
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLUE-NAS: A CLIP-INSPIRED CONTRASTIVE
LEARNABLE UNIFYING ENCODER FOR NEURAL AR-
CHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional encoder-based neural architecture search (NAS) methods typically
encode candidate architectures as graphs based on their information flow and oper-
ations. Such graph-based embeddings primarily capture topological features, such
as nodes and edges, while lacking high-level semantic representations, which lim-
its the robustness and generalization of encoder-based NAS. This issue is evident
in several phenomena, such as the inability of typical NAS methods to interpret
previously unseen operations or their limited capacity to benefit from joint train-
ing across multiple search spaces. To mitigate these limitations, we propose Con-
trastive Learnable Unifying Encoder for NAS (CLUE-NAS), a novel framework
that leverages the text encoder of Contrastive Language Image Pre-training (CLIP)
to generate context embeddings enriched with high-level semantics and integrates
them with graph-based embeddings through contrastive learning. CLUE-NAS
further emulates human expert behaviors by employing a coarse-to-fine strategy
to enhance performance. Experiments on NASBench-101, NASBench-201, and
NASBench-301 show that CLUE-NAS not only demonstrates strong generaliza-
tion to unseen operations but also benefits substantially from joint training, achiev-
ing competitive results against state-of-the-art NAS baselines.

1 INTRODUCTION

Neural Architecture Search (NAS) aims to discover optimal architecture within a predefined search
space containing numerous candidates. Early NAS methods based on reinforcement learning Zoph
& Le (2016); Baker et al. (2016); Tan et al. (2019) incurred prohibitively high search costs, while
differentiable approaches such as DARTS Dong & Yang (2019); Liu et al. (2018b); Cai et al. (2018);
Xie et al. (2018) suffered from instability when transitioning from continuous to discrete architec-
tures. Moreover, these methods often require substantial computational resources. To address these
limitations, a range of low-cost alternatives Ru et al. (2021); Abdelfattah et al. (2021); Lin et al.
(2021); Li et al. (2023) have emerged, including NTK-based methods Chen et al. (2021); Xu et al.
(2021); Zhu et al. (2022). However, such methods typically rely on complex theoretical assumptions
that often fail to hold in practice. For instance, both LGA Mok et al. (2022) and MOTE Zhang et al.
(2024b) have shown that the assumptions underlying NTK, which are derived under the premise
of infinitely wide networks, do not generalize well to real-world architectures with finite width,
resulting in poor predictive performance.

Another promising direction is the encoder-based NAS framework Liu et al. (2018a); Luo et al.
(2018); Wen et al. (2020); Dudziak et al. (2020); Wei et al. (2022); Wu et al. (2021); Huang et al.
(2022); Zhang et al. (2023), which strikes a more favorable balance between efficiency and accu-
racy. These approaches often outperform DARTS-based methods in speed and surpass NTK-based
methods in predictive performance. However, their effectiveness largely depends on the architec-
ture representation quality. A common strategy is to encode architectures as graphs, where nodes
represent operations and edges represent information flow. While effective to some extent, this
graph-based encoding approach typically relies on one-hot vectors to represent operations. Unfortu-
nately, this labeling method is too hard to generalize across search spaces, as each benchmark. For
example, NASBench-101 Ying et al. (2019), NASBench-201 Dong & Yang (2020), and NASBench-
301 Siems et al. (2020) define their own distinct sets of operations. For instance, the standard

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

t-SNE Visualization of MLP
NASBench-101
NASBench-201
NASBench-301

100 50 0 50 100

75

50

25

0

25

50

75

100
t-SNE Visualization of GCN

NASBench-101
NASBench-201
NASBench-301

60 40 20 0 20 40 60

40

20

0

20

40

60

t-SNE Visualization of CLUE-NAS
NASBench-101
NASBench-201
NASBench-301

(a) MLP (b) GCN (c) CLUE-NAS
Figure 1: The three figures illustrate the distribution of architecture embeddings obtained us-
ing different encoders. The left figure corresponds to MLP, the middle to GCN, and the right
to the proposed CLUE-NAS. All three encoders were trained on NASBench-101 and evaluated
on NASBench-101, NASBench-201, and NASBench-301, respectively. Notably, only CLUE-
NAS demonstrates a clear ability to generalize to unseen architectures from NASBench-201 and
NASBench-301. In contrast, both MLP and GCN fail to capture meaningful representations for
these unseen architectures.

convolutions used in NASBench-101 and NASBench-201 differ significantly from the separable
convolutions used in NASBench-301. Consequently, one-hot encoding fails to capture cross-space
generalizability. Fig. 1 shows some evidence about this issue, which the trained MLP and GCN
on NASBench-101 cannot identify the architectures of NASBench-201 and NASBench-301. For a
complete discussion of Fig. 1, please refer to the Appendix B.

Moreover, these graph-based encoders primarily focus on topological structure, overlooking the
semantic cues that human experts often rely on when evaluating architectures. In contrast, human
experts rarely assess neural architectures based solely on their wiring diagrams. Instead, they draw
from experience to make intuitive and qualitative assessments such as “this model looks heavy” or
“this one seems efficient but shallow.” These judgments stem not from explicit numerical metrics
or topological analysis but from flexible and approximate semantic reasoning. This human intuition
enables robust performance estimation across a wide range of architectures, from VGG Simonyan
& Zisserman (2014) and ResNet He et al. (2016) to MobileNet Howard et al. (2017); Sandler et al.
(2018) and Vision Transformers Dosovitskiy et al. (2020). In short, existing encoder-based NAS
frameworks treat performance prediction as a regression task over graph embeddings, rendering
them topology-aware but semantically blind, which hampers their generalization and robustness.

The motivation behind this paper is twofold. First, while recent advances in neural architecture
search (NAS) have benefited from predictive encoders and zero-cost proxies, they remain largely
confined to topology-based representations that treat architectures as graphs with discrete, hard-
labeled operations. Such encodings are limited in expressiveness, difficult to transfer across hetero-
geneous search spaces, and fail to capture higher-level design intent. Second, there is a growing
gap between how human experts reason about architectures—often using intuitive, semantic judg-
ments, like ‘deep,’ ‘sparse,’ or ‘transformer-like’, and how machine-based encoders currently oper-
ate. Bridging this gap calls for a richer, more flexible representation that integrates structural and
semantic information. In response, we propose a CLIP-inspired contrastive learning framework that
unifies graph-based and language-based architectural descriptions, enabling performance prediction
that is both generalizable and semantically grounded.

Inspired by the way human experts assess neural architectures, we propose CLUE-NAS (Contrastive
Learnable Unifying Encoder for Neural Architecture Search) to generate context embeddings with
high-level semantics and integrate them with graph-based embeddings through contrastive learning.
Unlike prior approaches that rely solely on topological embeddings, CLUE-NAS jointly aligns and
integrates topological representations with context embeddings extracted from CLIP’s text encoder,
which capture high-level semantic information. Furthermore, CLUE-NAS emulates human reason-
ing by combining semantic priors with fine-grained architectural analysis to predict the performance
of architectures in a coarse-to-fine manner. This fusion of semantic and structural understanding
significantly enhances the predictive accuracy and generalizability of NAS models, as demonstrated
by our experimental results. CLUE-NAS consistently outperforms baseline methods on NASBench-
101, NASBench-201, and NASBench-301. Our key contributions are summarized as follows.

