Under review as a conference paper at ICLR 2026

CLUE-NAS: A CLIP-INSPIRED CONTRASTIVE
LEARNABLE UNIFYING ENCODER FOR NEURAL AR-
CHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional encoder-based neural architecture search (NAS) methods typically
encode candidate architectures as graphs based on their information flow and oper-
ations. Such graph-based embeddings primarily capture topological features, such
as nodes and edges, while lacking high-level semantic representations, which lim-
its the robustness and generalization of encoder-based NAS. This issue is evident
in several phenomena, such as the inability of typical NAS methods to interpret
previously unseen operations or their limited capacity to benefit from joint train-
ing across multiple search spaces. To mitigate these limitations, we propose Con-
trastive Learnable Unifying Encoder for NAS (CLUE-NAS), a novel framework
that leverages the text encoder of Contrastive Language Image Pre-training (CLIP)
to generate context embeddings enriched with high-level semantics and integrates
them with graph-based embeddings through contrastive learning. CLUE-NAS
further emulates human expert behaviors by employing a coarse-to-fine strategy
to enhance performance. Experiments on NASBench-101, NASBench-201, and
NASBench-301 show that CLUE-NAS not only demonstrates strong generaliza-
tion to unseen operations but also benefits substantially from joint training, achiev-
ing competitive results against state-of-the-art NAS baselines.

1 INTRODUCTION

Neural Architecture Search (NAS) aims to discover optimal architecture within a predefined search
space containing numerous candidates. Early NAS methods based on reinforcement learning Zoph
& Le (2016); Baker et al. (2016); Tan et al. (2019) incurred prohibitively high search costs, while
differentiable approaches such as DARTS Dong & Yang (2019); Liu et al. (2018b); Cai et al. (2018);
Xie et al. (2018) suffered from instability when transitioning from continuous to discrete architec-
tures. Moreover, these methods often require substantial computational resources. To address these
limitations, a range of low-cost alternatives Ru et al. (2021); Abdelfattah et al. (2021); Lin et al.
(2021); Li et al. (2023) have emerged, including NTK-based methods Chen et al. (2021); Xu et al.
(2021); Zhu et al. (2022). However, such methods typically rely on complex theoretical assumptions
that often fail to hold in practice. For instance, both LGA Mok et al. (2022) and MOTE Zhang et al.
(2024b) have shown that the assumptions underlying NTK, which are derived under the premise
of infinitely wide networks, do not generalize well to real-world architectures with finite width,
resulting in poor predictive performance.

Another promising direction is the encoder-based NAS framework Liu et al. (2018a); Luo et al.
(2018); Wen et al. (2020); Dudziak et al. (2020); Wei et al. (2022); Wu et al. (2021); Huang et al.
(2022); Zhang et al. (2023), which strikes a more favorable balance between efficiency and accu-
racy. These approaches often outperform DARTS-based methods in speed and surpass NTK-based
methods in predictive performance. However, their effectiveness largely depends on the architec-
ture representation quality. A common strategy is to encode architectures as graphs, where nodes
represent operations and edges represent information flow. While effective to some extent, this
graph-based encoding approach typically relies on one-hot vectors to represent operations. Unfortu-
nately, this labeling method is too hard to generalize across search spaces, as each benchmark. For
example, NASBench-101 Ying et al. (2019), NASBench-201 Dong & Yang (2020), and NASBench-
301 Siems et al. (2020) define their own distinct sets of operations. For instance, the standard

Under review as a conference paper at ICLR 2026

t-SNE of CLUE-NAS

NASBench-101
NASBench-201
NASBench-301

(a) MLP (b) GCN (c) CLUE-NAS

Figure 1: The three figures illustrate the distribution of architecture embeddings obtained us-
ing different encoders. The left figure corresponds to MLP, the middle to GCN, and the right
to the proposed CLUE-NAS. All three encoders were trained on NASBench-101 and evaluated
on NASBench-101, NASBench-201, and NASBench-301, respectively. Notably, only CLUE-
NAS demonstrates a clear ability to generalize to unseen architectures from NASBench-201 and
NASBench-301. In contrast, both MLP and GCN fail to capture meaningful representations for
these unseen architectures.

convolutions used in NASBench-101 and NASBench-201 differ significantly from the separable
convolutions used in NASBench-301. Consequently, one-hot encoding fails to capture cross-space
generalizability. Fig. 1 shows some evidence about this issue, which the trained MLP and GCN
on NASBench-101 cannot identify the architectures of NASBench-201 and NASBench-301. For a
complete discussion of Fig. 1, please refer to the Appendix B.

Moreover, these graph-based encoders primarily focus on topological structure, overlooking the
semantic cues that human experts often rely on when evaluating architectures. In contrast, human
experts rarely assess neural architectures based solely on their wiring diagrams. Instead, they draw
from experience to make intuitive and qualitative assessments such as “this model looks heavy” or
“this one seems efficient but shallow.” These judgments stem not from explicit numerical metrics
or topological analysis but from flexible and approximate semantic reasoning. This human intuition
enables robust performance estimation across a wide range of architectures, from VGG Simonyan
& Zisserman (2014) and ResNet He et al. (2016) to MobileNet Howard et al. (2017); Sandler et al.
(2018) and Vision Transformers Dosovitskiy et al. (2020). In short, existing encoder-based NAS
frameworks treat performance prediction as a regression task over graph embeddings, rendering
them topology-aware but semantically blind, which hampers their generalization and robustness.

The motivation behind this paper is twofold. First, while recent advances in neural architecture
search (NAS) have benefited from predictive encoders and zero-cost proxies, they remain largely
confined to topology-based representations that treat architectures as graphs with discrete, hard-
labeled operations. Such encodings are limited in expressiveness, difficult to transfer across hetero-
geneous search spaces, and fail to capture higher-level design intent. Second, there is a growing
gap between how human experts reason about architectures—often using intuitive, semantic judg-
ments, like ‘deep,” ‘sparse,” or ‘transformer-like’, and how machine-based encoders currently oper-
ate. Bridging this gap calls for a richer, more flexible representation that integrates structural and
semantic information. In response, we propose a CLIP-inspired contrastive learning framework that
unifies graph-based and language-based architectural descriptions, enabling performance prediction
that is both generalizable and semantically grounded.

Inspired by the way human experts assess neural architectures, we propose CLUE-NAS (Contrastive
Learnable Unifying Encoder for Neural Architecture Search) to generate context embeddings with
high-level semantics and integrate them with graph-based embeddings through contrastive learning.
Unlike prior approaches that rely solely on topological embeddings, CLUE-NAS jointly aligns and
integrates topological representations with context embeddings extracted from CLIP’s text encoder,
which capture high-level semantic information. Furthermore, CLUE-NAS emulates human reason-
ing by combining semantic priors with fine-grained architectural analysis to predict the performance
of architectures in a coarse-to-fine manner. This fusion of semantic and structural understanding
significantly enhances the predictive accuracy and generalizability of NAS models, as demonstrated
by our experimental results. CLUE-NAS consistently outperforms baseline methods on NASBench-
101, NASBench-201, and NASBench-301. Our key contributions are summarized as follows.

* Novel dual-view representation of architectures, combining graph-based structural character-
istics (operation metrics and information flow) with semantic context embeddings derived from
descriptions of natural languages using the CLIP text encoder.

Under review as a conference paper at ICLR 2026

* Contrastive context alignment mechanism, which aligns graph-based embeddings with context
embeddings in a coarse-to-fine manner. This mimics human evaluation behavior and enhances
the robustness of representation learning.

* Human-like confidence prediction strategy, where a coarse semantic estimate is refined through
a learned offset, providing accurate and bounded performance prediction for candidate architec-
tures.

