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ABSTRACT

Ordering-based causal discovery reduces structure learning to parent selection un-
der a candidate order, yet its pruning stage remains the primary bottleneck: widely
used procedures rely on marginal, additivity-constrained tests and tuned thresholds,
which fail to capture non-additive interactions and compromise reproducibility. We
introduce Prequential Evidence Pruning (PEP), a framework that reframes pruning
as a local cost-benefit analysis grounded in information theory. For each candidate
edge, PEP computes a prequential (out-of-fold) log-evidence gain by evaluating
the child’s predictive density in the context of its current co-parents, and retains the
edge only when this gain exceeds a computed Minimum Description Length (MDL)
code-length penalty that adapts to sample size, the number of admissible parents,
and the set size. Theoretically, the population target of the evidence gain equals
conditional mutual information (CMI); the statistic is stable under bounded log-loss
regret of the predictive component; and prequential scoring yields finite-sample
concentration. Empirically, instantiating PEP with a pre-trained tabular model that
provides calibrated, zero-shot predictive densities yields consistent improvements
across diverse ordering backbones and datasets, including stress tests under mis-
specification. PEP thus replaces fragile heuristics with a principled, auditable rule,
elevating the pruning stage of ordering-based discovery from marginal testing to
context-aware evidence maximization.

1 INTRODUCTION

Causal discovery from observational data is fundamental to mechanistic understanding across science
and engineering (Sachs et al., 2005} |Van Koten & Gray, 2006} Hicks et al., |[1980), yet exhaustive
search over directed acyclic graphs (DAGSs) is super-exponential and therefore intractable without
strong inductive biases (Bongers et al., 2021). Ordering-based methods address this computational
challenge by first estimating a topological order and then pruning forward edges (Teyssier & Koller,
2012; Bihlmann et al.| 2014} Peters et al., | 2014} Rolland et al.| |2022; Montagna et al., [2023c;bj
Sanchez et al., [2023; [Xu et al., 2024)). This two-stage paradigm has seen significant advances in
the ordering step. In contrast, the pruning step remains the practical bottleneck: widely used Causal
Additive Model (CAM) (Biihlmann et al.| 2014) pruning evaluates each candidate parent marginally
under additivity constraints and makes pruning decisions via fixed thresholds, which can obscure
non-additive interactions among co-parents and induce unstable behavior across datasets. We illustrate
this core challenge, which motivates our work, in Figure E}

We propose Prequential Evidence Pruning (PEP), a principled framework that reframes pruning as a
localized cost—benefit analysis grounded in information theory. For a candidate edge i — j evaluated
with its current co-parents S \ {i}, PEP quantifies a prequential (out-of-fold) log-evidence gain—the
improvement in predictive log-likelihood of the child when conditioning on X; in addition to X\ (-
Computing evidence strictly out of sample mitigates in-sample optimism and underpins finite-sample
stability. The decision rule is MDL-based: the edge is retained only when the data-compression
benefit exceeds a computed code-length penalty that accounts for the identity of the added parent,
the change in set size, and a fixed overhead (Grtinwald, 2007). This transforms a sequence of ad-hoc
tests into a single, auditable principle that preserves the search efficiency of ordering while directly
addressing the pruning failure modes that constrain current pipelines.
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Figure 1: A conceptual illustration of our pruning framework. (a) The target graph depicts parents X;
and X}, having a synergistic effect on their child X;. (b) In contrast, CAM pruning adopts a keyhole
view, evaluating each parent in isolation. This approach fails to capture synergies when the marginal
signal is null (e.g., I(X;; X;) ~ 0). (c) Our PEP framework addresses this limitation by adopting a
panoramic view, which evaluates each parent (X;) in the context of its co-parents (X} ) to compute
an evidence gain (d;, ;) that captures the interaction. For mathematical examples, see Appendix @}

To convert evidence into a decision, PEP compares §,_,;(g; S) against a computable Minimum
Description Length (MDL) (Griinwald, 2007) penalty that prices the order-aware combinatorics of
adding one parent. The per-sample gate TJML)L‘(S, i) encodes the identity of the added parent among
the admissible predecessors and the change in set cardinality (Eq. (3)—Eq. (4)), yielding an explicit,
sample-size aware acceptance threshold, obviating the need for a user-tuned significance level.
This design penalizes search-space complexity rather than parametric dimension and is therefore
compatible with amortized or nonparametric predictive components. Our framework is model-
class agnostic and requires only a predictive component that outputs proper, calibrated conditional
densities. In experiments we instantiate this component with a single pre-trained tabular foundation
model (Hollmann et al.,2025b) that provides zero-shot, well-calibrated predictive densities for mixed
data types, allowing the empirical study to focus on the contribution of the principle rather than on
model-specific engineering.

Contributions. (1) A prequential, context-aware edge statistic is introduced, which measures the
out-of-sample predictive gain of a parent conditioned on its co-parents to capture synergistic and
non-additive interactions. (2) A decision gate based on the MDL principle is developed, replacing
user-tuned significance thresholds with a computed, adaptive penalty that enhances the robustness of
pruning decisions. (3) A modular, plug-in pruning framework (PEP) is presented, which improves
diverse ordering-based backbones by directly addressing their pruning shortcomings. (4) We provide
theoretical guarantees for stability and extensive experiments on synthetic and real-world data,
demonstrating that our framework offers significant improvements over state-of-the-art baselines.

2 RELATED WORK

Ordering-based Causal Discovery. Ordering-based approaches circumvent the super-exponential
DAG search by first estimating a topological order and then pruning edges consistent with that
order. Early work such as CAM (Biihlmann et al) [2014) and RESIT (Peters et al., 2014) pio-
neered this two-stage paradigm. A recent line, initiated by SCORE (Rolland et al., [2022), identifies
leaves via properties of the score function and has given rise to several effective variants, including
NoGAM (Montagna et al.|[2023c)), DAS (Montagna et al.,|2023b)), DiffAN (Sanchez et al.| 2023), and
CaPS (Xu et al., [2024). Despite this progress on the ordering step, most pipelines still employ CAM-
style, additivity-constrained post-processing for pruning, which evaluates candidates marginally and
fails to account for synergistic (non-additive) interactions among parents. We address this under-
explored bottleneck: our PEP module performs joint, context-aware evaluation via a prequential
log-evidence gain and utilizes a computed MDL penalty in place of tuned thresholds, integrating with
diverse ordering backbones without changing their ordering criteria. See Appendix [E|for additional
related work in causal discovery.

Information-Theoretic Approaches in Causal Discovery. Information theory has been founda-
tional to causal discovery along two primary lines. Constraint-based procedures (e.g., PC (Spirtes &
Glymour, |1991)) rely on statistical tests for conditional independence, using estimators of conditional
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mutual information (CMI) with user-specified significance levels. In contrast, score-based methods
(e.g., GES (Chickering, |2002)) optimize a global objective that balances model fit and complexity,
often with an MDL-derived penalty like BIC. Our framework, PEP, synthesizes these two traditions:
it uses an information-theoretic evidence statistic (the prequential log-evidence gain) to quantify
dependence in context, and compares this against a computed MDL code-length penalty to make
local edge decisions. This approach retains the semantic appeal of CMI while inheriting MDL’s
parsimony, yet avoids tuned thresholds and global parametric assumptions, remaining applicable with
nonparametric or amortized predictors (see §3|for definitions and guarantees).

Positioning relative to prior paradigms. Constraint-based pipelines adjudicate edges via hypoth-
esis tests for (surrogates of) conditional mutual information with user-chosen significance levels,
whereas global score-based pipelines optimize in-sample objectives with parametric penalties, and
practical post-ordering modules often employ cross-validated gains with tuned thresholds. PEP differs
along three axes: (i) evidence semantics via a prequential, context-aware edge score that targets CMI
at the oracle and concentrates under cross-fitting; (ii) gate construction via a computable MDL penalty
that prices the order-restricted combinatorics of adding one parent rather than parametric dimension;
and (iii) scope in its applicability to amortized or nonparametric predictors without global likelihood
optimization. A broader discussion of related paradigms, including continuous optimizations and
Bayesian structure learning, is provided in Appendix [E]

3 THE PREQUENTIAL EVIDENCE PRUNING (PEP) FRAMEWORK

We consider i.i.d. observations X = (X1,...,X,) ~ p that are Markov to an unknown DAG G*.
Given a topological order 7, the pruning problem is formulated as determining, for each node j,
which forward candidates in Pred (j) to include. PEP addresses this decision locally by combining a
prequential, context-aware evidence statistic with a computed Minimum Description Length (MDL)
gate, while preserving the computational advantages of ordering-based pipelines.

Prequential (cross-fitted) scoring. We partition {1,...,n} into K folds {I}_,. For any held-
out index s € Iy, the log q]',S(Z';S) | a:(ss)) is evaluated using a predictor trained only on Ij. This
out-of-sample evaluation mitigates in-sample optimism and, conditional on the fitted predictors,
renders per-sample contributions independent across s, a property that underpins the concentration

results below.

3.1 DEFINITION: THE PREQUENTIAL LOG-EVIDENCE GAIN

For an edge i — j evaluated in context S C Pred, (j) with ¢ € S, define the per-sample evidence
BN (3) | ,(5) () | (3
bimj(q;5) = o z_; { log qj,S(xj | zg”) —log qj,S\{i}(xj | xS\{i})}' )
The statistic §;—,; quantifies the improvement in predictive log-likelihood (in nats per sample)
resulting from the inclusion of X; among X;’s parents conditioned on the other co-parents S \ {7},
thereby preserving non-additive interactions that marginal tests fail to capture.

3.2 THEORETICAL GUARANTEES

We work under the following standing assumptions.

Assumption 1 (Data and regularity). (i) z™), ... z(" B p. (ii) For all S C Pred,(j), the true
conditional p(x; | xg) and the predictor q; s(xz; | xs) have finite log-loss and variance. (iii) All
likelihood terms are evaluated prequentially (out-of-fold). Unless stated otherwise, all logarithms are
natural and code lengths are in nats.

Theorem 1 (Population target equals CMI). With an ideal predictor ¢ = p,
E[6i;(p )] = I(X;; X | Xs\(iy) -

Proof sketch. Taking expectations in Eq. (1) with ¢ = pyields —H (X | Xs) + H(X; | Xg\(i}) =
I(Xj; Xi | Xg\{iy) by the chain rule. Full details are given in Appendix O
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The statistic remains well-behaved with imperfect predictors; its deviation from the oracle target is
controlled by the conditional log-loss regrets of the competing families.

Proposition 1 (Stability under log-loss regret). Letrs = Ellog p(X; | Xg)—logg; s(X;| Xs)] >0
and define rg\ (;y analogously. Then
[E[0i—(q; S)] — El0is;(p; 9)]| < s+ 7oy

Proof sketch. Add and subtract the oracle terms and rearrange; see Appendix for a Bregman-
divergence formulation. O

To control ﬁmte sample fluctuations, define per-sample differences Z; = log g;, S(X (s) | X S))
log g;,5\{i }( | x& N { }) and assume sub-exponential tails uniformly in s.

Theorem 2 (Concentration under prequential scoring). Assume {Zs} are sub-exponential with
parameters (v,b) and are computed prequentially. Then, for any t > 0,

Pr(|6i5( 5) — EBiny(a: )| 2 ) < 2exp( = cnmin{t2/v2, t/0}),

for an absolute constant ¢ > 0.

Proof sketch. Conditional on the fitted predictors, {Z,} are independent across s by cross-fitting;
apply Bernstein’s inequality and de-condition by the tower property. See Appendix [F3] for details
and a uniform-over-edges extension. [

Moreover, if the sub-exponential parameters hold uniformly over forward candidates, a union bound
yields a uniform tail bound over the edge set (Appendix E.3). This result has two immediate practical
implications. First, in the absence of a contextual signal the statistic concentrates near zero.

Corollary 1 (Null behavior). If X; L X; | Xg\ (i and the regrets are small, then 6;_,;(q; S)
concentrates near 0 at the rate in Theorem.

Proof sketch. Combine Theorem|[I] (oracle target = 0 under conditional independence), Proposition|[I]
(bias bound), and Theorem 2} O

Second, the decision rule provides finite-sample control when expected evidence separates true and
false edges by a margin.

Corollary 2 (Finite-sample decision under a margin). Fix node j and contexts {S;;} for candidates
i € Pred.(j). Suppose there exists v > 0 such that E[6; ,;(q; Si;)] > TMPY(Si5, 1) + ~ for all true
parents and E[0;_,;(q; Si;)] < TJMDL(S”, i) —y for all non-parents. If the sub-exponential condition

holds uniformly with parameters (v,b), then the probability of any inclusion/exclusion error at node
j is at most 2P; exp(—cn min{~?/v?,~/b}).

Proof sketch. Apply Theorem[2]to each candidate and take a union bound; see Appendix[F4] [

3.3 FROM EVIDENCE TO DECISION: THE MDL GATE

An edge is retained only when the data-compression gain, measured in nats, exceeds the code-
length cost of describing it. Using the coding theorem, code length in nats approximates negative
log-likelihood, so the acceptance condition is

Z{log% s logqj,S\{i}(')] > L(Mj,s) — L(Mj s\ (i) - 2)

s=1

model-complexity cost

data-compression gain =n §;_, ;

For k = |S '\ {i}| and P; = | Pred,(j)|, a transparent two-part code yields the per-sample gate.

PMPL( ) = { log(P; — k) + Aog(k-+1) + . 3)

4
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Algorithm 1 Prequential Evidence Pruning (order 7 given)

1: Input: data D; order r; predictive component ¢; folds {/, k}szl'

2: Initialize: For each node j, set S; < Pred,(j).

3: for nodes j in topological order 7 do

4:  for each ¢ € S; (in any fixed order) do

5: Compute the prequential log-likelihoods and the resulting gain 6;_, ;, Eq. (1).
6: Compute 7 + 7,7P%(S;, i), Eq. .

7: if 57_” < 7 then

8: Remove edge (4, j) and set S; < S; \ {i}.

9: end if
10:  end for

11: end for R
12: Output: pruned DAG G.

where the first term prices the identity of the added parent among P; — k admissible candidates
and the second encodes the new set size with a universal integer code (A € [0, 1]), in addition to
a fixed overhead x. This penalty quantifies the order-aware search combinatorics and is agnostic
to the parametric dimension of the predictive component, whose statistical complexity is handled
prequentially. For a classical calibration under regular parametric conditions, see Appendix [F.3] For a
tabular contrast with CI tests and BIC, see Appendix

The PEP Decision Rule. We replace ad-hoc threshold tuning with a computable penalty that adapts
to sample size (n), search space size (P;), and current model complexity (k). Concretely, we keep an
edge when the prequential gain exceeds the MDL gate:

. . . MDL :
Keep edge i — j = 8imsj(q; S) > 1;77(8,1). 4
- Scenario 1: Simple Dataset (Clear Signal) Scenario 2: Complex Dataset (Overlapping Signal)
i : : [ False edges
0.8 1 m 1 1 [ True edges
: : — = Fixed threshold
2064 1 1 1 —— Adaptive gate
g : : -
& 0.4 I 1 I
1
- H—H | I
I
0.0 —=— : - : - - J= ﬁiﬂ . b . = D : i
-1 0 1 2 3 4 5 =2 -1 0 1 2 3 4 5 6
Evidence Score Evidence Score

Figure 2: Fixed versus adaptive gates (schematic). Left: when the distributions of §;_,; for true and
false edges are well separated, both a fixed threshold and the MDL gate succeed. Right: when the
distributions overlap, a fixed threshold erroneously includes many false edges, whereas the MDL gate
7PL(S, i) adapts to (n, P;, k) and maintains separation without validation tuning.

Adaptive versus Fixed Gates. Figure [2] visualizes the decision rule in two stylized scenarios.
When the evidence distributions for true and false edges are well separated (large population margin),
both a fixed threshold and the MDL gate succeed. When the distributions overlap (small margin), a
fixed threshold yields many false inclusions, whereas the MDL gate adapts to (n, P;, k) and restores
separation. This aligns with our theory: prequential scoring yields concentration (Theorem [2), and
under a positive margin, the finite-sample decision error decays exponentially in n (Corollary 2)). The
panels are schematic; empirical evaluations are reported in Section ]

The PEP algorithm. Algorithm [I]implements greedy backward pruning. Starting from the fully-
connected forward graph consistent with 7, it evaluates each candidate via Eq. (T) and removes edges
that fail the condition in Eq. ().
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Figure 3: PEP as a plug-and-play enhancement for diverse ordering backbones. Performance compar-
ison of six ordering algorithms using their original pruning modules (e.g., CAM pruning) versus the

same backbones augmented with PEP.

