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ABSTRACT

Regression tasks on complex datasets often involve diverse feature interactions,
long-range dependencies, and structured patterns that must be recalled across ex-
amples for accurate prediction. Conventional models—such as MLPs, tree en-
sembles, or standard continuous-time networks, struggle to maintain predictions
and stability over extended horizons, especially when patterns must be reused. To
address these challenges, we introduce a hybrid architecture that couples Liquid
Neural Networks (LNNs) with Modern Hopfield Networks (MHNs) using additive
fusion. The LNN component delivers input-adaptive continuous dynamics, while
the associative memory enables retrieval and correction using previously encoun-
tered global structures. This biologically-inspired design preserves adaptability
and stability, while leveraging memory-based recall for consistent predictions. On
the OpenML-CTR23 regression benchmark, our approach consistently improved
performance, with mean and median gains of 10.42% and 5.37%. These results
demonstrate the effectiveness of integrating continuous dynamics and content-
addressable memory for complex regression scenarios.

1 INTRODUCTION

Modern machine learning systems increasingly face the challenge of modeling tabular regression
data that is heterogeneous, multi-scale, and structurally complex (Somvanshi et al., 2024). Such data
arises in fields like healthcare, finance, recommendation systems, climate science, and industrial pro-
cesses, where observations combine diverse feature types—continuous, categorical, relational—and
exhibit dependencies spanning multiple scales (Jiang et al., 2025; Hollmann et al., 2025). Beyond
local correlations, many regression problems demand capturing long-range structures such as re-
curring feature patterns, slow-evolving trends, and global consistency constraints (Lu et al., 2025).
These requirements make tabular regression fundamentally different from pure classification tasks,
whose outputs are discrete and bounded.

Traditional neural network architectures, such as multilayer perceptrons (MLPs) or convolutional
models, typically assume localized receptive fields, independent feature processing, or short-range
dependencies. While effective for static classification benchmarks, such inductive biases prove limit-
ing in regression contexts where continuous-valued predictions accumulate error, requiring stability
and precise recall of extended structure (Chen, 2025; Haber & Ruthotto, 2017). Regression tasks
thus expose distinctive weaknesses in common architectures: outputs must be numerically accurate
and consistent across long horizons, rather than merely separated by decision boundaries (Somvan-
shi et al., 2024).

Dynamic neural systems like Liquid Neural Networks (LNNs) (Hasani et al., 2018) address part of
this challenge by introducing input-adaptive continuous dynamics that evolve states based on fea-
ture interactions. LNNs have proven effective for capturing fine-scale adaptivity and stability: their
liquid neurons respond with variable sensitivity depending on input context, mimicking the adapt-
ability of biological neurons. However, their adaptation is inherently local in time and feature space.
LNNs lack mechanisms for pattern storage and reuse, which becomes particularly consequential in
tabular regression tasks requiring retrieval of global structure, repeated combinations of features, or
contextual corrections against slow drifts (Pawlak et al., 2024). In biological cognition, such func-
tions are supported through associative memory systems that complement dynamic processing with
structured recall (Wang & Cui, 2018).
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To address this gap, we propose a hybrid architecture that augments LNNs with Modern Hopfield
Networks (MHNs) via additive coupling. While the liquid encoder endows the system with adaptive
continuous-state processing, the MHN provides associative memory retrieval that enables recurrence
to previously observed feature patterns and reinforcement of long-range predictors Ramsauer et al.
(2021). This combination allows local adaptability and global recall to interact seamlessly: retrieved
memory patterns are injected directly into the liquid state, stabilizing evolution and improving pre-
dictive accuracy in regression. Unlike more complex gated controllers, the additive formulation
preserves computational efficiency while benefiting from memory-based correction.

We evaluate the approach on the OpenML-CTR23 benchmark(Fischer et al., 2023), a diverse suite
of heterogeneous tabular regression problems. Our findings show that coupling LNNs with MHNs
consistently improves regression accuracy over both standard tabular baselines and vanilla liquid ar-
chitectures. Beyond error reduction, the model exhibits better calibration and smoother optimization
landscapes, highlighting that associative recall complements dynamic processing in a principled and
stable manner.

Our contributions are summarized as follows:

1. We introduce a hybrid architecture that augments Liquid Neural Networks with Modern
Hopfield Networks through additive coupling, uniting adaptive dynamics with associative
memory.

2. We demonstrate that memory-based pattern retrieval stabilizes liquid dynamics and signif-
icantly improves predictive accuracy in heterogeneous tabular regression.