* Strong empirical results across multiple NAS benchmarks, demonstrating that CLUE-NAS
significantly outperforms existing encoder-based and zero-cost NAS in both accuracy and gener-
alizability, while maintaining low computational overhead.

2 RELATED WORK

Neural Architecture Search (NAS) has been extensively studied, with early approaches relying on
reinforcement learning Zoph & Le (2016); Baker et al. (2016); Tan et al. (2019) and differentiable
frameworks Dong & Yang (2019); Liu et al. (2018b); Cai et al. (2018); Xie et al. (2018). Some meth-
ods employ evolutionary algorithms Lu et al. (2019); Real et al. (2019; 2017); Xie & Yuille (2017);
Dai et al. (2021) or RNN-based strategies to iteratively refine architectures. However, these tech-
niques often require significant computational resources and have struggled to deliver competitive
performance compared to more recent advancements.

Low-Cost NAS: In response to the high computational demands of traditional NAS, low-cost meth-
ods have gained traction. Techniques like SynFlow Abdelfattah et al. (2021); Tanaka et al. (2020)
and TSE Ru et al. (2021) estimate performance by analyzing gradient variations, while neural tan-
gent kernel (NTK)-based methods such as TE-NAS Chen et al. (2021), KNAS Xu et al. (2021), and
LGA Mok et al. (2022) leverage NTK assumptions to approximate performance. These approaches
assume that the initial state of a model can predict its final performance Lee et al. (2019), but this
assumption does not always hold in practice Mok et al. (2022); Zhang et al. (2024b). MOTE Zhang
et al. (2024b) instead analyzes the loss landscape through linear interpolation during training. While
these methods are computationally efficient, they rely on complex mathematical assumptions, lim-
iting their generalizability across different search spaces Mok et al. (2022); Zhang et al. (2024b).

Encoder-based NAS: Unlike gradient-based or other low-cost NAS methods, encoder-based ap-
proaches Liu et al. (2018a); Luo et al. (2018); Wen et al. (2020); Dudziak et al. (2020); Wei et al.
(2022); Wu et al. (2021) train on a small set of architecture—performance pairs to balance efficiency
and accuracy. Early works Liu et al. (2018a); Luo et al. (2018); Wen et al. (2020); Dudziak et al.
(2020) used GCNs to sample architecture batches, outperforming DARTS at lower cost. Weak-
NAS Wau et al. (2021) showed that a simple MLP with evolutionary search could do even better,
while BRP Dudziak et al. (2020) and RATs Zhang et al. (2023) enhanced encoders with special-
ized modules, and GATE/TA-GATE Ning et al. (2020; 2022) used simulated inputs for embedding
extraction. Yet most still rely on graph-based encodings, where one-hot operation labels fail to rep-
resent unseen operations, forcing retraining for each search space. To address this, we introduce
semantic features into architecture encoders.

Contrastive Languagelmage Pre-training (CLIP): CLIP Radford et al. (2021) is a vision-
language foundation model that learns to align images and text in a shared embedding space. Trained
on 400 million image—text pairs from the Internet, CLIP uses a contrastive learning objective to
maximize the similarity between matching image—text pairs. At the intersection of NAS and vision-
language model, GrowCLIP Deng et al. (2023) represents a data-driven automatic model growing
algorithm inspired by CLIP. Despite the analogy between images and graphs, the potential of lever-
aging CLIP to facilitate NAS has not been considered in the open literature as far as we know.

3 CONTRASTIVE LEARNABLE UNIFYING ENCODER

The proposed Contrastive Learnable Unifying Encoder for NAS (CLUE-NAS) takes three types of
input to represent a candidate architecture: bottom-up information flow, operation metrics, and top-
down context features. The first two, similar to previous approaches Wen et al. (2020); Dudziak et al.
(2020); Shen et al. (2021); Zhang et al. (2024a), treat the architecture as a graph, and the last one is
derived using a CLIP’s text encoder. CLUE-NAS aligns the information flow and operation metrics
with context features, resulting in more robust embeddings. Subsequently, CLUE-NAS mimics
human expert behaviors by qualitatively summarizing architecture performance through a coarse-

Under review as a conference paper at ICLR 2026

__ Confidence Prediction __
(m*1024) r |

- Text Encoder @ *m»qp—vl] |
7 Y —
0.5

| Arch |—-:+-| Info Flow |} [—

I (,320) . 0.75 |:|:|
! - 0.875 -

I 09375 [l

1024)

Metric OPs

(,128)

Figure 2: Overview of CLUE-NAS. Architecture prompts are encoded into context embeddings via
CLIP’s text encoder, while architectural topologies are transformed into graph-based embeddings.
CLUE-NAS aligns these representations via cosine similarity and refines the alignment progres-
sively for accurate prediction.

to-fine confidence prediction method. This coarse-to-fine strategy avoids overly rigid predictions
and significantly enhances CLUE-NAS’s ability to generalize to unseen architectures.

3.1 GRAPH-BASED EMBEDDING

The proposed CLUE-NAS framework aligns two distinct types of embeddings: a graph-based em-
bedding that encodes the architectural topology, and a context embedding that captures high-level
semantic cues to bridge the structural representation of neural architectures with more semantic
features. Before introducing our core alignment mechanism, we first introduce the construction of
the graph-based embedding. Abstractly, a candidate architecture A comprises various operations
O = {041,04,...,0,} (e.g., convolution, pooling, fully connected layers) and the corresponding
information flow patterns, such as residual and dense connections. When operations are treated
as nodes and the information flow as edges between them, representing an architecture as a graph
becomes intuitive. In this formulation, the adjacency matrix encodes the edges, while the feature
matrix represents the node attributes.

Flattened Adjacency Matrix: Our encoding of architectural edges is inspired by the insights of
RATSs Zhang et al. (2024a), which argue that a binary adjacency matrix is overly rigid. When
coupled with Graph Convolutional Network (GCN) for feature extraction, such rigidity can have
detrimental effects, often leading to worse performance than using a simple MLP. Following this
observation, we flatten the adjacency matrix and zero-pad to a fixed length of 320 to form a vector
representation, denoted as Aj;o,,. This vector is then directly processed by an MLP for feature
extraction. The calculation process is shown in Fig. 2.

Operation Metrics: A common approach to encoding operations involves constructing a feature
matrix using one-hot vectors. However, one-hot encoding serves as a hard label, which limits the
model’s ability to generalize to previously unseen architectures containing novel operations, as il-
lustrated in Fig. 1. To overcome this limitation, we introduce a set of five soft metrics to describe
each operation O;, such as parameter count, FLOPs, latency, and other relevant attributes. These
soft, proxy labels offer a more expressive and flexible representation of operations, thereby mitigat-
ing the drawbacks of one-hot encoding. The resulting feature matrix is flattened, zero-padded to
length 128 (denoted Aops), and processed by an MLP. As shown in Tab. 4, this representation im-
proves CLUE-NAS performance. Finally, as illustrated in Fig. 2, we concatenate the outputs of two
MLPs applied to A flow and Ay, then feed the result into another MLP to obtain the graph-based
embedding G, capturing the architecture’s topology:

G = MLPA(MLP;(Afiow), MLPy(Aops)), (1

where M LP,, MLPy, and M LP, are three multi-layer perceptrons responsible for transforming
A, Atiow, and A,y into their respective feature vectors.

3.2 ALIGN THE CONTEXT AND GRAPH-BASED EMBEDDINGS

To obtain a global contextual representation of an architecture .4, we construct a natural language
prompt Apmt in the form: “The architecture has N nodes: Oy, Os, ..., On.” This description is

Under review as a conference paper at ICLR 2026

encoded by CLIP’s pre-trained text encoder 7 to produce a semantic embedding 7 (Apmt). Lever-
aging CLIP’s semantic abstraction, this embedding acts as a global prior that guides the learning
of the graph-based representation—mirroring how human experts first form an intuitive overview
before detailed structural analysis.