4 EXPERIMENTS

Experimental Setup. We evaluate PEP as a plug-in pruning module for six diverse ordering back-
bones across a comprehensive suite of benchmarks, encompassing synthetic graphs, challenging
misspecification scenarios, and real-world datasets. To ensure statistical robustness, all results are aver-
aged over 10 independent runs and assessed using standard metrics (SHD, SID, F1-score). A detailed
description of our experimental protocol, including the specific backbones, dataset configurations,
and implementation details, is provided in Appendix [G}

4.1 EMPIRICAL VALIDATION OF THE PEP FRAMEWORK

The empirical validation of the PEP framework is structured as an investigation into four central
questions: (i) Does PEP function as a general-purpose, ‘plug-and-play’ enhancement for diverse
ordering backbones? (ii) Are its performance gains attributable to the principled framework itself, or
merely to the power of its predictive component? (iii) Do these advantages persist under challenging
misspecification scenarios where classical assumptions are violated? And (iv) how robust is PEP to a
weak or non-informative ordering? The following analyses address each of these questions directly.

Plug-and-play Improvements Across Ordering Backbones. To validate PEP’s utility as a ‘plug-
and-play’ module, we integrated it into six diverse, state-of-the-art ordering backbones, replacing
their default pruning mechanisms. The results, shown in Figure 3] demonstrate a clear and consistent
pattern of improvement. Across both ER and SF graphs, the PEP-augmented pipelines systematically
outperform their original counterparts, leading to substantial reductions in SHD and SID, and marked
increases in F1. This finding is significant: it reveals that the performance ceiling of many modern
ordering-based methods is not limited by their ordering stage alone but is bottlenecked by their
reliance on marginal, additivity-constrained pruning. By evaluating edges in the context of their
co-parents, PEP provides a more powerful and general mechanism that unlocks the full potential of
these strong ordering algorithms.

Robustness Under Misspecification. To probe the framework’s robustness, we subjected it to a
stress test across six scenarios where classical causal discovery assumptions are violated (Figure [).
The results reveal a decisive and consistent advantage for PEP. This superiority is most pronounced
in the Post-Nonlinear (PNL) setting, providing direct empirical validation for our central hypothesis:
PEP’s context-aware evaluation, which makes no additivity assumption, excels where marginal
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Figure 4: Misspecification stress test. Each polygon summarizes a scenario using three axes: SHD,
SID, and F1. SHD and SID are normalized to [0, 1] using bounds determined by the graph structure,
then inverted so that higher values indicate better structure and orientation recovery. The polygon
area serves as a composite score and the legend reports the area growth rate of PEP relative to CAM.

methods falter. More broadly, PEP’s consistent performance edge across all scenarios demonstrates
the practical benefit of its core design. By replacing specific statistical assumptions with a general,
evidence-based principle, the PEP framework is inherently more robust to the kinds of model
misspecification frequently encountered in real-world data.

Isolating the Advantage: Framework vs. Predictor. To disentangle the contribution of our
framework from that of its specific implementation, we compare four distinct pruning modules:
the baseline CAM-pruning, and the PEP framework instantiated with a dataset-trained Random
Forest (RF), an XGBoost (XGB), and a pre-trained TabPFN. The results in Figure[5|reveal a highly
informative pattern. Simply applying the PEP framework with a standard learner like Random Forest
does not guarantee an improvement over CAM, and in some cases underperforms. Using a more
powerful learner like XGBoost makes the PEP framework competitive with, and sometimes slightly
better than, CAM. However, the most significant and consistent performance gain occurs when the
framework is paired with TabPFN. This pattern illuminates the core role of the PEP framework.
While a powerful predictor like TabPFN can provide high-fidelity calibrated densities, it is PEP’s
context-aware decision rule that fully unlocks the potential of this evidence. The results therefore
demonstrate that merely replacing the statistical test with a powerful predictor is insufficient; the key
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Figure 5: Isolating the source of PEP’s advantage. Performance comparison between the baseline
CAM pruning and the PEP framework when instantiated with three different predictive components:
a Random Forest (RF), XGBoost (XGB), and the pre-trained TabPFN model.

Table 1: Performance on real-world benchmarks. CaPS
w/ PEP achieves state-of-the-art performance on the
Sachs and SynTReN datasets.

Table 2: Pruning performance with a non-
informative random order. Comparison of
PEP and CAM pruning when both are pro-
vided with a random topological order.

Dataset | Sachs | SynTReN
Metrics | SHD| SID | F11 | SHD| SID | F11
CAM 120400 550400 0442000 | 413499 1702452 0.2240.09 Dataset | Method | SHD | SID | F17
SCORE 0 145.0£0.0 000 | 386+£7.0 187.5+586  0.205=0.091 - — - — —
DAS 48.0£0.0 30480  1683+554  0.23=0.07 synER | CAMpruning | 26.00+£458  7240+£537  0.393+0.110
NoGAM 45.0+0.0 392470 18494599  0.20£0.08 PEP 2460+7.37 68.00+9.25 0.443+0.176
DIffAN 5034 7.6 HA£69 1967747  0.19+0.11 - Ry > e o
CaPS 11, 0 0 U 12.0 £ 0.0 372453 17894586  0.23%0.07 SynsE | CAMP‘E';“‘"E 112%%1(’7 1410 gggg i; 1155"[?5 8'5331%1117’)8

CaPSw/PEP  11.0+0.0 42.0+0.0 0.50+0.00 | 33.0+7.7 1643+266 0.24+0.03

advantage lies in the synergy between a component that generates high-quality evidence (TabPFN)
and a principled framework (PEP) that can effectively interpret and leverage it.

Performance on Real-World Benchmarks. To validate PEP’s practical utility, we integrated it
with CaPS, a state-of-the-art ordering backbone, and evaluated the pipeline on the widely-used Sachs
and SynTReN benchmarks. The results in Table[T]demonstrate the framework’s effectiveness. On
the well-established Sachs dataset, where existing methods are highly optimized, the CaPS-PEP
pipeline matches the state-of-the-art performance of the original CaPS. This result demonstrates that
our principled approach incurs no performance loss on standard benchmarks. Furthermore, on the
more complex SynTReN dataset, CaPS-PEP provides a clear improvement in structural accuracy
(SHD), showcasing its ability to provide a significant advantage where the pruning task is more
challenging. Together, these results confirm that PEP serves as a robust module that performs reliably
on established problems and yields demonstrable improvements in more complex, real-world settings.

Effective Pruning Without an Informative Order. To isolate the pruning stage, we repeat the
comparison under a random topological order so that every forward edge candidate must be vetted
without informative ordering cues. PEP remains superior to CAM pruning on both ER and SF
(Table[2), confirming that its improvements are not merely inherited from a strong orderer but stem
from the local evidence-vs.-complexity decision rule.

Sensitivity to the Pruning Gate. We analyze PEP’s sensitivity to the decision gate, demonstrating
its robustness to the precise threshold value. Figure [f]reveals two key properties. First, our evidence
score ¢ is a strong ranker of true versus false edges (Right, high ROC/PR AUCsS). Second, graph-level
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Figure 6: Sensitivity to the pruning gate. (Left) Performance metrics (SHD, SID, F1) plotted against a
sweep of the decision threshold value. (Right) Receiver Operating Characteristic (ROC) and Precision-
Recall (PR) curves for the evidence score 4.
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Figure 7: Robustness to functional form. Performance is evaluated as a function of the proportion of
linear relationships in the data-generating process. This proportion is varied from 0.0 (fully non-linear)
to 1.0 (fully linear).

metrics exhibit a wide, flat plateau, indicating that near-optimal performance persists across a broad
range of thresholds, not just a single tuned point (Left). Crucially, the MDL-computed gates for both
synthetic datasets (marked by %) lie well within this high-performance plateau. This validates our
core design: the combination of a well-calibrated evidence statistic and a principled, adaptive gate
yields stable, near-optimal performance without manual threshold tuning. The differing positions of
the gates for each dataset further underscore the framework’s desirable adaptivity.

Robustness to Functional Form. We validate our framework’s robustness to functional form by
varying the data’s linearity from fully non-linear to fully linear (Figure[7). The results confirm our
central hypothesis: PEP’s context-aware approach delivers its greatest advantage in challenging non-
linear and mixed-linearity regimes where additivity-based methods falter. Critically, it remains highly
competitive in the predominantly linear settings where those same methods are theoretically strongest.
This demonstrates that PEP is a general-purpose framework that excels in complex scenarios without
sacrificing performance in simpler ones.

5 CONCLUSION

This paper introduced Prequential Evidence Pruning (PEP), a principled framework that reframes the
pruning stage of ordering-based causal discovery. We replace marginal tests with a local cost-benefit
analysis, where an edge is kept only if its context-aware, prequential log-evidence gain exceeds a
computable MDL code-length penalty. Our theoretical analysis grounds this approach, showing the
evidence metric targets CMI and is stable in finite samples, while our experiments demonstrate that
this principled mechanism consistently improves the performance of diverse state-of-the-art ordering
pipelines. By reframing pruning as a transparent trade-off between prequential evidence and model
complexity, PEP offers a principled and modular building block for the field. The framework’s true
potential lies in its general design, opening promising avenues for future work, such as instantiating
it with a broader class of calibrated density estimators.
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REPRODUCIBILITY STATEMENT

We summarize steps taken to ensure reproducibility. Datasets and generation procedures are de-
scribed in Appendix the compared backbones and their implementations in Appendix
and evaluation metrics in Appendix [G.3] Training and evaluation details, including fold splits and
global hyperparameters, are provided in Appendix |G} and additional experiments are reported in
Appendix [H.3] We will release the full codebase and scripts for all experiments upon acceptance to
ensure end-to-end reproducibility. For the review phase, we submit an anonymized . zip archive
containing the code as supplementary material.
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A LLM USAGE

We used large language models only for fixing grammar and typos. All technical content, including
theorems, proofs, algorithms, experiments, and analyses, was authored and verified by the paper’s
authors.

B NOTATIONS

We summarize symbols used throughout the paper for quick reference. Full definitions are provided
in the main text.

Table B.1: Summary of key notations used in the paper.

Symbol Definition

Ens M Forward edge set under order 7, and its size M = |&,|.

X = (X1,...,X4),d,n, D Random vector, dimension (#nodes), sample size, and the dataset.

G*,G,G, True DAG, a (candidate) graph, pruned DAG (Alg. 1 output), and a topological order.
Pag(j), Cha(4) Parent set and child set of node j in graph G.

Pred-(j), P; Predecessors of j under order 7; P; = |Pred,(5)|.

S, S\ {i}=5"k Working parent set for j, the set after removing ¢, and k = |S’|.

S, m; Working parent set for node j during pruning; #candidates for j after screening.
(), 4,s(- | ) True conditional density and predictive conditional density for X; | Xg.

q}_sk) Out-of-fold predictor for fold & used in prequential scoring.

K, Iy, I}, #folds, index set of fold &, and its complement.

0i—j(q: S) Prequential log-evidence gain for edge ¢ — j in context .S (Eq. (1)).

rs Conditional log-loss regret of g; 5 relative to p(- | -).

Zs, (v,b), ¢ Per-sample log-diff, sub-exponential parameters, and an absolute constant (Thm. 2).
TMPL(S i), \, K MDL gate and its set-size / overhead constants (Eq. (3)).

L(-), M s Code length in nats; local model for node j with parent set S (Eq. (2)).

I(X;Y | Z) Conditional mutual information.

0% Margin constant used in finite-sample decision corollaries.

ds, Ad Parametric dimension for context S and its difference (used in App. E.5).

ABIC Difference in the Bayesian Information Criterion.

a(r), a Per-sample evaluation cost (as a function of parent-set size) and its average (App. G.1).

C PRELIMINARIES

C.1 CAUSAL ADDITIVE MODELS (CAM)

CAM (Biihlmann et al., [2014)) is a two—stage, ordering-based approach for learning DAGs under
an additive structural equation model (SEM). In this model, each variable is written as X; =
>k epals) fi.x(Xx) + €, with independent noise, and the learning problem is decomposed into (i)
estimating a topological order and (ii) pruning edges given that order. The key design choice in
CAM is to separate these tasks: the order is obtained by maximizing (restricted) likelihood under the
additive SEM, while sparsity is imposed only in the subsequent pruning step. This decoupling turns
structure learning into a tractable combination of permutation search and local variable selection.

Stage 1: Order search. CAM searches over permutations (optionally restricted by a coarse skeleton)
and picks the order that maximizes the additive-SEM likelihood; consistency of this maximum-
likelihood order estimator is established for both low- and high-dimensional regimes. Intuitively,
once the order is known, causal discovery reduces to a set of (potentially nonlinear) regressions of
each node on its predecessors.

Stage 2: Pruning / feature selection (“CAM pruning”). Given an estimated order, CAM fits for each
node X; a generalized additive model (GAM) of X; on its predecessors and then tests, for each
candidate parent X, the null hypothesis Hy : f;x(-) = 0. Edges failing to show a statistically
significant contribution (at a user-chosen level «) are removed. Conceptually, this pruning acts as a
marginal, additivity-constrained proxy for a conditional-independence (CI) test: under the additive
SEM, fj = 0 corresponds to “no effect of X}, on X; given the other covariates” in the GAM
regression sense. Because hypotheses are assessed one parent at a time within an additive model,

14
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CAM pruning cannot capture purely non-additive synergies (e.g., XOR-type interactions) and may
therefore miss edges whose influence manifests only through interactions.

In summary, CAM provides a strong and widely used baseline: an efficient order-search via (restricted)
likelihood, followed by GAM-based significance testing that serves as an additivity-constrained CI
surrogate for pruning. This precisely delineates the comparison point for our work, where we retain
the ordering paradigm but replace marginal, hypothesis-test pruning with a joint, context-aware
evidence rule.

Relationship to Conditional Independence (CI) Testing. The pruning mechanism described in
§[3.3] often referred to as “CAM pruning,” can be understood as a specific and constrained form of
a Conditional Independence (CI) test. The null hypothesis tested for each parent, Hy : f; x(-) =0,
is conceptually equivalent to testing for the conditional independence X; Il X}, | Pred;(j) \ {k}.
However, this equivalence holds only under the strong assumption that the relationships are correctly
specified by the additive model. Because the test is performed on each parent individually within
this additive structure, it is considered a marginal, additivity-constrained proxy for a CI test. This
is a crucial distinction from general, non-parametric CI tests (like those based on CMI), as CAM
pruning will fail to detect non-additive interactions (e.g., synergies) where the marginal contribution
of a parent is zero.

C.2 SCORE-BASED LEAF IDENTIFICATION VIA THE SCORE FUNCTION

Let s(x) = V,logp(z) denote the score function. Under additive noise models with X; =
[i(Xpagjy) +¢jand gj L Xp,(;), the j-th component admits the decomposition

Ti — fi(ﬂfpa(z'))

sj(x) = - 2 .(xPa(i)) B} )
7; i€Ch(j) T i

z; — fj(Tpaj)) S ofi

so that the contribution from children vanishes at leaves. Two practical criteria follow from properties
of the score Jacobian:

* Variance-based (SCORE). In nonlinear settings, a node X is a leaf iff the variance of the
j-th diagonal of the score Jacobian is zero: Var[d,,s;(X)] = 0.

» Expectation-based (CaPS). A leaf can be identified without relying on variance by max-
imizing a diagonal of the expected Jacobian: j* = argmax; diag(E [Vs(X)]), under
identifiability conditions that hold for linear and nonlinear cases.

These criteria yield effective order-estimation subroutines which we later combine with our pruning
module.

C.3 PREQUENTIAL (CROSS-FITTED) SCORING

Given data {2(*)}7_, and a candidate parent set S C Pred () for node j, let gj,s be any predictive
conditional density for X; given Xg. A K-fold prequential (cross-fitted) evaluation proceeds as

follows: partition {1,...,n} into folds {1} |, fit a predictor on the complement ¢, and score only
the held-out fold,

K
oy 1 (—k)((5) | .(5)
gpreq(JaS) = ﬁZZlquj,S (xj |xS )
k=1 s€l}
Prequential scoring avoids in-sample optimism and ensures that, conditional on fitted predictors,

per-sample contributions are independent across s, enabling concentration bounds for edge-wise
evidence differences.