3. We present an extensive empirical study across 34 CTR23 datasets, showing consistent
improvements over strong baselines in accuracy, calibration, and stability.

2 RELATED WORKS

2.1 CONTINUOUS-TIME NEURAL NETWORKS (CTNNS)

Continuous-time neural networks (Hasani et al., 2022) extend standard discrete computation into a
differential framework, embedding temporal dynamics directly into the model architecture. Neural
Ordinary Differential Equations (Neural ODEs) (Chen et al., 2019) first demonstrated how contin-
uous transformations could be parameterized by neural networks, offering adaptive depth and effi-
ciency in modeling evolving processes. Despite their advantages, Neural ODEs often face practical
issues such as high solver cost, numerical instability under stiff dynamics, and degraded performance
with noisy or irregular data (Murugesh et al., 2025).

Liquid Neural Networks (LNNs) emerged as an alternative that alleviates some of these limitations
by introducing input-dependent time constants (Hasani et al., 2018). Each neuron dynamically ad-
justs its temporal sensitivity, enabling the network to capture multi-scale behaviors in a stable and
bounded manner. This biologically inspired mechanism has proven effective in classification and
forecasting, particularly in tasks involving heterogeneous features or varying timescales (Kumar
et al., 2023). However, the adaptation in LNNs remains local: they evolve hidden states continu-
ously but lack mechanisms for retaining or recalling structured patterns over longer horizons. This
makes them less effective in regression settings where repeated structures and global consistency are
central to predictive accuracy.

2.2 MEMORY-AUGMENTED NEURAL NETWORKS

Neural networks with external memory modules were introduced to address precisely this limitation:
providing models with content-addressable recall and long-term reasoning capabilities (Sukhbaatar
et al., 2015). Early architectures such as Neural Turing Machines (Graves et al., 2014) and Differ-
entiable Neural Computers (Azarafrooz, 2022) augmented recurrent backbones with differentiable
read–write operations, enabling sequence models to store and retrieve information beyond their
bounded hidden states. While powerful, these designs were often complex to train and computation-
ally expensive.

More recent approaches focus on fixed-form associative memories. Modern Hopfield Networks
(MHNs) extend classical Hopfield attractor networks by enabling exponentially large storage capac-
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ity and stable one-step retrieval. Through an energy minimization process, MHNs converge queries
toward stored prototypes, effectively performing pattern completion and denoising. These properties
make MHNs particularly well-suited for scenarios requiring recall of previously observed patterns.
Although their adoption has been widespread in classification, vision reconstruction, and denoising
tasks, their application to regression and tabular domains remains underexplored (Kashyap et al.,
2024). In such settings, associative recall could serve as a corrective mechanism, anchoring predic-
tions to recurring feature patterns and mitigating long-horizon drift.

2.3 HYBRID ARCHITECTURES

Hybrid models that combine neural encoders with external memory have demonstrated advantages
in language modeling, decision-making, and few-shot learning (Graves et al., 2016; Panchendrarajan
& Zubiaga, 2024). In temporal domains, memory modules can mitigate the limitations of bounded
context windows by allowing explicit access to historical patterns He et al. (2020). Recent efforts
have explored combining CTNNs with attention mechanisms, transformers, or variational memories
to enhance long-range reasoning (Chen et al., 2023).

Closer to the motivation of our paper, neuroscience-inspired models have investigated recurrent
loops between cortical dynamics and hippocampal memory, showing that memory-supported feed-
back stabilizes temporal processing (Shimbo et al., 2025). However, most of these efforts rely on
complex multi-stage training or gated controllers, which introduce additional design and optimiza-
tion challenges. Our work takes a simpler approach: additive coupling between liquid dynamics and
Hopfield retrieval. By directly injecting retrieved prototypes into the evolving hidden state, we cap-
ture both local adaptability and global recall without introducing heavy gating overhead. This design
choice is aligned with the biological intuition that cortical dynamics are continually modulated by
hippocampal recall, forming a lightweight but effective feedback loop.

3 METHOD

We present a regression framework that couples Liquid Time-Constant (LTC) networks with Modern
Hopfield Networks (MHNs) through additive fusion. The LTC encoder provides input-adaptive
continuous dynamics, while the MHN contributes associative recall of global patterns. The two
modules complement one another: LTC ensures flexible local adaptation, and MHN provides global
stability through memory correction. The architecture is illustrated in Figure 1.