Positional Embeddings for Confidence Score Division: To emulate this coarse-to-fine reason-
ing process, the proposed CLUE-NAS framework introduces a contrastive alignment mechanism.
Specifically, we embed the context representation with multiple levels of confidence, where each
level reflects a progressively refined estimation of the candidate architecture’s expected performance.
Then, the graph-based embedding G is aligned with these context representations, enabling it to ab-
sorb both high-level semantic priors and the associated confidence levels.

To distinguish between different levels of confidence without introducing additional learning com-
plexity, we incorporate a set of fixed, non-learnable positional embeddings £ = {Ei}j:l,_“7 Mo
where E; = ﬁ and M is a hyper-parameter used to divide the confidence level to M slots. The
effects of M on performance improvement will be addressed in the experimental section. These
scalar values are linearly spaced and serve to differentiate between context embeddings at different
confidence levels. These levels later guide the CLUE-NAS in emulating the coarse-to-fine reason-
ing process commonly employed by human experts during architecture prediction. With E;, a set
of context embeddings C' can be constructed to represent varying degrees of confidence about the
architecture’s performance:

C={T(Apmt) + Ei}iz1,..1m- (2)
Each context embedding C; now jointly encodes both the semantic features of the architecture A
and the corresponding confidence level. To further incorporate this confidence information into the
learning objective, we assign a lower bound on the predicted performance for each confidence level.
Specifically, for each C;, we define the lower bound as C? = 1 — 5,7 = 1,2,...M, such that
higher confidence levels correspond to progressively higher lower bounds.

Context Alignment: During training, the ground-truth context embedding C'y; is derived from test
accuracy. The graph-based representation G is then aligned with Cy; via a joint loss £ combining
KL divergence and cosine similarity.

Laign(G,Cqt) = KL(G,Cy) + (1 — o (Sim(G, Cyt))), 3)

where Sim() is a similarity function and o is a sigmoid function. During inference, we compute the
similarity between the graph-based embedding G and each confidence-aware context embedding C;
through an inner product. Then, we identify the context embedding C',,.x with the highest similarity:

Crnax = arg max Sim(G, C;). 4)

Finally, we concatenate the graph-based embedding G with its most semantically aligned context
embedding Cy,ax to form a robust and semantically enriched representation [G, Cypqz)-

Confidence Prediction: So far, CLUE-NAS has generated a semantically enriched embedding vec-
tor, denoted as [G, Cipax]- To emulate the initial coarse-grained assessment typically performed by
human experts when evaluating a neural architecture, we introduce a predefined lower-bound esti-
mate of performance, denoted as Cgest. Notably, the value of Cé’est is selected from a predefined
set of candidates Cf , Cg, R C’f’w based on the index of C,,, (or best = the index of Cl,,). This
constraint enables CLUE-NAS to make informed predictions within a plausible performance range,
rather than generating arbitrary outputs. Such a design mirrors the human decision-making process,
where an initial rough estimation precedes a more precise evaluation. Specifically, the final target

prediction P(.A) is formulated as a bounded refinement over Cf, _,:

P(-A) = P(G, CmaX) = Cgest + U(MLP([G7 CmaX])) X (1 - Clz))est)’ (5)

where the embedding [G, Ciax] is passed through a feedforward network MLP, and the output is
scaled by a sigmoid function o. To ensure it is proportional to the confidence gap, the normalized
strength is scaled again by (1 — C}.__,). We refer to this human-inspired coarse-to-fine refinement
strategy as Confidence Prediction.

Training Setting: The term “architecture-accuracy pair” is defined as a candidate architecture and
its corresponding test accuracy. Obtaining an architecture-accuracy pair is time-consuming; for in-
stance, each pair can take thousands of GPU seconds on CIFAR-10 and even hundreds of thousands

Under review as a conference paper at ICLR 2026

Table 1: Spearman correlations for NASBench-101, NASBench-201, and NASBench-301 using
encoders trained independently with three training budget across all three search spaces.

Model 100 pairs per NB 50 pairs per NB 5 pairs per NB
NB101 | NB201 | NB301 | NB101 | NB201 | NB301 | NB101 | NB201 | NB301

MLP 0.427 0.664 0.535 0.205 0.589 0.246 0.161 0.177 0.061

GCN 0.362 0.416 0.489 0.122 0.428 0.183 | -0.318 | -0.269 | -0.122

BiGCN 0.603 0.386 0.482 0.468 0.649 0.393 | -0.166 | 0.095 0.056
RATs-GCN | 0.623 0.653 0.420 0.447 0.633 0.339 0.170 0.359 0.181
CLUE-NAS | 0.740 0.831 0.716 0.530 0.728 0.607 0.366 0.481 0.496

of GPU seconds on ImageNet. Therefore, minimizing the consumption of architecture-accuracy
pairs throughout the search process is crucial for CLUE-NAS and other encoder-based NAS meth-
ods. To train the CLUE-NAS, we first sample a set of architectures from the search space and train
them to obtain their corresponding accuracies, thereby forming architecture—accuracy pairs. The
number of training pairs varies across experiments (5, 50, or 100), and the impact of this variation is
discussed in the experimental section. All CLUE-NAS training runs share the same hyperparameter
settings: the batch size is fixed at 16, and the training proceeds for a total of 200 epochs. The learn-
ing rate is initially set to 0.01 for the first 100 epochs and then reduced to 0.001 for the remaining
100 epochs. The overall training loss L£¢y,e comprises two components:

['Clue = »C'BCE' (P(A), ACCgt) + »Calgn (Ga Cgt)a (6)

where Lpcp is a binary cross-entropy loss used for optimizing the confidence prediction mech-
anism, which is based on the confidence-bound estimation described earlier. The alignment loss
Laign previously introduced in Eq. (3), is designed to enforce consistency between architecture
embeddings and contextual features.

4 EXPERIMENTAL RESULTS

We use three search spaces (all of them are cell-based search spaces): NASBench-101 consists of
423,621 candidates trained on CIFAR-10 for 108 epochs. NASBench-201 includes 15,625 candi-
dates trained on CIFAR-10, CIFAR-100, and ImageNet-16-120 for 200 epochs each. NASBench-
301 contains 57,189 candidates trained on CIFAR-10 for approximately 100 epochs.

4.1 COMPARISON CLUE-NAS AND ENCODERS IN NAS

Independent Training Experiments: We present a comparative analysis between CLUE-NAS and
several baseline encoders that rely solely on topological representations. Experiments are conducted
across three distinct NAS search spaces, where each model is independently trained under three
data regimes: 100 training pairs per search space, 50 pairs per search space, and an extreme few-
shot scenario with only 5 pairs per search space. As shown in Tab. 1, CLUE-NAS consistently
achieves substantially higher Spearman correlation coefficients than competing methods across all
training settings. While CLUE-NAS retains strong predictive performance even in the low training
data regime, conventional baselines such as GCN and its variant BIGCN Wen et al. (2020) often
exhibit negative correlations, indicating a complete collapse in predictive capacity. Although RATs-
GCN Zhang et al. (2024a) is a self-attention-enhanced GCN variant, and it performs better than
standard GCNes, it is still consistently outperformed by CLUE-NAS across all training data budgets.
Under the 5 pairs setting, RATs-GCN achieves Spearman correlations of 17.0%, 35.9%, and 18.1%
on NASBench-101, NASBench-201, and NASBench-301, respectively. In contrast, CLUE-NAS
achieves 36.6%, 48.1%, and 49.6% on the same benchmarks, representing a substantial improve-
ment. These results underscore the effectiveness and robustness of CLUE-NAS as an advanced
encoder for neural architecture performance prediction.

