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Abstract001

Large language models (LLMs) have revolu-002
tionized natural language processing and broad-003
ened their applicability across diverse commer-004
cial applications. However, the deployment of005
these models is constrained by high inference006
time in multilingual settings. To mitigate this007
challenge, this paper explores a training recipe008
of an assistant model in speculative decoding,009
which are leveraged to draft and-then its future010
tokens are verified by the target LLM. We show011
that language-specific draft models, optimized012
through a targeted pretrain-and-finetune strat-013
egy, substantially brings a speedup of inference014
time compared to the previous methods. We015
validate these models across various languages016
in inference time, out-of-domain speedup, and017
GPT-4o evaluation.018

1 Introduction019

Large language models (LLMs) such as Gem-020

ini (Team et al., 2023), GPT (Achiam et al., 2023),021

and Llama (Touvron et al., 2023a) have remarkable022

success across various natural language processing023

tasks. Their deployment in commercial settings024

has expanded to include applications such as cod-025

ing assistance, writing support, conversational in-026

terfaces, and tools for search (Reid et al., 2024).027

Despite their potential, the practical deployment028

of these models is often limited by prohibitively029

high inference time, particularly in multilingual030

contexts (Ahia et al., 2023). For example, character-031

level and byte-level models exhibit encoding length032

discrepancies exceeding fourfold for certain lan-033

guage pairs, resulting in significant disparities in034

cost and inference time available to different lan-035

guage communities (Petrov et al., 2024). These036

challenges present substantial huddles to scalable037

and cost-efficient applications of LLMs.038

Speculative decoding, utilizing assistant mod-039

els, has emerged as a promising strategy to im-040

prove LLM inference efficiency (Leviathan et al.,041
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Figure 1: Speedup ratio1relative to the standard au-
toregressive greedy decoding on various multilingual
datasets. Target model is Vicuna 7B v1.3 and the drafter
is Vicuna 68M. Speculative greedy sampling is imple-
mented with the drafter by Yang et al. (2024) (green)
and our specialized drafter (pretrain-and-finetune) (red).

2023; Chen et al., 2023; Xia et al., 2024), inspired 042

by speculative execution (Burton, 1985). This 043

method drafts potential future tokens by leverag- 044

ing a smaller model for the initial predictions. In 045

parallel, these tokens are verified by the target 046

LLM, ensuring only outputs aligned with the target 047

LLM’s predictions are accepted. Recent efforts are 048

focused on aligning these initial predictions with 049

the target LLM’s outputs (Liu et al., 2023; Zhou 050

et al., 2023). This involves advancing the training 051

methods and modifying the architectural design of 052

drafters (Miao et al., 2024; Li et al., 2024). 053

Although speculative decoding has garnered con- 054

siderable hype recently, the adaptation of this ap- 055

proach to multilingual scenarios common in real- 056

world applications remains largely unexplored. Pre- 057

vailing methods (Cai et al., 2024; Li et al., 2024; 058

Yang et al., 2024) use small drafters simply trained 059

on datasets such as ShareGPT (ShareGPT, 2023) 060

which is often used for instruction tuning of LLMs 061

to learn a pattern of target LLM’s language model- 062

ing. However, our investigations reveal that such 063

approach are insufficient for multilingual transla- 064

tion (Figure 1). This research also raises concerns 065

1Evaluated on a single RTX3090 GPU with a batch size 1.
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Figure 2: Speedup comparison of various speculative
decoding methods on WMT16 De-En dataset (Bojar
et al., 2016) with greedy settings (T = 0.0) across
various hardwares. Target model is Vicuna-7B.

regarding the capacity of such small drafters with066

simple tuning to comprehend the nuances of all067

target languages, thus questioning the feasibility of068

employing such models for universal speculative069

decoding. This paper aims to shed light upon the070

behaviors of drafters in speculative decoding within071

multilingual tasks and to explore their efficacy. Our072

contributions are as follows:073

• We demonstrate that the strategy of pretrain-074

and-finetune significantly improves the align-075

ment of drafter models, achieving the highest076

speedup ratio among the baselines (Figure 2).077

• We find that the speedup ratio increases as the078

number of tokens specific to the target task079

used in training increases. This speedup is080

logarithmically proportional to the scale of081

token count in drafter training.082

• In multilingual translation, we observe that083

input languages consistent with the training084

set result in notable speedup, whereas outputs085

aligned with the training domain do not nec-086

essarily lead to improved performance. Addi-087

tionally, our results are corroborated by GPT-088

4o judgment scores and qualitative analyses.089

2 Method090

2.1 Preliminaries: speculative decoding091

Speculative decoding employs a draft-verify-accept092

paradigm for fast inference. This method leverages093

a simpler assistant model (Mp) to predict easy to-094

kens, thereby addressing memory bandwidth con-095

straints in LLM inference (Shazeer, 2019):096

1. Draft: An assistant model Mp, which is less097

computationally intensive than the target LLM098

Mq, drafts the future tokens {xt1 , . . . , xtK}099

based on the input sequence x1, . . . , xt.100
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Figure 3: Speedup2comparison across categories con-
taining multi-turn conversation (MT-Bench) (Zheng
et al., 2024), math reasoning (GSM8K) (Cobbe et al.,
2021), and translation (WMT16 De-En). Target model
is Vicuna-7B with speculative greedy sampling.

