGress GGFlow

Uncondition +Guidance Unconditition Supervised Training +SFT +RL

Mean 1.562 1.092 1.569 1.184 1.223 0.672
Variance 1.641 0.894 1.987 1.579 1.893 0.647
Val. w/o corr. 96.54 74.2 98.93 86.1 87.0 92.2

4.4 ABLATION STUDIES

To validate the efficiency and effectiveness of GGFlow, we conducted a series of ablation experiments
using the Community-small and Planar datasets, focusing on: (1) the results of varying inference steps,
(2) the model performance without the integration of Optimal Transport (OT), denoted as GGFlow
(w/o OT), and (3) the model performance without the GraphEvo module, denoted as GGFlow (w/o
Evo). (4) the model performance without the GraphEvo module and optimal transport, denoted as
GGFlow (w/o both). The results of these studies are depicted in Figure 3 and detailed in Table 4.
Additional details about the experimental settings are provided in Appendix J.2.

0 200 400 600 800 1000
Inference Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e

GDSS
GFlow (w/o OT)
GFlow
DiGress

Figure 3: Ablation Studies of varying inference
steps on Community-small dataset.

The results for varying inference steps are il-
lustrated in Figure 3. Our findings indicate
that GGFlow outperforms other diffusion-based
models with fewer inference steps, such as 100
and 200, highlighting GGFlow’s enhanced sam-
pling efficiency. Furthermore, the integration of
Optimal Transport significantly boosts sampling
efficiency and enhances generative performance
and stability, as evidenced by performance gains
in both generic graph generation tasks. Further
inference results for the Planar dataset, which
reinforce the advantages of Optimal Transport,
can be found in Appendix J.2. Moreover, the
GraphEvo module improves the performance of
GGFlow. The triangle attention mechanism for edges in GraphEvo captures more complex node and
edge features, leading to substantial performance improvements. Moreover, even without the com-
bined use of GraphEvo and Optimal Transport, our methods still outperform DiGress, highlighting
the advantages of flow matching over traditional diffusion models. A detailed analysis of the training
procedure, which illustrates the stability provided by Optimal Transport, is also included in Appendix
J.2..

Table 4: Ablation studies on the OT and GraphEvo on the Commuinty-small and Planar datasets.
Results are the means of 3 different runs. The best results are marked bold.

Method Community-small Planar Step
Deg. Clus. Orbit Deg. Clus. Orbit Spec. Val.&Nov.&Uni.

DiGress 0.032 0.047 0.009 0.0003 0.0372 0.0098 0.0106 87.5 500

GGFlow (w/o both) 0.029 0.076 0.003 0.0023 0.1076 0.0053 0.0099 92.5 500
GGFlow (w/o OT) 0.028 0.027 0.007 0.0015 0.0431 0.0020 0.0067 97.0 500
GGFlow (w/o Evo) 0.018 0.075 0.004 0.0020 0.0763 0.0034 0.0124 94.5 500

GGFlow 0.001 0.084 0.004 0.0156 0.0196 0.0019 0.0091 97.5 500
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5 CONCLUSION

In this paper, we introduced GGFlow, a discrete flow matching generative model for graphs that
incorporates optimal transport and an innovative graph transformer network. GGFlow achieves state-
of-the-art performance in unconditional graph generation tasks. Additionally, we presented a novel
guidance method using reinforcement learning to control the generative trajectory toward a preferred
distribution. Furthermore, our model demonstrates the ability to achieve the best performance across
various tasks with fewer inference steps compared to other baselines which highlights the practical
impact of our guidance method. A primary limitation is scalability to larger graphs (|V| > 500),
attributable to the increased time complexity from triangle attention updates and spectral feature
computations. Generation times for different graph scales are provided in Appendix J.3. Future work
will focus on enhancing our model’s scalability in larger graphs.
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Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International conference on machine
learning, pages 17391–17408. PMLR, 2023.

Xiangzhe Kong, Wenbing Huang, Zhixing Tan, and Yang Liu. Molecule generation by principal
subgraph mining and assembling. Advances in Neural Information Processing Systems, 35:
2550–2563, 2022.

12

https://openreview.net/forum?id=iPFuWc1TV2
https://openreview.net/forum?id=iPFuWc1TV2
https://arxiv.org/abs/2202.02514
https://arxiv.org/abs/2202.02514


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid Neural Architecture Search by Learning
to Generate Graphs from Datasets. In International Conference on Learning Representations,
2020.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning Deep Generative
Models of Graphs. arXiv preprint arXiv:1803.03324, 2018.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow Matching
for Generative Modeling. In The Eleventh International Conference on Learning Representations,
2022.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph Normalizing Flows.
Advances in Neural Information Processing Systems, 32, 2019.

Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. GraphEBM: Molecular Graph Generation
with Energy-Based Models. arXiv preprint arXiv:2102.00546, 2021.

Shiwei Liu, Tian Zhu, Milong Ren, Chungong Yu, Dongbo Bu, and Haicang Zhang. Predicting muta-
tional effects on protein-protein binding via a side-chain diffusion probabilistic model. Advances
in Neural Information Processing Systems, 36, 2024a.

Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Wei Chen, and Min Lin. Graph Diffusion Policy
Optimization. arXiv preprint arXiv:2402.16302, 2024b.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast Graph Generation via Spectral Diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF: A Discrete Flow Model for Molecular Graph
Generation. In International conference on machine learning, pages 7192–7203. PMLR, 2021.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained Generation of Semantically Valid Graphs via
Regularizing Variational Autoencoders. Advances in Neural Information Processing Systems, 31,
2018.

Manuel Madeira, Clement Vignac, Dorina Thanou, and Pascal Frossard. Generative modelling of
structurally constrained graphs. arXiv preprint arXiv:2406.17341, 2024.