Joint Training Experiments: We further present an additional set of experiments conducted on the
same search spaces to evaluate the performance of the encoder after joint training. In this setup, we
consider three different training budgets: 100, 50, and 5 architecture pairs per search space. These
training pairs are then aggregated, resulting in a total of 300, 150, and 15 pairs, respectively, which
are used to jointly train the model shared across all three search spaces in each pair’s setting.

Under review as a conference paper at ICLR 2026

Table 2: Spearman correlations for NASBench-101, NASBench-201, and NASBench-301 using
encoders trained jointly with three training budget across all three search spaces.

Model 100 pairs per NB 50 pairs per NB 5 pairs per NB
NB101 | NB201 | NB301 | NB101 | NB201 | NB301 | NB101 | NB201 | NB301

MLP 0.527 0.643 0.598 0.241 0.580 0.368 0.292 0.214 0.074

GCN 0.315 0.360 0.308 0.125 0.176 0.174 | -0.036 | 0.147 | -0.146

BiGCN 0.635 0.658 0.569 0.400 0.529 0.386 0.108 0.467 0.206
RATs-GCN | 0.583 0.634 0.473 0.296 0.560 0.355 0.083 0.459 0.320
CLUE-NAS | 0.771 0.852 0.724 0.593 0.767 0.634 0.445 0.612 0.552

Table 3: Spearman correlations on three search spaces based on encoders that only train on one of
them. Note that the training budget is 100, 50, and 5 per NASBench.

Dataset used | 100 pairs per NB | 50 pairs per NB 5 pairs per NB

Model for training | NB201 | NB301 | NB201 | NB30I | NB20I | NB30I
MLP NBI01 0.263 | 0.056 | -0.108 | -0.019 | -0.121 | -0.111
GCN NB101 -0.065 | -0.199 | -0.148 | -0.074 | -0.201 | -0.188
BiGCN NB101 0446 | 0383 | 0427 | 0221 | 0210 | 0.022
RATs-GCN NB101 0459 | 0245 | 0370 | 0202 | -0.057 | -0.083
CLUE-NAS | NBIOI 0.631 | 0513 | 0.583 | 0.474 | 0255 | 0.346
NBI10I | NB301 | NB10I | NB30I | NBI0I | NB30I

MLP NB201 0363 | 0.129 | 0315 | 0.019 | 0.081 | -0.228
GCN NB201 0.065 | -0.163 | -0.154 | 0.007 | -0.125 | -0.005
BiGCN NB201 0332 | 0235 | 0.131 | 0.121 | -0243 | -0.364

RATs-GCN NB201 0.192 0.067 0.170 0.141 0.028 | -0.165
CLUE-NAS NB201 0.529 0.461 0.533 0.392 0.338 0.224
NB101 | NB201 | NB101 | NB201 | NB101 | NB201

MLP NB301 -0.003 | 0.054 | -0.005 | -0.052 | -0.130 | -0.041
GCN NB301 0.236 0.159 | -0.104 | -0.164 | -0.047 | -0.361
BiGCN NB301 -0.074 | 0.024 | -0.120 | -0.036 | -0.111 | -0.025
RATs-GCN NB301 -0.534 | -0.745 | -0.069 | -0.328 | -0.131 | -0.347

CLUE-NAS NB301 0.422 0.539 0.337 0.413 0.120 0.274

As shown in Tab. 2, the results demonstrate that CLUE-NAS exhibits a significant performance
improvement. Compared to the results in Tab. 1, CLUE-NAS consistently benefits from joint train-
ing across all budget settings. Specifically, under the extreme low training pairs regime of only 5
pairs per search space, CLUE-NAS achieves impressive Spearman correlations of 44.5%, 61.2%,
and 55.2% on NASBench-101, NASBench-201, and NASBench-301, respectively. These represent
substantial improvements of 32.4%, 27.2%, and 11.3% over the independently trained CLUE-NAS.

In contrast, other methods, such as MLP, GCN, BiGCN, and RATs-GCN do not consistently benefit
from joint training. In some cases, their performance even degrades. For example, GCN exhibits
a drop in Spearman correlation under the 100 pairs setting, with decreases of -8.0%, -15.6%, and
-58.7% on NASBench-101, NASBench-201, and NASBench-301, respectively. We attribute this to
CLUE-NAS’s ability to capture and integrate high-level semantic features of architectures, which
enables it to extract transferable knowledge across different search spaces. In contrast, traditional
NAS encoders lack this crucial capability, and thus, joint training may introduce noisy supervision,
leading to unstable optimization and degraded performance.

Unseen Architecture Experiments: As shown in Tab. 2, CLUE-NAS benefits strongly from joint
training, indicating its ability to capture higher-dimensional representations. To test this, we trained
with 100, 50, and 5 pairs under disjoint search spaces—e.g., training on NASBench-101 and evaluat-
ing on NASBench-201/301 using Spearman correlation. This setup requires predicting performance
on unseen architectures, a difficult task given differences across search spaces in layers, hyperpa-
rameters, and candidate operations (e.g., NASBench-301 adds dilated and separable convolutions
absent from NASBench-101/201).

Tab. 3 shows the experimental results. CLUE-NAS consistently maintains a considerable level of
predictive capability across different conditions. Notably, when trained on NASBench-101 with
100 pairs, CLUE-NAS achieves Spearman correlations of 63.1% and 51.3% on NASBench-201 and

Under review as a conference paper at ICLR 2026

Table 4: Ablation study of each component in CLUE-NAS.
OP Metrics Fixed Pstn Embd Cntxt Align Cnfd Pred NB101 NB201 NB301

4 v v 0.737 0.819 0.532
v 4 v 0.722 0.763 0.595
v v v 0.726 0.802 0.619
v 4 v 0.693 0.796 0.665
v 4 4 v 0.771 0.852 0.724

Table 5: Ablation study of hyper-parameter M for context embeddings

100 pairs per NB 50 pairs per NB 5 pairs per NB
NB101 | NB201 | NB301 | NB101 | NB201 | NB301 | NB101 | NB201 | NB301
0.713 0.805 0.641 0.576 0.749 0.523 0.363 0.503 0.299
0.771 0.852 0.724 0.593 0.767 0.634 0.445 0.612 0.552
0.732 0.824 0.651 0.580 0.765 0.579 0.382 0.527 0.324

QU W §

NASBench-301, respectively, despite these architectures being entirely unseen during training. In
contrast, BIGCN and the more advanced RATs-GCN perform significantly worse under the same
conditions, with GCN even exhibiting negative correlations, indicating a complete loss of predictive
ability. Furthermore, under the extreme condition of only 5 training pairs, CLUE-NAS still retains
predictive ability. Although its performance is reduced, all baseline methods (MLP, GCN, BiGCN,
and RATs-GCN) entirely fail under this setting.

These results further demonstrate CLUE-NAS’s capacity to capture high-level semantic represen-
tations of candidate architectures. As a result, it can generalize across different search spaces and
operate effectively under few-shot scenarios, and these capabilities are lacking in prior encoders.
Fig. 4 shows more visualization results, please refer to Appendix B.

4.2 ABLATION STUDY OF CLUE-NAS

Impact of Key Components: CLUE-NAS comprises four key components: (1) replacing one-hot
encodings with Operation Metrics (OP Metrics), (2) using context embeddings as fixed positional
encodings (Fixed Pstn Embd), (3) aligning context and graph embeddings (Cntxt Algn), and (4)
coarse-to-fine prediction (Cnfd Pred). We conduct ablations under the 100-pair joint training setting
(Tab. 4), finding that removing any component degrades performance—highlighting the critical role
of each design choice.

