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Abstract

Pre-trained Transformer-based models were
reported to be robust in intent classification. In
this work, we first point out the importance of
in-domain out-of-scope detection in few-shot
intent recognition tasks and then illustrate the
vulnerability of pre-trained Transformer-based
models against samples that are in-domain but
out-of-scope (ID-OOS). We construct two new
datasets, and empirically show that pre-trained
models do not perform well on both ID-OOS
examples and general out-of-scope examples,
especially on fine-grained few-shot intent
detection tasks. To figure out how the models
mistakenly classify ID-OOS intents as in-scope
intents, we further conduct analysis on confi-
dence scores and the overlapping keywords, as
well as point out several prospective directions
for future work. Resources are available
at https://github.com/jianguoz/
Few-Shot-Intent-Detection.

1 Introduction

Intent detection, which aims to identify intents
from user utterances, is a vital task in goal-oriented
dialog systems (Xie et al., 2022). However, the per-
formance of intent detection has been hindered by
the data scarcity issue, as it is non-trivial to collect
sufficient examples for new intents. In practice, the
user requests could also be not expected or sup-
ported by the tested dialog system, referred to as
out-of-scope (OOS) intents. Thus, it is important to
improve OOS intents detection performance while
keeping the accuracy of detecting in-scope intents
in the few-shot learning scenario.

Recently, several approaches (Zheng et al., 2019;
Zhang et al., 2020; Wu et al., 2020; Cavalin et al.,
2020; Zhan et al., 2021; Xu et al., 2021) have been
proposed to improve the performance of identify-
ing in-scope and OOS intents in few-shot scenar-
ios. Previous experiments have shown that a sim-
ple confidence-based out-of-distribution detection
method (Hendrycks and Gimpel, 2017; Hendrycks

et al., 2020a) equipped with pre-trained BERT can
improve OOS detection accuracy. However, there
is a lack of further study of pre-trained Transform-
ers on few-shot fine-grained OOS detection where
the OOS intents are more relevant to the in-scope
intents. Besides, those studies mainly focus on the
CLINC dataset (Larson et al., 2019), in which the
OOS examples are designed such that they do not
belong to any of the known intent classes. Their
distribution is dissimilar to each other, and thus
they are easy to be distinguished from the known
intent classes. Moreover, CLINC is not enough
to study more challenging few-shot fine-grained
OOS detection as it lacks such semantically similar
OOS examples to in-scope intents, and other popu-
lar used datasets such as BANKING77 (Casanueva
et al., 2020) do not contain OOS examples.

In this paper, we aim to investigate the following
research question: “Are pre-trained Transformers
robust in intent classification w.r.t. general and rel-
evant OOS examples?”. We first define two types
of OOS intents: out-of-domain OOS (OOD-OOS)
and in-domain OOS (ID-OOS). We then investi-
gate how robustly state-of-the-art pre-trained Trans-
formers perform on these two OOS types. The
OOD-OOS is identical to the OOS in the CLINC
dataset, where the OOS and in-scope intents (e.g.,
requesting an online TV show service in a banking
system) are topically rarely overlapped. We con-
struct an ID-OOS set for a domain, by separating
semantically-related intents from the in-scope in-
tents (e.g., requesting a banking service that is not
supported by the banking system).

Empirically, we evaluate several pre-trained
Transformers (e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), and ELECTRA (Clark et al., 2020)) in the
few-shot learning scenario, as well as pre-trained
ToD-BERT (Wu et al., 2020) on task-oriented di-
alog system. The contributions of this paper are
two-fold. First, we constructed and released two
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new datasets for OOS intent detection based on the
single-domain CLINC dataset and the large fine-
grained BANKING77 dataset. Second, we reveal
several interesting findings through experimental
results and analysis: 1) the pre-trained models are
much less robust on ID-OOS than on the in-scope
and OOD-OOS examples; 2) both ID-OOS and
OOD-OOS detections are not well tackled and re-
quire further explorations on the scenario of fine-
grained few-shot intent detection; and 3) it is sur-
prising that pre-trained models can predict undesir-
ably confident scores even when masking keywords
shared among confusing intents.