Giorgia Minello, Alessandro Bicciato, Luca Rossi, Andrea Torsello, and Luca Cosmo. Graph
generation via spectral diffusion. arXiv preprint arXiv:2402.18974, 2024.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation Invariant Graph Generation via Score- Based Generative Modeling. In International
Conference on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. Got: an
optimal transport framework for graph comparison. Advances in Neural Information Processing
Systems, 32, 2019.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch couplings.
arXiv preprint arXiv:2304.14772, 2023.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Milong Ren, Tian Zhu, and Haicang Zhang. Carbonnovo: Joint design of protein structure and
sequence using a unified energy-based model. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=FSxTEvuFa7.

13

https://openreview.net/forum?id=FSxTEvuFa7


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn, and
Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments. Nucleic
acids research, 32(suppl 1):D431–D433, 2004.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective Classification in Network Data. AI magazine, 29(3):93–93, 2008.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. GraphAF: a
Flow-based Autoregressive Model for Molecular Graph Generation. In International Conference
on Learning Representations, 2019.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using
Variational Autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pages 412–422. Springer, 2018.

Daniel GA Smith, Lori A Burns, Andrew C Simmonett, Robert M Parrish, Matthew C Schieber,
Raimondas Galvelis, Peter Kraus, Holger Kruse, Roberto Di Remigio, Asem Alenaizan, et al.
PSI4 1.4: Open-source software for high-throughput quantum chemistry. The Journal of chemical
physics, 152(18), 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations, 2020.

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou, and
Wei-Ying Ma. Equivariant Flow Matching with Hybrid Probability Transport for 3D Molecule
Generation. Advances in Neural Information Processing Systems, 36, 2024.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods
for Reinforcement Learning with Function Approximation. Advances in neural information
processing systems, 12, 1999.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
A dynamic optimal transport network for modeling cellular dynamics. In International conference
on machine learning, pages 9526–9536. PMLR, 2020.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
FATRAS, Guy Wolf, and Yoshua Bengio. Improving and Generalizing Flow-Based Generative
Models with Minibatch Optimal Transport. In ICML Workshop on New Frontiers in Learning,
Control, and Dynamical Systems, 2023.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Cédric Villani. Optimal Transport, volume 338 of. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], page 71, 2009.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. GraphGAN: Graph Representation Learning With Generative Adversarial Nets. In
Proceedings of the AAAI conference on artificial intelligence, 2018.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eisenach,
Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of protein
structure and function with RFdiffusion. Nature, 620(7976):1089–1100, 2023.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Ma-
hashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph generation.
arXiv preprint arXiv:2405.11416, 2024.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permutation
invariance in diffusion models for graph generation. arXiv preprint arXiv:2307.01646, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
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APPENDIX

A BACKGROUND

A.1 CONTINUOUS FLOW MATCHING GENERATIVE MODEL

The generative model aims to establish a mapping f : Rd → Rd that transforms a noise distribution
q0 into a target data distribution q1. This transformation is dependent on a density function p0
over Rd, and an integration map ψt, which induces a pushforward transformation pt = [ψt]#(p0).
This denotes the density of points x ∼ p0 transported from time 0 to time t along a vector field
u : [0, 1]× Rd → Rd.

The vector field u is formulated as:
dx = ut(x)dt.

The solution ψt(x) to this ODE, with the initial condition ψ0(x) = x, represents the trajectory of the
point x governed by u from time 0 to time t.

The evolution of the density pt, viewed as a function p : [0, 1] × Rd → R, is encapsulated by the
continuity equation:

∂p

∂t
= −∇ · (ptut),

with the initial condition given by p0. Here, u is the probability flow ODE for the path of marginal
probabilities p, generated over time.

In practical applications, if the probability path pt(x) and the generating vector field ut(x) are known
and pt(x) is tractably sampled, we leverage a time-dependent neural network vθ(·, ·) : [0, 1]×Rd →
Rd to approximate u. The neural network is trained using the flow matching objective:

LFM(θ) = Et∼U(0,1),x∼pt(x)∥vθ(t, x)− ut(x)∥
2, (11)

which enhances the model’s capability to simulate the target dynamics accurately. Avoiding the
explicit construction of the intractable vector field, recent works express the probability path as a
marginal over a joint involving a latent variable z: p(xt) =

∫
p(z)pt|z(xt|z). (Lipman et al., 2022;

Tong et al., 2023) and the pt|z(xt|z) is a conditional probability path, satisfying some boundary
conditions at t = 0 and t = 1.

The conditional probability path also satisfies the transport equation with the conditional vector field
ut(x|x1):

∂pt(x|xt)
∂t

= −∇ · (ut(x|x1)pt(xt|x1)). (12)

We can construct the marginal vector field ut(x) via the conditional probability path pt|1(xt|x1) as:

ut(x) = Ex1∼p1|t [ut(x|x1)]. (13)

We can replace the flow matching loss LFM with an equivalent loss regressing the conditional vector
field ut(x|x1) and marginalizing x1 instead:

LCFM(θ) = EU(t;0,1),x1∼q,xt∼pt(x|x1)[uθ(t, x)− ut(x|x1)].
∇θLFM(θ) = ∇θLCFM(θ).

So we can use LCFM(θ) instead to train the parametric vector field uθ.

B RELATED WORKS

B.1 COMPARISON WITH DISCRETE FLOW MATCHING

Campbell et al. (2024) first introduced flow matching in discrete spaces using a continuous-time
Markov chain. Building on this, Gat et al. (2024) expanded the framework to encompass general
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source and target couplings, including U-coupling and C-coupling. GGFlow advances discrete flow
matching and its source-target coupling to suit graph-structured data. Our approach innovatively
incorporates efficient optimal transport for graphs within the flow matching framework. To address
the inherent sparsity and permutation invariance of graphs, we employ a tailored prior distribution.
Additionally, we implement an edge-augmented graph transformer to enhance generative performance
and adopt a goal-guided framework for conditional generation. These advancements collectively
enhance the practical applicability of GGFlow.