Impact of Context Embedding Length CLUE-NAS introduces a hyperparameter M that deter-
mines the length of the context embeddings. This length controls the granularity of the lower bound
distribution of confidence levels Cf. In essence, a larger M results in a finer division of the confi-
dence spectrum, allowing the confidence prediction module to include more branches that specifi-
cally target high-performing architectures.

We conducted an ablation study (Tab. 5) on different values of M, finding the best performance at
M = 5. With M = 3, context embeddings are too short, yielding coarse representations that weaken
the coarse-to-fine prediction. At M = 7, confidence bins become extreme (e.g., C? = 0.984375),
leaving few training pairs per bin and introducing redundancy and noise. Thus, setting M too low
or too high degrades CLUE-NAS performance.

4.3 COMPARISON BETWEEN FINETUNE-FREE CLUE-NAS AND OTHER NASS

As shown in Fig.1, CLUE-NAS demonstrates strong generalization, enabling deployment without
finetuning. To evaluate its performance, we assess it on the three sub-datasets of NASBench-201,
using only 100 training pairs from NASBench-101 and 100 from NASBench-301, without includ-
ing any data from NASBench-201. As a result, CLUE-NAS operates on NASBench-201 with zero
adaptation, and the search cost is determined solely by evaluation. We further combine CLUE-NAS
with an evolutionary algorithm similar to that in Zhang et al. (2024b)(for a comparison of sam-
pling methods, please refer to Appendix C.), referred to as CLUE-NAS-F. In addition, we propose

Under review as a conference paper at ICLR 2026

Table 6: Comparison of the proposed CLUE-NAS and other NAS methods on NASBench-201.
We have selected the most recent and relevant benchmark methods for each category. Note that
‘Cost (s)” means the total cost in GPU seconds, containing the training and evaluation cost. The
best-performing result within each category is highlighted in bold.

Type Model CIFAR-10 CIFAR-100 ImgNet-16
P Acc(%)[Cost(s)|Acc(%)|Cosi(s) | Acc(%)|Cosi(s)
KNAS (k=20) Xu et al. (2021) 93.38 | 44K | 70.78 | 9.2K | 44.63 | 20K
Low-cost Eigen-NAS (k=20) Zhu et al. (2022) | 93.46 | 44K | 71.42 | 9.2K | 45.53 | 20K
LGA Mok et al. (2022) 94.30 | 3.6K | 72.42 | 54K | 45.30 | 3.6K
MOTE-NAS (k=10) Zhang et al. (2024b)| 94.15 | 42K | 72.54 | 4.3K | 46.38 | 11.3K
LLM GENIUS Zheng et al. (2023) 93.79 | 8.0M | 7091 | 8.0M | 44.96 |25.0M
LLMatic Nasir et al. (2024) 9426 | 8.0M | 71.62 | 8.0M | 45.87 |25.0M
Neural Predictor Wen et al. (2020) 94.07 [840.0K| 72.18 [840.0K| 46.39 | 2.4M
WeakNAS Wu et al. (2021) 94.23 (840.0K| 73.42 |840.0K| 46.79 | 2.4M
Proxy-BO Shen et al. (2021) - - 73.48 | 1.2M | 47.18 | 3.2M
Encoder Arch-Graph Huang et al. (2022) - - 73.38 [840.0K| - -
RATSs-NAS Zhang et al. (2023) 93.98 | 14.8K | 72.35 | 13.8k | 45.39 | 34.7k
CLUE-NAS-F 94.34 |451.2K| 73.51 |426.7K| 47.31 | 1.3M
CLUE-NAS-EF 94.30 | 12.8K | 72.64 | 12.4K | 46.79 | 31.8K

CLUE-NAS-EF, which accelerates the search using early-stopping test accuracy, with a trade-off in
performance. Results are presented in Tab. 6, and the analysis is structured in three parts: compari-
son with encoder-based, LLM-based, and low-cost NAS methods.

Encoder-based NAS: Compared to encoder-based NAS, CLUE-NAS-F finds superior architectures.
Even against RATs-NAS Zhang et al. (2023), CLUE-NAS-EF achieves better results at smaller
search costs. Unlike other predictors that require finetue on specific search spaces, both CLUE-
NAS-F and CLUE-NAS-EF operate in a finetue-free manner, highlighting advantage of CLUE-NAS
in practical applications.

LLM-based NAS: In recent years, several attempts have been made to leverage large language
models (LLMs) for NAS, as exemplified by GENIUS Zheng et al. (2023) and LLMatic Nasir et al.
(2024). These methods are expected to offer strong semantic representations. However, they re-
main in an early exploratory stage and fail to integrate the topological features that are intrinsic
to traditional encoder-based NAS approaches. As a result, their performance is suboptimal. In
contrast, CLUE-NAS-F outperforms both GENIUS and LLMatic, achieving superior accuracies of
94.34%, 73.51%, and 47.30%, while also demonstrating significantly lower search costs compared
to LLMatic. The more efficient CLUE-NAS-EF variant achieves 94.30%, 72.64%, and 46.79%, still
surpassing both baselines while further improving search efficiency. Note that the reported search
costs for GENIUS and LLMatic are estimated based on Nasir et al. (2024), which involves 2000
architecture-accuracy pairs during training and evaluation stages.

Low-cost NAS: CLUE-NAS combines an encoder with semantic priors, diverging from speed-
focused low-cost NAS methods. Though more computationally intensive, it delivers higher accu-
racy: CLUE-NAS-ES achieves 46.79% on ImageNet-16 in 31.8K GPU seconds, surpassing MOTE-
NAS (46.38%), while CLUE-NAS-F reaches 47.30%, near the NAS-Bench-201 upper bound. Thus,
CLUE-NAS is ideal when top-tier performance is required.

5 CONCLUSIONS

This paper presents CLUE-NAS, a novel encoder for Neural Architecture Search (NAS) that in-
tegrates both topological representations and high-level semantic features. In contrast to prior en-
coders that primarily focus on architectural topology, CLUE-NAS captures deeper semantic cues,
enhancing search efficiency and improving generalization to unseen architectures. It employs a
coarse-to-fine prediction strategy: first estimating a lower bound of model performance, then refin-
ing the prediction for greater stability. Experiments on NASBench-101/201/301 show that CLUE-
NAS consistently outperforms traditional encoders and matches state-of-the-art NAS methods, while
requiring as few as five training pairs. Though slower than low-cost NAS approaches, it enhances
the practicality of encoder-based NAS and highlights the value of semantic priors from language
models, offering a promising path toward more efficient and interpretable NAS.

Under review as a conference paper at ICLR 2026

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, f.ukasz Dudziak, and Nicholas D Lane. Zero-cost
proxies for lightweight NAS. arXiv preprint arXiv:2101.08134, 2021.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. arXiv preprint arXiv:1812.00332, 2018.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on ImageNet in four
GPU hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021.

Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen, Yuandong
Tian, Matthew Yu, Peter Vajda, et al. FBNetV3: Joint architecture-recipe search using predic-
tor pretraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16276-16285, 2021.

Xinchi Deng, Han Shi, Runhui Huang, Changlin Li, Hang Xu, Jianhua Han, James Kwok, Shen
Zhao, Wei Zhang, and Xiaodan Liang. Growclip: Data-aware automatic model growing for large-
scale contrastive language-image pre-training. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 22178-22189, 2023.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four GPU hours. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1761-1770,
2019.

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the scope of reproducible neural architec-
ture search. arXiv preprint arXiv:2001.00326, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas
Lane. BRP-NAS: Prediction-based nas using GCNs. Advances in Neural Information Processing
Systems, 33:10480-10490, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Minbin Huang, Zhijian Huang, Changlin Li, Xin Chen, Hang Xu, Zhenguo Li, and Xiaodan
Liang. Arch-Graph: Acyclic architecture relation predictor for task-transferable neural archi-
tecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11881-11891, 2022.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. ZiCo: Zero-shot NAS via
inverse coefficient of variation on gradients. arXiv preprint arXiv:2301.11300, 2023.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong
Jin. Zen-NAS: A zero-shot NAS for high-performance image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 347-356, 2021.