2 Evaluation Protocol

Task definition We consider a few-shot intent de-
tection system that handles pre-defined K in-scope
intents. The task is, given a user utterance text u, to
classify u into one of the K classes or to recognize
u as OOS (i.e., OOS detection). To evaluate the sys-
tem, we adopt in-scope accuracy Ain = Cin/Nin,
and OOS recall Roos = Coos/Noos, following Lar-
son et al. (2019) and Zhang et al. (2020). We addi-
tionally report OOS precision, Poos = Coos/N

′
oos.

Cin and Coos are the number of correctly predicted
in-scope and out-of-scope examples, respectively;
Nin and Noos are the total number of the in-scope
and out-of-scope examples evaluated, respectively;
if an in-scope example is predicted as OOS, it is
counted as wrong. N ′

oos (≤ Nin + Noos) is the
number of examples predicted as OOS.

Inference We use a confidence-based
method (Hendrycks et al., 2020a) to evalu-
ate the five pre-trained Transformers. We compute
a hidden vector h = Encoder(u) ∈ R768 for u,
where Encoder ∈ {BERT, RoBERTa, ALBERT,
ELECTRA, ToD-BERT}, and compute a proba-
bility vector p(y|u) = softmax(Wh + b) ∈ RK ,
where W and b are the model parameters. We
first take the class c with the largest value of
p(y = c|u), then output c if p(y = c|u) > δ,
where δ ∈ [0.0, 1.0] is a threshold value, and
otherwise we output OOS. δ is tuned by using the
development set, so as to maximize (Ain + Roos)
averaged across different runs (Zhang et al., 2020).

Training To train the model, we use training ex-
amples of the in-scope intents, without using any
OOS examples. This is reasonable as it is nontriv-
ial to collect sufficient OOS data to model the large
space and distribution of the unpredictable OOS

intents (Zhang et al., 2020; Cavalin et al., 2020).

3 Dataset Construction

We describe the two types of OOS (i.e., OOD-OOS
and ID-OOS), using the CLINC dataset (Larson
et al., 2019) and the fine-grained BANKING77
dataset (Casanueva et al., 2020). The CLINC
dataset covers 15 intent classes for each of the 10
different domains, and it also includes OOS exam-
ples. We randomly select two domains, i.e., the
“Banking” and “Credit cards”, out of the ten do-
mains for models evaluation. The BANKING77
dataset is a large fine-grained single banking do-
main intent dataset with 77 intents, and it initially
does not include OOS examples. We use these
two datasets since CLINC dataset focuses on the
OOS detection task, and we can evaluate models
on the large single fine-grained banking domain on
BANKING77 dataset.

OOD-OOS We use the initially provided OOS
examples of CLINC dataset as OOD-OOS exam-
ples for both datasets. To justify our hypothesis that
the CLINC’s OOS examples can be considered as
out of domains, we take 100 OOS examples from
the development set, and check whether the ex-
amples are related to each domain. Consequently,
only 4 examples are relevant to “Banking”, while
none of them is related to “Credit cards”. There
are also no overlaps between the added OOS exam-
ples and the original BANKING77 dataset. These
findings show that most of the OOS examples are
not related to the targeted domains, and we cannot
effectively evaluate the model’s capability to detect
OOS intents within the same domain.

ID-OOS Detecting the OOD-OOS examples is
important in practice, but we focus more on how
the model behaves on ID-OOS examples. For the
ID-OOS detection evaluation, we separate 5 intents
from the 15 intents in each of the domains and
use them as the ID-OOS samples for the CLINC
dataset, following the previous work (Shu et al.,
2017). In contrast to the previous work that ran-
domly splits datasets, we intentionally design a
confusing setting for each domain. More specifi-
cally, we select 5 intents that are semantically sim-
ilar to some of the 10 remaining intents. As for
the BANKING77 dataset, we randomly separate
27 intents from the 77 intents and use them as the
ID-OOS samples, following the above process.

Table 1 and Table 2 show which intent labels



Domain IN-OOS In-scope
Banking balance, bill_due, min_payment, account_blocked, bill_balance, interest_rate, order_checks, pay_bill,

freeze_account, transfer pin_change, report_fraud, routing, spending_history, transactions
Credit report_lost_card, improve_credit_score, credit_score, credit_limit, new_card, card_declined, international_fees,
cards rewards_balance, application_status, apr, redeem_rewards, credit_limit change, damaged_card

replacement_card_duration expiration_date

Table 1: Data split of the ID-OOS and in-scope intents for the CLINC dataset.