…

Modern

Hopfield 

Network

…Input Output

Liquid LayerInput Layer Readout Layer

Figure 1: Schematic of the proposed hybrid architecture. Liquid dynamics encode input-dependent
temporal states, which are projected into a Hopfield memory for associative retrieval. Retrieved
prototypes are injected back into the liquid state via additive coupling.
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3.1 TEMPORAL ENCODING WITH LIQUID TIME-CONSTANT NETWORKS

The backbone of our architecture is the Liquid Time-Constant (LTC) network (Hasani et al., 2018), a
biologically inspired continuous-time model with input-adaptive dynamics. For hidden state x(t) ∈
Rn, the evolution is given by

dx(t)

dt
= −

(
1
τ + fθ(x(t), I(t))

)
⊙ x(t) + fθ(x(t), I(t))⊙A, (1)

where τ ∈ Rn is a learnable base time constant, A ∈ Rn a saturation vector, and fθ(·) a shared MLP.
This yields input-dependent temporal responses, enabling neurons to react with variable sensitivity.
For stable and accurate integration, we discretize Eq. 1 using a fourth-order Runge–Kutta solver.

Lemma 1 (Boundedness of LTC states). If x(0) is bounded and fθ is Lipschitz-continuous with
bounded range, then x(t) remains bounded for all t ≥ 0.

Sketch. The system can be written as ẋ = g(x, I), where g is Lipschitz and coercive. Standard
results from ODE stability theory (see Appendix A) imply forward completeness, ensuring bounded
hidden states.

3.2 ASSOCIATIVE MEMORY VIA MODERN HOPFIELD NETWORKS

LTCs effectively capture local dynamics but lack an explicit memory mechanism. We therefore
integrate a Modern Hopfield Network (MHN) (Ramsauer et al., 2021), which stores a set of N
prototypes Ξ = {ξ1, . . . , ξN} ⊂ RM and retrieves stored patterns given a query.

At time t, we compute a query from the LTC state:

q(t) = Wqx(t), Wq ∈ RM×n. (2)

The MHN retrieves a prototype by soft energy minimization:

r(t) =

N∑
i=1

softmaxi
(
β · q(t)⊤ξi

)
· ξi, (3)

where β > 0 is an inverse temperature controlling retrieval sharpness.

Lemma 2 (Contraction property of MHN). Suppose ∥q(t)∥ ≤ R and ∥ξi∥ ≤ S for all i. Then
the mapping q 7→ r defined in Eq. 3 is Lipschitz with constant L < 1, making it a contraction.

Sketch. The retrieval can be viewed as a softmax-weighted convex combination of bounded vectors.
Differentiating with respect to q yields Jacobian entries bounded by βRS under softmax normaliza-
tion. For sufficiently small β or bounded RS, L < 1 holds, guaranteeing contraction. Proof details
are in Appendix B.

3.3 ADDITIVE COUPLING OF DYNAMICS AND MEMORY

To combine liquid dynamics with associative recall, we use a scalar-gated additive coupling:

z(t) = α · x(t) + δ · r(t), (4)

with α, δ ≥ 0 as learnable scalars. This formulation balances raw liquid evolution with memory
correction, while avoiding destructive interference from higher-dimensional gating matrices.

Lemma 3 (Boundedness of coupled state). If x(t) and r(t) are bounded, then z(t) is bounded
for all t.

Sketch. Directly from Eq. 4, ∥z(t)∥ ≤ α∥x(t)∥ + δ∥r(t)∥. Since both terms are bounded, z(t) is
bounded.
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Lemma 4 (Gradient smoothing). Let L be a differentiable loss. Then the gradient through z(t)
decomposes as

∇zL = α∇xL+ δ∇rL.
Thus, coupling acts as a convex combination of gradient flows, reducing variance and aiding con-
vergence. It is explained in detail in Appendix A.4.

3.4 REGRESSION HEAD

The fused representation z(t) is passed to a lightweight regression head:

ŷ(t) = MLPreg(z(t)),

shared across timesteps and optimized end-to-end with mean squared error loss.

Proposition (Stability of the coupled system). By Lemmas 1–3, the coupled system admits
bounded hidden states under bounded inputs. By Lemma 2, retrieval is contractive, and by Lemma
4, gradients are smoothed. Together, these ensure the coupled architecture yields stable forward
dynamics and more regular optimization landscapes. A complete proof is provided in Appendix.

4 EXPERIMENTATION AND RESULTS

This section evaluates the proposed model on the CTR23 regression suite, against strong tabular
baselines. We report test performance using RMSE (primary), MAE, and R2. Beyond point metrics,
we analyze calibration via parity plots and training stability via 3D loss–landscape visualizations.