B.2 COMPARISON WITH GRAPH DISCRETE DIFFUSION MODEL

DiGress (Vignac et al., 2022) and PPGN (Haefeli et al., 2022) were among the first to apply discrete
diffusion models to graph generation, highlighting the advantages of discrete state spaces. DiGress
further introduced an optimal prior distribution and global structural features specifically designed to
enhance graph generation. Their forward and generative processes are expressed as:

q(Gt|G0) = Cat(Gt, p = G0Q̄t), with Q̄t = Q1Q2 . . . Qt, (14)

q(Gt−1|Gt, G0) =
q(Gt|Gt−1, G0)q(Gt−1|G0)

q(Gt|G0)
= Cat(Gt−1; p =

GtQT
t ⊙G0Q̄t−1

G0Q̄tGt∗ ), (15)

where Gt represents the noisy graph at time t, and Qt is the time-dependent transition matrix.
These methods require maintaining convergence properties of transition matrix and cumulative matrix
products, constraining the choice of prior distributions and destabilizing training. In contrast, GGFlow
employs a simpler interpolation between the prior and data distributions during training, avoiding
cumulative products and improving both training stability and the ease of selecting appropriate priors.

B.3 COMPARISON WITH GRAPH DISCRETE FLOW MODEL

GraphDF (Luo et al., 2021) uses a discrete flow model to generate molecular graphs by sequentially
sampling discrete latent variables and mapping them to nodes and edges via invertible modulo-shift
transforms. GGFlow simplifies this by transforming the invertible modulo-shift into a conditional
vector field that interpolates between the prior and data distributions, bypassing the need for complex
invertible mappings. Furthermore, while GraphDF adopts an autoregressive process for graph
generation, GGFlow generates the entire graph in a one-shot manner, capturing holistic relationships
among nodes and edges more efficiently.

B.4 COMPARISON WITH GRAPH VARIATIONAL FLOW MATCHING

CatFlow (Eijkelboom et al., 2024) employs variational inference to apply flow matching to categorical
data, but it only considers the conditional vector field under the assumption of independent coupling
in the joint distribution π(G0, G1) and fails to consider the inherent sparsity of graph structures.
GGFlow extends this by generalizing π(G0, G1) as a 2-Wasserstein optimal transport map and
incorporating an optimal prior distribution tailored for graph structures, improving performance in
generation tasks. Additionally, GGFlow introduces a novel goal-directed approach for discrete flow
matching in conditional generation tasks, enhancing its practical applicability.

C PROOFS

C.1 OPTIMAL PRIOR DISTRIBUTION

This prior is structured as a product of a single distribution v for all nodes and a single distribution e
for all edges,

∏
i v ×

∏
i,j e, to ensure exchangeability across the graph components.

Theorem 2 (Optimal prior distribution). Consider the class C = {
∏

i u×
∏

i,j v, (u, v) ∈ P(V)×
P(E)} of distributions over graphs, which factorize as the product of a uniform distribution v over
node attribute space V and a uniform distribution e over edge attribute space E . Given any arbitrary
distribution P over graphs (viewed as a tensor of order n + n2), with qV and qE as its marginal
distributions for node and edge attributes respectively, then the orthogonal projection of P onto C is
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defined as ϕG =
∏

i qV ×
∏

i,j qE . This projection minimizes the Euclidean distance:

ϕG ∈ arg min
(v,e)∈C

∥P −
∏

1≤i≤n

v ×
∏

1≤i,j≤n

e∥22.

The details and proof of Theorem 2 are extensively discussed in DiGress (Vignac et al., 2022).

C.2 CHOICE OF CONDITIONAL VELOCITY FIELD

In GGFlow, the conditional vector field for discrete flow matching is defined as (Campbell et al.,
2024):

ut(G,G
t|G0, G1) =

ReLU(∂tpt|1(G|G1)− ∂tpt|1(Gt|G1))

Zt · pt|1(Gt|G1)

=
1

Zt(1− t)pref
δ{G,G1}(1− δ{Gt, G1}), Gt ̸= G,

where ReLU(a) = max(a, 0) and Zt = |{Gt : pt(G
t|G0, G1) > 0}|. ut(G,Gt|G0, G1) = 0 when

pt(G|G1, G0) = 0 and pt(Gt|G1, G0) = 0. When Gt = G, the rate matrix R(Gt, Gt|G0, G1) =
−
∑

Gt ̸=GR(G
t, G|G0, G1). For simplification, the graph G is denoted as variable x

Proof. Consider the conditional probability pt|1(xt|x1, x0) = pt(x
t|x1, x0) = Cat

(
tδ{x1, xt} +

(1− t)qx
)

, where qx is the prior distribution. We derive its time derivative:

∂tpt|1(x
t|x1, x0) = δ{x1, xt} − qx, (16)

We then construct the conditional rate matrix ut(xt, x|x1, x0) as:

ut(x
t, x|x1, x0) =

ReLU(∂tpt|1(x|x1, x0)− ∂tpt|1(xt|x1, x0))
Zt · pt|1(xt|x1, x0)

=
ReLU(δ{x, x1} − qx − δ{xt, x1}+ qx)

Zt(tδ{x1, xt}+ (1− t)qx)

=
ReLU(δ{x, x1} − δ{xt, x1})
Zt(tδ{x1, xt}+ (1− t)qx)

.