ID-OOS

“pin_blocked”, “top_up_by_cash_or_cheque” “top_up_by_card_charge”, “verify_source_of_funds”,
“transfer_into_account”, “exchange_rate”, “card_delivery_estimate”, “card_not_working”,
“top_up_by_bank_transfer_charge”, “age_limit”, “terminate_account”, “get_physical_card”,
“passcode_forgotten”, “verify_my_identity”, “topping_up_by_card”, “unable_to_verify_identity”,
“getting_virtual_card”, “top_up_limits”, “get_disposable_virtual_card”, “receiving_money”,
“atm_support”, “compromised_card”, “lost_or_stolen_card”, “card_swallowed”, “card_acceptance”,
“virtual_card_not_working”, “contactless_not_working”

Table 2: Data split of the ID-OOS intents for the BANKING77 dataset. Where 27 intents are randomly selected as
ID-OOS intents and the rest are treated as in-scope intents. Here we show the 27 selected ID-OOS intents.

are treated as ID-OOS for the CLINC dataset and
BANKING77 dataset, respectively.

Data Statistics For each domain, the original
CLINC dataset has 100, 20, and 30 examples for
each in-scope intent, and 100, 100, and 1000 OOD-
OOS examples for the train, development, and
test sets, respectively. We reorganize the origi-
nal dataset to incorporate the ID-OOS intents and
construct new balanced datasets. For each in-scope
intent in the training set, we keep 50 examples as
a new training set, and move the rest 30 examples
and 20 examples to the development and test sets
through random sampling. For the examples of
each ID-OOS intent in the training set, we ran-
domly sample 60 examples, add them to the devel-
opment set, and add the rest of the 40 examples to
the test set. We move the unused OOD-OOS exam-
ples of the training set to the validation set and keep
the OOD-OOS test set unchanged. For the BANK-
ING77 dataset, we move the training/validation/test
examples of the selected 27 intents to the ID-OOS
training/validation/test examples, and we copy the
OOD-OOS examples of CLINC as the OOD-OOS
examples of BANKING77.

We name the two new datasets as CLINC-
Single-Domain-OOS and BANKING77-OOS, re-
spectively. Table 3 shows the dataset statistics.

4 Empirical Study

4.1 Experimental Setting

We implement all the models following public
code from Zhang et al. (2020), based on the
HuggingFace Transformers library (Wolf et al.,

CLINC-Single-Domain-OOS K Train Dev. Test
In-scope 10 500 500 500
ID-OOS - - 400 350
OOD-OOS - - 200 1000
BANKING77-OOS K Train Dev. Test
In-scope 50 5905 1506 2000
ID-OOS - - 530 1080
OOD-OOS - - 200 1000

Table 3: Statistics of CLINC-Single-Domain-OOS and
BANKING77-OOS dataset.

2019) for the easy reproduction of experiments.
For each component related to the five pre-
trained models, we use their base configura-
tions. We use the roberta-base configu-
ration for RoBERTa; bert-base-uncased
for BERT; albert-base-v2 for ALBERT;
electra-base-discriminator for ELEC-
TRA; tod-bert-jnt-v1 for ToDBERT. All
the model parameters are updated during the fine-
tuning process. We use the AdamW (Hendrycks
et al., 2020b) optimizer with a weight decay coef-
ficient of 0.01 for all the non-bias parameters. We
use a gradient clipping technique (Pascanu et al.,
2013) with a clipping value of 1.0, and also use
a linear warmup learning-rate scheduling with a
proportion of 0.1 w.r.t. to the maximum number of
training epochs.