10

Under review as a conference paper at ICLR 2026

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European conference on computer vision (ECCV), pp. 19-34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and
Wolfgang Banzhaf. NSGA-Net: neural architecture search using multi-objective genetic algo-
rithm. In Proceedings of the genetic and evolutionary computation conference, pp. 419-427,
2019.

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
Advances in neural information processing systems, 31, 2018.

Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and Sungroh Yoon. Demystifying the
neural tangent kernel from a practical perspective: Can it be trusted for neural architecture search
without training? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11861-11870, 2022.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110-1118, 2024.

Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-based
neural architecture encoding scheme for predictor-based nas. In European Conference on Com-
puter Vision, pp. 189-204. Springer, 2020.

Xuefei Ning, Zixuan Zhou, Junbo Zhao, Tianchen Zhao, Yiping Deng, Changcheng Tang, Shuang
Liang, Huazhong Yang, and Yu Wang. Ta-gates: An encoding scheme for neural network archi-
tectures. Advances in Neural Information Processing Systems, 35:32325-32339, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning, pp. 2902-2911. PMLR, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780-4789, 2019.

Robin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. Speedy per-
formance estimation for neural architecture search. Advances in Neural Information Processing
Systems, 34:4079-4092, 2021.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510-4520, 2018.

Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji Liu, and Bin
Cui. ProxyBO: Accelerating neural architecture search via Bayesian optimization with zero-cost
proxies. arXiv preprint arXiv:2110.10423,2021.

Julien Niklas Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter.
NAS-Bench-301 and the case for surrogate benchmarks for neural architecture search, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

11

Under review as a conference paper at ICLR 2026

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. MnasNet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820-2828, 2019.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33:6377-6389, 2020.

Chen Wei, Chuang Niu, Yiping Tang, Yue Wang, Haihong Hu, and Jimin Liang. NPENAS: Neural
predictor guided evolution for neural architecture search. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. In European Conference on Computer Vision, pp. 660—
676. Springer, 2020.

Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen, Mengchen Liu, Ye Yu, Zhangyang Wang,
Zicheng Liu, Mei Chen, and Lu Yuan. Stronger NAS with weaker predictors. Advances in Neural
Information Processing Systems, 34:28904-28918, 2021.

Lingxi Xie and Alan Yuille. Genetic CNN. In Proceedings of the IEEE international conference on
computer vision, pp. 1379-1388, 2017.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. KNAS: green
neural architecture search. In International Conference on Machine Learning, pp. 11613—11625.
PMLR, 2021.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
Bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning, pp. 7105-7114. PMLR, 2019.

Yu-Ming Zhang, Jun-Wei Hsieh, Chun-Chieh Lee, and Kuo-Chin Fan. RATs-NAS: Redirection of
adjacent trails on GCN for neural architecture search. arXiv preprint arXiv:2305.04206, 2023.

Yu-Ming Zhang, Jun-Wei Hsieh, Chun-Chieh Lee, and Kuo-Chin Fan. Rats-nas: Redirection of
adjacent trails on graph convolutional networks for predictor-based neural architecture search.
IEEFE Transactions on Artificial Intelligence, 2024a.

Yuming Zhang, Jun Wei Hsieh, Xin Li, Ming-Ching Chang, Chun-Chieh Lee, and Kuo-Chin Fan.
Mote-nas: Multi-objective training-based estimate for efficient neural architecture search. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023.

Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, and Volkan Cevher. Generalization properties of
NAS under activation and skip connection search. Advances in Neural Information Processing
Systems, 35:23551-23565, 2022.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

M Sersive |
32P x 32P x 32 I__:@_,__l
{_F_LOFs,_[T | Operation |
Params, |— — —| Operation | P
| Latency | I |_(/
- Ones Vec Ones Vec+R
(32%32%32) (32x32x32) (32x32x32)

Figure 3: This figure illustrates the computation methods for different metrics. The left half of the
figure presents the calculation of FLOPs, parameters, latency, and passing rate, while the right half
demonstrates the computation of numerical sensitivity.

B IMPLEMENTATION DETAIL OF METRIC OPERATIONS

As previously mentioned, metric embedding utilizes five(c = 5) distinct metrics to characterize the
operations of a candidate architecture: [Parameters, FLOPs, Latency, Passing Rate, and Numerical
Sensitivity], and ¢; to ¢5 represent these five metrics. For a chosen operation, such as convolution
or depthwise convolution, these metrics can only be computed once the operation is instantiated
within a concrete model. To achieve this, we construct a single layer model centered on the chosen
operation, with an input shape of (32,32,32), as illustrated in Fig. 3. Then every operation is de-
scribed using this simple single-layer model and the five aforementioned metrics. In the following,
we detail the computation of these metrics.

B.1 FLOPS, PARAMETERS, AND LATENCY.

Once the single-layer model is constructed, obtaining these three metrics becomes straightforward.
FLOPs represent the total number of multiplication operations required by the operation, while the
parameters indicate the number of learnable weights within the operation. These two metrics reflect
the theoretical computational cost in terms of both time and memory. In contrast, latency measures
the actual time required for a single forward pass on hardware, providing a direct indication of the
real-world execution cost. latency is calculated on the AMD Ryzen 7 PRO 5875U. We believe that
these three metrics already capture essential properties of various operations.

B.2 PASSING RATE.

This metric quantifies the proportion of features preserved or, conversely, lost during processing.
In simpler terms, it represents the downsampling ratio. It is well-known that downsampling refines
the original features, but it can also discard crucial information. To ensure a more comprehensive
characterization of operations, we explicitly incorporate the downsampling ratio into our evaluation.
As shown in the left part of Fig. 3, we compute the difference in the ratio between the output (height,
width) and the input to obtain this metric.

B.3 NUMERICAL SENSITIVITY.

This metric measures how sensitive an operation is to changes in input values. As shown in the
right part of Fig. 3, we simultaneously input two sets of data into the operation. The first input
is a (32,32,32) matrix filled with ones, while the second is the same matrix but with element-wise
additions of randomly sampled values between 0 and 1. We then compute the difference between
the outputs of these two inputs. This process is repeated 1000 times, and we take the average
difference as the final measurement. This approach quantifies the operation’s sensitivity to numerical
variations. For example, due to their different downsampling mechanisms, max pooling and average
pooling exhibit different levels of sensitivity to input perturbations.