The expression simplifies under the assumption that xt ̸= x. The only non-zero values occur when
x = x1 and xt ̸= x1, thus yielding:

ut(x
t, x|x1) = 1

Zt(1− t)qx
δ{x, x1}(1− δ{xt, x1}), xt ̸= j (17)

where Zt = |{xt : pt(xt|x1, x0) > 0}|.

C.3 PROOF OF PROPOSITION 1

Proof. The Kolmogorov forward equations for discrete flow matching are expressed as:

∂tpt = utpt, (18)

If we establish the permutation invariance of the prior distributions pref and the permutation equivari-
ance of conditional flow probabilities, then it follows that p(G1) is permutation exchangeable.

According to the Theorem 2, we deduce the permutation invariance of the prior distribution pref .
Given the conditional probabilities p(Gt+∆t|Gt) = Cat

(
δ{Gt, Gt+∆t} + ût(G

t, Gt+∆t)∆t
)

, it

18
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suffices to demonstrate the permutation equivariance of the conditional probabilities. This requires
showing the permutation equivariance of the vector field ut. Consider the case for nodes:

πuVt (V
t
i , V

t+∆t
i ) = π

(
Ep̂V

1|t(V
1
i |V t

i )[u
V
t (V

t
i , V

t+∆t
i |V 1

i , V
0
i )]

)
,

LHS = uVt (V
t
π−1(i), V

t+∆t
π−1(i)),

RHS =
(
Ep̂V

1|t(V
1
π−1(i)

|V t
π−1(i)

)[u
V
t (V

t
π−1(i), V

t+∆t
π−1(i)|V

1
π−1(i), V

0
π−1(i))]

)
,

= uVt (V
t
π−1(i), V

t+∆t
π−1(i)) = LHS.

where π is a permutation operator. This establishes the permutation equivariance of ut and the
exchangeability of the generated distribution.

C.4 PROOF OF THEOREM 1

First, we want to clarify the rationale and foundation of our theorem. The goal of optimal transport is
to pair source and target data points with minimal cost during training, which is beneficial for our
interpolation (Bose et al., 2023; Song et al., 2024). Thus, we design our optimal transport approach
from the perspective of interpolation.

We define the node order of the graph G as the order of the nodes and edges in matrix representation.
For example, if the node set ofG is {A,B,C}, the possible node orders include (A,B,C), (B,A,C)
or (C,B,A).

In the interpolation process, we transform the graph representation to a matrix representation before
performing interpolation. For example, for source data G0 = (V 0, E0), V 0 ∈ Ra×n, E0 ∈ Ra×a×m

and target data G1 = (V 1, E1), V 1 ∈ Ra×n, E1 ∈ Ra×a×m, where a is the number of nodes, n is
the class number of nodes, and m is the class number of edges, the node orders of G0 and G1 have
been fixed. Therefore, interpolation is performed directly on these fixed node orders.

The optimal transport aims to find pairs with the minimum cost for interpolation, and the interpolation
is conducted on a fixed node order. Additionally, during optimal transport calculations, we also
utilize the matrix representation of these graphs and our prior distribution is permutation invariant.
Therefore, we aim to match source data with the target data G1 whose node order is fixed, to achieve
minimal transport cost. Furthermore, we assume that all pairs of source and target data share the same
node order during optimal transport, which also facilitates the identification of pairs with minimal
cost.

Regarding the permutation of the intermediate graph Gt, we have πGt = tπG0 + (1 − t)πG1,
where G0 and G1 share an identical permutation. Our network p̂1(G1|G0, Gt) needs to maintain
permutation equivariance, such that p̂1(G1|πG0, πGt) = πp̂1(G1|G0, Gt) for any permutation π to
approximate πG1. So we prove the invariance of optimal transport under identical permutations, i.e.
ϕ(G0, G1) = ϕ(πG0, πG1).

Proof. Building on the foundations established in Theorem 2 and Proposition 1, we confirm the
permutation invariance of both the target and source distributions. The Hamming distance is invariance
under identical permutations π, as shown by:

H(G0, G1) =
∑
i

δ(v0i , v
1
i ) +

1

2

∑
i,j

δ(e0ij , e
1
ij)

=
∑
i

δ(v0π−1(i), v
1
π−1(i)) +

1

2

∑
i,j

δ(e0π−1(i)π−1(j), e
1
π−1(i)π−1(j))

= H(πG0, πG1)

This property of the Hamming distance ensures the invariance of the optimal transport map ϕ∗ under
identical permutations.
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Additionally, the prior distribution is permutation invariant and our GraphEvo is permutation equiv-
ariance, all permutations of graphs are generated with equal probability (Eijkelboom et al., 2024).

Lemma 1. Let p0(G) be an exchangeable distribution and our model p̂1|t(G1|Gt, G0) is permutation
equivariant. Then, all permutations of generated graphs with equal probability.

Proof. As the permutation equivariance of our model p̂1|t(G1|Gt, G0), implies the equivariance of
our vector fields ut. Moreover, the sampling procedure exhibits permutation equivariance, where π is
a permutation.

p̂1|t(G
1|πG0) = πp̂1|t(G

1|G0), t = 0

p∆t|0(G
∆t|πĜ1, πG0) = δ{·, πG0}+ u0(·, πG0|πG0, πĜ1)∆t

= π[δ{·, G0}+ u0(·, G0|G0, Ĝ1)∆t] = πp∆t|0(G
∆t|Ĝ1, G0), t = 0

pt+∆t|t(G
∆t+t|πĜ1, πGt, πG0) = δ{·, πGt}+ ut(·, πGt|πG0, πĜ1)∆t

= π[δ{·, Gt}+ ut(·, Gt|G0, Ĝ1)∆t] = πpt+∆t|t(G
∆t+t|Ĝ1, Gt, G0), t = ∆t, . . . , 1−∆t

Therefore, since p0 assigns equal density of all permutations of G, the resulting distribution p1
preservers this property.