For each model, we perform hyper-
parameters searches for learning rate values
∈ {1e− 4, 2e− 5, 5e− 5}, and the number of the
training epochs ∈ {8, 15, 25, 35}. We set the batch
size to 10 and 50 for CLINC- Single-Domain-OOS
and BANKING77-OOS, respectively. We take the
hyper-parameter sets for each experiment and train
the model ten times for each hyper-parameter set to



In-scope accuracy OOS recall OOS precision
5-shot Banking Credit cards BANKING77-OOS Banking Credit cards BANKING77-OOS Banking Credit cards BANKING77-OOS

ID-OOS

ALBERT 54.1 ± 6.9 55.5 ± 8.1 20.3 ± 2.4 86.3 ± 8.1 75.9 ± 11.2 89.5 ± 1.5 57.9 ± 3.3 55.8 ± 4.3 39.8 ± 0.7
BERT 75.2 ± 2.9 74.1 ± 4.6 25.4 ± 3.6 81.8 ± 10.5 76.5 ± 9.7 90.9 ± 0.6 70.8 ± 2.5 68.1 ± 3.2 41.3 ± 1.4
ELECTRA 64.8 ± 4.8 71.0 ± 7.3 30.9 ± 2.3 89.4 ± 4.3 75.8 ± 6.1 87.5 ± 2.4 65.1 ± 3.0 67.1 ± 4.8 43.0 ± 0.8
RoBERTa 83.8 ± 1.7 64.5 ± 5.6 43.0 ± 2.9 78.4 ± 6.2 86.8 ± 5.4 83.1 ± 4.3 78.6 ± 1.5 63.3 ± 3.4 46.3 ± 1.9
ToD-BERT 75.1 ± 2.3 67.4 ± 4.2 35.5 ± 1.5 75.8 ± 9.5 72.3 ± 3.4 82.7 ± 1.8 69.4 ± 3.6 61.3 ± 2.3 43.8 ± 0.1

OOD-OOS

ALBERT 63.1 ± 5.7 55.5 ± 8.1 20.3 ± 2.4 85.3 ± 5.4 92.5 ± 4.0 97.3 ± 2.5 83.4 ± 1.7 81.5 ± 3.1 39.9 ± 1.3
BERT 75.2 ± 2.9 74.1 ± 4.6 39.0 ± 3.1 93.4 ± 3.7 95.5 ± 2.7 94.1 ± 1.6 88.8 ± 1.4 88.4 ± 1.9 49.0 ± 1.8
ELECTRA 75.5 ± 4.0 71.0 ± 7.3 39.1 ± 2.7 87.3 ± 4.3 87.6 ± 4.2 93.1 ± 4.3 88.8 ± 2.1 87.0 ± 2.7 48.7 ± 1.1
RoBERTa 83.8 ± 1.7 81.2 ± 4.0 62.1 ± 2.9 97.0 ± 0.9 96.7 ± 1.4 93.9 ± 1.4 92.9 ± 0.6 91.4 ± 1.8 68.7 ± 2.2
ToD-BERT 83.0 ± 1.6 75.8 ± 5.0 52.9 ± 1.5 91.9 ± 1.0 96.7 ± 0.9 88.4 ± 1.7 92.8 ± 0.6 89.6 ± 2.1 66.0 ± 1.2

10-shot

ID-OOS

ALBERT 77.8 ± 2.7 66.7 ± 7.8 27.3 ± 3.4 77.6 ± 13.0 79.8 ± 6.4 87.6 ± 1.3 72.2 ± 2.9 64.0 ± 4.1 42.4 ± 1.3
BERT 77.5 ± 1.7 80.3 ± 3.7 52.5 ± 1.7 87.5 ± 9.2 74.5 ± 6.9 77.3 ± 3.2 73.8 ± 1.7 73.1 ± 3.3 50.8 ± 1.1
ELECTRA 79.5 ± 2.9 78.0 ± 2.5 40.1 ± 2.7 85.2 ± 9.1 86.5 ± 5.8 84.0 ± 1.7 75.4 ± 2.7 73.3 ± 2.9 46.1 ± 1.1
RoBERTa 76.6 ± 0.9 81.0 ± 5.5 59.7 ± 1.2 86.4 ± 6.3 83.9 ± 6.9 79.1 ± 1.7 72.7 ± 1.5 75.8 ± 5.2 55.8 ± 1.1
ToD-BERT 80.7 ± 2.5 80.6 ± 0.9 54.3 ± 1.8 79.5 ± 6.1 70.2 ± 5.9 76.9 ± 2.7 75.4 ± 1.4 71.9 ± 2.6 52.1 ± 1.2