2. Verify: The target LLM Mq assesses 101

each token xti regarding whether it is 102

aligned with its own predictions: pi = 103

Mp(xti |x1, . . . , xt, xt1 , . . . , xti−1), qi = 104

Mq(xti |x1, . . . , xt, xt1 , . . . , xti−1). 105

3. Accept: Tokens meeting the validation cri- 106

teria (e.g., rejection sampling) aligned with 107

Mq’s outputs are retained. Tokens failing ver- 108

ification are either discarded or corrected, and 109

the draft-verify cycle is repeated. 110

In this paper, the verification process employs 111

rejection sampling (Leviathan et al., 2023; Li et al., 112

2024) when the temperature parameter is above 113

zero to accept only tokens that closely match Mq’s 114

predictions. For greedy decoding with a tempera- 115

ture of zero, tokens are accepted if they are identi- 116

cal to Mq’s predictions. 117

2.2 Motivation 118

Our evaluation of various speculative models, in- 119

cluding SpS (Chen et al., 2023), Medusa (Cai et al., 120

2024), Eagle (Li et al., 2024), as shown in Fig- 121

ure 3, demonstrates that speedup ratios significantly 122

differ by task domain. While these models excel 123

in English tasks such as multi-turn conversations 124

and mathematical reasoning, where they achieve 125

notable speed improvements, they underperform 126

in translation tasks (red dotted box in Figure 3). 127

This result confirms that the effectiveness of these 128

models is not universal but may highly language- 129

specific. The consistent underperformance in trans- 130

lation tasks highlights a key weakness and drives 131

our study towards developing specialized drafters. 132

2Evaluated on a single RTX3090 GPU with a batch size 1.
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Figure 4: Speedup with speculative greedy sampling
on the WMT16 De-En dataset as the training token for
finetune (F) count varies, displayed on a logarithmic
x-axis. ‘P-F’ represents our strategy and ‘F’ involves
training solely on De-En without pretrain step (P).

2.3 Training specialized assistant models133

At the core of our approach is the recognition that134

smaller models, due to their inherent limited capac-135

ity, struggle to capture the diverse token distribu-136

tions across languages. To address this challenge,137

we present specialized drafter models tailored to138

each language. Our strategy consists of:139

1. Pretrain (P): Assistant models are pretrained140

on a part of C4 (Raffel et al., 2019) and141

ShareGPT dataset (ShareGPT, 2023) for lan-142

guage modeling.143

2. Finetune (F): The models are finetuned on the144

target lingual task with instructions to refine145

their responses to non-English inputs.146

While the practices of pretraining and finetuning147

are well-established paradigms in language model148

training, applying these steps to drafter models149

represents a novel adaptation within the field. Tra-150

ditionally, assistnat models have been trained from151

scratch with little strategic rationale or clear justifi-152

cation for dataset selection.153

Figure 4 shows that the pretrain-and-finetune154

strategy significantly boosts the speedup ratio as155

the number of training tokens increases. Our ‘P-F’156

approach outperforms models that are only fine-157

tuned (F), and even surpasses the speedup rates by158

Yang et al. (2024), which stood at 1.12.159

Dataset with self-distillation The training160

dataset for our assistant models is generated161

through self-distillation from the target LLM, en-162

suring alignment with its outputs (Kim and Rush,163

2016; Zhou et al., 2023; Cai et al., 2024). To cap-164

ture the full range of the target’s output variability,165

we generate multiple responses at a range of tem-166

peratures—{0.0, 0.3, 0.7, 1.0}.167
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Figure 5: Speedup with speculative greedy sampling on
various out-of-domain dataset as the drafters for ‘Ours
(P-F)’ and ‘F’ are trained on WMT16 De-En dataset.

3 Experiment 168

3.1 Experimental setup 169

Models We utilize Vicuna 7B (Chiang et al., 170

2023), Gemma-Instruct 7B (Team et al., 2024), 171

and Llama2-chat (Touvron et al., 2023b) as target 172

LLMs. The drafter models employed include Vi- 173

cuna 68M (Yang et al., 2024), a custom Gemma 174

250M drafter and Llama 68M (Miao et al., 2024). 175

Training configurations are outlined in Appendix F. 176

Number of drafts For speculative sampling 177

(SpS), we use a single draft candidate (Chen et al., 178

2023). In contrast, Medusa and Eagle models are 179

evaluated using multiple drafts via tree-attention 180

mechanism by following their original settings. 181

Training and evaluation Training datasets 182

for each target model are generated via self- 183

distillation and comprise five datasets: Ger- 184

man (De)→English (En), French (Fr)→En, Rus- 185

sian (Ru)→En, Japanese (Ja)→En and Chinese 186

(Zh)→En, each with 4 million (M) conversations 187

(∼ 1.3 billion (B) tokens) sourced from WMT14 188

Fr-En (Bojar et al., 2014), WMT16 De-En, and Ru- 189

En (Bojar et al., 2016), and JParaCrawl-v3.0 (Mor- 190

ishita et al., 2022). Evaluations are conducted using 191

a single NVIDIA 3090 GPU, under both greedy set- 192

tings (T=0.0) and for diversity at T=1.0 with three 193

different seeds. The details are in Appendix F. 194

3.2 Main result 195

Overall Table 1 shows that our specialized 196

drafter (pretrain-and-finetune) for targeted lan- 197

guages demonstrates superior performance across 198

multiple translation tasks, recording the highest 199

speedup in both deterministic (T=0.0) and diverse 200

(T=1.0) settings. At T=0.0, our model outperforms 201

all competitors with an average speedup ratio of 202
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Table 1: Speedup comparison of different methods for Vicuna 7B v1.3. Results are provided for T=0.0 and T=1.0
across various translation tasks. For our approach, each drafter is finetuned with the corresponding dataset.