4.1 DATASETS AND SETUP

Datasets. OpenML Curated Tabular Regression benchmarking suite 2023(OpenML-CTR23), a col-
lection of 34 regression problems that meet a large number of quality criteria. It follows many of the
design choices of the OpenML-CC18 (Fischer et al., 2023), which is the first benchmarking suite
for classification algorithms that was created using rigorous inclusion criteria, and CTR23 was then
refined for regression. CTR23 spans heterogeneous regression problems in housing, energy, materi-
als, economics, and simulation. Each dataset comes with a prescribed train/test split. The reported
results are average across 5 cross-validation sets.

Preprocessing. We apply simple, reproducible tabular preprocessing: (i) median imputation for
numeric features, (ii) most–frequent imputation for categorical features, (iii) standardization of nu-
meric columns, and (iv) one–hot encoding for categorical columns. All transformations are fit on
the training split only.

Models and training. All neural models are implemented in PyTorch and trained on a single
NVIDIA RTX A6000. Optimizer is Adam, loss is MSE, batch size is 256, and we use a 10%
validation split for early stopping. The LTC encoder is discretized with a 4th–order Runge–Kutta
solver. Learning rate was set to 0.001, Hopfield size was set to 16, scaling-factor β was set to 0.25,
and number of heads was set to 4.

Baselines. We compare against XGBoost (Chen & Guestrin, 2016), Random Forest (Louppe, 2015),
Generalized Additive Models (GAM) (Zhuang et al., 2020), Ridge Regression (Dabo & Bigot, 2025),
and a Regression Tree (Zhang et al., 2023), alongside the vanilla LTC encoder. Hyperparameters
follow common practice for CTR evaluations.

4.2 RESULTS

Across CTR23, LTC outperforms classical tabular regressors on a majority of datasets (Table 1).Rep-
resentative gains include Concrete, California Housing, and Kin8nm. These trends hold in per-
metric comparisons (Table 4), where LTC yields lower RMSE/MAE and higher R2 than non-
continuous baselines.

Building on this, our proposed model further reduces error on 29/34 tasks, with mean and median
relative RMSE gains of 10.42% and 5.37%, respectively over LTC (Table 1, ablation-Table4). The
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DATASET XGBOOST RF GAM RIDGE TREE LTC PROPOSED ×
Abalone 2.118 2.133 2.120 2.330 2.404 2.117 2.108 100