• Novel dual-view representation of architectures, combining graph-based structural character-
istics (operation metrics and information flow) with semantic context embeddings derived from
descriptions of natural languages using the CLIP text encoder.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Contrastive context alignment mechanism, which aligns graph-based embeddings with context
embeddings in a coarse-to-fine manner. This mimics human evaluation behavior and enhances
the robustness of representation learning.

• Human-like confidence prediction strategy, where a coarse semantic estimate is refined through
a learned offset, providing accurate and bounded performance prediction for candidate architec-
tures.

• Strong empirical results across multiple NAS benchmarks, demonstrating that CLUE-NAS
significantly outperforms existing encoder-based and zero-cost NAS in both accuracy and gener-
alizability, while maintaining low computational overhead.

2 RELATED WORK

Neural Architecture Search (NAS) has been extensively studied, with early approaches relying on
reinforcement learning Zoph & Le (2016); Baker et al. (2016); Tan et al. (2019) and differentiable
frameworks Dong & Yang (2019); Liu et al. (2018b); Cai et al. (2018); Xie et al. (2018). Some meth-
ods employ evolutionary algorithms Lu et al. (2019); Real et al. (2019; 2017); Xie & Yuille (2017);
Dai et al. (2021) or RNN-based strategies to iteratively refine architectures. However, these tech-
niques often require significant computational resources and have struggled to deliver competitive
performance compared to more recent advancements.

Low-Cost NAS: In response to the high computational demands of traditional NAS, low-cost meth-
ods have gained traction. Techniques like SynFlow Abdelfattah et al. (2021); Tanaka et al. (2020)
and TSE Ru et al. (2021) estimate performance by analyzing gradient variations, while neural tan-
gent kernel (NTK)-based methods such as TE-NAS Chen et al. (2021), KNAS Xu et al. (2021), and
LGA Mok et al. (2022) leverage NTK assumptions to approximate performance. These approaches
assume that the initial state of a model can predict its final performance Lee et al. (2019), but this
assumption does not always hold in practice Mok et al. (2022); Zhang et al. (2024b). MOTE Zhang
et al. (2024b) instead analyzes the loss landscape through linear interpolation during training. While
these methods are computationally efficient, they rely on complex mathematical assumptions, lim-
iting their generalizability across different search spaces Mok et al. (2022); Zhang et al. (2024b).

Encoder-based NAS: Unlike gradient-based or other low-cost NAS methods, encoder-based ap-
proaches Liu et al. (2018a); Luo et al. (2018); Wen et al. (2020); Dudziak et al. (2020); Wei et al.
(2022); Wu et al. (2021) train on a small set of architecture–performance pairs to balance efficiency
and accuracy. Early works Liu et al. (2018a); Luo et al. (2018); Wen et al. (2020); Dudziak et al.
(2020) used GCNs to sample architecture batches, outperforming DARTS at lower cost. Weak-
NAS Wu et al. (2021) showed that a simple MLP with evolutionary search could do even better,
while BRP Dudziak et al. (2020) and RATs Zhang et al. (2023) enhanced encoders with special-
ized modules, and GATE/TA-GATE Ning et al. (2020; 2022) used simulated inputs for embedding
extraction. Yet most still rely on graph-based encodings, where one-hot operation labels fail to rep-
resent unseen operations, forcing retraining for each search space. To address this, we introduce
semantic features into architecture encoders.

Contrastive LanguageImage Pre-training (CLIP): CLIP Radford et al. (2021) is a vision-
language foundation model that learns to align images and text in a shared embedding space. Trained
on 400 million image–text pairs from the Internet, CLIP uses a contrastive learning objective to
maximize the similarity between matching image–text pairs. At the intersection of NAS and vision-
language model, GrowCLIP Deng et al. (2023) represents a data-driven automatic model growing
algorithm inspired by CLIP. Despite the analogy between images and graphs, the potential of lever-
aging CLIP to facilitate NAS has not been considered in the open literature as far as we know.

3 CONTRASTIVE LEARNABLE UNIFYING ENCODER

The proposed Contrastive Learnable Unifying Encoder for NAS (CLUE-NAS) takes three types of
input to represent a candidate architecture: bottom-up information flow, operation metrics, and top-
down context features. The first two, similar to previous approaches Wen et al. (2020); Dudziak et al.
(2020); Shen et al. (2021); Zhang et al. (2024a), treat the architecture as a graph, and the last one is
derived using a CLIP’s text encoder. CLUE-NAS aligns the information flow and operation metrics
with context features, resulting in more robust embeddings. Subsequently, CLUE-NAS mimics
human expert behaviors by qualitatively summarizing architecture performance through a coarse-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Info Flow

Metric OPs

(,320)

(,128)

CnTxt Pmt

Arch

Text Encoder

cos sim

C1 C2 C4 C5C3

FC
FC

FC FC
(1024)

Ci

FCs

0

0.5

0.875

0.75

0.9375

(,77)
Fix PstnEmbd

(m*1024)

*m

Confidence Prediction

Context Alignment

Figure 2: Overview of CLUE-NAS. Architecture prompts are encoded into context embeddings via
CLIP’s text encoder, while architectural topologies are transformed into graph-based embeddings.
CLUE-NAS aligns these representations via cosine similarity and refines the alignment progres-
sively for accurate prediction.

to-fine confidence prediction method. This coarse-to-fine strategy avoids overly rigid predictions
and significantly enhances CLUE-NAS’s ability to generalize to unseen architectures.

3.1 GRAPH-BASED EMBEDDING

The proposed CLUE-NAS framework aligns two distinct types of embeddings: a graph-based em-
bedding that encodes the architectural topology, and a context embedding that captures high-level
semantic cues to bridge the structural representation of neural architectures with more semantic
features. Before introducing our core alignment mechanism, we first introduce the construction of
the graph-based embedding. Abstractly, a candidate architecture A comprises various operations
O = {O1, O2, . . . , On} (e.g., convolution, pooling, fully connected layers) and the corresponding
information flow patterns, such as residual and dense connections. When operations are treated
as nodes and the information flow as edges between them, representing an architecture as a graph
becomes intuitive. In this formulation, the adjacency matrix encodes the edges, while the feature
matrix represents the node attributes.

Flattened Adjacency Matrix: Our encoding of architectural edges is inspired by the insights of
RATs Zhang et al. (2024a), which argue that a binary adjacency matrix is overly rigid. When
coupled with Graph Convolutional Network (GCN) for feature extraction, such rigidity can have
detrimental effects, often leading to worse performance than using a simple MLP. Following this
observation, we flatten the adjacency matrix and zero-pad to a fixed length of 320 to form a vector
representation, denoted as Aflow. This vector is then directly processed by an MLP for feature
extraction. The calculation process is shown in Fig. 2.

Operation Metrics: A common approach to encoding operations involves constructing a feature
matrix using one-hot vectors. However, one-hot encoding serves as a hard label, which limits the
model’s ability to generalize to previously unseen architectures containing novel operations, as il-
lustrated in Fig. 1. To overcome this limitation, we introduce a set of five soft metrics to describe
each operation Oi, such as parameter count, FLOPs, latency, and other relevant attributes. These
soft, proxy labels offer a more expressive and flexible representation of operations, thereby mitigat-
ing the drawbacks of one-hot encoding. The resulting feature matrix is flattened, zero-padded to
length 128 (denoted Aops), and processed by an MLP. As shown in Tab. 4, this representation im-
proves CLUE-NAS performance. Finally, as illustrated in Fig. 2, we concatenate the outputs of two
MLPs applied to Aflow and Aops, then feed the result into another MLP to obtain the graph-based
embedding G, capturing the architecture’s topology:

G = MLPA(MLPf (Aflow),MLPo(Aops)), (1)

where MLPA, MLPf , and MLPo are three multi-layer perceptrons responsible for transforming
A, Aflow, and Aops into their respective feature vectors.