Method
T=0.0 T=1.0

De→En Fr→En Ru→En Ja→En Zh→En Avg De→En Fr→En Ru→En Ja→En Zh→En Avg

Sps - Yang et al. (2024) 1.19±0.06 1.14±0.05 1.11±0.04 1.23±0.03 1.22±0.00 1.18±0.04 1.07±0.03 1.06±0.02 1.04±0.01 1.15±0.02 1.11±0.02 1.09±0.02

Lookahead (Fu et al., 2024) 1.03±0.01 1.01±0.02 0.98±0.01 1.00±0.01 0.96±0.00 1.00±0.01 1.03±0.03 1.04±0.03 0.99±0.00 0.98±0.05 0.98±0.00 1.01±0.02

PLD (Saxena, 2023) 1.13±0.06 1.05±0.04 1.03±0.00 1.09±0.05 0.99±0.07 1.06±0.05 - - - - - -
Medusa (Cai et al., 2024) 1.58±0.05 1.57±0.01 1.52±0.01 1.55±0.01 1.43±0.00 1.53±0.02 1.61±0.03 1.69±0.01 1.62±0.00 1.72±0.01 1.60±0.01 1.65±0.01

Eagle (Li et al., 2024) 1.90±0.05 1.88±0.00 1.67±0.05 1.88±0.01 1.75±0.01 1.81±0.02 1.57±0.00 1.61±0.01 1.45±0.02 1.63±0.01 1.51±0.03 1.55±0.01

Sps - pretrain-and-finetune (Ours) 2.42±0.02 2.05±0.04 1.74±0.02 1.71±0.01 1.52±0.01 1.89±0.02 1.99±0.01 1.86±0.03 1.58±0.00 1.67±0.01 1.44±0.00 1.71±0.01

Table 2: Examples of speculative decoding on WMT16
De-En dataset. Black indicates standard decoded output
and magenta indicates accepted draft tokens.

Input

Translate German to English: So wie er gestartet ist , wird es nicht lange dauern
, bis er auf der „ Pferd des Jahres “ -Schau ist – und ich bin mir sicher , dass er
gut abschneiden wird.

SpS with a drafter by Yang et al. (2024)

As he started, it won’t take long until he’s on the "Horse of the Year" show, and
I’m sure he’ll do well.

Eagle (Li et al., 2024)

As he started, it won’t take long until he’s on the "Horse of the Year" show, and
I’m sure he’ll do well.

SpS with our specialized drafter (pretrain-and-finetune)

As he started, it won’t take long until he’s on the "Horse of the Year" show, and
I’m sure he’ll do well.

1.89. Similarly, at T=1.0, it maintains robust per-203

formance with an overall speedup ratio of 1.71.204

Speedup on out-of-domain translation tasks205

As Figure 5 shows, our analysis reveals variabil-206

ity applying the drafter, trained on the WMT16207

De-En dataset, across diverse translation pairs.208

Speedups are consistently higher when translating209

from German to other languages, highlighting the210

importance of input domain consistency with the211

training data. Conversely, translations involving212

non-German languages with English and English-213

German pairings show limited gains. This result214

emphasizes that effective speculation relies more215

on matching the translation task’s input domain216

with the training data than on the output domain.217

Qualitative analysis on responses Table 2 pro-218

vides examples of speculative inference on the219

WMT16 De-En dataset. Both Eagle and our220

method incorporate a significant number of ac-221

cepted tokens from drafts. However, our model222

achieves this with ∼ 75% fewer parameters, lead-223

ing to reduced latency and faster inference time224

(Table 1). Speculation typically takes place at crit-225

ical junctions of the sentence such as transitions226

between clauses and phrases.227

De-En Fr-En Ru-En Ja-En Zh-En
Dataset

5
6
7
8
9

Sc
or

es Target
Yang et al. (2024)
Ours

Figure 6: GPT-4o judgment scores following the Zheng
et al. (2024) on various multilingual translation dataset.
The score is evaluated random sampling with T=1.0.

Table 3: Ablations with speedup as the training stages
continue on WMT19 Zh→En.

Target LLM - Drafter P + F

Gemma-Instruct 7B - Gemma 250M 0.92±0.01 1.04±0.02

Llama2-chat 7B - Llama 68M 1.47±0.00 1.95±0.01

GPT-4o judgment analysis Figure 6 depicts the 228

GPT-4o judgment scores (Zheng et al., 2024) gener- 229

ated using a temperature of 1.0. Our drafter closely 230

matches the target Vicuna LLM across multiple 231

datasets. The setup and further results are in Ap- 232

pendix F and Appendix G. 233

Ablation study Table 3 presents the ablation 234

results, illustrating the progressive impact of the 235

pretrain-and-finetune approach on the performance 236

of Gemma and Llama2-chat models. 237

4 Conclusion 238

This paper has demonstrated that the pretrain-and- 239

finetune strategy for training drafters significantly 240

enhances speedup ratio relative to standard autore- 241

gressive decoding in multilingual translation tasks. 242

This gain grows logarithmically with the increase 243

in the number of training tokens. Supported by 244

qualitative analysis, out-of-domain analysis, and 245

GPT-4o evaluation, this strategy substantially out- 246

performs the state-of-the-art methods in various 247

language pairs. Our study uncovers approaches to 248

maximize the benefits from drafter models, thereby 249

setting a new benchmark in this area. 250
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Limitations251

Despite the improvement, our approach, requir-252

ing separate drafters for each language, introduces253

complexities in deployment, especially in multilin-254

gual settings. For instance, in environments where255

multiple languages are frequently interchanged,256

such as multinational corporations or global cus-257

tomer service platforms, the lack of an automated258

drafter selection system could hinder operational259

efficiency. Currently, our study focuses on inde-260

pendent drafters; however, examining systems that261

utilize interdependent models, similar to Eagle and262

Medusa, might offer insights into more interest-263

ing strategies. Additionally, while our findings264

are promising for translation tasks, expanding this265

methodology to other multilingual applications,266

like real-time multilingual generation or summa-267

rization, is essential to understand its broader ap-268

plicability and uncover additional constraints.269

This work primarily presents no direct ethical270

concerns. Further discussions are detailed in Ap-271

pendix B and Appendix H.272
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Ondřej Bojar, Christian Buck, Christian Federmann,294
Barry Haddow, Philipp Koehn, Johannes Leveling,295
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-296
Amand, et al. 2014. Findings of the 2014 workshop297
on statistical machine translation. In Proceedings of298
the ninth workshop on statistical machine translation,299
pages 12–58.300