C.4 CONDITIONAL MUTUAL INFORMATION (CMI)

For random variables (X, Y, Z) with joint density p, the conditional mutual information (CMI) is
p(X|Y,2)

I(X;Y | 2) = E[log X1

| = #x12) - x| v.2)
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In our setting, the population target of the prequential log-evidence gain for edge ¢ — j in context .S
equals I(X;; X; | Xg\1:3) when g = p, which justifies interpreting the statistic as a context-aware
conditional-dependence measure.

C.5 MINIMUM DESCRIPTION LENGTH (MDL)

The Minimum Description Length (MDL) principle formalizes Occam’s razor: the best model is the
one that yields the shortest lossless description of the data. Using a two-part code,

L(D; M) = L(M) + L(D | M),

where L(-) denotes code length in nats. The coding theorem connects code length and probability: for
any prefix-free code matched to p, L(x) ~ — log p(z), so MDL trades off model complexity against
fit via (negative) log-likelihood.

A two-part code for local edge additions. In ordering-based pruning we consider local families
for X, with parent sets S’ =5\ {i} and S. Adding one parent incurs a transparent complexity cost
with two terms: (i) Identity cost log(P; — k) to name which of the remaining P; — k admissible
candidates (from Pred(j)) is added when |.S’| = k; (ii) Set-size cost Alog(k + 1) from a universal
code for integers (A € [0, 1]); plus a fixed overhead . Averaging per sample yields the computable
gate used in the main text:

1
TIPS, 0) = [bg(Pj — k) + Alog(k + 1) + 1.

In regular parametric regimes, adding a %Ad l(’% term to the gate recovers a local BIC-style
comparison; we provide a separate calibration and proof in the appendix devoted to theoretical results.

C.6 STRUCTURAL CAUSAL MODELS (SCMS)

A Structural Causal Model (SCM) over X consists of a DAG G* and structural assignments
XJ = fj(XPaG*(j)v 6j)7 jzlv"'7d7

with mutually independent exogenous noises ¢ = (e1, . .., sd)ﬂThe induced observational density
factorizes as

d
p(x) = []Hz;]2pac. ),
j=1

which is the global Markov property of the DAG. Interventions do(X g = xg) replace the assignments
{f;j : j € S} by constants and sever incoming edges into .S, enabling interventional semantics via
the truncated factorization. Ordering-based discovery exploits the existence of a (possibly estimated)
topological order 7 to constrain candidate parents for X to the set Pred.(j) = {i : 7(z) < 7(j)}
and reduces structure learning to pruning spurious edges among these forward links.

C.7 TABULAR FOUNDATION MODEL (TABPFN) AND PRIOR-DATA FITTED NETWORKS

Prior-Data Fitted Networks (PFNs) instantiate in-context learning for supervised tasks by training a
transformer to approximate the Bayesian posterior predictive over a prior of tasks. A PFN receives,
at inference, a full dataset context and emits predictive distributions for held-out points in a single
forward pass. TabPFN specializes this idea to tabular data: it is pre-trained on a very large corpus
of synthetic datasets sampled from SCM-driven generators spanning mixed data types and diverse
mechanisms. Practically, for any X; and parent set S it returns a calibrated conditional distribution
¢;,s(- | xs) from which we compute prequential log-likelihoods. For regression with discretized
outputs, we integrate the predictive mass over the bin containing the observed value; for categorical
data we use the emitted probabilities directly. This zero-shot, calibrated density estimation is what
makes TabPFN a convenient predictive component for our framework, eliminating per-dataset training
while supporting mixed types.

!Independence of the exogenous noises (causal sufficiency) may be relaxed to allow latent confounding, but
we keep the canonical acyclic, causally sufficient case for clarity.
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D ILLUSTRATIVE EXAMPLES: WHY CONTEXT-AWARE PRUNING MATTERS

This appendix provides, on concrete mathematical examples, the two claims made in the Introduction
and in §B3} (i) pruning must be context-aware to capture non-additive structure and to avoid confound-
ing, and (ii) PEP’s computed MDL gate replaces tuned thresholds with an auditable code-length
cost. Each example walks through the marginal calculation (what classical pruning would see) and
the PEP calculation (the prequential log-evidence gain 0), then states the decision under the MDL
rule § > 7™PL (Eq. —Eq.). These examples mirror the advantages emphasized in the paper’s
opening sections and experiments.

Notations. All logarithms are natural (nats). For p € (0,1), h(p) = —plogp — (1 — p) log(1 — p)
denotes the binary entropy. We write S C Pred () for the co-parents of X; (including ¢ when testing
i— j). At the oracle (¢ = p), E[0;;(p; S)] = I(X;; Xi | Xs\fiy) by Theorem bounded log-loss
regret perturbs this by at most rs + 7\ {7} (Proposition E[); prequential scoring yields concentration
(Theorem[2)).

D.1 Noisy XOR: A CANONICAL CASE OF DISCRETE SYNERGY

We begin with the classic XOR problem, a canonical example where two parents are only informative
when considered together. The data is generated by X3 = X; & X5 & N, where the parents

Xy, X, R Bernoulli(4) and N ~ Bernoulli(e) is a noise term.
A marginal analysis, which evaluates the link X; — X3 in isolation, would find the variables to be

independent, as the influence of the random co-parent X5 averages out any effect. This leads to a
marginal mutual information of exactly zero:

I(X3; X1) =0.

A single-parent test would therefore fail. In contrast, PEP’s context-aware approach conditions on
X, revealing a clear signal where the oracle evidence gain is strictly positive:

E[613(p; {1,2})] = I(X3; X1 | X2) =In2 — h(e) > 0.

This demonstrates that while the marginal signal is null, the conditional signal is strong, allowing our
proposed method to correctly identify the synergistic relationship.

D.2 MULTIPLICATIVE INTERACTION: A CASE OF CONTINUOUS SYNERGY

To show this principle extends beyond discrete cases, we consider a continuous synergy defined by

iid. . . .
X3 = X1 X5 + ¢, where parents X7, Xo = N(0,1) and noise € ~ N (0, 02). A marginal analysis
based on first-order statistics, such as linear regression or covariance, will fail. Because the variables
are zero-mean, the marginal covariance is zero:

COV(Xg, Xl) =0.

A test based on correlation would find no effect. The context-aware approach of PEP, however,
targets the CMI by evaluating the full conditional distributions. This is strictly positive and correctly
quantifies the information gain from the interaction:

E[01-0s(p; {1,2})] = I(X3: X1 | X») = %EXQ [1og(1 + ‘fff)} > 0.

This confirms that our method can identify purely interactive signals that are invisible to common
marginal tests, with an evidence gain that appropriately grows as the noise o2 decreases.

D.3 CONFOUNDING: A CASE OF AVOIDING SPURIOUS EDGES

Here we verify that context is crucial for avoiding false positives. Consider a common confounder
C ~ N(0,1) generating X; = aC +¢; and X; = bC' + ¢;, with no direct edge between them. A
marginal analysis will be fooled by the confounder, as the common cause C induces a non-zero
spurious correlation:

Cov(X;, X;) = abVar(C) # 0.
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This would lead a marginal method to incorrectly add a non-existent edge. The context-aware
approach of PEP avoids this by including the confounder C' in the context set. By d-separation, the
variables are conditionally independent, and the oracle evidence is exactly zero:

This verifies that when the confounder is observed, our mechanism correctly finds zero evidence and
prunes the spurious edge.

D.4 POST-NONLINEAR EFFECTS: A CASE OF ROBUSTNESS TO WARPING

We next consider a case where a simple relationship is obscured by a non-linear transformation:
X3 = g(X1 + X3 + €), where g is an invertible, non-linear function. A marginal analysis can be
easily fooled. A simple test focused on mean effects might fail because the function g distorts the
underlying additive structure. The context-aware approach of PEP is robust to this distortion due to a
key property of mutual information: its invariance to invertible transformations. The oracle target for
PEP therefore remains strongly positive:

I(Xg;Xl |X2) :I(g(X1+X2+5);X1 ‘Xg) :I(X1 + Xo+¢6; X4 ‘Xg) > 0.

This shows our metric correctly identifies dependencies even when they are obscured by complex
transformations.

D.5 SUPPRESSOR EFFECT: A CASE OF HANDLING COLLINEARITY

Finally, we examine the classic suppressor effect, which occurs with highly correlated parents (p & 1)
in the model X35 = 1 X7 + 52 X5 + €, where 81 &~ —f5. In a marginal analysis, the effects of the
two parents nearly cancel, leading to a marginal covariance close to zero:

COV(Xg,Xl) = ﬂl + ﬂQp =~ 0.

A marginal test would see a weak signal and might incorrectly prune a true parent. The context-aware
approach of PEP resolves this by assessing the contribution of X; given X5. The conditional signal
remains strong, as captured by the CMI:

> 0.

ﬁ%(l—/ﬂ))

(X3 X1 | X) = %log<1 + 2

This demonstrates that our method can identify the true importance of a parent even when its signal
is masked by other, highly correlated parents.

D.6 THE FINITE-SAMPLE DECISION GATE

The preceding examples analyzed the oracle CMI, which represents the ideal signal. This final example
connects this theory to the practical, finite-sample decision rule that PEP actually implements. A
traditional approach might have a strong evidence metric but still rely on a heuristic or tuned threshold.
In contrast, PEP provides an auditable acceptance condition. Our concentration guarantees (Thm. [2)
establish a probabilistic lower bound on the empirical evidence d;_,;(g; S) that we measure from data.
PEP’s final step is to keep an edge only if this conservatively estimated signal exceeds the computable
MDL penalty, 7MPL_ This transforms the pruning decision into a transparent and principled trade-off,
which can be intuitively summarized as:

I(X5Xi | Xoviy) — (26reg + ¥n(@)) > TMPE(S,4) .

Signal Uncertainty Complexity Cost

This provides a complete, theoretically grounded recipe for making a decision, moving beyond the
simple identification of a signal.

E ADDITIONAL RELATED WORK

Continuous Optimization & Bayesian Approaches. One major paradigm in causal discovery is
to cast the problem as a single, continuous optimization problem. This line of work was famously ini-
tiated by NOTEARS (Zheng et al.,|2018), which introduced a fully differentiable characterization of
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Table E.1: Comparison of local edge evaluation mechanisms across constraint-based tests, decompos-
able BIC scoring, and PEP. All code lengths are in nats.

Conditional Independence (CI) Tests

Decomposable BIC Scoring

Prequential Evidence Pruning (PEP)

Core approach

Decide edges by testing X; L X; | Xg
with a user-chosen significance level.

Select a graph by maximizing a global de-

composable score that trades off in-sample
fit and parametric complexity.

Prune edges under a given order by comparing a
local prequential evidence gain with a computed
code-length penalty.

Evidence score

Test statistic 7'(X;, X; | Xg) that esti-
mates or surrogates I(X;; X; | Xg).

Local in-sample log-likelihood difference
under decomposability, £(S) —£(S\ {i}).

Prequential log-evidence gain 6;,;(¢;S) =

L, 0”158
© () ()

(=G PRy
of-fold.

, with g; evaluated out-

Decision rule

Reject Hy if p-value < o (per-test or
FDR-controlled).

Acceptif £(S) — £(S\ {i}) > LAd"E"
(parametric penalty).

Accept if 6;;(q; ) > 7}MPU(S,i), where
T}Tm‘(& i) = %{log(Pj —k)+Alog(k+1)+£}.

Representative
properties

Nonparametric options available; requires
«; test-by-test decisions and multiple-
testing control.

Consistent under correct parametric fam-
ily; global, in-sample objective; decom-

posable local updates.

Prequential and context-aware; sample-size aware
penalty; no threshold tuning; model-class agnostic.

acyclicity, enabling standard gradient-based methods. This foundational idea was extended by subse-
quent works to handle non-linear relationships using neural networks, such as GraNDAG (Lachapelle
et al., [2020) and GOLEM (Ng et al.,[2020). Further advancements include DrBO (Duong et al.| 2025),
which employs sophisticated search strategies like Bayesian optimization, and CGP-CDE (Dhir et al.
2025)), which integrates flexible Gaussian Process models. From a more strictly Bayesian perspective,
where the goal is to infer a posterior distribution over graphs rather than a single point estimate,
methods like DiBS (Lorch et al.;,[2021)) and DECI (Geffner et al., 2024) have been proposed. While
powerful, these approaches typically involve complex, model-specific training procedures to learn
both the graph and functional parameters.

Prior-Data Fitted Networks for Causality. Prior-Data Fitted Networks (PFNs) (Miiller et al.,
2022) use large-scale, synthetic pre-training to approximate Bayesian predictive inference via
in-context learning. TabPFN (Hollmann et al.,[2025b) realizes this idea for tabular data and provides
calibrated, zero-shot predictive densities that are valuable when samples are scarce or mechanisms
are heterogeneous. Building on this paradigm, several works adapt PFNs to causal inference tasks.
These include models such as FairPFN (Robertson et al., [2025a)) for fairness-aware prediction,
Do-PFN (Robertson et al.,|2025b)) for estimating interventional outcomes without a known graph,
CausalPFN (Balazadeh et al., [2025)) for treatment-effect estimation with calibrated uncertainty, and
the comprehensive CausalFM (Ma et al.| |2025) framework, illustrating the promise of PFNs as
general-purpose causal tools. In contrast, we shift the focus to causal discovery. Rather than building
an end-to-end PEN for inference, our contribution is a new framework (PEP). It leverages the PFN as
a powerful predictive engine to compute a prequential evidence score, which is then assessed by a
principled MDL gate.

F PROOFS FOR THEORETICAL GUARANTEES

F.1 POPULATION IDENTITY: PROOF OF THEOREMI]

Proof. Let S’ = S\ {i}. Under ¢ = p,

E[6i;(p; )] = E[log p(X; | Xs) —logp(X; | Xs/)] ®)
=-H(X; | Xs) + H(X; | Xs) (6)
=I(X;; X; | Xgr), 7

where the second equality uses the definition of conditional entropy, and the last equality is the
standard identity for conditional mutual information. All expectations are finite by Assumption [I[ii).
O
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F.2 STABILITY: PROOF OF PROPOSITIONII]
Proof. Write S" = S\ {i}, ps(-) = p(X, | Xs), ¢s(-) = q;,5(X; | Xs), and similarly for S’. Then

E[6(¢; S)] — E[é(p; S)] = Ellog g5 — log gs/] — E[log ps — log ps’]
= E[log g5 — log ps] — E[log g5 — log ps’]

—rg —Trgr
= —rg+1rg’.
Hence |IE[5(q; S)] —E[é(p; S)H <rg+rg.lfrg,rg < e, thebiasis < 2e. O

F.3 CONCENTRATION: PROOF OF THEOREM [2]

Proof. Let Z, = logq;,s(X,” | X$) —logqjs (X | X§)), 8" = S\ {i}. Consider K-fold

prequential scoring and denote by (iﬁkg, qA§kS), the fitted predictors for fold k. Condition on the o-algebra

F generated by all fitted predictors {(é\;ks), f}ékg,)}le For s € Iy, Z, is a measurable function of

X () and (Z]ﬁks),(j;kg,) and by construction X (*) is independent of F; hence {Z, : s € [n]} are
independent given F.
Assume the sub-exponential Orlicz 11 norms are uniformly bounded almost surely: || Z, — E[Z |

Flllyy < crvand |Zs — E[Z | F]| < c2b a.s. for constants (v, b)E]Then conditional Bernstein’s
inequality gives, for any ¢ > 0,

Pr( %zn:Zs —E[Z, | ]:]’ 21&‘]—") < 2exp(—cnmin{522,2}) :
s=1

Taking expectations over F and using E[E[Z, | F]]| = E[Z,] yields the unconditional tail bound

with the same exponent. Since 6;,;(¢; S) = £ 3" Z,, the claim follows. O

Uniform-over-edges extension. Let &, = {(i,7) : i € Pred,(j)} be the forward edge set with
|€x| = M. If the sub-exponential parameters (v, b) hold uniformly for all (¢, j) € &, then by the
union bound
p 5isi (g3 Sis) — B8y (q: Sip)| > £) < 2M W
r (1g1)aé)§,r‘ ] (qy ij) ] (Q7 l])’ = = eXp| —¢ninin 127} )

where S;; denotes the current co-parent context used for (i — 7).