3.2 ALIGN THE CONTEXT AND GRAPH-BASED EMBEDDINGS

To obtain a global contextual representation of an architecture A, we construct a natural language
prompt Apmt in the form: “The architecture has N nodes: O1, O2, ..., ON .” This description is

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

encoded by CLIP’s pre-trained text encoder T to produce a semantic embedding T (Apmt). Lever-
aging CLIP’s semantic abstraction, this embedding acts as a global prior that guides the learning
of the graph-based representation—mirroring how human experts first form an intuitive overview
before detailed structural analysis.

Positional Embeddings for Confidence Score Division: To emulate this coarse-to-fine reason-
ing process, the proposed CLUE-NAS framework introduces a contrastive alignment mechanism.
Specifically, we embed the context representation with multiple levels of confidence, where each
level reflects a progressively refined estimation of the candidate architecture’s expected performance.
Then, the graph-based embedding G is aligned with these context representations, enabling it to ab-
sorb both high-level semantic priors and the associated confidence levels.

To distinguish between different levels of confidence without introducing additional learning com-
plexity, we incorporate a set of fixed, non-learnable positional embeddings E = {Ei}i=1,...,M ,
where Ei = i

M and M is a hyper-parameter used to divide the confidence level to M slots. The
effects of M on performance improvement will be addressed in the experimental section. These
scalar values are linearly spaced and serve to differentiate between context embeddings at different
confidence levels. These levels later guide the CLUE-NAS in emulating the coarse-to-fine reason-
ing process commonly employed by human experts during architecture prediction. With Ei, a set
of context embeddings C can be constructed to represent varying degrees of confidence about the
architecture’s performance:

C = {T (Apmt) + Ei}i=1,...,M . (2)
Each context embedding Ci now jointly encodes both the semantic features of the architecture A
and the corresponding confidence level. To further incorporate this confidence information into the
learning objective, we assign a lower bound on the predicted performance for each confidence level.
Specifically, for each Ci, we define the lower bound as Cb

i = 1 − 1
2i−1 , i = 1, 2, ...M , such that

higher confidence levels correspond to progressively higher lower bounds.

Context Alignment: During training, the ground-truth context embedding Cgt is derived from test
accuracy. The graph-based representation G is then aligned with Cgt via a joint loss L combining
KL divergence and cosine similarity.

Lalgn(G,Cgt) = KL(G,Cgt) + (1− σ(Sim(G,Cgt))), (3)

where Sim() is a similarity function and σ is a sigmoid function. During inference, we compute the
similarity between the graph-based embedding G and each confidence-aware context embedding Ci

through an inner product. Then, we identify the context embedding Cmax with the highest similarity:

Cmax = arg max
Ci∈C

Sim(G,Ci). (4)

Finally, we concatenate the graph-based embedding G with its most semantically aligned context
embedding Cmax to form a robust and semantically enriched representation [G,Cmax].

Confidence Prediction: So far, CLUE-NAS has generated a semantically enriched embedding vec-
tor, denoted as [G,Cmax]. To emulate the initial coarse-grained assessment typically performed by
human experts when evaluating a neural architecture, we introduce a predefined lower-bound esti-
mate of performance, denoted as Cb

best. Notably, the value of Cb
best is selected from a predefined

set of candidates Cb
1, C

b
2, . . . , C

b
M based on the index of Cmax (or best = the index of Cmax). This

constraint enables CLUE-NAS to make informed predictions within a plausible performance range,
rather than generating arbitrary outputs. Such a design mirrors the human decision-making process,
where an initial rough estimation precedes a more precise evaluation. Specifically, the final target
prediction P(A) is formulated as a bounded refinement over Cb

best:

P(A) = P(G,Cmax) = Cb
best + σ(MLP ([G,Cmax]))× (1− Cb

best), (5)

where the embedding [G,Cmax] is passed through a feedforward network MLP, and the output is
scaled by a sigmoid function σ. To ensure it is proportional to the confidence gap, the normalized
strength is scaled again by (1 − Cb

best). We refer to this human-inspired coarse-to-fine refinement
strategy as Confidence Prediction.

Training Setting: The term “architecture-accuracy pair” is defined as a candidate architecture and
its corresponding test accuracy. Obtaining an architecture-accuracy pair is time-consuming; for in-
stance, each pair can take thousands of GPU seconds on CIFAR-10 and even hundreds of thousands

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Spearman correlations for NASBench-101, NASBench-201, and NASBench-301 using
encoders trained independently with three training budget across all three search spaces.

Model 100 pairs per NB 50 pairs per NB 5 pairs per NB
NB101 NB201 NB301 NB101 NB201 NB301 NB101 NB201 NB301

MLP 0.427 0.664 0.535 0.205 0.589 0.246 0.161 0.177 0.061
GCN 0.362 0.416 0.489 0.122 0.428 0.183 -0.318 -0.269 -0.122

BiGCN 0.603 0.386 0.482 0.468 0.649 0.393 -0.166 0.095 0.056
RATs-GCN 0.623 0.653 0.420 0.447 0.633 0.339 0.170 0.359 0.181
CLUE-NAS 0.740 0.831 0.716 0.530 0.728 0.607 0.366 0.481 0.496

of GPU seconds on ImageNet. Therefore, minimizing the consumption of architecture-accuracy
pairs throughout the search process is crucial for CLUE-NAS and other encoder-based NAS meth-
ods. To train the CLUE-NAS, we first sample a set of architectures from the search space and train
them to obtain their corresponding accuracies, thereby forming architecture–accuracy pairs. The
number of training pairs varies across experiments (5, 50, or 100), and the impact of this variation is
discussed in the experimental section. All CLUE-NAS training runs share the same hyperparameter
settings: the batch size is fixed at 16, and the training proceeds for a total of 200 epochs. The learn-
ing rate is initially set to 0.01 for the first 100 epochs and then reduced to 0.001 for the remaining
100 epochs. The overall training loss LClue comprises two components:

LClue = LBCE(P(A), ACCgt) + Lalgn(G,Cgt), (6)

where LBCE is a binary cross-entropy loss used for optimizing the confidence prediction mech-
anism, which is based on the confidence-bound estimation described earlier. The alignment loss
Lalgn previously introduced in Eq. (3), is designed to enforce consistency between architecture
embeddings and contextual features.

4 EXPERIMENTAL RESULTS

We use three search spaces (all of them are cell-based search spaces): NASBench-101 consists of
423,621 candidates trained on CIFAR-10 for 108 epochs. NASBench-201 includes 15,625 candi-
dates trained on CIFAR-10, CIFAR-100, and ImageNet-16-120 for 200 epochs each. NASBench-
301 contains 57,189 candidates trained on CIFAR-10 for approximately 100 epochs.