D DETAILS OF GRAPHEVO

GraphEvo is a novel edge-augmented graph transformer model designed for graph data. To enhance
the generative capabilities of GGFlow, GraphEvo introduces a triangle update mechanism, which
significantly improves the exchange of edge information. We incorporate FiLM and PNA layers into
our architecture (Vignac et al., 2022):

FiLM(X1, X2) = X1(Linear(X2) + 1) + Linear′(X2)

PNA(X) = Linear
(
Cat(max(X),min(X),mean(X), std(X))

)
.

The full architecture of GraphEvo is illustrated in Algorithm 3 and is permutation equivariant. The
time complexity of GraphEvo is O(N3).

Algorithm 3 Architecture of GraphEvo

Require: G, t,Nlayer

1: V,E← G
2: y← ExtractFeature(G), t← TimeEmbedding(t)
3: y← y + t
4: X,E,y← Linear(V ),Linear(E),Linear(y)
5: for t = 0, 1, . . . , Nlayer do
6: X′,E′,y′ ← SelfAttention(X,E,y)

7: X← ReLU
(
LayerNorm(X+Dropout(X′))

)
8: E← ReLU

(
LayerNorm(E+Dropout(E′))

)
9: y← ReLU

(
LayerNorm(y +Dropout(y′))

)
10: end for
11: p̂V1|t(V

1|V t, V 0), p̂E1|t(E
1|Et, E0),y← Linear(V ),Linear(E),Linear(y)

12: return p̂V1|t(V
1|V t, V 0), p̂E1|t(E

1|Et, E0),y

GraphEvo integrates global structural features to improve generation performance, including both
graph-theoretic and domain-specific attributes:
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Graph-theoretic features: These encompass node-level properties such as the number of k-cycles
(k ≤ 5) containing this point and an estimate of the largest connected component, alongside graph-
level metrics like the total number of k-cycles (k ≤ 6) and connected components.

Molecular features: These account for the current valency of each atom and the molecular weight of
the entire molecule.

D.1 PROOF OF PROPOSITION 2

Proof. Let Gt = (V t, Et) is a intermediate graph, and πGt = (π∗V, π∗Eπ) is the permutation. To
prove the permutation properties of the graph, we need to consider two aspects: additional structural
features and the model architecture.

First, the spectral and structural features are permutation equivariant for node-level features and
invariant for graph-level features. Additionally, the FiLM blocks and Linear layers are permutation
equivariant, while the PNA pooling function is permutation invariant. Layer normalization is also
permutation equivariant.

As GraphEvo is built using permutation equivariant components, we conclude that the overall model
is permutation equivariant.

E TIME COMPLEXITY OF OPTIMAL TRANSPORT

To analyze the time complexity of optimal transport (OT), we compared the training time of OT
with that of DiGress, using identical architectures on an NVIDIA A100 80G GPU. We evaluated the
effects of model size, batch size, and number of nodes by measuring the duration of single training
steps across three different datasets. Our results indicate that the time required for OT accounts for
only 5% of the total training time, highlighting the efficiency of our optimal transport.

Table S1: Time Complexity of Optimal Transport

Dataset Planar Zinc250k Community-small

DiGress Training Time (s) 0.1647 0.1690 0.0456
GGFlow Training Time (s) 0.1264 0.1301 0.0408
Optimal Transport Time (s) 0.0025 0.0070 0.0024
Percentage of OT 1.9% 5.3% 5.6%
Model Size (M) 3.6 4.6 6.4
Batch Size 64 128 80
Number of Nodes 64 [6,38] [12,20]

F SOURCE CODE

The code will be made publicly available upon the publication of this paper.

G TOY EXAMPLE OF GOAL-GUIDED GRAPH GENERATION

We demonstrate the utility of our goal-guided framework of flow matching with a toy example,
depicted in Figure S1: (a) shows a trained unconditional flow matching model mapping noise
distribution p0 to data distribution p1. (b, c) illustrate the effect of temperature T on the exploration,
with higher temperatures resulting in broader data point distribution. (d) shows how fine-tuning
according to Equation 10 concentrates data in regions with higher rewards. (e-f) illustrate the
corresponding flow matching trajectories.
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（a） （b） （c） （d）

（e） （f） （g） （h）

Figure S1: (a-d) Data distribution of the flow matching model, π0 is the original distribution (orange),
π1 is the target data distribution (blue), and the red dots are the data distribution generated by the
model. (e-h) In reinforcement learning, the flow matching model conducts exploration/sampling
trajectories

H ADDITIONAL EXPERIMENTS RESULTS

In this section, we present additional metrics including Spectre (Spec.) and Valid-
ity&Novelty&Uniquess (Val.&Nov.&Uni.) across general graph datasets including the Planar and
Enzymes datasets, as summarized in Tables S2, S3 and S4. The MMD kernel in the planar dataset
followed the GruM (Jo et al., 2024). We also include the standard deviation of our results in Table S5,
illustrating the consistency and superior performance of our method.

To further compare GGFlow with baseline models, we measured the MMD between the test datasets
and a set of 1,024 generated graphs in the Ego-small and Community-small datasets. The results in
Table S6 demonstrate that GGFlow achieves the highest performance across all metrics, significantly
outperforming other baseline models.

Table S2: Additional generation results on the generic graph datasets. Results are the means of 3
different runs. The best results are marked bold.

Method Ego-small Community-small Grid Step
Spec. Nov.&Uni. Spec. Nov.&Uni. Spec. Nov.&Uni.