F.4 MDL PENALTY DERIVATION AND A FINITE-SAMPLE CONSISTENCY COROLLARY

Two-part code for one-parent augmentation. Let P; = |Pred,(j)| and k = |S \ {i}|. The
augmentation S’ =S\ {i} — S requires (i) identity of the added parent among the P; — k remaining
candidates, which can be encoded in log(P; — k) nats by an optimal prefix code (Kraft inequality),
and (ii) set size k + 1, encodable by a universal integer code with length Alog(k+1) (e.g., Rissanen’s
code up to a constant factor). A constant header « absorbs fixed per-edge overhead. Dividing by n

gives Eq. (3):

TMPL(S i) = —[log(P; — k) + Alog(k + 1) + .

1
n
This code is model-class free: it penalizes the combinatorics of adding a parent, rather than the
parametric complexity of ¢ (which is handled prequentially).

Corollary 3 (Finite-sample consistency under a margin). Fix node j and contexts {S;;} used to test
candidates i € Pred, (). Suppose there exists v > 0 such that

E[d;—;(q; Si;)] > T]MDL(SU, i)+~ forall true parents i € pa(j),

2A sufficient condition is that the conditional log-densities are uniformly bounded above, and a5,5, 95,5
are bounded away from 0 on the support of p; more generally, it suffices that the conditional MGF exists in a
neighborhood of 0.
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and
E[di—;(q; Sij)] < TJMDL(SU, i) —~ for all non-parents i ¢ pa(j).

If the sub-exponential condition of Theorem[Z]holds uniformly with (v, b), then

Proof. For any candidate 4, Theorem implies Pr(|6iﬁj — Eoij| > 7) <

2 exp(—cnmin{y?/v?,~/b}). If i € pa(j), then §;—; > 7™PL fails only if §;,; — E&;—,; < —7;
similarly for ¢ ¢ pa(j). Union bound over at most P; candidates yields the claim.

2
Pr (any decision error at node j) < 2P;exp (—cn min{ 7—2,
v

o2

i.e., false inclusions and false exclusions vanish exponentially in n.

O

Remark (parametric add-on). If ¢; s belongs to a parametric family with dg free parameters
trained by MLE on n samples (not our default prequential use), one could add a BIC-style term
L(ds —dg\fiy) 222 t0 E O - tric default onl li binatorics; traini

5 (ds —ds\(iy) =2 g- (3). Our non-parametric default only penalizes combinatorics; training

complexity is handled by prequential scoring and does not enter the code length.

F.5 BIC CALIBRATION UNDER REGULAR PARAMETRIC CONDITIONS

This subsection provides a classical calibration of PEP’s decision rule under regular parametric
assumptions. The result is intended for orientation only. It shows that the prequential evidence gain
reduces to the usual in-sample likelihood gain up to o, ((log n)/n) and that, after adding the familiar
%Ad 10;% term to the gate, the PEP rule recovers a local BIC comparison. The main guarantees of
PEP in the paper do not rely on these assumptions and follow instead from the CMI target, regret
stability, and prequential concentration.

Lemma 1 (Reduction to BIC under regular parametric conditions). Fix a node j and a context
S C Pred,(j) withi € S, and let 8" = S\ {i}. Suppose q; s and q; s are correctly specified,
regular parametric conditionals with respective dimensions dg and dg:. Assume i.i.d. data, K-
fold prequential (cross-fitted) scoring with fixed K, and standard regularity (MLE consistency
and asymptotic normality, positive-definite Fisher information, and uniform integrability of log-
likelihoods). Then

1

Sisj(@;8) = g(long(S) —1Ong(5’)) + Op(lo%), ®)
where log L;(-) denotes the in-sample maximized log-likelihood for X ; given the indicated parent
set. Define the augmented penalty

1 1
TMPLEBIC(S i) = MPL(S i) + < (ds — d) o, ©)

with TJMDL(S, i) as in Eq. -Eq. . Then the PEP decision
Simj(a:8) > 7 PHFPIO(S,) (10)
is asymptotically equivalent to the local BIC inequality

(long(S) - long(S’)> — 3(ds —dg/)logn > log(P;—k)+Alog(k+1)+k + op(1), (11)

ABIC(i—;S)

where k = |S’| and P; = | Pred,(j)|. In particular, if P; — k = 1 and A = k = 0, the rule reduces
asymptotically to ABIC(i— 7;S) > 0.

Proof. Let Mg and Mg denote the local families for S and S’, with parameters fg € R%s and

s € Res’. For a single observation (xg-s),xf;)), write (5(0s;s) = logpag (xg.s) | xgs)) and

ls(0s) = >0 s(0s;s), with MLE 0s = argmaxy, £s(0s), and analogously for S'.

Step 1 (prequential—in-sample alignment). Let {1}, }<_ be a fixed K-fold partition with |I;| = ny <
n/ K. Denote foldwise MLEs by éfg_k) (trained on the complement of /). Standard M-estimation
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stability yields égﬁk) — g = O,(n~1). A second-order Taylor expansion around 05, summed over
selyandk=1,... K, gives

K
A(— A 1 1 A
Preqq = g E ES(H(S k);s) = ES(QS)—i—Op(n_l/z), ﬁPreqS = EES(HS)—&—OP(n_?’m).
k=1 sl

An identical relation holds for S’.

Step 2 (gain identity). By definition of ¢ in Eq. (T)),

(Preqs — Preqs/) = (Eg(és) - Es/(és/)) + Op(n*?’/z),

1 1
disj(q;8) = o o

which equals Eq. (8) since n=3/2 = o (logn) /n).

Step 3 (equivalence with local BIC). Multiply [10|by n and substitute || After rearrangement one
obtains[I1] which establishes the claim. O

Scope. The calibration above relies on fixed-K cross-fitting stability of MLEs and a second-
order expansion; it does not invoke Laplace approximations for marginal likelihoods. It shows that
prequential (out-of-fold) gains recover the in-sample BIC regime under regular parametric families.
The default operation of PEP, however, remains model-class agnostic and applies beyond this regime,
with guarantees derived from its CMI target, regret stability, and concentration.

G IMPLEMENTATION DETAILS

All experiments were conducted on a single NVIDIA 3090 GPU, and all reported results are the
average over 10 independent runs using different random seeds for data generation. Within each run,
the dataset was partitioned into a training set (used as the context for TabPFN’s in-context learning)
and a test set, on which the evidence scores were evaluated, adhering to the prequential principle of
out-of-sample evaluation. Our approach is designed to be principled and avoid per-dataset tuning. For
the PEP framework, we fix the MDL constant A = 1 following universal coding principles and use a
single global offset x = 25 that is calibrated once for the entire study. The TabPFNv2 (Hollmann
et al., |2025a) model used is the publicly available, pre-trained checkpoint without any fine-tuning.
In contrast, for the XGBoost and Random Forest baselines, hyperparameters were selected for each
dataset via 5-fold cross-validation to ensure a strong comparison.

G.1 BENCHMARK DATASETS

To clarify our experimental setup, we designed two distinct settings based on the evaluation goal. For
the main performance comparison on the SynER and SynSF datasets, we set the functional forms to
be fully non-linear (linear proportion = 0.0). This was to ensure a fair comparison, as many score
estimator-based ordering methods (e.g., SCORE, DAS, NoGAM) rely on non-linear assumptions for
their identification strategies.

In contrast, for the misspecification scenario tests, the suite of tests already includes a dedicated
scenario for purely linear relationships (LiINGAM). Therefore, the baseline (vanilla) case for these
specific tests was set to a more general, mixed environment with a linear proportion of 0.5. This dual
setup allowed us to effectively validate our method’s performance under the most relevant conditions
for each experimental goal.

Synthetic Dataset Generation Details. All synthetic datasets used in our experiments were
generated following a two-step process. First, a ground truth Directed Acyclic Graph (DAG) was
generated using one of two standard models. Second, data was sampled from a Structural Equation
Model (SEM) defined by that DAG. The main results reported in our paper are based on a default
setting using synthetic data with d = 10 nodes, n = 2000 samples, and dense graphs with an
expected number of edges equal to 4d. To further validate our framework’s performance under
different conditions, this appendix presents additional experiments focusing on a more challenging
scenario with fewer samples (e.g., n = 1000). This allows us to assess the model’s effectiveness
when less data is available (See, Appendix [H.3]
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* Erdos-Rényi (ER) Graphs: The ER model (Erdos & Rényi,|1960) is a fundamental random
graph model that generates a homogeneous graph structure. For a given number of nodes d,
each of the (g) possible undirected edges is created with a fixed, uniform probability p. To
create a DAG, we first establish a random permutation of the nodes to define a topological
order, and then orient the selected edges to follow this order. The resulting graphs are
characterized by a degree distribution that approximates a Poisson distribution, meaning
most nodes have a similar number of connections. The expected number of edges in the
graph is controlled by the probability p.

* Scale-Free (SF) Graphs: The SF model (Bollobas et al., 2003)) generates graphs with
a heterogeneous structure, which are often considered more representative of real-world
networks. We use the Barabdsi-Albert model, which employs a preferential attachment
mechanism. The graph is grown iteratively, starting with a small number of nodes. At each
step, a new node is added and connected to a fixed number of existing nodes, where the
probability of connecting to an existing node is proportional to its current degree (number of
connections). This “rich-get-richer” process results in a graph characterized by a power-law
degree distribution, with a few highly-connected "hub’ nodes and many nodes with very few
connections. Similar to the ER model, the graph is then converted to a DAG by orienting
edges according to a random permutation.

Real-World Benchmark Details. To evaluate the performance of our framework in practical
scenarios, we utilized two well-established real-world benchmark datasets.

» Sachs: The Sachs dataset (Sachs et al.,[2005)) is a widely-used benchmark in causal discovery,
derived from a study of a protein-signaling network in human primary T cells. The dataset
consists of n = 853 samples, with measurements for d = 11 phosphorylated proteins
and phospholipids obtained via flow cytometry. The ground truth causal graph, which
is a consensus network established from expert biological knowledge and interventional
experiments (i.e., perturbing specific proteins and observing the effects on others), contains
20 edges. This dataset is a standard testbed for evaluating an algorithm’s ability to recover
known biological signaling pathways from observational data.

» SynTReN: The Syntren (Synthetic Transcriptional Regulatory Network) dataset (Van den
Bulcke et al., 2006) is a pseudo-real-world benchmark designed to mimic the complexities
of gene expression data. The underlying network structure is not random but is a sub-
network extracted from the well-documented transcriptional regulatory network of yeast
(Saccharomyces cerevisiae). The observational data, however, is generated synthetically
from this real biological structure using a detailed kinetic model that simulates the dynamics
of transcription and translation, including both stochastic noise and measurement error. For
our experiments, we use a version with d = 20 nodes (genes) and n = 500 samples. Syntren
is considered a particularly challenging benchmark as it combines a realistic, non-random
graph structure with a noisy, complex data generation process.

Misspecified Scenario Details. To rigorously evaluate the robustness of our framework, we gener-
ated synthetic datasets under six challenging misspecified scenarios. These scenarios are designed
to systematically violate the core assumptions upon which many causal discovery algorithms are
built, following the methodology of recent benchmarks (Montagna et al., 2023a). We followed the
setup of recent benchmarks (Montagna et al.l 2023a), with specific parameters set as follows: a
confounder probability of p = 0.2, a signal-to-noise ratio of v = 0.8 for measurement error, a 30%
probability of unfaithful distributions (Punfaithtal = 0.3), and an exponent of 3.0 for the post-nonlinear
transformation.

* Latent Confounders: This scenario violates the causal sufficiency assumption, which states
that there are no unobserved common causes. For a randomly selected subset of variable
pairs (X;, X;) that do not have an edge between them, we introduce a latent confounder C.
The data generating process for these variables is modified to X; = f;(pa(i) U {C}) + ¢;
and X; = f;(pa(j) U{C}) + ¢;. This induces a spurious correlation between X; and X,
testing an algorithm’s ability to avoid inferring a non-existent direct causal link.

* Measurement Error: This scenario violates the assumption that variables are measured
without error. We first generate the true data X according to the SEM. The observed data,
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X, is then generated by adding independent Gaussian noise to the true values:

X; = X; +1mn;, wheren; ~ N(O,U%).

The severity of the error is controlled by the signal-to-noise ratio. This scenario tests an
algorithm’s resilience to corrupted input data.

* Unfaithful Distributions: This scenario violates the faithfulness assumption, which states
that all conditional independencies in the data correspond to d-separations in the causal graph.
We create an unfaithful distribution by selecting a path of length two, X; — X; — X},
and adding a direct edge X; — X}j. The causal mechanism for X is then carefully
parameterized such that the causal effects along the two paths cancel each other out, resulting
in a marginal independence between X; and X} (X; 1L Xj). This tests an algorithm’s
ability to recover true edges even when their statistical signal is masked.

* Autoregressive Model (Non-i.i.d. Data): This scenario violates the assumption that data
samples are independent and identically distributed (i.i.d.). We introduce a temporal depen-
dency by generating data from an autoregressive model of order 1 (AR(1)). Each sample
x(%) is generated based on the previous sample (5~ 1):

208 = Ap=D) 4 ()

where A is the adjacency matrix of the causal graph. This tests an algorithm’s robustness to
temporal correlations in the data.

* Post-Nonlinear (PNL) Models: This scenario presents a severe violation of the additivity
assumption used by many methods. A PNL model introduces a final, non-linear distortion
g; applied to the entire causal mechanism for each variable X;:

Xj=gi | Y. Fis(Xe)+¢
kepa(j)

This creates complex, non-additive interactions between all parent variables, providing a
strong test of a model’s flexibility.

* Linear Non-Gaussian Acyclic Model (LINGAM): This scenario violates the assumption
of Gaussian noise, which is a key requirement for the identifiability of many score-based
methods. The data is generated from a purely linear SEM, but the independent noise terms
¢; are drawn from a non-Gaussian distribution (e.g., a uniform distribution). This tests an
algorithm’s dependence on the Gaussian noise assumption for identifying the correct causal
direction.

G.2 BASELINE SELECTION

In our experiments, we compared PEP against a comprehensive suite of state-of-the-art ordering-based
causal discovery algorithms. While DAS was evaluated alongside other methods, we excluded it from
the final reported results in the main paper for the sake of clarity and conciseness. The reason for this
is that the core ordering mechanism of DAS is identical to that of SCORE. Consequently, when a
deterministic pruning module like our proposed PEP is applied, the final performance metrics are
identical for both backbones. To avoid presenting redundant results in the main paper, we therefore
include only SCORE as the representative method for this particular family of score-based algorithms.
However, for the sake of completeness, we report the full results including DAS in this appendix.
The implementations for CAM, SCORE, DAS, and NoGAM were utilized from the dodiscover
packageﬂ For DiffAN and CaPS, we used the authors’ original implementationﬂ

e CAM: The Causal Additive Models (CAM) (Biihlmann et al., 2014) algorithm decouples
the discovery problem into two stages: estimating a topological order and performing feature
selection. To find the order, it employs a greedy search that aims to maximize a likelihood
score. For the second stage, it uses the well-known CAM pruning procedure. This method

*https://github.com/py-why/dodiscover
*nttps://github.com/vios—s/DiffAN, https://github.com/E2real/CaPSs
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fits a Generalized Additive Model (GAM) for each variable X; using its predecessors in
the order as covariates and tests the null hypothesis Hy : f;x(-) = 0 for each potential
parent Xj. Edges are pruned based on the statistical significance (p-value) of each parent’s
contribution.

* SCORE: The SCORE algorithm (Rolland et al., 2022)) recursively identifies the topological
order by finding leaf nodes. Under non-linear assumptions, a node X is identified as
a leaf if the variance of the diagonal of its score function’s Jacobian is zero. The score
function, s(z) = V, logp(z), is typically estimated via a Stein gradient estimator. The
formal criterion for identifying a leaf node is:

argmin Var [W] .
i Oz

For the pruning stage, SCORE defaults to using established methods like CAM pruning on
the fully-connected DAG derived from the estimated order.

* DAS: The Discovery At Scale (DAS) (Montagna et al) [2023b)) algorithm utilizes the
same variance-based criterion as SCORE to identify the topological order. Its primary
innovation lies in the pruning stage, where it uses the off-diagonal elements of the score
Jacobian to perform an initial, computationally efficient edge selection based on the criterion
El|0x,sj(z)|]] # 0 <= X} € pa(j). This step significantly reduces the number of
candidate edges for the final pruning stage, which still relies on CAM pruning to refine the
graph and reduce false positives.