4.1 COMPARISON CLUE-NAS AND ENCODERS IN NAS

Independent Training Experiments: We present a comparative analysis between CLUE-NAS and
several baseline encoders that rely solely on topological representations. Experiments are conducted
across three distinct NAS search spaces, where each model is independently trained under three
data regimes: 100 training pairs per search space, 50 pairs per search space, and an extreme few-
shot scenario with only 5 pairs per search space. As shown in Tab. 1, CLUE-NAS consistently
achieves substantially higher Spearman correlation coefficients than competing methods across all
training settings. While CLUE-NAS retains strong predictive performance even in the low training
data regime, conventional baselines such as GCN and its variant BiGCN Wen et al. (2020) often
exhibit negative correlations, indicating a complete collapse in predictive capacity. Although RATs-
GCN Zhang et al. (2024a) is a self-attention-enhanced GCN variant, and it performs better than
standard GCNs, it is still consistently outperformed by CLUE-NAS across all training data budgets.
Under the 5 pairs setting, RATs-GCN achieves Spearman correlations of 17.0%, 35.9%, and 18.1%
on NASBench-101, NASBench-201, and NASBench-301, respectively. In contrast, CLUE-NAS
achieves 36.6%, 48.1%, and 49.6% on the same benchmarks, representing a substantial improve-
ment. These results underscore the effectiveness and robustness of CLUE-NAS as an advanced
encoder for neural architecture performance prediction.

Joint Training Experiments: We further present an additional set of experiments conducted on the
same search spaces to evaluate the performance of the encoder after joint training. In this setup, we
consider three different training budgets: 100, 50, and 5 architecture pairs per search space. These
training pairs are then aggregated, resulting in a total of 300, 150, and 15 pairs, respectively, which
are used to jointly train the model shared across all three search spaces in each pair’s setting.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Spearman correlations for NASBench-101, NASBench-201, and NASBench-301 using
encoders trained jointly with three training budget across all three search spaces.

Model 100 pairs per NB 50 pairs per NB 5 pairs per NB
NB101 NB201 NB301 NB101 NB201 NB301 NB101 NB201 NB301

MLP 0.527 0.643 0.598 0.241 0.580 0.368 0.292 0.214 0.074
GCN 0.315 0.360 0.308 0.125 0.176 0.174 -0.036 0.147 -0.146

BiGCN 0.635 0.658 0.569 0.400 0.529 0.386 0.108 0.467 0.206
RATs-GCN 0.583 0.634 0.473 0.296 0.560 0.355 0.083 0.459 0.320
CLUE-NAS 0.771 0.852 0.724 0.593 0.767 0.634 0.445 0.612 0.552

Table 3: Spearman correlations on three search spaces based on encoders that only train on one of
them. Note that the training budget is 100, 50, and 5 per NASBench.

Model Dataset used 100 pairs per NB 50 pairs per NB 5 pairs per NB
for training NB201 NB301 NB201 NB301 NB201 NB301

MLP NB101 0.263 0.056 -0.108 -0.019 -0.121 -0.111
GCN NB101 -0.065 -0.199 -0.148 -0.074 -0.201 -0.188

BiGCN NB101 0.446 0.383 0.427 0.221 0.210 0.022
RATs-GCN NB101 0.459 0.245 0.370 0.202 -0.057 -0.083
CLUE-NAS NB101 0.631 0.513 0.583 0.474 0.255 0.346

NB101 NB301 NB101 NB301 NB101 NB301
MLP NB201 0.363 0.129 0.315 0.019 0.081 -0.228
GCN NB201 -0.065 -0.163 -0.154 0.007 -0.125 -0.005

BiGCN NB201 0.332 0.235 0.131 0.121 -0.243 -0.364
RATs-GCN NB201 0.192 0.067 0.170 0.141 0.028 -0.165
CLUE-NAS NB201 0.529 0.461 0.533 0.392 0.338 0.224

NB101 NB201 NB101 NB201 NB101 NB201
MLP NB301 -0.003 0.054 -0.005 -0.052 -0.130 -0.041
GCN NB301 0.236 0.159 -0.104 -0.164 -0.047 -0.361

BiGCN NB301 -0.074 0.024 -0.120 -0.036 -0.111 -0.025
RATs-GCN NB301 -0.534 -0.745 -0.069 -0.328 -0.131 -0.347
CLUE-NAS NB301 0.422 0.539 0.337 0.413 0.120 0.274

As shown in Tab. 2, the results demonstrate that CLUE-NAS exhibits a significant performance
improvement. Compared to the results in Tab. 1, CLUE-NAS consistently benefits from joint train-
ing across all budget settings. Specifically, under the extreme low training pairs regime of only 5
pairs per search space, CLUE-NAS achieves impressive Spearman correlations of 44.5%, 61.2%,
and 55.2% on NASBench-101, NASBench-201, and NASBench-301, respectively. These represent
substantial improvements of 32.4%, 27.2%, and 11.3% over the independently trained CLUE-NAS.

In contrast, other methods, such as MLP, GCN, BiGCN, and RATs-GCN do not consistently benefit
from joint training. In some cases, their performance even degrades. For example, GCN exhibits
a drop in Spearman correlation under the 100 pairs setting, with decreases of -8.0%, -15.6%, and
-58.7% on NASBench-101, NASBench-201, and NASBench-301, respectively. We attribute this to
CLUE-NAS’s ability to capture and integrate high-level semantic features of architectures, which
enables it to extract transferable knowledge across different search spaces. In contrast, traditional
NAS encoders lack this crucial capability, and thus, joint training may introduce noisy supervision,
leading to unstable optimization and degraded performance.

Unseen Architecture Experiments: As shown in Tab. 2, CLUE-NAS benefits strongly from joint
training, indicating its ability to capture higher-dimensional representations. To test this, we trained
with 100, 50, and 5 pairs under disjoint search spaces—e.g., training on NASBench-101 and evaluat-
ing on NASBench-201/301 using Spearman correlation. This setup requires predicting performance
on unseen architectures, a difficult task given differences across search spaces in layers, hyperpa-
rameters, and candidate operations (e.g., NASBench-301 adds dilated and separable convolutions
absent from NASBench-101/201).

Tab. 3 shows the experimental results. CLUE-NAS consistently maintains a considerable level of
predictive capability across different conditions. Notably, when trained on NASBench-101 with
100 pairs, CLUE-NAS achieves Spearman correlations of 63.1% and 51.3% on NASBench-201 and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Ablation study of each component in CLUE-NAS.
OP Metrics Fixed Pstn Embd Cntxt Align Cnfd Pred NB101 NB201 NB301

✓ ✓ ✓ 0.737 0.819 0.532
✓ ✓ ✓ 0.722 0.763 0.595
✓ ✓ ✓ 0.726 0.802 0.619
✓ ✓ ✓ 0.693 0.796 0.665
✓ ✓ ✓ ✓ 0.771 0.852 0.724

Table 5: Ablation study of hyper-parameter M for context embeddings

M
100 pairs per NB 50 pairs per NB 5 pairs per NB

NB101 NB201 NB301 NB101 NB201 NB301 NB101 NB201 NB301
3 0.713 0.805 0.641 0.576 0.749 0.523 0.363 0.503 0.299
5 0.771 0.852 0.724 0.593 0.767 0.634 0.445 0.612 0.552
7 0.732 0.824 0.651 0.580 0.765 0.579 0.382 0.527 0.324

NASBench-301, respectively, despite these architectures being entirely unseen during training. In
contrast, BiGCN and the more advanced RATs-GCN perform significantly worse under the same
conditions, with GCN even exhibiting negative correlations, indicating a complete loss of predictive
ability. Furthermore, under the extreme condition of only 5 training pairs, CLUE-NAS still retains
predictive ability. Although its performance is reduced, all baseline methods (MLP, GCN, BiGCN,
and RATs-GCN) entirely fail under this setting.

These results further demonstrate CLUE-NAS’s capacity to capture high-level semantic represen-
tations of candidate architectures. As a result, it can generalize across different search spaces and
operate effectively under few-shot scenarios, and these capabilities are lacking in prior encoders.
Fig. 4 shows more visualization results, please refer to Appendix B.