Ondrej Bojar, Rajen Chatterjee, Christian Federmann, 301
Yvette Graham, Barry Haddow, Matthias Huck, An- 302
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo- 303
gacheva, Christof Monz, et al. 2016. Findings of 304
the 2016 conference on machine translation (wmt16). 305
In First conference on machine translation, pages 306
131–198. Association for Computational Linguistics. 307

F Warren Burton. 1985. Speculative computation, par- 308
allelism, and functional programming. IEEE Trans- 309
actions on Computers, 100(12):1190–1193. 310

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, 311
Jason D Lee, Deming Chen, and Tri Dao. 2024. 312
Medusa: Simple llm inference acceleration frame- 313
work with multiple decoding heads. arXiv preprint 314
arXiv:2401.10774. 315

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 316
Jean-Baptiste Lespiau, Laurent Sifre, and John 317
Jumper. 2023. Accelerating large language model 318
decoding with speculative sampling. arXiv preprint 319
arXiv:2302.01318. 320

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 321
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 322
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 323
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 324
source chatbot impressing gpt-4 with 90%* chatgpt 325
quality. 326

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 327
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 328
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 329
Nakano, et al. 2021. Training verifiers to solve math 330
word problems. arXiv preprint arXiv:2110.14168. 331

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, 332
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas 333
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed 334
Roman, et al. 2024. Layer skip: Enabling early 335
exit inference and self-speculative decoding. arXiv 336
preprint arXiv:2404.16710. 337

Yimin Fan, Yaobo Liang, Alexandre Muzio, Hany Has- 338
san, Houqiang Li, Ming Zhou, and Nan Duan. 2021. 339
Discovering representation sprachbund for multilin- 340
gual pre-training. arXiv preprint arXiv:2109.00271. 341

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 342
2024. Break the sequential dependency of llm in- 343
ference using lookahead decoding. arXiv preprint 344
arXiv:2402.02057. 345

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, 346
David Lopez-Paz, and Gabriel Synnaeve. 2024. Bet- 347
ter & faster large language models via multi-token 348
prediction. arXiv preprint arXiv:2404.19737. 349

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2023. 350
Minillm: Knowledge distillation of large language 351
models. In The Twelfth International Conference on 352
Learning Representations. 353

Dan Hendrycks and Kevin Gimpel. 2016. Gaus- 354
sian error linear units (gelus). arXiv preprint 355
arXiv:1606.08415. 356

5

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


Taehyeon Kim, Ananda Theertha Suresh, Kishore Pap-357
ineni, Michael Riley, Sanjiv Kumar, and Adrian Ben-358
ton. 2024. Exploring and improving drafts in block-359
wise parallel decoding. Preprint, arXiv:2404.09221.360

Yoon Kim and Alexander M Rush. 2016. Sequence-361
level knowledge distillation. arXiv preprint362
arXiv:1606.07947.363

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-364
Young Yun. 2024. Distillm: Towards streamlined365
distillation for large language models. arXiv preprint366
arXiv:2402.03898.367

Yaniv Leviathan, Matan Kalman, and Yossi Matias.368
2023. Fast inference from transformers via spec-369
ulative decoding. In International Conference on370
Machine Learning, pages 19274–19286. PMLR.371

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang372
Zhang. 2024. Eagle: Speculative sampling re-373
quires rethinking feature uncertainty. arXiv preprint374
arXiv:2401.15077.375

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt376
Keutzer, Dan Klein, and Joey Gonzalez. 2020. Train377
big, then compress: Rethinking model size for effi-378
cient training and inference of transformers. In In-379
ternational Conference on machine learning, pages380
5958–5968. PMLR.381

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-382
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.383
2023. Online speculative decoding. arXiv preprint384
arXiv:2310.07177.385

Ilya Loshchilov and Frank Hutter. 2017. Decou-386
pled weight decay regularization. arXiv preprint387
arXiv:1711.05101.388

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao389
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee390
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al.391
2024. Specinfer: Accelerating large language model392
serving with tree-based speculative inference and393
verification. In Proceedings of the 29th ACM Interna-394
tional Conference on Architectural Support for Pro-395
gramming Languages and Operating Systems, Vol-396
ume 3, pages 932–949.397

Makoto Morishita, Katsuki Chousa, Jun Suzuki, and398
Masaaki Nagata. 2022. Jparacrawl v3. 0: A large-399
scale english-japanese parallel corpus. arXiv preprint400
arXiv:2202.12607.401

OpenAI. 2024. Hello GPT-4o. Accessed: Insert the402
current date.403

Jiayi Pan. 2023. Tiny-vicuna 1b. https://404
huggingface.co/Jiayi-Pan/Tiny-Vicuna-1B.405

David A Patterson. 2004. Latency lags bandwith. Com-406
munications of the ACM, 47(10):71–75.407

Aleksandar Petrov, Emanuele La Malfa, Philip Torr,408
and Adel Bibi. 2024. Language model tokenizers409
introduce unfairness between languages. Advances410
in Neural Information Processing Systems, 36.411

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 412
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 413
Wei Li, and Peter J. Liu. 2019. Exploring the limits 414
of transfer learning with a unified text-to-text trans- 415
former. arXiv e-prints. 416

Machel Reid, Nikolay Savinov, Denis Teplyashin, 417
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste 418
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi- 419
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un- 420
locking multimodal understanding across millions of 421
tokens of context. arXiv preprint arXiv:2403.05530. 422

Apoorv Saxena. 2023. Prompt lookup decoding. 423

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, 424
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler. 425
2022. Confident adaptive language modeling. Ad- 426
vances in Neural Information Processing Systems, 427
35:17456–17472. 428

ShareGPT. 2023. Sharegpt: Vicuna unfiltered 429
dataset. https://huggingface.co/datasets/ 430
Aeala/ShareGPT_Vicuna_unfiltered. Accessed: 431
2024. 432

