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1 BACKGROUND

Influenza remains one of the most significant respiratory diseases, with influenza A viruses posing
a substantial risk due to their rapid mutations, genetic reassortment, and ability to infect multiple
hosts. Their segmented genome facilitates reassortment, enabling genetic exchange between differ-
ent viral strains, which can lead to the emergence of novel variants with pandemic potential. This
increases the risk of zoonotic spillover and the emergence of highly transmissible and virulent strains
[Morse et al. (2012)]. The highly pathogenic avian influenza (H5N1) has already caused over 860
confirmed human infections and more than 450 deaths, with outbreaks in poultry leading to billions
of dollars in economic losses. Similarly, the 2009 H1N1 swine flu pandemic resulted in many fatal-
ities worldwide, highlighting the devastating consequences of cross-species transmission. Accurate
prediction of cross-species transmission is therefore critical for pandemic preparedness and outbreak
prevention.

1.1 CHALLENGE AND INNOVATION

Despite these risks, traditional phylogenetic-based reassortment detection methods lack predictive
power, while purely machine learning-based approaches often fail to incorporate biological con-
straints. Additionally, the limited availability of labeled genomic data constrains fully supervised
learning approaches. To address these challenges, we propose a semi-supervised learning framework
that integrates Transformers, Variational Autoencoders (VAEs), and Genetic Algorithms (GAs) to
enhance feature extraction and simulate novel reassortment events. Our hybrid framework incorpo-
rates Transformers for robust sequence feature extraction, VAEs for structured latent-space repre-
sentations, and GAs for biologically plausible reassortment simulations. Furthermore, considering
the seasonal nature of influenza and its dependence on environmental conditions, we integrate cli-
mate factors—including temperature, rainfall, and humidity—into our model to better understand
climate-driven mutations [He et al. (2023)].

1.2 METHODS

We begin by retrieving genomic sequences of influenza A viruses (IAVs) from online databases
such as GenBank, alongside epidemiological metadata that includes the host species they infect
[Ren et al. (2016)]. These sequences are categorized into positive samples (known to infect multiple
hosts, such as humans, birds, and pigs) and negative samples (restricted to a single host). In paral-
lel, we calculate critical climate parameters from ERA5 climate data using an in-house AI pipeline.
Additionally, we conduct routine environmental surveillance, collecting unlabeled influenza A virus
samples from locations such as poultry farms, wetlands, lakes, and wildlife sanctuaries. These en-
vironmental samples, along with their corresponding climate data, form the unlabeled dataset. The
objective is to predict whether any of these environmental virus samples have the potential to gain
cross-species transmissibility through genetic reassortment and climate-driven mutations.
To achieve this, we first perform bioinformatics analyses, extracting features such as GC content,
known single nucleotide polymorphisms (SNPs), and receptor-binding site mutations. Specifically,
we analyze the HA protein for mutations at Q226L (which shifts receptor preference from α 2,3
to α 2,6 sialic acids) and G228S (which enhances human receptor binding), as well as PB2 pro-
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tein mutations E627K and T271A (which enhance replication and polymerase activity in mammals)
[Yan et al. (2023)]. These analyses are performed for both the labeled and unlabeled sequences. In
addition, we leverage a Transformer-based model, DNABERT, to capture deeper sequence relation-
ships. DNABERT is fine-tuned on the labeled influenza dataset to learn influenza-specific sequence
contexts and patterns. After fine-tuning, the same DNABERT model is used to process unlabeled
sequences, generating embeddings that encode both global sequence motifs and nuanced influenza-
specific features indicative of reassortment potential. At this stage, we obtain three feature sets:
manually extracted bioinformatics features, climate factors, and high-level sequence embeddings
from DNABERT.
Next, we integrate these diverse features using a Variational Autoencoder (VAE). The VAE facil-
itates feature fusion, dimensionality reduction, and structured representation learning. Initially, it
is trained in an unsupervised manner using only labeled samples, compressing the concatenated
feature representations into a lower-dimensional latent space. The decoder then reconstructs the
original input, ensuring that critical biological information is retained. Subsequently, a classifica-
tion branch is added to the VAE, fine-tuning it using labeled data to distinguish between high-risk
and low-risk reassortment potentials. This structured latent space allows similar reassortment risks
to cluster together. Once trained, the VAE is used to map the unlabeled environmental samples into
this structured latent space, capturing essential biological and environmental characteristics relevant
to reassortment potential.
To explore reassortment dynamics, we employ a Genetic Algorithm (GA) to simulate novel reassor-
tant strains within the latent space learned by the VAE. The GA begins by initializing a population
of latent representations derived from unlabeled environmental samples. It then applies crossover
and mutation operations, introducing biologically plausible genetic exchanges while maintaining
constraints—such as ensuring that reassortment occurs only between sequences from different host
species. Additionally, mutations are introduced based on climate-driven patterns, aligning with ob-
served influences of environmental conditions on viral evolution. The GA operates within the latent
space, using a fitness function that evaluates reassortants based on biological feasibility (proxim-
ity to known transmissible sequences) and climate compatibility (mutations aligning with observed
environmental influences). The fittest reassortant candidates are then reconstructed back into fea-
ture vectors using the VAE decoder, followed by sequence reconstruction. Throughout this process,
the GA maintains a mapping between parent sequences and their reassortant progeny, enabling the
identification of high-risk parental populations.

1.3 RESULTS AND IMPACT

This methodology serves as an early warning system, aiding in pandemic preparedness, strengthen-
ing healthcare systems (HSS), and enabling data-driven decision-making. By incorporating climate
parameters, we track how the virus evolves across seasons and anticipate emerging threats. Through
this interdisciplinary approach, we provide actionable insights for pandemic prevention, helping
policymakers and health organizations mitigate the risks posed by influenza A virus.

MEANINGFULNESS STATEMENT

We leverage the RNA sequence of influenza virus in our study. This meaningful representation of
life contains crucial information on viral segmentation, reassortment potential, and structure. We
have used Transformers and VAEs to capture these relationships, and GAs, which mimic natural
evolution, mutation, and selection, to simulate reassortments in nature. Additionally, other modal-
ities like climate data also influence the nucleotide sequence, and our model aims to deduce this
relationship, enhancing our understanding of the virus cycle in nature.
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