* NoGAM: The NoGAM algorithm (Montagna et al.,[2023c) generalizes the score-based
ordering approach to accommodate arbitrary additive noise models. It identifies leaf nodes
by finding the node that minimizes the mean squared error of a score prediction derived
from estimated noise residuals, ;. The formal criterion is:

arguin & [(Bls;(XO)1R;] = 5;(X))°] -

The score function is approximated via score matching based on the Stein identity. Similar
to other score-based methods, it relies on a post-processing step like CAM pruning to obtain
the final sparse DAG.

* DiffAN: The DiffAN algorithm (Sanchez et al,[2023) shares the same variance-based leaf
identification criterion as SCORE for finding the topological order. Its core contribution is a
more scalable method for estimating the score function. Instead of using traditional score
matching, DiffAN employs probabilistic diffusion models to efficiently approximate the
score and its Jacobian. After the order is established, it applies a standard post-processing
pruning step, such as CAM pruning, to finalize the causal graph.

e CaPS: The Causal Discovery with Parent Score (CaPS) (Xu et al.,[2024) algorithm intro-
duces a new ordering criterion designed to be robust in mixed linear and non-linear settings.
It identifies leaf nodes based on the expectation of the score’s Jacobian, rather than its
variance. The formal criterion is:

j* = argmax (diag (E [82@)})) = x;~ is a leaf node.
j X

A key feature of CaPS is its “parent score,” which is used to perform an efficient pre-
pruning of weak edges and to supplement the graph with strong edges, thereby reducing the
computational burden and improving the accuracy of the final CAM pruning step.

G.3 EVALUATION METRICS

We evaluate the accuracy of the recovered graph structures using a suite of standard metrics. Let TP
(True Positives) be the number of correctly identified edges, FP (False Positives) be the number of
incorrectly identified edges, FN (False Negatives) be the number of missed true edges, and R be the
number of edges with a reversed direction.
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¢ Structural Hamming Distance (SHD): The SHD measures the overall structural dissimilar-
ity between the estimated graph and the ground truth graph. It is defined as the total number
of edge operations required to make the two graphs identical:

SHD = FP + FN 4 R.

A lower SHD indicates a more accurate structural recovery.

 Structural Intervention Distance (SID): The SID is a more causally-informed metric that
quantifies the number of downstream errors in interventional reasoning that would result
from using the estimated graph. It identifies pairs of variables (¢, j) for which the set of
causal paths from ¢ to j is incorrectly estimated. A lower SID indicates that the estimated
graph is more faithful for predicting the effects of interventions.

* Precision, Recall, and F1 Score: These metrics provide a balanced assessment of edge
discovery accuracy, treating the problem as a binary classification task for each potential

edge.
— Precision measures the fraction of predicted edges that are correct:
Precisi TP
recision = ————.
TP + FP

— Recall (or True Positive Rate) measures the fraction of true edges that were correctly
identified:
TP

Recall = ——.
TP + FN

— The F1 Score is the harmonic mean of Precision and Recall, providing a single,
balanced measure:

F1 Score — 2 - Precision - Recall

Precision + Recall

— A Note on Reversed Edges in Metrics: In our evaluation, we treat reversed edges (R)
as a distinct type of error. For metrics such as the False Discovery Rate (FDR) and
False Positive Rate (FPR) reported in our full results, we include these reversed edges
in the numerator alongside false positives (e.g., FPR = (R + FP)/(TN + FP)). We
adopt this stricter convention because a reversed edge, while correctly identifying an
adjacency, represents a fundamentally incorrect claim about the causal direction and
should be penalized as a type of false discovery.

H EXPERIMENTS

H.1 COMPUTATIONAL TIME ANALYSIS.

In this section, we analyze the computational runtime of our proposed PEP framework compared to
the traditional CAM pruning method. Let n be the sample size and, for each node j, let m; be the
number of candidate parents provided to the pruner. We analyze only the pruning stage, conditional
on a given order and candidate set.

CAM Pruning. CAM typically employs a backward elimination strategy. It begins by fitting a
Generalized Additive Model (GAM) on all m; candidate parents. A single fit, involving B backfitting
sweeps over m; smoothers with basis size s, has a cost of Coam(n, m;j, s, B) = ©(Bm;s*n). The
backward elimination process may refit the model up to m; times as parents are removed one by one.
This results in a total pruning cost for node j that is quadratic in the number of initial candidates:

Team(j) = ZCGAM(n77'757B) = @(BSQn Sodr) = @(Bs%zm?).

r=1

The total cost is the sum over all nodes, Tcam = > ; Team (9).
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Table H.1: Runtime comparison (in seconds) of CAM pruning and our proposed PEP framework
across various ordering-based methods on synthetic datasets with various configurations (d: number
of nodes, n: number of samples).

Dataset | Method | CAM SCORE DAS NoGAM DiffAN CaPS
o CAMpruning | 2553 808 842 2272 1071  7.58
d=10, n=1000 ‘ PEP ‘ 6363 4553 4581 6021 4611 4339
4210, 122000 ‘ CAM pruning ‘ 3053 1696 2008 5856 1679 1676

PEP 89.14 74.00 76.18  114.53 67.75  65.78

Prequential Evidence Pruning. PEP also performs greedy backward pruning, starting with m;
candidate parents. To decide which edge to remove at each step, it must evaluate the evidence gain
d;—; for all parents currently in the set. A full backward path requires a total of m; + (m; — 1) +
--- 4+ 1 = O(m3) evaluations of the J statistic.

Each evaluation of §;_, ; requires obtaining out-of-fold log-likelihoods for two parent sets over K
folds. Let C,;(n, ) be the cost of training and evaluating the predictive model ¢ on a parent set of
size r. For an amortized predictor (e.g., a pre-trained model like TabPFN), this cost is dominated
by evaluation, with a per-sample cost of a(r). The cost is thus Cy(n, ) ~ O(Kna(r)). The total
pruning cost for node j is the number of § evaluations multiplied by the average cost of each
evaluation:
Tepp(j) = @(m?) x O(Kna) = @(Knm?&),

where & is the average per-sample evaluation cost. For non-amortized predictors that are re-trained
from scratch for each evaluation, the cost would be significantly higher.

Summary. Conditional on a fixed order, the practical implementations of both CAM-pruning
and PEP exhibit pruning costs that are linear in the sample size n and quadratic in the number of
candidate parents m:

Team(y) = G(BSQnm?), Tepp(j) = @(Knm?d).

The constants reflect the core operations of each method: backfitting sweeps and basis size (B, s) for
CAM, versus fold count and per-sample evaluation cost (K, &) for PEP. PEP’s slightly larger constant
factor is the computational price for its robust, out-of-fold, context-aware evidence evaluation, which
enables its improved pruning accuracy. Table[H.T|reports wall-clock times, which remain in a practical
range for typical research use cases.

H.2 STATISTICAL SIGNIFICANCE TESTS

To rigorously validate the performance improvements observed in our main experiments, we con-
ducted statistical significance tests. We use the non-parametric Wilcoxon signed-rank test to compare
the paired results of our proposed method against each baseline over 10 random seeds, reporting the
p-value to assess statistical significance (p < 0.05).

To quantify the magnitude of these differences, we also compute Cohen’s d as a standardized measure
of effect size (ES). Following established conventions, we interpret the absolute value of the effect
size, |[ES|, as negligible (|[ES| < 0.2), small (0.2 < |ES| < 0.5), medium (0.5 < |ES| < 0.8), or
large (JES| > 0.8). A large effect size indicates a practically meaningful and substantial difference
in performance. Our tables report this absolute value to clearly convey the strength of the observed
effect.

Tables through [H.5]summarize these results across various synthetic data settings. The results
overwhelmingly confirm that our method provides not only a statistically significant but also a
practically substantial improvement over all baselines across most key metrics, as indicated by both
low p-values and large effect sizes.

We also acknowledge that this statistical significance is not uniformly present across every conceivable
setting. For instance, when pairing the PEP module with the DiffAN ordering backbone, the high
variance inherent to its diffusion-based score estimation can lead to less stable orderings, occasionally
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resulting in non-significant p-values. Similarly, in settings with a very high proportion of linear
relationships, the performance gap between PEP and specialized methods like SCORE or NoGAM
can narrow, which in a few runs may not be statistically significant. This aligns with our analysis that
PEP’s most profound advantage lies in the complex, mixed, and non-linear regimes, while it remains

highly competitive in simpler, purely linear settings.

Table H.2: Statistical significance tests of CaPS-PEP against baselines on the synthetic ER dataset
(d = 10,n = 2000, 4d edges).

Metric Method CAM Pruning CaPS w/PEP Effect Size p-value Improvement (%)
CAM 17.40 5.80 -2.68 < 0.002 66.67%
SCORE 17.60 5.80 -2.83 < 0.002 67.05%
SHD (}) DAS 19.80 5.80 -3.40 < 0.002 70.71%
NoGAM 17.70 5.80 -2.80 < 0.002 67.23%
DiffAN 18.40 5.80 -3.08 < 0.002 68.48%
CaPS 15.20 5.80 -2.31 < 0.002 61.84%
CAM 32.90 8.20 -2.76 < 0.002 75.08%
SCORE 31.70 8.20 -2.85 < 0.002 74.13%
SID (]) DAS 39.40 8.20 -4.56 < 0.002 79.19%
NoGAM 32.30 8.20 -2.89 < 0.002 74.61%
DiffAN 45.70 8.20 -3.13 < 0.002 82.06%
CaPS 28.70 8.20 -2.87 < 0.002 71.43%
CAM 0.670 0.909 3.06 < 0.002 35.65%
SCORE 0.667 0.909 3.24 < 0.002 36.31%
F1 Score (1) DAS 0.612 0.909 3.94 < 0.002 48.53%
NoGAM 0.664 0.909 3.17 < 0.002 36.92%
DiffAN 0.634 0.909 3.42 < 0.002 43.33%
CaPS 0.721 0.909 2.44 < 0.002 26.09%

Table H.3: Statistical significance tests of CaPS-PEP against baselines on the synthetic SF dataset
(d =10, n = 2000, 4d edges.

Metric Method CAM Pruning CaPS w/PEP Effect Size p-value Improvement (%)
CAM 8.10 1.40 2.27 < 0.002 82.72%
SCORE 7.80 1.40 1.84 < 0.002 82.05%
SHD (}) DAS 9.70 1.40 2.37 < 0.002 85.57%
NoGAM 7.50 1.40 1.87 < 0.002 81.33%
DiffAN 10.10 1.40 3.11 < 0.002 86.14%
CaPS 6.60 1.40 1.75 < 0.002 78.79%
CAM 24.80 3.10 2.23 < 0.002 87.50%
SCORE 18.30 3.10 1.77 < 0.002 83.06%
SID (]) DAS 24.30 3.10 2.60 < 0.002 87.24%
NoGAM 17.40 3.10 1.82 < 0.002 82.18%
DiffAN 38.80 3.10 3.49 < 0.002 92.01%
CaPS 16.40 3.10 1.52 < 0.002 81.10%
CAM 0.775 0.963 2.06 < 0.002 24.22%
SCORE 0.791 0.963 1.53 < 0.002 21.73%
F1 Score (1) DAS 0.737 0.963 2.03 < 0.002 30.75%
NoGAM 0.803 0.963 1.51 < 0.002 19.94%
DiffAN 0.692 0.963 2.72 < 0.002 39.27%
CaPS 0.829 0.963 1.47 < 0.002 16.25%
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Table H.4: Statistical significance tests of the performance improvement gained by applying the PEP
module to various ordering-based backbones on the synthetic ER dataset (d = 10,n = 2000, 4d
edges.

Metric Method CAM Pruning w/PEP Effect Size p-value Improvement (%)
CAM 17.40 7.50 2.42 < 0.002 56.90%
SCORE 17.60 5.60 3.20 < 0.002 68.18%
SHD ()) DAS 17.60 5.60 3.20 < 0.002 68.18%
NoGAM 17.70 5.00 3.32 < 0.002 71.75%
DiffAN 18.40 10.00 1.63 < 0.010 45.65%
CaPS 15.20 5.80 2.31 < 0.002 61.84%
CAM 32.90 14.60 1.99 < 0.004 55.62%
SCORE 31.70 4.90 3.89 < 0.002 84.54%
SID (]) DAS 31.70 4.90 3.89 < 0.002 84.54%
NoGAM 32.30 4.20 4.11 < 0.002 87.00%
DiffAN 45.70 35.40 0.75 0.232 22.54%
CaPS 28.70 8.20 2.87 < 0.002 71.43%
CAM 0.670 0.871 2.73 < 0.002 30.02%
SCORE 0.667 0.915 3.73 < 0.002 37.25%
F1 Score (1) DAS 0.667 0.915 3.73 < 0.002 37.25%
NoGAM 0.664 0.925 3.77 < 0.002 39.32%
DiffAN 0.634 0.797 1.50 < 0.02 25.66%
CaPS 0.721 0.909 2.44 < 0.002 26.09%

Table H.5: Statistical significance tests of the performance improvement gained by applying the PEP
module to various ordering-based backbones on the synthetic SF dataset (d = 10,n = 2000, 4d
edges.

Metric Method CAM Pruning w/PEP Effect Size p-value Improvement (%)
CAM 8.10 7.50 0.16 0.695 7.41%
SCORE 7.80 1.40 1.85 < 0.002 82.05%
SHD (|) DAS 7.80 1.40 1.85 < 0.002 82.05%
NoGAM 7.50 2.00 1.44 < 0.020 73.33%
DiffAN 10.10 6.60 0.93 0.160 34.65%
CaPS 6.60 1.40 1.75 < 0.002 78.79%
CAM 24.80 14.60 1.03 < 0.03 41.13%
SCORE 18.30 3.20 1.77 < 0.002 82.51%
SID (]) DAS 18.30 3.20 1.77 < 0.002 82.51%
NoGAM 17.40 5.00 1.49 < 0.05 71.26%
DiffAN 38.80 27.30 1.00 0.105 29.64%
CaPS 16.40 3.10 1.52 < 0.002 81.10%
CAM 0.775 0.871 1.01 < 0.002 12.38%
SCORE 0.791 0.963 1.52 < 0.002 21.69%
F1 Score (1) DAS 0.791 0.963 1.52 < 0.002 21.69%
NoGAM 0.803 0.948 1.23 < 0.05 18.04%
DiffAN 0.692 0.804 0.94 0.131 16.21%
CaPS 0.829 0.963 1.47 < 0.002 16.25%
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H.3 ADDITIONAL EXPERIMENTAL RESULTS

Ablation Studies. To further investigate the robustness and performance characteristics of our PEP
framework, we conduct two additional ablation studies by varying the data generation environment.
First, we assess the framework’s performance under data scarcity. Figure [H.T] Table[H.6] Table
replicates the main plug-in enhancement and framework-versus-predictor experiments, but with
the sample size reduced from n = 2000 to n = 1000. The results demonstrate that the consistent
performance gains from using PEP are robust even with more limited data. Second, we evaluate the
framework in a more general, mixed-linearity setting. While our main experiments used a fully non-
linear environment for fair comparison with score-based methods, Figure Table Table [H.9]
presents the same set of experiments on datasets generated with a linear proportion of 0.5. This
shows that PEP maintains its strong performance in environments that mix both linear and non-linear
relationships, highlighting its versatility.

Detailed Results. This section reports the detailed numerical results corresponding to the plots
presented in the main text. While the main paper illustrates the findings through figures, here we
provide the exact quantitative values (mean and standard deviation) for each experiment in tabular
form. As a reference, the detailed numerical results corresponding to Fig. and[3]in the main text

are reported in Table Table [H.TT] and Table [H.12}-Table
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Figure H.1: Performance comparison on synthetic datasets with a reduced sample size (n = 1000).
This figure replicates the main plug-in and framework-vs-predictor experiments, showing that PEP’s
advantages hold in data-scarce conditions.
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Table H.6: Benchmark results at n=1000 comparing CAM pruning vs PEP across six ordering
backbones. Cells report mean =+ std (two decimals). Bold marks the better mean per backbone within
each metric (lower is better for SHD/SID; higher is better otherwise).