4.2 ABLATION STUDY OF CLUE-NAS

Impact of Key Components: CLUE-NAS comprises four key components: (1) replacing one-hot
encodings with Operation Metrics (OP Metrics), (2) using context embeddings as fixed positional
encodings (Fixed Pstn Embd), (3) aligning context and graph embeddings (Cntxt Algn), and (4)
coarse-to-fine prediction (Cnfd Pred). We conduct ablations under the 100-pair joint training setting
(Tab. 4), finding that removing any component degrades performance—highlighting the critical role
of each design choice.

Impact of Context Embedding Length CLUE-NAS introduces a hyperparameter M that deter-
mines the length of the context embeddings. This length controls the granularity of the lower bound
distribution of confidence levels Cb

i . In essence, a larger M results in a finer division of the confi-
dence spectrum, allowing the confidence prediction module to include more branches that specifi-
cally target high-performing architectures.

We conducted an ablation study (Tab. 5) on different values of M , finding the best performance at
M = 5. With M = 3, context embeddings are too short, yielding coarse representations that weaken
the coarse-to-fine prediction. At M = 7, confidence bins become extreme (e.g., Cb

7 = 0.984375),
leaving few training pairs per bin and introducing redundancy and noise. Thus, setting M too low
or too high degrades CLUE-NAS performance.

4.3 COMPARISON BETWEEN FINETUNE-FREE CLUE-NAS AND OTHER NASS

As shown in Fig.1, CLUE-NAS demonstrates strong generalization, enabling deployment without
finetuning. To evaluate its performance, we assess it on the three sub-datasets of NASBench-201,
using only 100 training pairs from NASBench-101 and 100 from NASBench-301, without includ-
ing any data from NASBench-201. As a result, CLUE-NAS operates on NASBench-201 with zero
adaptation, and the search cost is determined solely by evaluation. We further combine CLUE-NAS
with an evolutionary algorithm similar to that in Zhang et al. (2024b)(for a comparison of sam-
pling methods, please refer to Appendix C.), referred to as CLUE-NAS-F. In addition, we propose

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Comparison of the proposed CLUE-NAS and other NAS methods on NASBench-201.
We have selected the most recent and relevant benchmark methods for each category. Note that
‘Cost (s)’ means the total cost in GPU seconds, containing the training and evaluation cost. The
best-performing result within each category is highlighted in bold.

Type Model CIFAR-10 CIFAR-100 ImgNet-16
Acc(%) Cost(s) Acc(%) Cost(s) Acc(%) Cost(s)

Low-cost

KNAS (k=20) Xu et al. (2021) 93.38 4.4K 70.78 9.2K 44.63 20K
Eigen-NAS (k=20) Zhu et al. (2022) 93.46 4.4K 71.42 9.2K 45.53 20K

LGA Mok et al. (2022) 94.30 3.6K 72.42 5.4K 45.30 3.6K
MOTE-NAS (k=10) Zhang et al. (2024b) 94.15 4.2K 72.54 4.3K 46.38 11.3K

LLM GENIUS Zheng et al. (2023) 93.79 8.0M 70.91 8.0M 44.96 25.0M
LLMatic Nasir et al. (2024) 94.26 8.0M 71.62 8.0M 45.87 25.0M

Encoder

Neural Predictor Wen et al. (2020) 94.07 840.0K 72.18 840.0K 46.39 2.4M
WeakNAS Wu et al. (2021) 94.23 840.0K 73.42 840.0K 46.79 2.4M

Proxy-BO Shen et al. (2021) - - 73.48 1.2M 47.18 3.2M
Arch-Graph Huang et al. (2022) - - 73.38 840.0K - -
RATs-NAS Zhang et al. (2023) 93.98 14.8K 72.35 13.8k 45.39 34.7k

CLUE-NAS-F 94.34 451.2K 73.51 426.7K 47.31 1.3M
CLUE-NAS-EF 94.30 12.8K 72.64 12.4K 46.79 31.8K

CLUE-NAS-EF, which accelerates the search using early-stopping test accuracy, with a trade-off in
performance. Results are presented in Tab. 6, and the analysis is structured in three parts: compari-
son with encoder-based, LLM-based, and low-cost NAS methods.

Encoder-based NAS: Compared to encoder-based NAS, CLUE-NAS-F finds superior architectures.
Even against RATs-NAS Zhang et al. (2023), CLUE-NAS-EF achieves better results at smaller
search costs. Unlike other predictors that require finetue on specific search spaces, both CLUE-
NAS-F and CLUE-NAS-EF operate in a finetue-free manner, highlighting advantage of CLUE-NAS
in practical applications.

LLM-based NAS: In recent years, several attempts have been made to leverage large language
models (LLMs) for NAS, as exemplified by GENIUS Zheng et al. (2023) and LLMatic Nasir et al.
(2024). These methods are expected to offer strong semantic representations. However, they re-
main in an early exploratory stage and fail to integrate the topological features that are intrinsic
to traditional encoder-based NAS approaches. As a result, their performance is suboptimal. In
contrast, CLUE-NAS-F outperforms both GENIUS and LLMatic, achieving superior accuracies of
94.34%, 73.51%, and 47.30%, while also demonstrating significantly lower search costs compared
to LLMatic. The more efficient CLUE-NAS-EF variant achieves 94.30%, 72.64%, and 46.79%, still
surpassing both baselines while further improving search efficiency. Note that the reported search
costs for GENIUS and LLMatic are estimated based on Nasir et al. (2024), which involves 2000
architecture-accuracy pairs during training and evaluation stages.

Low-cost NAS: CLUE-NAS combines an encoder with semantic priors, diverging from speed-
focused low-cost NAS methods. Though more computationally intensive, it delivers higher accu-
racy: CLUE-NAS-ES achieves 46.79% on ImageNet-16 in 31.8K GPU seconds, surpassing MOTE-
NAS (46.38%), while CLUE-NAS-F reaches 47.30%, near the NAS-Bench-201 upper bound. Thus,
CLUE-NAS is ideal when top-tier performance is required.

5 CONCLUSIONS

This paper presents CLUE-NAS, a novel encoder for Neural Architecture Search (NAS) that in-
tegrates both topological representations and high-level semantic features. In contrast to prior en-
coders that primarily focus on architectural topology, CLUE-NAS captures deeper semantic cues,
enhancing search efficiency and improving generalization to unseen architectures. It employs a
coarse-to-fine prediction strategy: first estimating a lower bound of model performance, then refin-
ing the prediction for greater stability. Experiments on NASBench-101/201/301 show that CLUE-
NAS consistently outperforms traditional encoders and matches state-of-the-art NAS methods, while
requiring as few as five training pairs. Though slower than low-cost NAS approaches, it enhances
the practicality of encoder-based NAS and highlights the value of semantic priors from language
models, offering a promising path toward more efficient and interpretable NAS.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-cost
proxies for lightweight NAS. arXiv preprint arXiv:2101.08134, 2021.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. arXiv preprint arXiv:1812.00332, 2018.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on ImageNet in four
GPU hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021.

Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen, Yuandong
Tian, Matthew Yu, Peter Vajda, et al. FBNetV3: Joint architecture-recipe search using predic-
tor pretraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16276–16285, 2021.

Xinchi Deng, Han Shi, Runhui Huang, Changlin Li, Hang Xu, Jianhua Han, James Kwok, Shen
Zhao, Wei Zhang, and Xiaodan Liang. Growclip: Data-aware automatic model growing for large-
scale contrastive language-image pre-training. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 22178–22189, 2023.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four GPU hours. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1761–1770,
2019.