Noam Shazeer. 2019. Fast transformer decoding: 433
One write-head is all you need. arXiv preprint 434
arXiv:1911.02150. 435

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 436
2018. Blockwise parallel decoding for deep autore- 437
gressive models. Advances in Neural Information 438
Processing Systems, 31. 439

Gemini Team, Rohan Anil, Sebastian Borgeaud, 440
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 441
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 442
Anja Hauth, et al. 2023. Gemini: a family of 443
highly capable multimodal models. arXiv preprint 444
arXiv:2312.11805. 445

Gemma Team, Thomas Mesnard, Cassidy Hardin, 446
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, 447
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, 448
Juliette Love, et al. 2024. Gemma: Open models 449
based on gemini research and technology. arXiv 450
preprint arXiv:2403.08295. 451

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 452
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 453
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 454
Azhar, et al. 2023a. Llama: Open and effi- 455
cient foundation language models. arXiv preprint 456
arXiv:2302.13971. 457

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 458
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 459
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 460
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 461
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 462
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 463
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 464
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 465
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 466
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 467

6

https://arxiv.org/abs/2404.09221
https://arxiv.org/abs/2404.09221
https://arxiv.org/abs/2404.09221
https://openai.com/index/hello-gpt-4o/
https://huggingface.co/Jiayi-Pan/Tiny-Vicuna-1B
https://huggingface.co/Jiayi-Pan/Tiny-Vicuna-1B
https://huggingface.co/Jiayi-Pan/Tiny-Vicuna-1B
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://github.com/apoorvumang/prompt-lookup-decoding/
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered


Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-468
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-469
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-470
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-471
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,472
Ruan Silva, Eric Michael Smith, Ranjan Subrama-473
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-474
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,475
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,476
Melanie Kambadur, Sharan Narang, Aurelien Ro-477
driguez, Robert Stojnic, Sergey Edunov, and Thomas478
Scialom. 2023b. Llama 2: Open foundation and479
fine-tuned chat models. Preprint, arXiv:2307.09288.480

Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and481
Chitta Baral. 2023. Accelerating llama inference by482
enabling intermediate layer decoding via instruction483
tuning with lite. arXiv e-prints, pages arXiv–2310.484

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,485
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and486
Zhifang Sui. 2024. Unlocking efficiency in large487
language model inference: A comprehensive sur-488
vey of speculative decoding. arXiv preprint489
arXiv:2401.07851.490

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,491
Julien Demouth, and Song Han. 2023. Smoothquant:492
Accurate and efficient post-training quantization for493
large language models. In International Conference494
on Machine Learning, pages 38087–38099. PMLR.495

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin496
Jiang, Linjun Yang, Rangan Majumder, and Furu497
Wei. 2023. Inference with reference: Lossless ac-498
celeration of large language models. arXiv preprint499
arXiv:2304.04487.500

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen.501
2024. Multi-candidate speculative decoding. arXiv502
preprint arXiv:2401.06706.503

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,504
Gang Chen, and Sharad Mehrotra. 2023. Draft505
& verify: Lossless large language model accelera-506
tion via self-speculative decoding. arXiv preprint507
arXiv:2309.08168.508

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan509
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,510
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.511
Judging llm-as-a-judge with mt-bench and chatbot512
arena. Advances in Neural Information Processing513
Systems, 36.514

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,515
Aditya Krishna Menon, Afshin Rostamizadeh, San-516
jiv Kumar, Jean-François Kagy, and Rishabh Agar-517
wal. 2023. Distillspec: Improving speculative de-518
coding via knowledge distillation. arXiv preprint519
arXiv:2310.08461.520

A Overview of appendix 521

This appendix provides supplementary material 522

that expands on the main contents. Each section is 523

designed to complement the research presented: 524

• Appendix B: Broader impact - Examines the 525

wider implications of our findings on specula- 526

tive decoding. 527

• Appendix C: Future work - Outlines possible 528

directions for future research, building upon 529

the current study’s findings to explore new 530

avenues and improvements. 531

• Appendix D: Related works - Provides a 532

comprehensive review of literature and pre- 533

vious research that relate to the speculative 534

decoding techniques discussed in the paper. 535

• Appendix E: Algorithm - Details the algo- 536

rithms used in the speculative decoding pro- 537

cesses, providing pseudocode and explana- 538

tions to support reproducibility. 539

• Appendix F: Implementation details - Offers 540

an in-depth look at the practical implemen- 541

tation of the speculative decoding methods, 542

including baselines, self-distillation, training, 543

and GPT-4o evaluation. 544

• Appendix G: Additional experimental re- 545

sults - Presents extra experimental data and 546

analyses that were not included in the main 547

sections due to space constraints. 548

• Appendix H: Discussions - Engages in discus- 549

sions on results, such as foundational beliefs 550

that underpin our research approach, the num- 551

ber of drafts used, and drafter size. 552

Each appendix is intended to provide clarity and 553

additional context to the research. 554

B Broader impact 555

Implementing language-specific drafters signifi- 556

cantly enhances the speed of large language models 557

tailored to diverse linguistic environments. For in- 558

stance, a system could leverage heuristic analysis 559

of input prompt token distributions to automatically 560

select an optimal drafter, streamlining processing 561

efficiency. Moreover, if a user interface allows indi- 562

viduals to choose their preferred language, the sys- 563

tem can instantly apply the corresponding drafter, 564

thereby accelerating response times considerably. 565
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Such advancements not only reduce computational566