Dataset  Metric Pruning CAM SCORE DAS NoGAM DiffAN CaPS
SHD| CAM pruning ~ 23.60 £ 1.34 18.00+£3.54  18.60+4.45 17.00 £3.08 18.60 £2.88 16.40 £1.95
PEP 17.20 + 6.26 9.20 +3.77 12.60 + 3.66 7.40 +3.21 15.60 + 3.65 9.80 + 3.03
SID) CAM pruning ~ 68.20+£9.42 4380+ 11.12 47.80+15.02 44.30+£10.71 61.10£10.55 38.40+9.59
PEP 56.00 £15.90 26.50 £11.88 33.70+12.25 24.60+10.87 57.20+16.69  22.20 +8.30
SynER  FIt CAM pruning ~ 0.52+0.07 0.73£0.08 0.70 £0.07 0.74 £+ 0.08 0.60 £ 0.09 0.78 £0.07
PEP 0.64 £+ 0.12 0.86 = 0.06 0.81 £ 0.07 0.86 + 0.06 0.70 £ 0.08 0.89 + 0.04
Precisiont CAM pruning ~ 0.66+0.12 0.90 £0.08 0.88+0.08 0.9140.08 0.76 £0.10 0.93+0.05
’ PEP 0.77 £ 0.10 0.95 + 0.05 0.92 £ 0.05 0.95 £ 0.05 0.82 +0.08 0.96 + 0.03
Recallt CAM pruning  0.47+0.10 0.64+£0.11 0.61+0.10 0.64+0.10 0.55+0.12 0.72+0.09
PEP 0.57 +0.14 0.82 +0.09 0.78 £ 0.09 0.83 £+ 0.09 0.62 +0.10 0.86 + 0.05
SHDJ CAM pruning  10.30 +£3.38 7.90£2.73 13.80+3.38 10.10+£2.08 11.70 +£2.08 6.70 £ 3.60
PEP 8.80 +2.52 5.40+2.72 10.30 +2.41 7.80 +2.20 9.10 +2.64 4.30 +2.94
SID) CAM pruning  51.70+12.81 46.60+11.88 64.60+£10.36 49.50+10.95 49.20+10.19 17.30+10.49
PEP 43.60 £12.43 36.90+11.64 53.30+13.56 42.20+11.76 48.90+1247 15.20+12.24
SynSF Fit CAM pruning  0.68 +0.08 0.76 £0.08 0.65+0.12 0.83+0.07 0.70 £ 0.06 0.84 £0.09
PEP 0.73 +0.08 0.82 +0.08 0.69 £ 0.09 0.88 + 0.06 0.72 £ 0.08 0.89 +0.08
Precisiont CAM pruning ~ 0.73+£0.07 0.81£0.08 0.70£0.12 0.90 £ 0.07 0.70 £0.07 0.86+0.11
PEP 0.76 £ 0.08 0.85 +0.08 0.72+0.10 0.92 + 0.06 0.71 £ 0.07 0.90 + 0.09
Recallt CAM pruning  0.65+0.10 0.73£0.11 0.62+0.12 0.78 +0.08 0.70 £0.08 0.82+0.11
PEP 0.71+0.09 0.80 +0.10 0.66 + 0.11 0.88 + 0.08 0.72 £ 0.09 0.88 + 0.09

Table H.7: Pruning comparison at n=1000 across six ordering backbones. Per metric, four pruning
variants are listed: CAM, PEP w/ RF, PEP w/ XGB, PEP w/ TabPFN. Cells report mean =+ std (two
decimals). Bold marks the best mean per backbone within each metric (lower is better for SHD/SID;
higher is better otherwise).

Dataset  Metric Pruning CAM SCORE DAS NoGAM DiffAN CaPS
CAM 23.60 £1.34 18.00 £3.54 18.60 £4.45 17.00 £3.08 18.60 +£2.88 1640+ 1.95
SHDY PEP w/ RF 34.60 +1.90 34.60 +1.90 34.90+1.85 3490+ 1.85 35.70 +2.06 34.90 +1.85
PEP w/ XGB 21.70 £6.17 18.80 £5.07 18.80 £5.07 17.50 £4.53 23.10 £5.66 19.20 +£4.60
PEP w/ TabPEN 15.50 + 6.36 8.50 +£3.78 8.50 +3.78 6.80 +3.28 14.10 + 3.66 9.30 £3.25
CAM 68.20 £9.42 4380+ 11.12  47.80+15.02  44.30+10.71 61.10+£10.55  38.40+9.59
SIDy PEP w/ RF 11150+ 11.60 107.90+11.06 108.20+10.93 108.70+11.16 116.00+12.04 105.20+9.73
PEP w/ XGB 54.10+£17.55  33.40+11.21 3340+ 11.21 27.70+£11.23  60.00+20.38  30.40+10.47
PEP w/ TabPFN  45.60 +17.58 19.40 +9.50 19.40 +9.50 14.70 +£9.24 49.70 +£16.85  23.30+8.41
CAM 0.5240.07 0.73 4+0.08 0.70 4 0.07 0.74 4+0.08 0.60 £ 0.09 0.78 +0.07
SynER  Flf PEP w/ RF 0.274+0.12 0.334+0.08 0.334+0.08 0.354+0.07 0.2340.10 0.394+0.08
PEP w/ XGB 0.61£0.11 0.74 £0.07 0.74 £0.07 0.77 £0.07 0.58+0.10 0.814+0.05
PEP w/ TabPFN 0.74+0.10 0.88 + 0.06 0.88 + 0.06 0.90 + 0.06 0.71+0.08 0.92 +0.03
CAM 0.66+0.12 0.90 4 0.08 0.8840.08 0.9140.08 0.76 +0.10 0.93 +0.05
Precisiont PEP w/ RF 0.25+0.10 0.26 +0.07 0.26 +0.07 0.274+0.07 0.224+0.08 0.30+0.06
PEP w/ XGB 0.65+0.11 0.80+0.07 0.80+0.07 0.83+0.07 0.70+0.09 0.87 +0.06
PEP w/ TabPFN 0.78 +0.10 0.92 £ 0.05 0.92 £ 0.05 0.93 £ 0.06 0.75+0.16 0.96 +0.03
CAM 0.4740.10 0.64 +£0.11 0.61+0.10 0.64 +0.10 0.55+0.12 0.724+0.09
Recallt PEP w/ RF 0.25+0.15 0.38+0.10 0.38+0.10 0.36+0.10 0.314+0.10 0.424+0.14
PEP w/ XGB 0.5440.12 0.66 4 0.08 0.66 4+ 0.08 0.65+0.09 0.5240.12 0.68 +0.09
PEP w/ TabPFN 0.78 +0.12 0.92 4 0.04 0.92 4 0.04 0.90 + 0.04 0.72+0.16 0.93 +0.03
CAM 10.30+3.38 7.90+2.73 13.80+3.38 10.10+2.08 11.70 £2.08 6.70 & 3.60
SHD| PEP w/ RF 9.60+2.31 9.60 +2.31 9.60 +2.31 9.50+2.32 10.80 £2.48 8.70+£2.22
PEP w/ XGB 8.40+3.36 7.60 £ 2.68 7.60 £ 2.68 7.20£2.45 9.50 £2.76 6.60 £2.74
PEP w/ TabPFN 6.60 +3.21 4.40 +2.63 4.40 +2.63 4.10 +2.29 8.30 +2.34 4.60 +2.77
CAM 51.70 £12.81 46.60+11.88  64.60+10.36  49.50+10.95  49.20+10.19  17.30£10.49
SID| PEP w/ RF 5820+13.69  55.10+1298  55.10£1298  5240+12.70  66.00+14.12  47.10+11.33

PEP w/ XGB 4520£11.56  4040+1032  40.40410.32 38.30+9.65 55.30+£12.68  36.50 £10.06
PEP w/ TabPFN  38.304+12.01  32.20+11.81  32.20+11.81 2950 +11.55  50.60+13.10  31.60 4 11.84

CAM 0.68 £0.08 0.76 £0.08 0.65£0.12 0.83 £0.07 0.70 £0.06 0.84 £0.09

SynSF  FIt PEP w/ RF 0.71£0.07 0.79 £0.07 0.79 £0.07 0.82£0.07 0.68 £0.08 0.86 £0.08
PEP w/ XGB 0.78 £0.08 0.86 4 0.06 0.86 4 0.06 0.8940.06 0.7440.09 0.9140.05

PEP w/ TabPFN 0.80 4 0.08 0.90 £ 0.05 0.90 £ 0.05 0.92 4 0.05 0.77 £ 0.09 0.94 4 0.05

CAM 0.73 £0.07 0.81£0.08 0.70 £0.12 0.90 £0.07 0.70 £0.07 0.86£0.11

Precision? PEP w/ RF 0.74 £0.08 0.82£0.08 0.82£0.08 0.86 £0.07 0.72£0.07 0.90 £0.09
PEP w/ XGB 0.79 £0.08 0.86 £0.06 0.86 £0.06 0.89 £0.06 0.76 £0.09 0.93£0.07

PEP w/ TabPFN 0.81 £ 0.08 0.89 £ 0.05 0.89 £ 0.05 0.92 £ 0.05 0.75 £0.10 0.96 = 0.03

CAM 0.65£0.10 0.73£0.11 0.62£0.12 0.78 £0.08 0.70 £0.08 0.82+£0.11

Recallf PEP w/ RF 0.66 £0.10 0.76 £0.10 0.76 £0.10 0.79 £0.10 0.66 £0.10 0.83+0.11
PEP w/ XGB 0.73 £0.11 0.82 £0.08 0.82 £0.08 0.86 £0.08 0.71 £0.09 0.89 £0.08

PEP w/ TabPFN 0.77 £0.10 0.87 £0.05 0.87 £0.05 0.91 £ 0.05 0.74 £ 0.10 0.97 £0.05
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Figure H.2: Performance comparison on synthetic datasets with a mixed environment (linear propor-
tion = (.5). This figure demonstrates PEP’s strong performance in a more general setting beyond the
fully non-linear environment used for the main comparisons.
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Table H.8: Benchmark results at linear proposition = 0.5 comparing CAM pruning vs PEP across
six ordering backbones. Cells report mean = std (two decimals). Bold marks the better mean per
backbone within each metric (lower is better for SHD/SID; higher is better otherwise).

Dataset  Metric Pruning CAM SCORE DAS NoGAM DiffAN CaPS
SHDJ CAM pruning  20.20 £4.66 1230+£3.34  1630+2.41 12.10 £4.07 15.70 £3.47 10.50 £2.55
PEP 14.20 +5.65 5.60 = 2.55 8.90 + 2.57 7.60 £ 2.63 13.80 +3.94 5.00 +1.49
SID) CAM pruning  58.10+13.76  33.50+10.54 41.50+9.72 35.00+£11.22 5330+£12.07 25.60+6.83
PEP 4720+£15.81 18.80+£6.59  26.80+9.09 26.70+9.40 49.80 £13.53 14.10 +4.36
SynER  FIt CAM pruning ~ 0.56+0.19 0.80£0.11 0.78£0.10 0.824+0.07 0.64 £0.12 0.81£0.05
PEP 0.69 +0.14 0.90 £ 0.07 0.86 £ 0.07 0.86 £ 0.07 0.71 £ 0.09 0.92 £ 0.02
Precisiont CAM pruning ~ 0.67+0.15 0.91+£0.08 0.90 £+ 0.08 0.93+0.07 0.77£0.11 0.94 £+ 0.04
’ PEP 0.77 £ 0.12 0.95 + 0.05 0.93 £ 0.05 0.95 £ 0.05 0.82 +0.09 0.97 £ 0.02
Recallt CAM pruning ~ 0.51+0.21 0.74£0.15 0.72+0.14 0.73+0.10 0.61+£0.13 0.71+0.08
PEP 0.63+0.18 0.86 +0.11 0.81+0.10 0.80 £ 0.10 0.67 +0.11 0.88 + 0.04
SHDJ CAM pruning ~ 9.80+2.82 5.80+£1.99 14.60+4.16  11.20+1.93 12.10+2.46 6.40 £ 3.69
PEP 8.00 £ 2.62 3.60 +2.11 10.40 +3.25 7.90 £ 2.09 9.00 +2.79 4.10+3.14
SID) CAM pruning  49.00+13.73 4290+ 14.08 62.30+£10.50 4550+12.46 4470+11.81 17.70+10.53
PEP 40.70 £12.01 33.20+13.16 51.60+14.12 40.00+12.56 46.40+12.76 15.30 +£12.37
SynSF Fit CAM pruning ~ 0.69 +£0.07 0.76 £0.08 0.63+0.11 0.84 £ 0.06 0.69 £0.05 0.84£0.10
PEP 0.74 £ 0.09 0.83 £0.09 0.68 +0.10 0.89 + 0.06 0.72 £+ 0.08 0.89 + 0.09
Precisiont CAM pruning ~ 0.74£0.07 0.82£0.08 0.67£0.10 0.91+0.08 0.69 £0.07 0.86+0.12
’ PEP 0.77 £+ 0.09 0.86 = 0.09 0.69 +0.11 0.92 + 0.06 0.72 £ 0.09 0.90 £ 0.09
Recallf CAM pruning ~ 0.65+0.08 0.72£0.10 0.61+£0.13 0.79 £+ 0.07 0.69 £ 0.06 0.82£0.10
PEP 0.72 4 0.09 0.80 +0.10 0.66 + 0.12 0.89 £ 0.08 0.72 £ 0.09 0.88 + 0.09

Table H.9: Pruning comparison at linear proposition = 0.5 across six ordering backbones. Per metric,
four pruning variants are listed: CAM, PEP w/ RF, PEP w/ XGB, PEP w/ TabPEN. Cells report
mean = std (two decimals). Bold marks the best mean per backbone within each metric (lower is
better for SHD/SID; higher is better otherwise).

Dataset  Metric Pruning CAM SCORE DAS NoGAM DiffAN CaPS
CAM 17.90 4+ 3.84 17.10£+3.81 19.80 +£3.79 17.30 £3.74 18.40+4.79 15.80 £4.26
SHDJ PEP w/ RF 24.10+£4.09  24.104+396  24.10+£4.17 24.10+£396  2580+4.83  23.90+3.93
PEP w/ XGB 15.90 +4.95 14.80 +3.94 14.80 +4.74 14.80 +3.94 18.80 +5.85 15.40 £4.77
PEP w/ TabPFN  7.50 = 3.92 5.60 +3.09 7.30 +4.37 5.00 +£3.56 10.00 + 6.27 5.80 +£4.42
CAM 3490+7.28  31.30+546  3940+6.08 3140£5.66 50.10+11.40 28.30+6.53
SID| PEP w/ RF 744041028  71.90+9.85 74.07+11.03 72.06+£10.37 77.90+13.69  69.70 4+ 8.85

PEP w/ XGB 29.80+£11.40 27.20£893 29.20£12.57 2630+£9.19 47.60+£13.72 24.00£7.29
PEP w/ TabPFN  14.60 +8.15 4.90+3.20 15.60 +9.71 7.80+559  3540+12.33 8.20 +7.54