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the scope of reproducible neural architec-
ture search. arXiv preprint arXiv:2001.00326, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas
Lane. BRP-NAS: Prediction-based nas using GCNs. Advances in Neural Information Processing
Systems, 33:10480–10490, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Minbin Huang, Zhijian Huang, Changlin Li, Xin Chen, Hang Xu, Zhenguo Li, and Xiaodan
Liang. Arch-Graph: Acyclic architecture relation predictor for task-transferable neural archi-
tecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11881–11891, 2022.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. ZiCo: Zero-shot NAS via
inverse coefficient of variation on gradients. arXiv preprint arXiv:2301.11300, 2023.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong
Jin. Zen-NAS: A zero-shot NAS for high-performance image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 347–356, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European conference on computer vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and
Wolfgang Banzhaf. NSGA-Net: neural architecture search using multi-objective genetic algo-
rithm. In Proceedings of the genetic and evolutionary computation conference, pp. 419–427,
2019.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
Advances in neural information processing systems, 31, 2018.

Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and Sungroh Yoon. Demystifying the
neural tangent kernel from a practical perspective: Can it be trusted for neural architecture search
without training? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11861–11870, 2022.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110–1118, 2024.

Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-based
neural architecture encoding scheme for predictor-based nas. In European Conference on Com-
puter Vision, pp. 189–204. Springer, 2020.

Xuefei Ning, Zixuan Zhou, Junbo Zhao, Tianchen Zhao, Yiping Deng, Changcheng Tang, Shuang
Liang, Huazhong Yang, and Yu Wang. Ta-gates: An encoding scheme for neural network archi-
tectures. Advances in Neural Information Processing Systems, 35:32325–32339, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning, pp. 2902–2911. PMLR, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Robin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. Speedy per-
formance estimation for neural architecture search. Advances in Neural Information Processing
Systems, 34:4079–4092, 2021.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji Liu, and Bin
Cui. ProxyBO: Accelerating neural architecture search via Bayesian optimization with zero-cost
proxies. arXiv preprint arXiv:2110.10423, 2021.

Julien Niklas Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter.
NAS-Bench-301 and the case for surrogate benchmarks for neural architecture search, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. MnasNet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33:6377–6389, 2020.

Chen Wei, Chuang Niu, Yiping Tang, Yue Wang, Haihong Hu, and Jimin Liang. NPENAS: Neural
predictor guided evolution for neural architecture search. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. In European Conference on Computer Vision, pp. 660–
676. Springer, 2020.

Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen, Mengchen Liu, Ye Yu, Zhangyang Wang,
Zicheng Liu, Mei Chen, and Lu Yuan. Stronger NAS with weaker predictors. Advances in Neural
Information Processing Systems, 34:28904–28918, 2021.

Lingxi Xie and Alan Yuille. Genetic CNN. In Proceedings of the IEEE international conference on
computer vision, pp. 1379–1388, 2017.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. KNAS: green
neural architecture search. In International Conference on Machine Learning, pp. 11613–11625.
PMLR, 2021.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
Bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning, pp. 7105–7114. PMLR, 2019.

Yu-Ming Zhang, Jun-Wei Hsieh, Chun-Chieh Lee, and Kuo-Chin Fan. RATs-NAS: Redirection of
adjacent trails on GCN for neural architecture search. arXiv preprint arXiv:2305.04206, 2023.

Yu-Ming Zhang, Jun-Wei Hsieh, Chun-Chieh Lee, and Kuo-Chin Fan. Rats-nas: Redirection of
adjacent trails on graph convolutional networks for predictor-based neural architecture search.
IEEE Transactions on Artificial Intelligence, 2024a.

Yuming Zhang, Jun Wei Hsieh, Xin Li, Ming-Ching Chang, Chun-Chieh Lee, and Kuo-Chin Fan.
Mote-nas: Multi-objective training-based estimate for efficient neural architecture search. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023.

Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, and Volkan Cevher. Generalization properties of
NAS under activation and skip connection search. Advances in Neural Information Processing
Systems, 35:23551–23565, 2022.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

Operation

(32×32×32)

FLOPs,
Params,
Latency

32P × 32P × 32Passing Rate

Ones Vec
(32×32×32)

Ones Vec+R
(32×32×32)

Operation

Sensitive

Figure 3: This figure illustrates the computation methods for different metrics. The left half of the
figure presents the calculation of FLOPs, parameters, latency, and passing rate, while the right half
demonstrates the computation of numerical sensitivity.

B IMPLEMENTATION DETAIL OF METRIC OPERATIONS

As previously mentioned, metric embedding utilizes five(c = 5) distinct metrics to characterize the
operations of a candidate architecture: [Parameters, FLOPs, Latency, Passing Rate, and Numerical
Sensitivity], and ϕ1 to ϕ5 represent these five metrics. For a chosen operation, such as convolution
or depthwise convolution, these metrics can only be computed once the operation is instantiated
within a concrete model. To achieve this, we construct a single layer model centered on the chosen
operation, with an input shape of (32,32,32), as illustrated in Fig. 3. Then every operation is de-
scribed using this simple single-layer model and the five aforementioned metrics. In the following,
we detail the computation of these metrics.

B.1 FLOPS, PARAMETERS, AND LATENCY.

Once the single-layer model is constructed, obtaining these three metrics becomes straightforward.
FLOPs represent the total number of multiplication operations required by the operation, while the
parameters indicate the number of learnable weights within the operation. These two metrics reflect
the theoretical computational cost in terms of both time and memory. In contrast, latency measures
the actual time required for a single forward pass on hardware, providing a direct indication of the
real-world execution cost. latency is calculated on the AMD Ryzen 7 PRO 5875U. We believe that
these three metrics already capture essential properties of various operations.

B.2 PASSING RATE.

This metric quantifies the proportion of features preserved or, conversely, lost during processing.
In simpler terms, it represents the downsampling ratio. It is well-known that downsampling refines
the original features, but it can also discard crucial information. To ensure a more comprehensive
characterization of operations, we explicitly incorporate the downsampling ratio into our evaluation.
As shown in the left part of Fig. 3, we compute the difference in the ratio between the output (height,
width) and the input to obtain this metric.

B.3 NUMERICAL SENSITIVITY.

This metric measures how sensitive an operation is to changes in input values. As shown in the
right part of Fig. 3, we simultaneously input two sets of data into the operation. The first input
is a (32,32,32) matrix filled with ones, while the second is the same matrix but with element-wise
additions of randomly sampled values between 0 and 1. We then compute the difference between
the outputs of these two inputs. This process is repeated 1000 times, and we take the average
difference as the final measurement. This approach quantifies the operation’s sensitivity to numerical
variations. For example, due to their different downsampling mechanisms, max pooling and average
pooling exhibit different levels of sensitivity to input perturbations.