load but also enrich the user experience by pro-567

viding rapid and culturally relevant responses in568

multilingual contexts.569

C Future work570

Future projects will explore broadening the scope571

of our speculative decoding framework to cover572

general multi-task environments, extending beyond573

multilingual translation to include varied domains574

such as legal and medical text processing. A sig-575

nificant challenge lies in developing an efficient576

method for selecting the appropriate drafter among577

multiple options when direct user input is unavail-578

able or when inputs consist of mixed languages.579

This issue becomes more complex as the ambigu-580

ity of language indicators increases. To alleviate581

this, designing an advanced router capable of intel-582

ligently assigning tasks to the most suitable drafter583

based on the nature of the input presents a promis-584

ing direction. Training such a router involves lever-585

aging advanced techniques to understand and pre-586

dict the optimal drafter based on contextual rep-587

resentations. This approach aims to improve the588

overall efficiency and accuracy of language model589

applications across diverse and dynamically chang-590

ing content landscapes.591

D Related works592

D.1 Speculative decoding593

Speculative decoding, advancing from blockwise594

parallel decoding introduced by Stern et al. (2018),595

adopts a draft-then-verify paradigm to enhance596

LLM inference efficiency. This method addresses597

latency issues in autoregressive decoding, which598

stem from the extensive memory transfers required599

for each token generation, leading to computational600

underutilization (Xia et al., 2024; Patterson, 2004).601

To further advance this paradigm, Leviathan et al.602

(2023) and Chen et al. (2023) introduced specu-603

lative decoding and sampling, which includes the604

lossless acceleration of various sampling methods.605

These methods utilize smaller models from the606

same series, such as T5-small, to accelerate infer-607

ence for larger counterparts like T5-XXL without608

additional training.609

Recent advancements in speculative decoding,610

exemplified by models like EAGLE (Li et al.,611

2024) and Medusa (Cai et al., 2024), have sig-612

nificantly refined the efficiency of LLMs by in-613

tegrating lightweight feedforward neural network614

(FFN) heads directly into their architecture. These 615

FFN heads facilitate the early drafting of token 616

sequences, enhancing throughput and reducing 617

latency. Similarly, approaches such as the self- 618

speculative model (Zhang et al., 2023) and El- 619

houshi et al. (2024) incorporate early exiting and 620

layer skipping strategies, allowing for a reduction 621

in computational load by prematurely terminating 622

decoding processes or bypassing less impactful 623

neural layers. Another line of research explores the 624

blockwise parallel language models with multiple 625

softmax heads pretrained from scratch presented by 626

Stern et al. (2018) by either refining its drafts (Kim 627

et al., 2024) or scaling up the model size (Gloeckle 628

et al., 2024). 629

D.2 Inference acceleration of LLM 630

As LLMs continue to evolve rapidly, enhancing 631

their inference speed has become a focal area of 632

research. Traditional techniques such as knowl- 633

edge distillation (Gu et al., 2023; Ko et al., 2024), 634

model compression (Li et al., 2020), and quantiza- 635

tion (Xiao et al., 2023) aim to optimize these mod- 636

els but often require extensive training adjustments 637

or significant architectural modifications. More re- 638

cent strategies have shifted towards applying early 639

exiting mechanisms, particularly within series like 640

T5 (Schuster et al., 2022; Bae et al., 2023) and 641

decoder-only architectures (Varshney et al., 2023), 642

to streamline inference processes. Although early 643

exiting can significantly hasten model responses by 644

truncating computational sequences, this method 645

typically introduces a trade-off with performance 646

degradation (Schuster et al., 2022). 647

E Algorithm: speculative sampling 648

By referring to Chen et al. (2023), Algorithm 1 649

demonstrates the speculative sampling process. Ini- 650

tiating with an initial prompt, an assistant model is 651

utilized to generate multiple prospective continua- 652

tions at each step, which are concurrently verified 653

against the target LLM’s predictions. 654

Each candidate token’s acceptance probability is 655

calculated based on the target LLM’s relative con- 656

fidence compared to the assistant model’s sugges- 657

tion (i.e., rejection sampling). If a value, randomly 658

drawn from a uniform distribution, falls below this 659

threshold, the token is accepted and incorporated 660

into the ongoing sequence. If not, the algorithm 661

recalibrates, adjusting the speculative path by di- 662

rectly sampling from the differences in predictions, 663
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Algorithm 1: Speculative sampling
input : Target LLMMq, a small assistant modelMp, initial prompt sequence x1, . . . , xt and target

sequence length T .
1: Initialize t← 1
2: while t < T do
3: for k ← 1, . . . ,K do
4: xtk ∼Mp(x|x1, . . . , xt, xt1 , . . . , xtk−1

)
5: end for
6: In parallel, compute K + 1 sets of logits drafts xt1 , . . . , xtK with the target LLMMq:

Mq(x|x1, . . . , xt),Mq(x|x1, . . . , xt, xt1), . . . ,Mq(x|x1, . . . , xt, xt1 , . . . , xtK )
7: for j ← 1, . . . ,K do
8: Sample r ∼ U [0, 1] from a uniform distribution
9: if r < min(1,

Mq(x|x1,...,xt+j−1)
Mp(x|x1,...,xt+j−1)

) then
10: Set xt+j ← xtj and t← t+ 1
11: else
12: Sample xt+j ∼ (Mq(x|x1, . . . , xt+j−1)−Mp(x|x1, . . . , xt+j−1))+ and exit for loop.
13: end if
14: end for
15: If all tokens xt+1, . . . , xt+K are accepted, sample extra token xt+K+1 ∼Mq(x|x1, . . . , xt, xt+K)