C VISUALIZATIONS OF ENCODERS

We present t-SNE visualizations in Fig. 1 (partial results) and Fig. 4 (complete results). Each encoder
is trained with only 100 architecture pairs sampled from one of the NASBench-101, NASBench-

13

Under review as a conference paper at ICLR 2026

SN Vi ion of MLP

NASBench-101 C
NASBench-201
NASBench-301

NASBench-101 Gt

o] § e L e

NASBench-301

MLP train on NB101 MLP train on NB201 MLP train on NB301
t-SNE Visualization of GCN t-SNE of GCN t-SNE Vi lization of GCN
‘NASBench-101 L
" NASBench-201 ’5 . 100 .
“ NASSench 301 w o .o p © &
- ol o oy Lt
2 2 " e 0.,2 . ° ég\!’ w
o o G . e o0, oot o
. - Do @
®p s0 “W®
-s0 =50 NASBench-101 Nasgench-101 e e @ 2 g &
NASBench-201 NAsBench-201 @5 @& @) o O 0%
GCN train on NB101 GCN train on NB201 GCN train on NB301
t-SNE Vi lization of BIGCN t-SNE of BIGCN t-SNE Vi ion of BIGCN
© @ w0 NASBench-101
‘! o, NASBench-301 e s,
” B0 %;";s ‘ “ S » I Y . 4
’ 2 B0 * A N . 3505w oA
e cuiss) o0 ﬂ%ﬂ' o e ey “
o el 205592 o0 o - oy 0% ©
™ “'ﬁb«v‘b
a0 NASBench-101 ,3,.3“. neTns a0 ::z:zn::;g:
Nesenenaot | 7" K= Mesencnaas
BiGCN train on NB101 BiGCN train on NB201 BiGCN train on NB301
t-SNE Vi ion of RATs-GCN t-SNE Visuali; of RATs-GCN
NASBench-101 o0 NASBench-101 w0 NASBench-101
0 NASBench-201 NASBench-201 g S ‘%,‘ NASBench-201
sench- w0 ench-] " . ench-
w NASBench-301 NAsBench-301 w0 .‘?1:5 .‘@%%' NASBench-301
20 20 N » _|® . .r;la o)
. S 0 Falds | o
ol o
20 -20 o -20
a0 &

RATs-GCN train on NB101 RATs-GCN train on NB201 RATSs-GCN train on NB301

t-SNE of CLUE-NAS t-SNE Vit lization of CLUE-NAS t-SNE of CLUE-NAS
NASBench 101 NAsBench-101 - = NASBench-101
oo NASBench201 a NASBench-201 . joige, 2Bes smm o i&'}?] NASBench201
Nassench 301 NasBench 301 59 gsee ool et 3880 0 ; NAsBench 301
w0 20 i:(.?5 A A 20 & A
¥ "i§ﬁ'ig S80S Sa i
* o] 0f o WSl tEs Tutse . nis” 8 5% e
) i £ L e .
0 b o o
2 . 0 3
oA S
. S ® SN
- w0 o o e Gl
o o5

o BN B] B o E) Ry T o BN 1 B o B3 B B 1 % W E] B3

CLUE-NAS train on NB101 CLUE-NAS train on NB201 CLUE-NAS train on NB301

Figure 4: t-SNE visualizations of various encoders.

201, or NASBench-301 search spaces. After training, we randomly sample 1,000 architectures from
each of the three search spaces and extract their embeddings using the trained encoders. These em-
beddings are then visualized using t-SNE. In the visualizations, different colors represent different
search spaces. Note that the x- and y-axis values have no intrinsic meaning due to the nature of the
t-SNE algorithm; the focus is instead on the spatial distribution of the embeddings learned by the
encoders.

From the results, we observe that CLUE-NAS is able to clearly distinguish architectures from differ-
ent, unseen search spaces, indicating that its learned representations capture higher-level semantic
information. In contrast, the other encoder-based methods fail to achieve such separation, highlight-
ing CLUE-NAS'’s superior ability to generalize across diverse architecture distributions, that is an
ability that traditional encoder-based NAS methods lack.

D CLUE-NAS WITH SAMPLING STRATEGIES

Current predictors are often paired with sampling strategies to enhance search efficiency. We eval-
uated the synergy between CLUE-NAS and two widely used sampling strategies: Random (Rand)
sampling and Evolutionary (Evo) sampling. Tab. 7 presents the performance of various predic-
tors under these strategies. Here, the budget represents the total number of architecture-accuracy

14

Under review as a conference paper at ICLR 2026

Table 7: Performance comparisons between the top-30 accuracy (for Rand) and top-1 accuracy (for
Evo) of architectures found on three search spaces using CLUE-NAS and other predictors.

Model Strategy | Budget | NB101 | NB201 | NB301

MLP rand 200430 | 0.9362 | 0.9395 | 0.9442
GCN rand 200430 | 0.9358 | 0.9404 | 0.9441
BiGCN rand 200430 | 0.9361 | 0.9407 | 0.9439

RATs-GCN rand 200430 | 0.9373 | 0.9398 | 0.9447
CLUE-NAS rand 100+30 | 0.9392 | 0.9418 | 0.9462
CLUE-NAS rand 200430 | 0.9401 | 0.9437 | 0.9470

MLP evo 200 0.9371 | 0.9410 | 0.9447
GCN evo 200 0.9368 | 0.9411 | 0.9449
BiGCN evo 200 0.9372 | 0.9428 | 0.9450
RATs-GCN evo 200 0.9380 | 0.9429 | 0.9450
CLUE-NAS evo 60 0.9390 | 0.9437 | 0.9469
CLUE-NAS evo 90 0.9398 | 0.9437 | 0.9476

pairs used throughout the search process, including both predictor training and evaluation (note:
evolutionary sampling does not require an evaluation stage). NB101, NB201, and NB301 denote
the accuracy of architectures discovered by the predictors on NASBench-101, NASBench-201, and
NASBench-301, respectively. The results demonstrate that CLUE-NAS consistently outperforms
other predictors in discovering high-accuracy architectures. With random sampling, CLUE-NAS
achieves outstanding performance with a budget of just 130 (100 for training and 30 for evaluation),
surpassing predictors that use a budget of 230 (200 for training and 30 for evaluation). Similarly,
under evolutionary sampling, CLUE-NAS delivers exceptional results with a budget of only 60,
significantly outperforming other predictors that require a budget of 200—regardless of the search
space. These findings highlight CLUE-NAS’s strong adaptability to different sampling strategies,
proving that it does not depend on any specific strategy to achieve superior results. Its performance
remains consistently exceptional across diverse conditions.

E DISENTANGLING SEMANTIC UNDERSTANDING FROM BENCHMARK
STYLE RECOGNITION

To examine whether the model’s generalization originates from semantic understanding or from
benchmark-specific style recognition, we conducted an experiment in which the operation names
in NAS-Bench-101/201/301 were anonymized. Concretely, identifiers such as nor_conv_3x3 or
skip_connect were replaced with placeholders like op1, op2, and op3 during evaluation, while
the training procedure was kept unchanged. The results, based on 100 training pairs, are summarized
in Table 8. We consistently observed a decline in performance across all cases when operator names
were anonymized. This suggests that the graph representation, which is constructed from quantita-
tive descriptors such as FLOPs, parameters, and latency, continues to provide a reliable source of
information independent of the textual labels. At the same time, the drop in accuracy indicates that
the model also benefits from the semantic cues carried by meaningful operation names. The CLIP
text encoder, pretrained on large-scale web data, can extract contextual information from descriptors
such as conv or sepconv, but this advantage disappears once the names are replaced by arbitrary
placeholders. These findings highlight the dual role of structural metrics and semantic operation
descriptors in supporting the model’s generalization ability.

Table 8: Cross-dataset evaluation results with anonymized operator names.
Eval on NS101 Eval on NS201 Eval on NS301

Train on NS101 76.56% 69.89% 43.34%
Train on NS201 52.74% 82.78% 36.99%
Train on NS301 34.29% 37.40% 70.82%

15

Under review as a conference paper at ICLR 2026

F EFFECTIVENESS OF THE COARSE-TO-FINE STRATEGY

To assess the coarse-to-fine strategy, we evaluated context alignment and confidence prediction un-
der independent training, where each benchmark was trained and tested separately. As shown in
Table 9, performance is slightly lower than in joint training, but removing either component further
degrades accuracy, with the largest drop from removing both. This confirms that both modules are
beneficial and that the coarse-to-fine strategy remains effective even within a single benchmark.

Table 9: Ablation study on the impact of context alignment and confidence prediction under inde-
pendent training.