C VISUALIZATIONS OF ENCODERS

We present t-SNE visualizations in Fig. 1 (partial results) and Fig. 4 (complete results). Each encoder
is trained with only 100 architecture pairs sampled from one of the NASBench-101, NASBench-

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

t-SNE Visualization of MLP
NASBench-101
NASBench-201
NASBench-301

MLP train on NB101
60 40 20 0 20 40 60

60

40

20

0

20

40

60

t-SNE Visualization of MLP
NASBench-101
NASBench-201
NASBench-301

MLP train on NB201
60 40 20 0 20 40 60

40

20

0

20

40

60
t-SNE Visualization of MLP

NASBench-101
NASBench-201
NASBench-301

MLP train on NB301

100 50 0 50 100

75

50

25

0

25

50

75

100
t-SNE Visualization of GCN

NASBench-101
NASBench-201
NASBench-301

GCN train on NB101
75 50 25 0 25 50 75

75

50

25

0

25

50

75

t-SNE Visualization of GCN

NASBench-101
NASBench-201
NASBench-301

GCN train on NB201
100 50 0 50 100

100

50

0

50

100

t-SNE Visualization of GCN

NASBench-101
NASBench-201
NASBench-301

GCN train on NB301

60 40 20 0 20 40 60

60

40

20

0

20

40

t-SNE Visualization of BiGCN

NASBench-101
NASBench-201
NASBench-301

BiGCN train on NB101
60 40 20 0 20 40 60 80

40

20

0

20

40

60

t-SNE Visualization of BiGCN
NASBench-101
NASBench-201
NASBench-301

BiGCN train on NB201
40 20 0 20 40 60 80

60

40

20

0

20

40

t-SNE Visualization of BiGCN

NASBench-101
NASBench-201
NASBench-301

BiGCN train on NB301

60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

t-SNE Visualization of RATs-GCN
NASBench-101
NASBench-201
NASBench-301

RATs-GCN train on NB101
60 40 20 0 20 40 60 80

40

20

0

20

40

60
t-SNE Visualization of RATs-GCN

NASBench-101
NASBench-201
NASBench-301

RATs-GCN train on NB201
60 40 20 0 20 40 60 80

40

20

0

20

40

60

t-SNE Visualization of RATs-GCN
NASBench-101
NASBench-201
NASBench-301

RATs-GCN train on NB301

60 40 20 0 20 40 60

40

20

0

20

40

60

t-SNE Visualization of CLUE-NAS
NASBench-101
NASBench-201
NASBench-301

CLUE-NAS train on NB101
80 60 40 20 0 20 40

60

40

20

0

20

40

t-SNE Visualization of CLUE-NAS
NASBench-101
NASBench-201
NASBench-301

CLUE-NAS train on NB201
60 40 20 0 20 40 60 80

40

20

0

20

40

t-SNE Visualization of CLUE-NAS
NASBench-101
NASBench-201
NASBench-301

CLUE-NAS train on NB301

Figure 4: t-SNE visualizations of various encoders.

201, or NASBench-301 search spaces. After training, we randomly sample 1,000 architectures from
each of the three search spaces and extract their embeddings using the trained encoders. These em-
beddings are then visualized using t-SNE. In the visualizations, different colors represent different
search spaces. Note that the x- and y-axis values have no intrinsic meaning due to the nature of the
t-SNE algorithm; the focus is instead on the spatial distribution of the embeddings learned by the
encoders.

From the results, we observe that CLUE-NAS is able to clearly distinguish architectures from differ-
ent, unseen search spaces, indicating that its learned representations capture higher-level semantic
information. In contrast, the other encoder-based methods fail to achieve such separation, highlight-
ing CLUE-NAS’s superior ability to generalize across diverse architecture distributions, that is an
ability that traditional encoder-based NAS methods lack.

D CLUE-NAS WITH SAMPLING STRATEGIES

Current predictors are often paired with sampling strategies to enhance search efficiency. We eval-
uated the synergy between CLUE-NAS and two widely used sampling strategies: Random (Rand)
sampling and Evolutionary (Evo) sampling. Tab. 7 presents the performance of various predic-
tors under these strategies. Here, the budget represents the total number of architecture-accuracy

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Performance comparisons between the top-30 accuracy (for Rand) and top-1 accuracy (for
Evo) of architectures found on three search spaces using CLUE-NAS and other predictors.

Model Strategy Budget NB101 NB201 NB301
MLP rand 200+30 0.9362 0.9395 0.9442
GCN rand 200+30 0.9358 0.9404 0.9441

BiGCN rand 200+30 0.9361 0.9407 0.9439
RATs-GCN rand 200+30 0.9373 0.9398 0.9447
CLUE-NAS rand 100+30 0.9392 0.9418 0.9462
CLUE-NAS rand 200+30 0.9401 0.9437 0.9470

MLP evo 200 0.9371 0.9410 0.9447
GCN evo 200 0.9368 0.9411 0.9449

BiGCN evo 200 0.9372 0.9428 0.9450
RATs-GCN evo 200 0.9380 0.9429 0.9450
CLUE-NAS evo 60 0.9390 0.9437 0.9469
CLUE-NAS evo 90 0.9398 0.9437 0.9476

pairs used throughout the search process, including both predictor training and evaluation (note:
evolutionary sampling does not require an evaluation stage). NB101, NB201, and NB301 denote
the accuracy of architectures discovered by the predictors on NASBench-101, NASBench-201, and
NASBench-301, respectively. The results demonstrate that CLUE-NAS consistently outperforms
other predictors in discovering high-accuracy architectures. With random sampling, CLUE-NAS
achieves outstanding performance with a budget of just 130 (100 for training and 30 for evaluation),
surpassing predictors that use a budget of 230 (200 for training and 30 for evaluation). Similarly,
under evolutionary sampling, CLUE-NAS delivers exceptional results with a budget of only 60,
significantly outperforming other predictors that require a budget of 200—regardless of the search
space. These findings highlight CLUE-NAS’s strong adaptability to different sampling strategies,
proving that it does not depend on any specific strategy to achieve superior results. Its performance
remains consistently exceptional across diverse conditions.

E DISENTANGLING SEMANTIC UNDERSTANDING FROM BENCHMARK
STYLE RECOGNITION

To examine whether the model’s generalization originates from semantic understanding or from
benchmark-specific style recognition, we conducted an experiment in which the operation names
in NAS-Bench-101/201/301 were anonymized. Concretely, identifiers such as nor conv 3x3 or
skip connect were replaced with placeholders like op1, op2, and op3 during evaluation, while
the training procedure was kept unchanged. The results, based on 100 training pairs, are summarized
in Table 8. We consistently observed a decline in performance across all cases when operator names
were anonymized. This suggests that the graph representation, which is constructed from quantita-
tive descriptors such as FLOPs, parameters, and latency, continues to provide a reliable source of
information independent of the textual labels. At the same time, the drop in accuracy indicates that
the model also benefits from the semantic cues carried by meaningful operation names. The CLIP
text encoder, pretrained on large-scale web data, can extract contextual information from descriptors
such as conv or sepconv, but this advantage disappears once the names are replaced by arbitrary
placeholders. These findings highlight the dual role of structural metrics and semantic operation
descriptors in supporting the model’s generalization ability.

Table 8: Cross-dataset evaluation results with anonymized operator names.
Eval on NS101 Eval on NS201 Eval on NS301

Train on NS101 76.56% 69.89% 43.34%
Train on NS201 52.74% 82.78% 36.99%
Train on NS301 34.29% 37.40% 70.82%

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F EFFECTIVENESS OF THE COARSE-TO-FINE STRATEGY

To assess the coarse-to-fine strategy, we evaluated context alignment and confidence prediction un-
der independent training, where each benchmark was trained and tested separately. As shown in
Table 9, performance is slightly lower than in joint training, but removing either component further
degrades accuracy, with the largest drop from removing both. This confirms that both modules are
beneficial and that the coarse-to-fine strategy remains effective even within a single benchmark.

Table 9: Ablation study on the impact of context alignment and confidence prediction under inde-
pendent training.