Training Set 0.006 100 0.012 100 0.009 25 -

GDSS 0.034 27.5 0.053 100.0 0.043 100.0 1000
GSDM - - 0.024 0.0 0.015 0.0 1000
DiGress 0.017 100.0 0.055 100.0 0.025 100.0 500
SwinGNN 0.016 52.5 0.025 55.0 0.008 100.0 500

GGFlow 0.006 32.5 0.031 100.0 0.022 100.0 500

I IMPLEMENT DETAILS

I.1 ALGORITHMS OF GGFLOW

Details of the training procedure and guided training procedure are provided in Algorithm 4 and 5.
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Table S3: Generation results on the planar graph datasets. The best results are marked bold. σ
denotes the standard deviation.

Method Planar Step
Deg. Clus. Orbit Spec. Val.&Nov.&Uni.

Training Set 0.0002 0.0165 0.0002 0.0050 100 -

GDSS 0.0039 0.2593 0.1732 0.0370 0.0 1000
GRASP 0.0022 0.2749 0.0055 0.0098 0.0 200
DiGress 0.0003 0.0372 0.0098 0.0106 87.5 500
GruM 0.0004 0.0382 0.0095 0.0069 75.0 1000

GGFlow 0.0156 0.0196 0.0019 0.0091 97.5 500
σ 0.0064 0.0037 0.0006 0.0012 2.5 -

Table S4: Generation results on the Enzymes graph datasets. The best results are marked bold. σ
denotes the standard deviation.

Method Enzymes Step
Deg. Clus. Orbit Avg.

Training Set 0.008 0.096 0.012 0.039 -

GraphRNN 0.017 0.043 0.021 0.043 -
GraphAF 1.669 1.283 0.266 1.073 -
GraphDF 1.503 1.061 0.202 0.922 -
GraphVAE 1.369 0.629 0.191 0.730 -
EDP-GNN 0.023 0.268 0.082 0.124 1000
GDSS 0.026 0.102 0.009 0.046 1000
GSDM 0.013 0.088 0.010 0.037 1000
DiGress 0.010 0.046 0.002 0.019 500

GGFlow 0.008 0.026 0.002 0.012 500
σ 0.0041 0.0106 0.0008 0.0130 -

Table S5: Standard deviation and mean of generation results on the general graph datasets. µ and σ
denote the mean and standard deviation, respectively

Metric Ego-small Community-small Grid
Deg. Clus. Orbit Sepc. Deg. Clus. Orbit Sepc. Deg. Clus. Orbit Sepc.

µ 0.005 0.033 0.005 0.008 0.011 0.030 0.002 0.031 0.030 0.000 0.016 0.022
σ 0.007 0.012 0.003 0.001 0.006 0.012 0.002 0.002 0.008 0.000 0.003 0.001

I.2 BASELINES IMPLEMENTATION

To benchmark the performance of GGFlow, we ensure consistency by using identical splits of training
and test sets across all datasets. Below, we provide the implementation details for each baseline
model. To guarantee a fair comparison, most baseline models are retrained three times, and the
average results from these runs are reported as the final outcomes in unconditional generation tasks.
The results of the DeepGMG, GraphRNN and GNF for Ego-small and Community-small dataset are
taken from their original papers.

GraphAF (Shi et al., 2019) We follow the implementation guidelines provided in the TorchDrug
tutorials (https://torchdrug.ai/docs/tutorials/generation.html).

GraphDF (Shi et al., 2019) Model scripts are sourced from the DiG repository (https://
github.com/divelab/DIG/tree/dig-stable/examples/ggraph/GraphDF).
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Table S6: Generation results on the generic graph datasets with 1024 generated graphs. The best
results are marked bold.

Method Ego-small Community-small Step
Deg. Clus. Orbit Sepc. Deg. Clus. Orbit Spec.

GraphRNN 0.040 0.050 0.060 - 0.030 0.010 0.010 - -
GNF 0.010 0.030 0.001 - 0.120 0.150 0.200 - -
EDP-GNN 0.010 0.025 0.003 - 0.006 0.127 0.018 - 1000
GDSS 0.023 0.020 0.005 0.047 0.029 0.068 0.004 0.151 1000
GSDM - - - - 0.003 0.008 0.0009 0.011 1000
DiGress 0.017 0.038 0.006 0.021 0.013 0.040 0.004 0.055 500
SwinGNN 0.004 0.023 0.003 0.023 0.003 0.088 0.010 0.016 500

GGFlow 0.004 0.004 0.0008 0.009 0.004 0.003 0.0006 0.018 500

Algorithm 4 Training Procedure of GGFlow

Require: G = (V,E), qV , qE ,
1: for n ∈ {0, . . . , Niter − 1} do
2: t ∈ U(0, 1), G1 = G
3: G0 = (V 0, E0) ∼ pref
4: (G0, G1) ∼ OptimalTransport(G0, G1)
5: // Sample from conditional probability flow.
6: V t = (tδ{V 1, ·}+ (1− t)V 0) and Et = (tδ{E1, ·}+ (1− t)E0)
7: p̂V1|t(V

1|V t, V 0), p̂E1|t(E
1|Et, E0),y = GraphEvoθn(V

t, Et, t, f t)

8: L = Epdata(G1)U(t;0,1)π(G0,G1)pt(Gt|G0,G1)[log p̂1|t(G
1|Gt, G0)]

9: θn+1 = optimizer update(θn,L)
10: end for
11: θ∗ = θNiter

12: return θ∗

GraphVAE (Shi et al., 2019) Scripts are obtained from the GraphVAE section of
the GraphRNN repository (https://github.com/JiaxuanYou/graph-generation/
tree/master/baselines/graphvae).

MoFlow (Zang and Wang, 2020) Implementation scripts are taken from the MoFlow repository
(https://github.com/calvin-zcx/moflow).