and set t← t+ 1
16: end while

enhancing accuracy and contextual relevance.664

F Implementation details665

F.1 Baselines666

Following the Spec-Bench settings (Xia et al.,667

2024), we have selected 5 speculative decoding668

methods, all open-source and rigorously tested for669

reliability. Each method represents a unique ap-670

proach to improving LLM inference speeds:671

1. SpS (Chen et al., 2023): SpS employs a672

smaller LM from the same model series as673

the drafter. In the verification, this method674

corrects the last token with residual probabil-675

ity if the token is rejected.676

2. Medusa (Cai et al., 2024) and Eagle (Li677

et al., 2024): Both methods enhance the tar-678

get LLM by integrating additional lightweight679

FFN heads. These heads are designed to ef-680

ficiently draft potential token sequences de-681

pending on the penultimate representations682

from the target LLM.683

3. Lookahead (Fu et al., 2024): This method684

appends multiple special tokens to the end685

of the input prompt. These tokens are used686

for parallel drafting, with the resultant drafts687

transformed into n-gram candidates for effi-688

cient prediction.689

4. PLD (Saxena, 2023): Serving as the practical 690

code implementation of Yang et al. (2023), 691

PLD selects text spans directly from the input 692

to serve as drafts, optimizing the relevance 693

and accuracy of the initial predictions. 694

F.2 Self-distillation 695

We follow the self-distillation pipeline as described 696

by Cai et al. (2024). Initially, a public dataset, 697

such as WMT 16 De-En, is selected as the train- 698

ing dataset. The target model’s responses are then 699

generated using the OpenAI API server, with input 700

prompts derived directly from the training dataset. 701

Install prerequisites For software dependencies, 702

CUDA 12.1 and PyTorch 2.1.2 are required. To 703

start the server, install the necessary dependencies: 704

vllm==0.4.0, openai==0.28.0

Use of vLLM We utilize the vLLM library for 705

self-distillation, executing the following command: 706

python -m
vllm.entrypoints.openai.api_server
--model lmsys/vicuna-7b-v1.3
--port 8000 --max-model-len 2048

Input prompt For instance, when self- 707

distillation the WMT14 Fr-En dataset using the 708
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Table 4: Custom Gemma 250M model configuration.

Configuration Value

Activation function GeLU (Hendrycks and Gimpel, 2016)
Hidden size 768

Intermediate size 6144
Number of attention heads 16
Number of hidden layers 2

Number of key-value heads 2
RMS epsilon 1e-06

Vocabulary size 256000

Vicuna7b v1.3 model, the input prompt consists709

of a system prompt and a user prompt. In the user710

prompt, we prepend "Translate French to English:711

".712

A chat between a curious user and an arti-
ficial intelligence assistant. The assistant
gives helpful, detailed, and polite answers
to the user’s questions. USER: Translate
French to English: Madame la Présidente,
c’est une motion de procédure. ASSIS-
TANT:

713

F.3 Details on training setup714

For the shared settings across all training drafters,715

we employ the Fastchat3 framework. We utilize a716

cosine learning rate scheduler with a warmup ratio717

of 0.03 and the AdamW (Loshchilov and Hutter,718

2017) optimizer. The drafter is trained using the719

’P-F’ strategy (ours) for 3 epochs, and using the720

’F’ strategy (without the pretraining step ’P’) for 5721

epochs to ensure sufficient learning. The model’s722

maximum length is set to 2048 tokens. The training723

is conducted using 4 GPUs with a batch size of 2724

per GPU.725

For finetuning the Vicuna 68M drafter (Yang726

et al., 2024), the learning rate is set to 2e-5. Simi-727

larly, for finetuning the Llama 68M model (Miao728

et al., 2024), the learning rate is set to 3e-5.729

As a drafter for Gemma-Instruct 7B model, we730

newly design a Gemma 250M model as a drafter731

(Table 4). We use the same training recipe with732

Vicuna 68M and Llama 68M.733

F.4 Details on GPT-4o evaluation734

We follow LLM-as-a-Judge framework (Zheng735

et al., 2024) to evaluate the model’s answers. The736

GPT-4o model is utilized as a judge, which has737

greater performance on both English and non-738

English than GPT-4 Turbo (OpenAI, 2024). For739

3https://github.com/lm-sys/FastChat/tree/main

Single answer grading, used prompt is followed: 740

[System]
You are a helpful assistant. Please act as an
impartial judge and evaluate the quality of
the response provided by an AI assistant to
the user question displayed below. Your
evaluation should consider factors such as
the helpfulness, relevance, accuracy, depth,
creativity, and level of detail of the response.
Begin your evaluation by providing a short
explanation. Be as objective as possible.
After providing your explanation, you must
rate the response on a scale of 1 to 10 by
strictly following this format: "[[rating]]",
for example: "Rating: [[5]]".

[Question]
{question}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

741

The detail implementation of LLM-as-a-judge is 742

in the following GitHub repository4. 743

G Additional experimental results 744

G.1 Out-of-domain speedup 745

Building on the findings discussed in the main body, 746

this subsection further explores the speedup vari- 747

ations achieved by employing a drafter trained on 748

each dataset across a range of translation tasks. Fig- 749

ure 8 depicts the speedup results using speculative 750

greedy sampling for drafters trained on different 751

datasets: Ru-En, Ja-En, and Zh-En. 752

Most observations align with those discussed 753

in Section 3. Notably, drafters trained on the Ja- 754

En (Figure 8 (b)) and Zh-En (Figure 8 (c)) datasets 755

consistently outperform Yang et al. (2024)’s drafter, 756

even on out-of-domain tasks. We hypothesize these 757

into two folds. Firstly, this suggests that certain 758

intrinsic properties of the Japanese and Chinese 759

languages may improve the efficacy of speculative 760

decoding when applied to unrelated language pairs, 761

possibly due to specific syntactic or lexical features 762

that are effectively captured during training. In an- 763

other scenario, the target LLM does not work well 764

on those tasks, and thus drafters are easier to catch 765

4https://github.com/lm-sys/FastChat/tree/main/
fastchat/llm_judge
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Figure 7: GPT-4o evaluation scores following the Zheng et al. (2024) on various multilingual translation dataset.
Each figure denotes the score of random sampling with different temperature on the output whose target LLM is
Vicuna 7B v1.3.
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(c) Drafter trained on Zh-En

Figure 8: Speedup with speculative greedy sampling with the same settings in Figure 5.