Eval on NS101 Eval on NS201 Eval on NS301
– 73.60% 82.63% 71.23%
w/o Context Align 70.92% 78.56% 68.89%
w/o Cnfd Pred 70.80% 76.67% 66.18%
w/o Context Align, Cnfd Pred 65.95% 77.49% 54.41%

G EXPLAINABILITY ANALYSIS VIA SHAP

To probe interpretability, we applied SHAP to the final MLP predictor to measure the relative im-
portance of graph- and context-derived features. As shown in Table 10, context embeddings often
dominate, but graph embeddings consistently retain significant weight. This indicates that CLUE-
NAS combines semantic cues and structural metrics, preserving architectural reasoning rather than
collapsing into benchmark style recognition.

Table 10: SHAP-based feature attribution analysis of graph embedding vs. context embedding.
Eval on NS101 Eval on NS201 Eval on NS301

Graph SHAP Context SHAP Graph SHAP Context SHAP Graph SHAP Context SHAP
Train on NS101 0.2495 0.5526 0.2441 0.6176 0.1493 0.2619
Train on NS201 0.4468 0.7047 0.3516 0.6821 0.2389 0.5241
Train on NS301 0.1870 0.2036 0.2147 0.1971 0.1632 0.2395

H ANALYSIS ON THE DISTRIBUTION OF ACCURACY AND CONFIDENCE
BOUNDS

To clarify the role of the coarse prediction mechanism, we conducted additional analyses regard-
ing the distribution of the ground-truth accuracy ACCgt, the proposed lower bounds Cb, and the
selected bounds Cb

best.

H.1 COMPARISON OF THE DISTRIBUTIONS OF ACCgt AND UNIFORM LOWER BOUNDS

We first sampled 1000 architectures each from NAS-Bench-101/201/301 and examined the distri-
bution of their ACCgt values. As shown in Table 11, most samples are concentrated in the interval
[0.8, 1.0]. This skewed distribution indicates that training directly with uniform bounds would lead
to a severe imbalance problem, making such a design infeasible.

Table 11: Distribution of ACCgt values across NAS-Bench datasets.
[0.0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,1.0]

Distribution of NS101 1 6 3 13 977
Distribution of NS201 19 0 6 68 907
Distribution of NS301 0 0 0 3 997

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H.2 DISTRIBUTION BASED ON PROPOSED LOWER BOUNDS Cb

We further considered the distribution based on the proposed lower bounds Cb, as shown in Table 12.
Here, the upper bound is fixed at 1.0 (the theoretical maximum for accuracy), while overlapping
ranges are introduced to alleviate label imbalance. This design not only differentiates confidence
levels but also stabilizes the coarse prediction mechanism, as confirmed in the ablation study.

Table 12: Distribution of architectures under the proposed lower bounds Cb.
[0.1,1.0] [0.5,1.0] [0.75,1.0] [0.875,1.0] [0.9375,1.0]

Distribution of NS101 1000 995 989 884 2
Distribution of NS201 1000 969 944 764 7
Distribution of NS301 1000 1000 1000 994 208

H.3 COMPARISON BETWEEN Cb
gt AND SELECTED Cb

BEST

To further investigate how the model utilizes the proposed lower bounds during inference, we trained
CLUE-NAS with 100 training pairs and sampled 3000 architectures (1000 from each NASBench).
Table 13 shows the distribution of Cb

best selected during prediction, compared with the distribution
of ground-truth lower bounds Cb

gt.

Table 13: Comparison between the distribution of ground-truth lower bounds Cb
gt and selected

bounds Cb
best during prediction.

[0.1,1.0] [0.5,1.0] [0.75,1.0] [0.875,1.0] [0.9375,1.0]
Distribution of Cb

best 56 39 217 2600 88
Distribution of Cb

gt 33 49 289 2387 242

Table 14: Spearman correlation across ten independent runs with five randomly sampled architec-
tures. Results are reported for CLUE-NAS and the MLP baseline on three benchmarks (NS101,
NS201, NS301).

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean
NS101 (CLUE-NAS) 55.26% 36.75% 33.24% 53.67% 47.52% 18.53% 9.56% 42.32% 47.14% 54.46% 39.85%
NS201 (CLUE-NAS) 37.74% 63.42% 49.38% 43.87% 46.83% 31.98% 66.86% 27.26% 25.98% 68.43% 46.18%
NS301 (CLUE-NAS) 38.85% 38.67% 56.43% 61.76% 68.74% 55.25% 33.04% 45.80% 57.11% 59.45% 51.53%
NS101 (MLP) 30.36% -3.61% 41.52% 44.23% 11.26% 8.50% 13.50% 46.39% 3.92% 10.83% 20.69%
NS201 (MLP) 11.97% 1.41% 31.49% 38.46% 6.43% -4.26% 5.60% 44.98% -6.65% -5.85% 12.36%
NS301 (MLP) -19.38% -2.27% 6.22% 7.51% 18.40% -17.68% -11.94% 23.94% 10.07% 22.06% 3.69%

The distributions of Cb
gt and Cb

best are closely aligned, indicating that CLUE-NAS benefits from the
design of the proposed lower bounds Cb and is able to make effective coarse judgments of candidate
architectures during prediction.

I ROBUSTNESS ANALYSIS WITH MULTIPLE RUNS OF FIVE-ARCHITECTURE
SUBSETS

To test robustness under an extreme five-pair setting, we ran ten trials on NAS-Bench-101/201/301,
each with randomly sampled pairs. CLUE-NAS was trained and evaluated independently, with
results summarized in Table 14 alongside an MLP baseline. CLUE-NAS shows substantially higher
robustness, maintaining reasonable correlations, whereas the MLP baseline is unstable and often
negative—underscoring the difficulty of this regime and the resilience of CLUE-NAS.

J COMPARISON UNDER VARIOUS BUDGETS

We evaluated CLUE-NAS, RATS-NAS (encoder/predictor baseline), and MOTE-NAS (low-cost
baseline) on NASBench-101/201/301 under a 100-pair budget. For CLUE-NAS and RATS-NAS,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

70 pairs were used for training, with the top 30 predictions validated; MOTE-NAS directly selected
the top 100 predictions without training. Each experiment was repeated 10 times with different
samples, and averaged results are reported in Table 15.

Table 15: Best architecture accuracy under a training budget of 100 pairs.
NASBench-101 NASBench-201 NASBench-301

MOTE-NAS 93.75% 94.13% 94.43%
RATS-NAS 93.67% 93.92% 94.49%
CLUE-NAS 93.82% 94.22% 94.60%

Table 16: Best architecture accuracy of MOTE-NAS under a budget of 10 pairs.
NASBench-101 NASBench-201 NASBench-301

MOTE-NAS 93.72% 93.91% 94.25%

Table 17: Best architecture accuracy of RATS-NAS and CLUE-NAS under a budget of 10 pairs.
NASBench-101 NASBench-201 NASBench-301

RATS-NAS 91.57% 92.46% 93.41%
CLUE-NAS 93.17% 93.43% 94.17%

To further evaluate performance under extremely limited budgets, we decreased the number of pairs
to only 10. In this setting, CLUE-NAS and RATS-NAS used 7 pairs for training and validated on
their top-3 predicted architectures, while MOTE-NAS directly validated the top-10 predicted archi-
tectures. Results are reported in Table 16 and Table 17. Results show that CLUE-NAS consistently
finds strong architectures under a 100-pair budget. With only 10 pairs, however, encoder-based
methods (RATS-NAS and CLUE-NAS) degrade sharply, while MOTE-NAS remains stable. This
highlights that low-cost NAS scales better under tight supervision, whereas encoder-based frame-
works gain more from larger budgets.

18