GraphEBM (Liu et al., 2021) We use the implementation available in the GraphEBM repository
(https://github.com/biomed-AI/GraphEBM).

EDP-GNN (Niu et al., 2020) The model is implemented according to the scripts in the EDP-GNN
repository (https://github.com/ermongroup/GraphScoreMatching).

GDSS (Jo et al., 2022b) Implementation details are sourced from the GDSS repository (https:
//github.com/harryjo97/GDSS).

GSDM (Luo et al., 2023) Scripts are implemented from the GSDM repository (https://
github.com/ltz0120/Fast_Graph_Generation_via_Spectral_Diffusion).

PS-VAE (Kong et al., 2022) Implementation details are sourced from the PS-VAE repository
(https://github.com/THUNLP-MT/PS-VAE).

MolHF (Zhu et al., 2023) The model is implemented according to the scripts in the MolHF
repository (https://github.com/violet-sto/MolHF).

GRASP (Minello et al., 2024) Implementation details are sourced from the GRASP repository
(https://github.com/lcosmo/GRASP).

SwinGNN (Yan et al., 2023) Implementation details are sourced from the SwinGNN repository
(https://github.com/DSL-Lab/SwinGNN). The authors employ the ’gaussian tv’ MMD
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Algorithm 5 Training Procedure of Guided GGFlow by Reinforcement Learning

Require: θ0, θ, α, β, T , Nsteps, traj, G0 ∼ pref , ut(Gt, G|G1, G0), T , Ntrain

1: θ ← θ0
2: for i ∈ {1, . . . , Ntrain} do
3: ∆t = 1/Nsteps

4: Collect flow trajectory
(
G0, t = 0,R(G0)

)
.

5: for n ∈ {0, . . . , Nsteps − 1} do
6: p̂V1|t(V

1|V t, V 0), p̂E1|t(E
1|Et, E0),y = GraphEvo(V t, Et, t)

7: Get Gt+∆t by sampling from Equation 9.
8: (V t+∆t, Et+∆t) = Gt+∆t

9: t = t+∆t
10: Compute the reward functionR(Gt+∆t).
11: Collect flow trajectory

(
Gt+∆t, t+∆t,R(Gt+∆t)

)
.

12: end for
13: Update network using Equation 10.
14: t = 0
15: end for
16: return Guided flow matching model θ∗

kernel, whereas other methods use ’gaussian emd’ or ’gaussian’. To ensure a fair comparison, we
adopt the same kernel.

GruM (Jo et al., 2024) Scripts are implemented from the GruM repository (https://github.
com/harryjo97/GruM/).

DiGress (Vignac et al., 2022) The implementation is based on the DiGress repository (https:
//github.com/cvignac/DiGress).

I.3 DETAILS OF GENERIC DATASETS

I.3.1 DATASET

Ego-small This dataset consists of 200 small one-hop ego graphs derived from the Citeseer network
(Sen et al., 2008). Each graph contains between 4 and 18 nodes.

Community-small This dataset includes 100 random community graphs, each formed by two
communities of equal size generated using the E-R model (Erdős et al., 1960) with a probability
parameter of p = 0.7. The graphs range in size from 12 to 20 nodes.

Enzymes The dataset comprises 587 protein graphs, with each graph representing the tertiary
structure of enzymes sourced from the BRENDA database (Schomburg et al., 2004), which have
between 10 and 125 nodes.

Grid The dataset consists of 100 standard 2D grid graphs with 100 ≤ |V | ≤ 400.

Planar The dataset consists of 200 planar graphs, each with 64 nodes, generated using Delaunay
triangulation on uniformly distributed random points.

Table S7: Statistics of the generic graph datasets

Dataset type Number of graphs Number of nodes

Ego-small Real 200 [4, 18]
Community-small Synthetic 100 [12, 20]
Enzymes Real 587 [10, 125]
Planar Synthetic 200 64
Grid Synthetic 100 [100,400]

25

https://github.com/harryjo97/GruM/
https://github.com/harryjo97/GruM/
https://github.com/cvignac/DiGress
https://github.com/cvignac/DiGress


1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

I.4 DETAILS OF MOLECULE DATASETS

I.4.1 DATASET

QM9 It is a subset of the GDB-17 database and consists of 134,000 stable organic molecules, each
containing up to 9 heavy atoms: carbon, oxygen, nitrogen, and fluorine (Ramakrishnan et al., 2014).
The dataset includes 12 tasks related to quantum properties. We follow the train/test split from GDSS,
using 12,000 molecules for training and the remaining 1,000 for testing.

ZINC250k It contains 250,000 drug-like molecules with a maximum of 38 atoms per molecule
(Irwin et al., 2012). It includes 9 atom types and 3 edge types. For a fair comparison, we use the
same train/test split as previous works, such as GDSS and GSDM.

Table S8: Statistics of the molecular graph datasets

Dataset type Number of graphs Number of nodes Number of node types Number of edge types

QM9 Real 133,885 [1, 9] 4 3
ZINC250k Real 249,455 [6, 38] 9 3

I.4.2 METRICS

For generic graph datasets, we employ Maximum Mean Discrepancy (MMD) to assess the distri-
butions of graph statistics, specifically degree distribution, clustering coefficient, the number of
occurrences of 4-node orbits, and eigenvalues of the normalized graph Laplacian. In alignment
with prior research (Jo et al., 2022b), we utilize specialized kernels for MMD calculations: the
Gaussian Earth Mover’s Distance (EMD) kernel for degree distribution and clustering coefficient,
the Gaussian Total Variation (TV) kernel for eigenvalues of the normalized graph Laplacian, and a
standard Gaussian kernel for the 4-node orbits. To ensure a fair comparison, the size of the prediction
set matches that of the test set.