the target token distribution. More precisely, for766

instance, in Zh-Ru task, Vicuna 7B should translate767

the Chinese to Russian, but to English, and thus768

the speedup seems to happen for us due to English769

generation.770

In the case of the Ru-En (Figure 8 (a)) trained771

drafter, translations from Russian to other lan-772

guages generally surpass Yang et al. (2024)’s re-773

sults. Interestingly, translations from French to774

English and German to English exhibit unexpect-775

edly high speedups. This could hint at underlying776

linguistic similarities or shared grammatical struc-777

tures between Russian, French, and German that778

the Ru-En drafter is particularly adept at handling,779

thereby facilitating more efficient speculative de-780

coding. While Fan et al. (2021) demonstrates that781

Russian belongs to another cluster from En / Fr /782

De, perhaps our results provide a different perspec-783

tive in lens of speculative decoding.784

G.2 GPT-4o judgments785

Figure 7 show additional GPT-4o evaluation scores786

for various multilingual translation datasets. The787

graphs display the comparative performance across788

different language pairs under two sampling con-789

ditions, at temperatures T=0.8 and T=0.9, respec-790

tively. Each data point reflects the quality of trans-791

lations produced by the target model (orange cir-792

cle), SpS with the instruction tuned model using793

ShareGPT (Yang et al., 2024) (green pentagon),794

and SpS with our specialized drafter (pretrain-and-795

finetune) (red square). For the red points, each 796

drafter is trained with the corresponding dataset. 797

For instance, when the red point specify De-En, it 798

indicates that the drafter has been fine-tuned with 799

the De-En dataset. 800

The results demonstrate negligible differences 801

in quality among the three methods, underscoring 802

the efficacy of speculative decoding in delivering 803

translations with lossless quality. Both tempera- 804

ture settings show that our speculative decoding 805

strategy closely matches the performance of the 806

established target model across various language 807

pairs. This consistent performance across different 808

settings and language pairs illustrates that specu- 809

lative decoding effectively maintains high-quality 810

outputs without compromising accuracy due to in- 811

creased randomness in sampling. 812

H Discussion 813

H.1 Why is pretrain-and-finetune better in 814

small-size LM drafter? 815

Drafting in speculative decoding has been treated 816

akin to n-gram prediction (Bhendawade et al., 817

2024), often relying on straightforward pretrain- 818

ing using datasets designed to replicate target LLM 819

behaviors, such as the ShareGPT dataset (Yang 820

et al., 2024). This approach posits that generat- 821

ing a limited sequence of future tokens suffices for 822

speculative inference. 823

Contrary to this belief, our empirical result 824
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Table 5: Speedup comparison of speculative greedy sampling across different drafter sizes on WMT16 De-En
dataset.

Drafter Vicuna 68M (Yang et al., 2024) Vicuna 68M (pretrain-and-finetune; Ours) Tiny-Vicuna 1B (Pan, 2023)

Speedup 1.19 2.42 0.75
Mean of accepted tokens 1.47 3.03 3.06

presents a different narrative. Figure 5 illustrates825

that even in seemingly straightforward translation826

tasks, such as from German to English, outcomes827

are not as effective. This suggests that drafting828

requires a broader array of language modeling ca-829

pabilities to manage complex linguistic structures830

and context variations effectively.831

Drafters, therefore, benefit significantly from a832

robust pretrain-and-finetune approach, where they833

are first exposed to a wide array of linguistic con-834

texts and then finely tuned to specific tasks. This835

training regimen transforms them into compact, yet836

comprehensive, language models capable of han-837

dling diverse and challenging speculative decoding838

scenarios with better alignment.839

H.2 Number of drafts840

This study primarily explores the speculative de-841

coding process utilizing a single draft. In con-842

trast, advanced baseline methods such as EAGLE843

and Medusa deploy multiple drafts, leveraging844

tree-attention mechanisms to enrich draft selection.845

This technique allows for a broader exploration of846

multiple draft candidates at each decoding step, po-847

tentially increasing the rate and quality of accepted848

drafts.849

Adapting our approach to incorporate multiple850

drafts with tree-attention could significantly en-851

hance performance, suggesting an untapped poten-852

tial in our method. Experimenting with this ex-853

panded setup could lead to notable improvements854

in the speculative sampling’s effectiveness, particu-855

larly in increasing the mean number of high-quality856

tokens accepted per sequence. This prospect opens857

a critical path for future research, where deeper858

explorations could elevate the capabilities of our859

specialized drafters.860

H.3 Is scaling up drafter size better for SpS?861

Evaluating the efficacy of increasing drafter size862

reveals nuanced insights into speculative decoding863

performance. Table 5 compares three versions of864

drafters: the Vicuna 68M by Yang et al. (2024),865

our pretrain-and-finetune Vicuna 68M, and Tiny-866

Vicuna 1B (Pan, 2023)—a larger model with 1B867

parameters that has been instruction-tuned. 868

Despite Tiny-Vicuna 1B’s substantial parameter 869

count, it achieves a lower speedup of 0.75 com- 870

pared to 2.34 by our optimized Vicuna 68M. Both 871

models show similar mean accepted tokens, sug- 872

gesting that increasing size does not proportion- 873

ally enhance computational efficiency. This is due 874

to speculative decoding’s reliance on minimizing 875

memory bottlenecks to exploit parallel computa- 876

tion effectively. Larger models like Tiny-Vicuna 877

1B exacerbate these bottlenecks, diminishing the 878

potential speed gains from increased parallelism. 879

Conversely, our pretrain-and-finetune Vicuna 880

68M demonstrates that strategic training and opti- 881

mization of a smaller model can achieve high effi- 882

ciency and speed, highlighting the importance of 883

model configuration over mere size increase. This 884

balance between model size and computational dy- 885

namics is crucial for optimizing speculative decod- 886

ing, suggesting that enhancing model capabilities 887

through targeted training may be more effective 888

than scaling size. 889
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