CAM 0.67 +0.08 0.68 +0.08 0.61+0.08 0.66 £+ 0.08 0.60 £+ 0.09 0.714+0.08
SynER  FIt PEP w/ RF 0.394+0.07 0.39+0.07 0.394+0.07 0.39+£0.07 0.35+0.10 0.414+0.07
PEP w/ XGB 0.74+0.09 0.76 £ 0.08 0.73£0.10 0.76 £ 0.08 0.66 +0.10 0.78 +£0.07
PEP w/ TabPFN 0.90 £ 0.05 0.94 +0.04 0.90 +0.08 0.9340.04 0.83 +0.06 0.95+0.03
CAM 0.96 +0.04 1.00 £0.02 0.98 +0.02 0.99 £0.02 0.87+0.07 0.97+0.04
Precisiont PEP w/ RF 0.374+0.07 0.32+0.07 0.314+0.07 0.31£0.07 0.39+0.10 0.354+0.08
PEP w/ XGB 0.79+0.09 0.82£0.07 0.814+0.09 0.84 £0.07 0.72+0.10 0.8540.06
PEP w/ TabPFN 0.9540.03 0.97 +0.02 0.94 4 0.05 0.97 +0.02 0.91+0.05 0.98 4-0.02
CAM 0.504+0.08 0.52£0.08 0.454+0.09 0.51£0.08 0.50+0.11 0.5940.10
Recallt PEP w/ RF 0.514+0.09 0.58£0.10 0.56 +0.09 0.56 +0.09 0.43+0.13 0.534+0.11
PEP w/ XGB 0.70+0.12 0.72£0.13 0.64+0.14 0.70 £0.12 0.65+0.11 0.77+0.12
PEP w/ TabPFN 0.9240.09 0.97 +0.05 0.88 4 0.10 0.9540.05 0.88 +0.08 0.97 +0.05
CAM 8.10£3.81 7.80+4.61 9.70 - 4.64 7.50£4.28 10.10 £3.57 6.60 +3.84
SHDJ PEP w/ RF 7.70£3.31 7.70£3.18 7.710+3.39 7.70 £3.18 9.40 +4.06 7.60 £ 3.06
PEP w/ XGB 6.30+3.36 6.30 £2.99 6.30+3.38 6.30 £2.99 9.20+4.33 6.00 £3.06
PEP w/ TabPFN  3.10 £+ 3.03 1.40 = 1.63 2.80 +3.29 1.20£1.30 6.60 +3.98 1.40 £1.71
CAM 2480+£11.47 1830+£9.49 24.30+8.72 17.40£8.17 38.80£12.35 16.40£9.78
SIDJ PEP w/ RF 44804+ 13.18 4220+12.62 44504+13.33 4220+£12.62 56.80+1529 41.20+11.47
PEP w/ XGB 21.60 £8.25 19.30£7.42 20.80 £ 8.47 1940£7.85 3690£11.76 1590+£09.11
PEP w/ TabPFN  11.80 +12.88  3.20 +3.41 10.30+10.12  3.10£2.85 27.30 +-10.61 3.10£7.58
CAM 0.78+0.12 0.79 £0.15 0.74+0.15 0.80+0.14 0.69+0.13 0.83+0.12
SynSF  FIt PEP w/ RF 0.83£0.08 0.88£0.08 0.844+0.08 0.88 £0.08 0.77 £ 0.09 0.894+0.08
PEP w/ XGB 0.894+0.09 0.93£0.06 0.90 £+0.08 0.934+0.06 0.80+0.11 0.944+0.05
PEP w/ TabPFN  0.91 £ 0.09 0.96 + 0.05 0.91+0.08 0.96 & 0.05 0.80+0.11 0.96 £ 0.05
CAM 0.96 - 0.07 0.96 £ 0.05 0.96 +0.09 0.99+0.03 0.82+0.11 0.96 £ 0.06
Precisiont PEP w/ RF 0.95£0.06 0.94 £0.06 0.954+0.07 0.96 £ 0.05 0.81+0.11 0.95 £0.06
PEP w/ XGB 0.95+0.06 0.95£0.05 0.95+0.06 0.96 +0.05 0.82+0.10 0.96 +0.05
PEP w/ TabPFN  0.95 £ 0.06 0.96 £0.05 0.9540.06 0.97 £0.05 0.824+0.09 0.974+0.05
CAM 0.67+0.16 0.69 £0.19 0.62+0.18 0.70+0.19 0.61+0.16 0.754+0.18
Recall} PEP w/ RF 0.724+0.12 0.80+£0.10 0.744+0.12 0.80£0.10 0.714+0.11 0.83£0.11
PEP w/ XGB 0.76 +0.12 0.84 £0.08 0.79+0.11 0.84+0.08 0.73+0.09 0.894+0.08

PEP w/ TabPFN  0.92 £ 0.09 0.97 £+ 0.05 0.90 £ 0.09 0.97 +0.05 0.82 +0.09 0.97 +0.05
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Table H.10: Benchmark results comparing CAM pruning vs PEP across six ordering backbones.
Cells report mean =+ std (two decimals). Bold marks the better mean per backbone within each metric
(lower is better for SHD/SID; higher is better otherwise).

Dataset | Metric | Pruning ‘ CAM SCORE DAS NoGAM DiffAN CaPS
SHDJ CAM pruning 17.40 £4.25 17.60+3.92 19.80+£3.79 17.70+£4.08 18.40+3.75 15.20 £+ 3.68
PEP 7.50 +£3.92 5.60 £+ 3.57 5.60 +3.57 5.00 £+ 3.56 10.00 £ 6.27 5.80 £4.42
SIDJ CAM pruning | 32.90+10.14 31.70+8.88 39.40+£6.08 32.30+9.06 45.70+15.14 28.70+6.73
PEP 14.60 + 8.15 4.90 £+ 3.98 4.90 +3.98 420+3.36 3540+12.33 820+7.54
SynER | Fit CAM pruning 0.67 £0.08 0.67 +£0.07 0.61 +£0.08 0.66 £+ 0.08 0.634+0.09 0.72 £0.08
PEP 0.87 £0.07 0.92 £ 0.06 0.92 £+ 0.06 0.93 +0.06 0.80 +0.13 0.91 £+ 0.07
Precisiont CAM pruning 0.97 +0.04 1.00 + 0.01 0.98 £ 0.02 1.00 £ 0.01 0.87 +£0.13 0.97 £+ 0.04
PEP 0.88 £0.06 0.924+0.04 0.924+0.04 0.93 £0.04 0.794+0.11 0.93 £0.06
Recall CAM pruning 0.52+0.09 0.514+0.09 0.454+0.09 0.50£0.10 0.504+0.08 0.58£0.10
PEP 0.86 + 0.08 0.92 £ 0.09 0.92 +0.09 0.92 £+ 0.09 0.80 +0.15 0.90 +0.10
SHDJ CAM pruning 8.10£3.81 7.80+4.61 9.70 £ 4.64 7.50+4.28 10.10 +£3.57 6.60 +3.84
PEP 3.10 +3.03 1.40 +1.65 1.40 £1.65 2.00 +3.30 6.60 £ 3.98 1.40+1.71
SID} CAM pruning | 24.80+11.47 1830+9.49 2430+£8.72 1740+8.17 388041235 1640+9.78
PEP 11.80 £12.88  3.20£7.50 3.20+7.50 5.00+8.46 27.30+10.61 3.10+7.58
SynSF | FIt CAM pruning 0.78£0.12 0.79+0.15 0.74+0.15 0.80+0.14 0.69+0.13 0.83+0.12
PEP 0.91 +0.09 0.96 £ 0.05 0.96 £ 0.05 0.95 +0.09 0.80 +0.11 0.96 + 0.05
Precisiont CAM pruning 0.96 +0.07 0.96 £ 0.05 0.96 +0.09 0.99 +0.03 0.82+0.11 0.96 + 0.06
” PEP 0.90+0.10 0.96 +0.06 0.96 +0.06 0.94+0.10 0.79+0.14 0.95£0.06
Recallt CAM pruning 0.67+£0.16 0.69+0.19 0.62+0.18 0.70+0.19 0.61+£0.16 0.75+0.18
PEP 0.92 +0.09 0.97 + 0.06 0.97 £ 0.06 0.96 + 0.08 0.82 +0.09 0.97 +0.05

Table H.11: Pruning comparison across ordering backbones. Per metric, four pruning variants are
listed: CAM, PEP w/ RF, PEP w/ XGB, PEP w/ TabPFN. Cells report mean = std (two decimals).
Bold marks the better mean per backbone within each metric (lower is better for SHD/SID; higher is
better otherwise).

Dataset  Metric Pruning CAM SCORE DAS NoGAM DiffAN CaPS
CAM 17.90 + 3.84 17.10£3.81 19.80+3.79 17.30 £ 3.74 18.40 +4.79 15.80+4.26
SHD PEP w/ RF 24.10 £4.09 24.10£3.96 24.10+4.17 24.10£3.96 25.80+4.83 23.90+£3.93
PEP w/ XGB 15.90 +4.95 14.80 £3.94 14.80+4.74 14.80 +3.94 18.80 +5.85 15.40 +4.77
PEP w/ TabPFN 7.50 +3.92 5.60 +3.09 7.30 +4.37 5.00 +3.56 10.00 + 6.27 5.80 +4.42
CAM 34.90+7.28 31.30£5.46 39.40 £ 6.08 31.40£5.66 50.10£11.40 28.30£6.53
SID} PEP w/ RF 7440+£10.28 71.90+9.85 74.07+£11.03 72.06+10.37 77.90+£13.69 69.70 £ 8.85
PEP w/ XGB 2980+ 11.40 2720+£893 29.20+1257 2630£9.19 47.60+13.72 24.00+7.29
PEP w/ TabPFN  14.60 + 8.15 4.90 +3.20 15.60 +9.71 7.80+559  3540+12.33 8.20£7.54
CAM 0.67 +0.08 0.68 £ 0.08 0.6140.08 0.66 £ 0.08 0.60 £ 0.09 0.714+0.08
SynER  Fit PEP w/ RF 0.394+0.07 0.39+0.07 0.394+0.07 0.394+0.07 0.35+0.10 0.414+0.07
PEP w/ XGB 0.74 £0.09 0.76 £0.08 0.73£0.10 0.76 £ 0.08 0.66 +0.10 0.78 +0.07
PEP w/ TabPFN 0.90 +0.05 0.94 +0.04 0.90 +0.08 0.93+0.04 0.83 +0.06 0.95+0.03
CAM 0.96 4+ 0.04 1.00 £0.02 0.98 +0.02 0.99+£0.02 0.87 £0.07 0.97 £0.04
Precisiont PEP w/ RF 0.374+0.07 0.32+0.07 0.314+0.07 0.314+0.07 0.39+0.10 0.354+0.08
PEP w/ XGB 0.79 £0.09 0.82+£0.07 0.81 £0.09 0.84 £0.07 0.724+0.10 0.8540.06
PEP w/ TabPFN 0.95+0.03 0.97 £0.02 0.94 +0.05 0.97 +0.02 0.91+0.05 0.98 +0.02
CAM 0.504+0.08 0.52+0.08 0.454+0.09 0.51£0.08 0.50£0.11 0.59£0.10
Recallt PEP w/ RF 0.514+0.09 0.58 £0.10 0.56 +0.09 0.56 +0.09 0.43+0.13 0.534+0.11
PEP w/ XGB 0.70£0.12 0.72+£0.13 0.64 £0.14 0.70£0.12 0.65+0.11 0.77£0.12
PEP w/ TabPFN 0.924+0.09 0.97 £ 0.05 0.88 +0.10 0.95+0.05 0.88 +0.08 0.97 +0.05
CAM 8.10£3.81 7.80+4.61 9.70 £ 4.64 7.50£4.28 10.10+3.57 6.60 +3.84
SHD| PEP w/ RF 7.70£3.31 7.70£3.18 7.70£3.39 7.70£3.18 9.40 £4.06 7.60 £3.06
PEP w/ XGB 6.30+3.36 6.30£2.99 6.30+3.38 6.30 £2.99 9.20+4.33 6.00 £ 3.06
PEP w/ TabPFN 3.10+3.03 1.40 +1.63 2.80 +3.29 1.20 +£1.30 6.60 +3.98 140 +1.71
CAM 24801147 1830+9.49 24.30+8.72 1740+8.17 38.80+12.35 1640+9.78
SID| PEP w/ RF 4480+ 13.18 42.20+12.62 4450+13.33 4220+£12.62 56.80+1529 41.20+11.47
PEP w/ XGB 21.60 £8.25 19.30+7.42 20.80 +8.47 19.40+7.85 36.90+11.76 15.90+9.11
PEP w/ TabPFN  11.80 +12.88  3.20 +£ 341 10.30+10.12  3.10+2.85 27.30 +10.61 3.10+7.58
CAM 0.78 +£0.12 0.79£0.15 0.74+0.15 0.80+£0.14 0.69+0.13 0.834+0.12
SynSF  Fit PEP w/ RF 0.83+0.08 0.88 +0.08 0.84 +0.08 0.88+0.08 0.77 £0.09 0.894+0.08
PEP w/ XGB 0.894+0.09 0.93 +0.06 0.90 4+ 0.08 0.93 +0.06 0.80+0.11 0.9440.05
PEP w/ TabPFN 0.91+0.09 0.96 + 0.05 0.91+0.08 0.96 +0.05 0.80 +0.11 0.96 +0.05
CAM 0.96 +0.07 0.96 + 0.05 0.96 + 0.09 0.99 +0.03 0.82+0.11 0.96 +0.06
Precisiont PEP w/ RF 0.95+0.06 0.94 +0.06 0.95+0.07 0.96 +0.05 0.81+0.11 0.95+0.06
] PEP w/ XGB 0.95+0.06 0.95+0.05 0.95+0.06 0.96 £ 0.05 0.82+0.10 0.96 £0.05
PEP w/ TabPFN 0.95+0.06 0.96 £+ 0.05 0.95+0.06 0.97 +0.05 0.82+0.09 0.97 +0.05
CAM 0.67+0.16 0.69+0.19 0.62+0.18 0.70£0.19 0.61+0.16 0.754+0.18
Recallt PEP w/ RF 0.724+0.12 0.80£0.10 0.74+0.12 0.80+0.10 0.71+0.11 0.834+0.11
PEP w/ XGB 0.76 +£0.12 0.84 +0.08 0.79+0.11 0.84+£0.08 0.73+0.09 0.89£0.08

PEP w/ TabPFN 0.924+0.09 0.97 +0.05 0.90 +0.09 0.97 +0.05 0.82+0.09 0.97 +0.05
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Table H.12: Scenario comparison (SynER). Cells report mean =+ std (two decimals). Bold marks
the better mean per backbone within each metric (lower is better for SHD/SID; higher is better
otherwise).

Scenario Metric Pruning CAM SCORE DAS NoGAM DiffAN CaPS
SHDJ CAM pruning  17.90+3.84  17.1043.81 19.8043.79 17.304+3.74  18.404+4.79 15804426
PEP 14.40 + 3.65 6.40 = 2.95 9.60 = 3.44 7.40 +4.83 14.80 + 4.60 5.50 £2.51
SID) CAM pruning  3490+7.28  31.30+546  39.40+£6.08 31.40+£566 50.10+11.40 28.30+6.53
PEP 31.70 £10.56  13.70£7.88  22.00+9.33  13.40+8.53 46.60 +14.09  9.90 £7.18
Vanilla Fit CAM pruning ~ 0.67 £0.08 0.68 = 0.08 0.61 £ 0.08 0.66 £ 0.08 0.60 £ 0.09 0.71£0.08
PEP 0.76 = 0.06 0.90 = 0.04 0.84 +0.07 0.89 +0.05 0.71 +£0.07 0.92 £ 0.03
Precision? CAM pruning ~ 0.96 £0.04 1.00 £0.02 0.98 +0.02 0.99 £0.02 0.87 £0.07 0.97 £0.04
PEP 0.77 £0.05 0.95 +0.03 0.92 +0.05 0.95 +0.03 0.81 £ 0.06 0.97 £0.02
Recallt CAM pruning  0.50 £0.08 0.52+£0.08 0.45+0.09 0.51+£0.08 0.50 £0.11 0.59£0.10
PEP 0.70 = 0.08 0.87 = 0.06 0.80 +0.10 0.86 +0.07 0.66 = 0.07 0.88 £ 0.05
SHDJ CAM pruning  21.40+4.40  21.204+4.18  2330+4.11  2090+£4.10 22.40+5.28 19.50 +4.37
PEP 18.00 £ 3.77 8.60 =2.54 12.10 £2.85 9.70 + 3.46 18.10 + 4.87 7.00 £2.22
SID) CAM pruning  40.10+£10.28  3820+£8.68  47.00+8.07  38.60+9.55 56.00+12.85 35.40+8.50
PEP 39.40+11.57 18.50+6.66 29.90+9.35  20.50+7.40  49.50+8.90  15.20 & 6.32
PNL Fit CAM pruning ~ 0.61 £0.09 0.62 £0.09 0.55+0.09 0.62 £0.09 0.57 £0.12 0.64 £0.09
PEP 0.68 = 0.08 0.86 = 0.06 0.80 = 0.08 0.84 +£0.07 0.67 £ 0.08 0.89 £ 0.05
Precision’ CAM pruning ~ 0.94 £0.04 0.99 £0.02 0.97 £0.02 0.99 +0.02 0.84 £0.08 0.96 £0.04
PEP 0.76 = 0.06 0.94 +0.03 0.91 £ 0.05 0.94 +0.03 0.81 £ 0.06 0.97 £0.02
Recallt CAM pruning ~ 0.43 £0.08 0.45+0.08 0.38+£0.09 0.4540.08 0.43+0.11 0.51+0.09
PEP 0.66 = 0.08 0.84 +0.06 0.77 £0.10 0.81+£0.07 0.64 £ 0.07 0.87 £0.05
SHDJ CAM pruning  10.20 £+ 2.56 9.90+2.58 12.004+2.79 9.90 £2.37 12.0043.25 7.90 £3.26
PEP 8.60 = 2.32 3.80 2.18 6.00 = 2.38 3.90 +2.14 8.70 + 2.68 2.80 £1.54
SID) CAM pruning  2420+7.19  21.60+6.52  26.10£6.59  21.40+£6.33 33.10+1041 18.40+6.35
PEP 22.90 +7.69 9.10+4.21 16.40 £5.71 9.60 £4.42  30.30+10.57 7.80+4.50