Validity We permit atoms to exhibit formal charges during valency checks because of the presence
of formal charges in the training molecules. It is the fraction of valid molecules after valency
correction or edge resampling.

Validity w/o correction This metric explicitly evaluates the quality of molecule generation before
any correction phase, providing a baseline for raw generation performance.

FCD FCD quantifies the functional connectivity density within a molecule by computing distances
and connectivity between atoms, based on both structural and chemical features. It describes the
three-dimensional structure, topological features, and chemical properties of molecules, making it
valuable in fields such as drug design, compound screening, and molecular simulations.

NSPDK NSPDK assesses molecular similarity by comparing shortest paths within their graphical
structures. It captures connectivity patterns and chemical environments, effectively describing
relationships and similarities between molecules. For two distributions p and q, the MMD using
NSPDK is calculated as:

MMD2
NSPDK(p, q) =

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

kNSPDK(Xi,Xj) +
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

kNSPDK(Yi,Yj) (19)

− 2

mn

n∑
i=1

m∑
j=1

kNSPDK(Xi,Yj) (20)

Here, kNSPDK(·) denotes the NSPDK kernel function. X is the set of molecules from distribution p.
Y is the set of molecules from distribution q. n and m represent the number of samples drawn from
distributions p and q, respectively. This formula quantifies the difference between the distributions p
and q using the NSPDK kernel.
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I.5 DETAILS OF CONDITIONAL GENERATION

We included three guidance baselines in our conditional generation task:

DiGress model with guidance Utilizing the guidance method integrated into the DiGress model
(Vignac et al., 2022).

Direct supervised training (ST) It involved selecting training samples from the dataset that
satisfied |µ− µ∗| < 1.0 and retraining them using supervised learning settings identical to those in
Section 4.2.

Supervised fine-tuning (SFT) This method involved fine-tuning a pre-trained GGFlow model on
molecules generated with |µ− µ∗| < 1.0, maintaining the same training settings as in Section 4.2.

These models were trained over 10,000 steps using the training settings detailed in Section 4.2. We
then generated 1,000 samples to calculate the results for each guidance method and the unconditional
method, with the values of µ estimated using Psi4 (Smith et al., 2020). We set the hyperparameters α
and β as 0.999 and 0.001.

J EXPERIMENT SETTINGS

J.1 HYPERPARAMETER SETTINGS

Table S9 presents the hyperparameters employed in our experimental setup. For each dataset, the
final resutls in Table 1 and Table 2 are the means of 5 different runs.

Table S9: Hyperparameter settings of different datasets

Hyperparameter Ego-small Community-small Grid Planar Enzymes QM9 ZINC250k

Number of layers 5 7 5 4 6 9 9
Hidden dimension of X 256 256 256 256 256 256 128
Hidden dimension of E 128 128 128 128 128 128 64
Hidden dimension of y 128 128 128 128 128 128 64
Optimizer Adamw Adamw Adamw Adamw Adamw Adamw Adamw
Learning rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Batch size 64 128 4 64 8 512 128
Number of epochs 2000 3000 5000 5000 10000 1000 1000
Number of sampling steps 500 500 500 500 500 500 500

J.2 ABLATION STUDIES SETTINGS

For the evaluation of varying inference steps, we followed the same experimental settings as outlined
in Sections 4.1 and 4.2. Samples were generated for 10 runs. The results were then visualized using
the mean and variance across these 10 runs. It is important to note that in DiGress, the number of
inference steps is constrained by its predefined diffusion steps (N = 500), so the DiGress curve
terminates at 500 inference steps.

For the ablation studies of GGFlow without Optimal Transport (GGFlow w/o OT), GGFlow without
GraphEvo (GGFlow w/o Evo) and GGFlow without GraphEvo and optimal transport (GGFlow w/o
both), we adhered to the settings described in Sections 4.1 and 4.2. The final results were obtained by
averaging the outcomes from five different runs.

To further investigate the advantages of optimal transport, we present generation results with varying
inference steps on the Community-small and Planar datasets. As shown in Figure S2, GGFlow
demonstrates superior generation quality compared to GGFlow (w/o OT), exhibiting narrower
confidence intervals and comparable performance with fewer inference steps, which suggests that
optimal transport enhances sampling both efficiency and stability.

We provide training loss and average values on Community-small datasets compared to DiGress,
which shares the same training objectives. For fair comparisons, we use GGFlow (w/o both) and
GGFlow (w/o Evo) to demonstrate the superiority of the flow matching framework and optimal
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Figure S2: Ablation studies of varying inference steps on Community-small and Planar datasets

transport. The average values are calculated as in Section 4.1 using checkpoints saved every 100
epochs.

Figure S3 demonstrates that GGFlow (w/o both) and GGFlow (w/o Evo) achieve faster and more
effective convergence than DiGress. Furthermore, GGFlow (w/o Evo) outperforms both GGFlow
(w/o both) and DiGress in average metrics, demonstrating the benefits of flow matching and optimal
transport. These results indicate that optimal transport and flow matching framework contribute to
greater training stability.
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Figure S3: Training stability analysis of flow matching and optimal transport in Community-small
dataset

J.3 GENERATION TIMES WITH DIFFERENT GRAPH SCALES

We conducted experiments to evaluate generation times across various graph scales using the Enzymes
dataset. The GraphEvo model was configured with six layers, and generation time was measured for
a single graph on an NVIDIA A100 80G GPU.

Table S10: Generation times with different graph scales.

Number of Nodes 10 50 100 200 400

Time (s) 1.92 4.24 12.15 48.59 235.8

K VISUALIZATION
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Figure S4: Visualization of generated samples of our model in different datasets
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