OOD-OOS

ALBERT 77.8 ± 2.7 66.7 ± 7.8 30.5 ± 6.5 90.6 ± 4.0 95.0 ± 3.4 92.7 ± 6.3 89.8 ± 1.0 85.7 ± 2.7 47.1 ± 1.9
BERT 77.5 ± 1.7 90.1 ± 1.9 64.2 ± 0.5 96.8 ± 1.2 91.1 ± 4.4 91.4 ± 3.2 90.0 ± 0.7 95.5 ± 1.1 68.9 ± 1.0
ELECTRA 79.5 ± 2.9 88.6 ± 2.1 40.1 ± 2.7 94.8 ± 1.7 89.1 ± 2.2 97.6 ± 1.0 90.7 ± 1.2 94.2 ± 1.1 47.9 ± 1.4
RoBERTa 89.2 ± 1.3 87.5 ± 3.3 70.3 ± 0.3 95.6 ± 1.0 94.6 ± 2.4 94.0 ± 0.8 95.4 ± 0.5 94.0 ± 1.4 73.3 ± 1.5
ToD-BERT 86.5 ± 2.6 86.5 ± 0.6 60.6 ± 1.8 96.0 ± 0.5 96.4 ± 0.5 94.9 ± 0.9 94.2 ± 1.2 93.7 ± 0.3 63.3 ± 0.9

Table 4: Testing results on the “Banking” and “Credit cards” domains in CLINC-Single-Domain-OOS and
BANKING77-OOS datasets. Note that as the best δ is selected based on (Ain +Roos), the in-scope accuracy could
be different in the scenarios of OOD-OOS and ID-OOS (see Figure 2).

Figure 1: Model confidence on the development set of “Banking” domain in CLINC-Single-Domain-OOS dataset
under 5-shot setting. Darker colors indicate overlaps.

select the best threshold δ (introduced in Section 2)
on the development set. We then select the best
hyper-parameter set along with the corresponding
threshold. Finally, we apply the best model and
the threshold to the test set. Experiments were
conducted on single NVIDIA Tesla V100 GPU
with 32GB memory.

We mainly conduct the experiments in 5-shot,
e.g., five training examples per in-scope intent, and
10-shot; we also report partial results in the full-
shot scenario.

4.2 Overall Results

Table 4 shows the results of few-shot intent de-
tection on the test set for 5-shot and 10-shot set-
tings. In both settings, the in-scope accuracy of
ID-OOS examples tends to be lower than that of
OOD-OOS examples, and the gap becomes larger
for OOS recall and precision. It is interesting to
see that ToD-BERT, which is pre-trained on sev-
eral task-oriented dialog datasets, does not perform
well in our scenario. The results indicate that the
pre-trained models are much less robust on the ID-
OOS intent detection. Compared with the results

on the two single domains of the CLINC-Single-
Domain-OOS dataset, we can find that the perfor-
mances become much worse on the larger fine-
grained BANKING77-OOS dataset. Especially the
in-scope accuracy and OOS precision are pretty
low, even with more training examples. This find-
ing encourages more attention to be put on fine-
grained intent detection with OOS examples.

4.3 Analysis and Discussions

One key to the OOS detection is a clear separation
between in-scope and OOS examples in terms of
the model confidence score (Zhang et al., 2020).
Figure 1 illustrates the differences in confidence
score distributions. The confidence scores of ID-
OOS examples are close or mixed with the scores
of in-scope intents, and are higher than the OOD-
OOS examples, showing that separating ID-OOS
examples is much harder than separating OOD-
OOS examples.

Among comparisons of the pre-trained models,
ALBERT performs worst, and RoBERTa performs
better than other models in general since the con-
fidence score received by in-scope examples is



Figure 2: Results on the “Banking” domain in CLINC-Single-Domain-OOS dataset (Dev. set) under 5-shot setting.