Eval on NS101 Eval on NS201 Eval on NS301

- 73.60% 82.63% 71.23%
w/o Context Align 70.92% 78.56% 68.89%
w/o Cnfd Pred 70.80% 76.67% 66.18%
w/o Context Align, Cnfd Pred 65.95% 77.49% 54.41%

G EXPLAINABILITY ANALYSIS VIA SHAP

To probe interpretability, we applied SHAP to the final MLP predictor to measure the relative im-
portance of graph- and context-derived features. As shown in Table 10, context embeddings often
dominate, but graph embeddings consistently retain significant weight. This indicates that CLUE-
NAS combines semantic cues and structural metrics, preserving architectural reasoning rather than
collapsing into benchmark style recognition.

Table 10: SHAP-based feature attribution analysis of graph embedding vs. context embedding.

Eval on NS101 Eval on NS201 Eval on NS301
Graph SHAP Context SHAP Graph SHAP Context SHAP Graph SHAP Context SHAP
Train on NS101 ~ 0.2495 0.5526 0.2441 0.6176 0.1493 0.2619
Train on NS201 0.4468 0.7047 0.3516 0.6821 0.2389 0.5241
Train on NS301 0.1870 0.2036 0.2147 0.1971 0.1632 0.2395

H ANALYSIS ON THE DISTRIBUTION OF ACCURACY AND CONFIDENCE
BOUNDS

To clarify the role of the coarse prediction mechanism, we conducted additional analyses regard-
ing the distribution of the ground-truth accuracy ACCy;, the proposed lower bounds C", and the
selected bounds CP,,.

H.1 COMPARISON OF THE DISTRIBUTIONS OF ACC,; AND UNIFORM LOWER BOUNDS

We first sampled 1000 architectures each from NAS-Bench-101/201/301 and examined the distri-
bution of their ACCj; values. As shown in Table 11, most samples are concentrated in the interval
[0.8,1.0]. This skewed distribution indicates that training directly with uniform bounds would lead
to a severe imbalance problem, making such a design infeasible.

Table 11: Distribution of ACCy; values across NAS-Bench datasets.
[0.0,02] [0.2,04] [0.4,0.6] [0.6,0.8] [0.8,1.0]

Distribution of NS101 1 6 3 13 977
Distribution of NS201 19 0 6 68 907
Distribution of NS301 0 0 0 3 997

16

Under review as a conference paper at ICLR 2026

H.2 DISTRIBUTION BASED ON PROPOSED LOWER BOUNDS C?

We further considered the distribution based on the proposed lower bounds C?, as shown in Table 12.
Here, the upper bound is fixed at 1.0 (the theoretical maximum for accuracy), while overlapping
ranges are introduced to alleviate label imbalance. This design not only differentiates confidence
levels but also stabilizes the coarse prediction mechanism, as confirmed in the ablation study.

Table 12: Distribution of architectures under the proposed lower bounds C°.
[0.1,1.0] [0.5,1.0] 1[0.75,1.0] 1[0.875,1.0] 1[0.9375,1.0]

Distribution of NS101 1000 995 989 884 2
Distribution of NS201 1000 969 944 764 7
Distribution of NS301 1000 1000 1000 994 208

H.3 COMPARISON BETWEEN C?; AND SELECTED Cfy;

To further investigate how the model utilizes the proposed lower bounds during inference, we trained
CLUE-NAS with 100 training pairs and sampled 3000 architectures (1000 from each NASBench).
Table 13 shows the distribution of CP,, selected during prediction, compared with the distribution
of ground-truth lower bounds Cgt.

Table 13: Comparison between the distribution of ground-truth lower bounds Cgt and selected

bounds Cé’est during prediction.
[0.1,1.0] [0.5,1.0] [0.75,1.0] 1[0.875,1.0] 1[0.9375,1.0]
Distribution of C’fest 56 39 217 2600 88
Distribution of C’;’t 33 49 289 2387 242

Table 14: Spearman correlation across ten independent runs with five randomly sampled architec-
tures. Results are reported for CLUE-NAS and the MLP baseline on three benchmarks (NS101,

NS201, NS301).
Tst Znd 3rd 3 5t 6th 7th 8h Sth 0th Mean

NS101 (CLUE-NAS) 55.26% 36.75% 33.24% 53.67% 47.52% 18.53% 9.56% 42.32% 47.14% 54.46% 39.85%
NS201 (CLUE-NAS) 37.74% 63.42% 49.38% 43.87% 46.83% 31.98% 66.86% 2726% 2598% 68.43% 46.18%
NS301 (CLUE-NAS) 38.85% 38.67% 5643% 61.76% 68.74% 55.25% 33.04% 45.80% 57.11% 59.45% 51.53%

NS101 (MLP) 30.36% -3.61% 41.52% 44.23% 11.26% 8.50% 13.50% 46.39% 3.92% 10.83% 20.69%
NS201 (MLP) 11.97% 1.41% 31.49% 38.46% 6.43% -4.26% 5.60% 4498% -6.65% -5.85% 12.36%
NS301 (MLP) -1938% -2.27% 6.22% 7.51% 18.40% -17.68% -11.94% 23.94% 10.07% 22.06% 3.69%

The distributions of C’St and C’é’est are closely aligned, indicating that CLUE-NAS benefits from the

design of the proposed lower bounds C? and is able to make effective coarse judgments of candidate
architectures during prediction.

I ROBUSTNESS ANALYSIS WITH MULTIPLE RUNS OF FIVE-ARCHITECTURE
SUBSETS

To test robustness under an extreme five-pair setting, we ran ten trials on NAS-Bench-101/201/301,
each with randomly sampled pairs. CLUE-NAS was trained and evaluated independently, with
results summarized in Table 14 alongside an MLP baseline. CLUE-NAS shows substantially higher
robustness, maintaining reasonable correlations, whereas the MLP baseline is unstable and often
negative—underscoring the difficulty of this regime and the resilience of CLUE-NAS.

J COMPARISON UNDER VARIOUS BUDGETS

We evaluated CLUE-NAS, RATS-NAS (encoder/predictor baseline), and MOTE-NAS (low-cost
baseline) on NASBench-101/201/301 under a 100-pair budget. For CLUE-NAS and RATS-NAS,

17

Under review as a conference paper at ICLR 2026

70 pairs were used for training, with the top 30 predictions validated; MOTE-NAS directly selected
the top 100 predictions without training. Each experiment was repeated 10 times with different
samples, and averaged results are reported in Table 15.

Table 15: Best architecture accuracy under a training budget of 100 pairs.
NASBench-101 NASBench-201 NASBench-301

MOTE-NAS 93.75% 94.13% 94.43%
RATS-NAS 93.67% 93.92% 94.49%
CLUE-NAS 93.82% 94.22% 94.60%

Table 16: Best architecture accuracy of MOTE-NAS under a budget of 10 pairs.
NASBench-101 NASBench-201 NASBench-301
MOTE-NAS 93.72% 93.91% 94.25%

Table 17: Best architecture accuracy of RATS-NAS and CLUE-NAS under a budget of 10 pairs.
NASBench-101 NASBench-201 NASBench-301
RATS-NAS 91.57% 92.46% 93.41%
CLUE-NAS 93.17% 93.43% 94.17%

To further evaluate performance under extremely limited budgets, we decreased the number of pairs
to only 10. In this setting, CLUE-NAS and RATS-NAS used 7 pairs for training and validated on
their top-3 predicted architectures, while MOTE-NAS directly validated the top-10 predicted archi-
tectures. Results are reported in Table 16 and Table 17. Results show that CLUE-NAS consistently
finds strong architectures under a 100-pair budget. With only 10 pairs, however, encoder-based
methods (RATS-NAS and CLUE-NAS) degrade sharply, while MOTE-NAS remains stable. This
highlights that low-cost NAS scales better under tight supervision, whereas encoder-based frame-
works gain more from larger budgets.

18