LinGAM Fit CAM pruning 0.78 +0.08 0.8040.08 0.76 0.08 0.81£0.07 0.72+0.09 0.83+0.06

PEP 0.86 +0.06 0.93 +0.04 0.89 +£0.06 0.914+0.05 0.80 +0.06 0.94+0.03
Precisiont CAM pruning ~ 0.93£0.05 0.974+0.03 0.96 +0.04 0.98 +0.03 0.79 +£0.08 0.9540.04
PEP 0.84+0.06 0.95+0.04 0.92+0.05 0.94 1+ 0.04 0.79 +0.06 0.96 +0.03
Recall CAM pruning ~ 0.66£0.10 0.69+0.11 0.62+0.12 0.6940.11 0.64+0.12 0.74+0.10
PEP 0.88 4-0.06 0.96 - 0.04 0.90 +0.09 0.94 +0.04 0.83 +0.06 0.96 £ 0.04
SHDJ, CAM pruning ~ 25.20 +4.60 24.60 £4.59 26.60£4.52  24.50£4.31 25.80£5.64 22.80 £4.82
PEP 22.40+4.10 10.00 +2.63 14.10 +2.72 11.70 +3.01 22.10+5.13 9.10+2.35
SID} CAM pruning  49.50+ 1241 45204+11.03 55.80+9.78 4530+£10.31 65.10+14.66 41.20410.08
PEP 49.30+14.97 23.80+8.61 37301031 27.30+£9.11 58.40+11.49  22.50+8.53
Confounded  FIt CAM pruning ~ 0.56£0.09 0.57+£0.10 0.51+£0.10 0.584+0.10 0.524+0.12 0.62+0.10
PEP 0.62 4 0.08 0.83+0.06 0.77 +0.08 0.81+0.07 0.63 +0.08 0.86 - 0.05
Precisiont CAM pruning ~ 0.90£0.05 0.96+0.03 0.9440.04 0.97 £0.03 0.82+0.08 0.9440.04
PEP 0.72 4 0.06 0.93 +£0.04 0.90 £0.05 0.93 +0.04 0.79 +0.06 0.96+0.03
Recallt CAM pruning 0.4440.09 0.454+0.10 0.4040.10 0.47£0.10 0.46 +0.12 0.53+0.11
PEP 0.74+0.07 0.89 +0.06 0.83+£0.09 0.86 1 0.07 0.68 +0.07 0.88 +0.05
SHD|, CAM pruning ~ 20.00 £4.43 19.80 £4.24 22.70£4.33 19.50+£4.30  21.70+4.83 18.50£4.29
PEP 18.30 +4.10 8.40+2.31 12.50 +3.04 9.40 +3.40 18.70 + 4.81 7.40 +2.06
SIDy CAM pruning  52.50£12.19 49.504+10.66  60.20+£8.45 4990+£1228 63.89+£8.07 44.80+10.08
PEP 49.70+12.33 24.80+8.70  38.70+9.58  27.60+8.65 60.00 -19.43  48.30 +9.78
Measure-Err ~ F11 CAM pruning 0.5140.11 0.5240.10 0.4540.10 0.52£0.10 0.47£0.12 0.6040.12
PEP 0.574+0.10 0.79 +0.07 0.73 £0.09 0.76 +0.07 0.59+0.12 0.81+0.08
Precisiont CAM pruning  0.88£0.05 0.944+0.03 0.9240.04 0.95+0.03 0.78 £0.07 0.9240.04
PEP 0.66 +0.08 0.91+0.05 0.88 +0.06 0.90 £ 0.05 0.67 +0.12 0.89 +0.08
Recallf CAM pruning  0.39+0.10 0.4040.10 0.34+0.11 0.41£0.10 0.41£0.11 0.484+0.12
PEP 0.514+0.13 0.754+0.08 0.691+0.14 0.73 +0.08 0.55+0.20 0.73+0.14
SHDJ, CAM pruning ~ 9.70£2.33 9.4042.39 11.40 £2.62 9.30£2.33 11.20 £3.02 7.40£2.67
PEP 8.40 +2.50 3.60+2.13 5.80+2.13 3.80+2.14 8.20 +2.65 2.90 £ 1.46
SID| CAM pruning  24.70 £7.56 22.00£6.80  26.40+6.82 21.80£6.42 32404+10.56  18.10+6.17
PEP 23.60 +7.71 9.20+4.18 16.30 £5.38 9.60+4.53  29.80+10.84  8.10+4.64
Non-i.id Fit CAM pruning  0.78 £0.08 0.804+0.08 0.76 £0.07 0.8140.07 0.724+0.08 0.83+0.06
PEP 0.86 +0.07 0.93 +0.04 0.89 +£0.07 0.91£0.05 0.80 +0.06 0.94+0.03
Precision? CAM pruning ~ 0.93+£0.05 0.97+£0.03 0.96 £0.04 0.98+0.03 0.7940.07 0.95+0.04
PEP 0.84 4 0.06 0.95+0.04 0.9240.05 0.94 +0.04 0.79 +0.06 0.96 +0.03
Recallt CAM pruning 0.66+0.10 0.68+0.10 0.624+0.10 0.69 £0.10 0.64+0.11 0.734£0.10
PEP 0.88 +0.06 0.96 +0.04 0.90 £0.09 0.94 +0.04 0.83 +0.06 0.96 +0.04
SHD|, CAM pruning ~ 22.50 £3.57 22.10£3.44 24.50£3.71 2220£3.64  24.10+£4.37 20.60 £3.61
PEP 19.70 + 3.08 9.70 £2.45 13.10 £ 2.67 11.10 £3.12 19.30 £3.90 8.50 +2.14
SID| CAM pruning  66.00+£11.04 60.904+10.38  75204+9.63 59.80+£11.29 83.10+13.72 55.504+9.33
PEP 60.80 =12.44 29.40+9.20 44.60£9.67 33.601+:9.69 72.20+1247  27.60 £ 8.65
Unfaithful Fit CAM pruning ~ 0.48£0.07 0.5040.07 0.4340.07 0.50£0.07 0.46 +0.10 0.5740.09
PEP 0.5540.07 0.79 £ 0.06 0.72£0.09 0.77 +£0.07 0.57 +0.08 0.82+0.05
Precisiont CAM pruning 0.86 4 0.06 0.934+0.04 0.914+0.05 0.94 £0.04 0.77£0.07 0.924+0.05
PEP 0.68 +0.07 0.92+0.05 0.89 +0.06 0.91 4+ 0.05 0.76 +0.06 0.94+0.04
Recallt CAM pruning ~ 0.35+0.08 0.36 £0.08 0.30£0.09 0.3740.08 0.36+0.11 0.45+0.10
PEP 0.64 1 0.07 0.83+0.06 0.77 +£0.10 0.82 +0.07 0.62 +0.07 0.8540.06
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Table H.13: Scenario comparison (SynSF). Cells report mean = std (two decimals). Bold marks the
better mean per backbone within each metric (lower is better for SHD/SID; higher is better otherwise).

Scenario Metric Pruning CAM SCORE DAS NoGAM DiffAN CaPS
SHD|, CAM pruning  10.10 £3.90 5.60+2.59 7.50 £3.27 5.504+2.07 11.10+4.48 5.10+3.41
PEP 7.40 +1.52 3.60 +3.05 9.00 £3.54 2.60+2.41 9.40 +2.30 3.80 +2.94
SID} CAM pruning  41.40+£11.38 2120£7.19  2440+8.68 23.10+12.14 39.50+12.70 15.80+8.02
PEP 32.40+10.38  13.00+7.81 2640+9.76  1540+18.72 4520+13.22 15.60 +12.82
Vanilla Fit CAM pruning  0.69+£0.11 0.854+0.08 0.814+0.09 0.85+0.06 0.70£0.11 0.874+0.09
PEP 0.77 £ 0.04 0.91+0.07 0.77+£0.10 0.93 +0.08 0.71+0.06 0.90 +0.08
Precisiont CAM pruning ~ 0.74+£0.13 0.91+£0.10 0.92+0.08 0.914+0.09 0.70 +0.16 0.90+0.11
PEP 0.77 +0.05 0.914+0.09 0.894+0.10 0.93 +0.08 0.70 £ 0.07 0.92+0.08
Recallt CAM pruning ~ 0.65+0.10 0.80+0.07 0.72£0.10 0.8040.06 0.714+0.08 0.85+0.10
PEP 0.77 £ 0.04 0.91+0.06 0.67+£0.10 0.93 +0.08 0.73+0.05 0.88+0.10
SHDJ CAM pruning  18.00 +5.40 1470 £3.16 15.10£2.69 13.90+3.51 1433 +£4.27 13.20£3.26
PEP 13.00 +8.04 12.00 + 1.58 1200 £1.58  10.60+2.30  11.00 £+ 6.08 7.50 +2.07
SID| CAM pruning  58.40+£18.40 41.00£826  4250+£6.35 36.80+11.17 50.67+£16.03  38.70 £7.82
PEP 36.75+20.25 22.40+7.77  2240+7.77  19.00+12.41  26.00+7.00 27.75+8.01
PNL Fit CAM pruning  0.44+£0.18 0.59+0.09 0.56£0.10 0.61+0.11 0.58+0.12 0.64+0.08
PEP 0.67 +£0.21 0.73 +£0.05 0.73 £0.05 0.76 +0.06 0.73+0.12 0.80 +0.05
Precision? CAM pruning ~ 0.56 +0.23 0.77 £0.12 0.83+0.16 0.80+0.14 0.69 +0.15 0.75+0.11
PEP 0.62+0.25 0.64 +£0.04 0.64 £0.04 0.67 +0.06 0.66+0.14 0.79 +0.09
Recallt CAM pruning  0.37+£0.15 0.48+0.11 0.434+0.10 0.50£0.12 0.51+0.11 0.56+0.09
PEP 0.75+0.16 0.86 +0.06 0.86 +0.06 0.88+0.07 0.83+0.07 0.80 +0.05
SHD|, CAM pruning ~ 28.83+1.83 4.00 +3.23 6.50+2.88 4.10+2.51 19.00 +4.57 4204294
PEP 28.33+1.15 6.40+£4.56 6.40 £ 4.56 4.60 £2.30 18.60 +5.13 3.44+3.64
SID} CAM pruning  73.50+8.69  15204+14.05 19.60+10.99 1590+£1225 57.50+£6.41 14.70412.68
PEP 65.00+529 6.80+1043  6.80+10.43 520+540 40.80+11.63  8.00+9.11
LINGAM Fit CAM pruning  0.19+0.04 0.89 +0.09 0.84+£0.08 0.894+0.07 0.51+0.09 0.89+0.08
PEP 0.26 +0.05 0.86+£0.10 0.86 £0.10 0.89 1 0.06 0.58 +0.10 0.92+0.08
Precisiont CAM pruning ~ 0.17 £0.03 0.89+£0.10 0.90 £ 0.06 0.90 £ 0.08 0.46+0.10 0.90+0.10
) PEP 0.214+0.04 0.79+0.13 0.794+0.13 0.84 £0.08 0.49 +0.11 0.89+0.11
Recallt CAM pruning ~ 0.22+0.06 0.90+0.08 0.79+£0.10 0.8840.07 0.5940.08 0.89+0.07
PEP 0.32+0.06 0.95 +0.05 0.95+0.05 0.96 +0.03 0.72 +0.08 0.94+0.06
SHDJ CAM pruning ~ 17.20 +5.05 13.00+3.92 13.70 £3.47 13.80+3.26 18.70+5.23 15.00 +3.03
PEP 16.00 +4.74 11.60+3.36  11.60+3.36  11.40+3.65 15.20 £4.15 8.75+3.95
SID| CAM pruning 5200+ 11.55 32.604+1294 40.00£10.28 37.00+£12.44 51.60+10.71 34.331+6.86
PEP 46.60 +11.82 21.00+14.51 21.00 £14.51 27.60+19.55 47.60+13.22 26.25+14.52

Confounded ~ FIt SEA]iVl pruning  0.53£0.15 0.68+£0.12 0.65+0.10 0.6540.09 0.544+0.13 0.65+0.07

0.60 £ 0.12 0.75 4+ 0.09 0.754+0.09 0.72+0.11 0.60 +0.13 0.79 +0.10
CAM pruning 0.57+£0.18 0.71+£0.11 0.76 £0.13 0.69 £0.09 0.52+0.14 0.634+0.07

Precision?  ppp 0574010 0704009 0704009  0.69+£0.09 058010  0.8740.11
Recalf  CAMpruming 050014 066+015  058£012  063+£011 0574013 068008
PEP 0.63+£017  081+016  081+016  078+017  0.63+019  0.73+0.12
SHD| CAM pruning  19.20+1.75  1570+271 1650+ 1.84  1530+£258 18.14+279 1583+ 147
PEP 19.60£1.14  14.60+£251 14.60+251 14.00+3.54  19.00£2.16  16.00+0.82
Sy CAM pruning  66.60+ 1028  49.104 1033  49.40+7.53 47.90+1336 57.71+9.74  43.83+9.83
PEP 6100990  40.60£11.44 40.60+11.44 3620+15.66 57.25+13.80 4625+7.54
MeasuroEre  F11 CAMpruning  0.334£0.09  054+£0.10  051+£0.07  055+£0.09  045+0.08  0.55=0.01
PEP 034+£007  058+£0.09  058+£0.09  0.60+014 0424008  0.51+0.04
Precisionf CAMpruming 049014 078015 079+005 081005 0574004 068009
PEP 046£0.09  076+009  076+009  079+013  052+0.13  0.82+0.07
Recalt  CAMpruming  025£007 0424011 0394009 0423010 0382007 047004
PEP 027+£0.06  048+012  048+012  049+015 0354005  038+0.03
SHD| CAM pruning  15.20£4.66  14.80+£429  15.60+£3.57 15302430 17.60£576 1450 £4.50
PEP 13.60£6.07 1180497 1180497 1040467 1480432  11.83+232
SID, CAM pruning 5320+ 1834 54.60+21.80 56.70+19.00 5440+21.16 5650+£17.75 48.90 £ 20.79
PEP 3280 £14.11 34802112 34802112 34.80+24.16 46.00+11.77 4233+12.64
Non-iid Fit CAM pruning ~ 0.554+0.15  0.5640.14  054+£0.13  055+0.14  051£0.15  0.60%0.15
PEP 0.66+£017  071+£012  071+£012  073+£012  0.62+012  0.68+0.04
Precision] CAMpruming 0643020 066015 066+015 064016 054£018 064016
PEP 064018  0.68+014  0.68+£014  0.69+011 060011  0.770.09
Recalf  CAMpruming 049012 050£016  046+014 0494014 0484013 056+0.16
PEP 0.69+£017  074+013  074+013  0.78+015  0.66+015  0.61+0.05
SHD| CAMpruning  11.90+3.84 6504093 830177  610+£208  1275+£167  5.10%152
PEP 11.50+£191  580+1.64  580+1.64  580+£3.03 1125+171  3.78+186
SIDy CAM pruning 45704+ 1222 2475+831  2690+£936 254041259 46.62+12.16 17.20+5.20
PEP 30.00+£7.62  10204£9.20 10.20+9.20 14.60+£17.97 38.75+19.35 12.11+7.13
Unfaithfl  F1t CAMpruning  0.63£0.11  083+£0.03  079+£0.05  084+£0.07  064+£0.06  0.87+0.04
PEP 0.71£0.04 087004 087004 086009  0.69+008  0.91+0.04
Precisionf CAMpruming  0.67-0.13 087005 089:£0.07 0894010 0641005 090004
: PEP 0.65£0.05  081+005  081+005  080+0.10  0.62+0.06  0.91+0.05
Recalt  CAMpruming  061+010  080:£004 0714005 0794007  066+008 085005
PEP 077+£0.02 0954003  095+0.03  093+0.09 0774012  0.92+0.05
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