Figure 3: Full-shot confusion matrices on the devel-
opment set with and without masking (“Banking”,
RoBERTa). Vertical axis: ID-OOS; horizontal axis:
in-scope (only predicted intents considered).

higher than that received by the OOS examples.
Figure 2 also shows similar results. We conjec-
ture that pre-trained models with more data, bet-
ter architecture and objectives, etc., are relatively
more robust to OOD-OOS and ID-OOS examples
than the others. Comparing the RoBERTa 5-shot
and full-shot confidence distributions, the ID-OOS
confidence scores are improved, indicating over-
confidence to separate semantically-related intents
(i.e., ID-OOS examples).

Next, we inspect what ID-OOS examples are
misclassified, and we take RoBERTa as an example
as it performs better than other models in general.
Figure 3 shows the confusion matrices of RoBERTa
w.r.t. the “Banking” domain in the CLINC-Single-
Domain-OOS dataset, under full-shot setting. We
can see that the model is extremely likely to con-
fuse ID-OOS intents with particular in-scope in-
tents. We expect this is from our ID-OOS design,
and the trend is consistent across evaluated models.

Now one question arises: what causes the
model’s mistakes? One presumable source is the
keyword overlap. We checked unigram overlap,
after removing stop words, for the intent pairs with
the three darkest colors in “Banking” based on

Intent pair bill_due & bill_balance
Unigram overlap bill (60), pay (9), need (9), know (8), due (7)

Masked ID-OOS example
i [mask] to [mask] what day i [mask] to [mask]
my water [mask] → bill_balance (confidence: 0.84)

Intent pair improve_credit_score & credit_score
Unigram overlap credit (99), score (76), tell (7), want (3), like (3)

Masked ID-OOS example
i’d [mask] to make my [mask] [mask] better
→ credit_limit_change (confidence: 0.86)

Table 5: Examples investigated for the unigram overlap
analysis. The overlap frequency is also presented.

Figure 3. We then masked top-5 overlapped uni-
grams from the corresponding intent examples in
the development set using the mask token in the
RoBERTa masked language model pretraining and
conducted the same evaluation.1 Figure 3 shows
that most of the confusing intent pairs are still mis-
classified even without the keyword overlap. Ta-
ble 5 shows two intent pairs with the overlapped
words and their masked ID-OOS examples. It is
surprising that the examples show counterintuitive
results. That is, even with the aggressive mask-
ing, the model still tends to assign high confidence
scores to some other in-scope intents. We also
adopted state-of-the-art methods with contrastive
learning on few-shot text classification (Liu et al.,
2021) and intent detection (Zhang et al., 2021).
However, we did not achieve promising improve-
ments on OOD-OOS and ID-OOS detection, and
we leave more explorations to future work.

5 Conclusion

We have investigated the robustness of pre-trained
Transformers in few-shot intent detection with
OOS samples. Our results on two new constructed
datasets show that pre-trained models are not ro-
bust on ID-OOS examples. Both the OOS detection
tasks are challenging in the scenario of fine-grained
intent detection. Our work encourages more atten-
tion to be put on the above findings.

1We did not mask the top-10 or top-15 overlapped uni-
grams, as many tokens are already masked in the user utter-
ance when setting the threshold to 5, as shown in Table 5.
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A More Results

Figure 4 shows the model confidence level on the
development set of the “Credit cards” domain in
the CLINC-Single-Domain-OOS dataset. We can
see that RoBERTa is relatively more robust with
limited data. Figure 5 shows the confusion matri-
ces of RoBERTa w.r.t. the “Credit cards” domain
in the CLINC-Single-Domain-OOS dataset. The
model is confused to identify ID-OOS intents. Fig-
ure 6 shows the tSNE visualizations for ID-OOS
intents w.r.t. the “Banking” domain in the CLINC-
Single-Domain-OOS dataset. The models struggle
to classify the ID-OOS intents even with more data.



Figure 4: Model confidence on the development set of the “Credit cards” domain in CLINC-Single-Domain-OOS
dataset under 5-shot setting. Darker colors indicate overlaps.

Figure 5: Full-shot confusion matrices on the development set with and without masking (“Credit cards”, RoBERTa).
Vertical axis: ID-OOS; horizontal axis: in-scope (only predicted intents considered).



Figure 6: RoBERTa (first row) and ELECTRA (second row) tSNE visualizations on the development set of the
“Banking” domain in CLINC-Single-Domain-OOS dataset.