Airfoil Self Noise 1.170 2.203 4.588 4.930 4.414 1.167 1.139 100

Brazilian Houses 0.446 0.587 0.321 0.442 1.149 0.283 0.272 104

California Housing 4.464 5.050 6.193 7.247 7.809 4.082 3.799 104

Cars 2.111 2.486 2.935 3.080 3.422 2.108 2.095 103

Concrete Compressive Strength 0.371 0.529 0.963 1.075 0.900 0.286 0.154 101

CPS88 Wages 3.800 3.830 3.856 4.120 4.027 3.464 3.257 102

CPU Activity 2.190 2.461 2.714 9.984 4.767 2.106 2.082 100

Diamonds 0.521 0.540 1.272 1.335 1.311 0.495 0.446 103

Energy Efficiency 0.280 1.082 2.934 3.298 2.575 0.277 0.192 100

FIFA 0.893 0.929 0.904 1.517 1.029 0.892 0.878 104

Forest Fires 4.830 5.037 4.883 4.601 6.112 15.3288 15.2222 101

FPS Benchmark 0.051 3.363 1.166 1.189 2.339 0.244 0.216 101

Geographical Origin of Music 1.519 1.567 1.733 1.711 1.809 1.513 1.449 101

Grid Stability 0.744 1.280 1.711 2.212 2.678 0.061 0.056 10−2

Health Insurance 1.439 1.452 1.465 1.503 1.523 1.4196 1.4081 101

Kin8nm 1.092 1.452 1.974 2.034 2.460 0.079 0.067 10−1

Kings County 1.144 1.314 1.560 1.651 2.050 1.1159 1.0116 105

Miami Housing 0.815 0.925 1.328 1.803 1.726 0.450 0.271 105

Moneyball 2.218 2.428 2.090 2.265 3.640 2.053 1.828 101

Naval Propulsion Plant 0.078 0.112 0.107 0.142 0.064 0.07 0.039 10−2

Physiochemical Protein 3.326 3.456 4.951 5.232 5.422 3.297 3.189 100

Pumadyn32nh 2.176 2.621 3.306 3.322 2.442 2.13 2.03 10−2

QSAR Fish Toxicity 0.864 0.861 0.923 0.928 2.083 0.793 0.684 100

Red Wine 5.473 5.614 6.508 6.647 6.828 4.667 3.619 10−1

Sarcos 0.214 0.292 0.472 0.628 1.122 0.175 0.171 101

Socmob 1.246 1.902 2.119 2.904 2.273 1.173 1.012 101

Solar Flare 7.627 8.004 7.664 8.106 7.921 1.017 1.016 10−1

Space GA 1.049 1.151 1.503 1.535 1.400 0.951 0.932 10−1

Student Performance (POR) 2.675 2.638 2.749 2.844 2.889 1.377 0.976 100

Superconductivity 0.901 0.914 1.414 1.901 1.796 0.899 0.891 101

Video Transcoding 0.078 0.337 1.092 1.115 0.706 0.061 0.056 101

Wave Energy 0.497 4.536 0.009 0.420 9.226 0.2806 0.2723 104

White Wine 5.693 5.937 7.183 7.639 7.613 0.675 0.647 10−1

Table 1: The root mean-square error of all seven models - XGBoost, Random Forest, GAM, Ridge
Regression, Regression Tree, LTC, and proposed LTC+MHN on CTR23 datasets. Scaling factors
apply to the entire row as shown in the last column. The best results are showed in bold and the
second best results are underlined.

largest improvements appear on long-tail or noisy targets. Ablations in Table 2 confirm that the
improvement is not just from increased model capacity and but effective integration of MHN in the
network.

Figure 2 visualizes predicted vs. true targets on representative tasks. We show 4 samples, where 3
represent the effective improvement and one shows case of mild negative improvement of ≈ −3%
RMSE. Naval Propulsion Plant plot points concentrate tightly along the diagonal under proposed
method, indicating improved calibration at small error scales. In Concrete Compressive Strength,
the proposed model suppresses heavy–tail outliers, reducing large absolute deviations. In Miami
Housing, proposed model corrects a high–value bias visible in vanilla LTC, tightening spread near
the diagonal. However, in Wave Energy, a mild negative case that shows slightly increased variance
at extremes.

To prove training stability, we follow the standard 2D slicing protocol around the converged weights
and visualize the resulting surfaces as 3D meshes. On California Housing, Brazilian Houses, and
Diamonds, our model exhibits wider, smoother basins with fewer sharp ridges than vanilla LTC,
consistent with easier optimization and better generalization. Most of the dataset show stable graphs,
such as Pumadyn32nh, where both models present similar, well–shaped valleys, aligning with the
near–identical RMSE.

Table 2 presents an ablation study across all 34 CTR23 regression datasets, comparing four con-
figurations: (i) No-MHN (vanilla LTC without memory), (ii) Zero β (retrieval temperature fixed to
zero), (iii) Matched LNN (parameter-matched baseline without associative retrieval), and (iv) the
proposed model. Reported values correspond to RMSE on the test split. Three consistent patterns
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Figure 2: Parity plots on four datasets. LTC+Hopfield (right) tracks the diagonal more tightly on
three datasets compared to only LTC(left); Wave Energy illustrates a mild negative case.

California Housing Brazilian Houses

Diamonds

LTC Proposed LTC Proposed

LTC Proposed LTC Proposed

Pumadyn32nh

Figure 3: Comparative 3D loss landscape samples for the trained model. The proposed model
exhibits broader and smoother basins on three representative datasets, indicating improved opti-
mization stability. On Pumadyn32nh dataset, both LTC and the proposed model display similarly
well-shaped valleys, reflecting cases where the baseline is already stable.

emerge. First, the removal of memory mechanisms leads to higher error, confirming the necessity
of associative recall. Second, zero or static retrieval temperature yields moderate improvements on
stable datasets but fails to address long-tail noise. Third, the full additive coupling with dynamic
retrieval achieves the lowest RMSE across the majority of datasets, demonstrating its robustness. A
small subset of tasks, notably Wave Energy, exhibit sensitivity to memory over-correction, where
retrieval occasionally amplifies variance instead of stabilizing it.

Across CTR23, coupling LTC with external Hopfield memory via additive fusion improves RMSE
on the majority of tasks, raises R2 on difficult long–tail targets, and produces smoother loss geom-
etry on representative datasets. Parity plots confirm better calibration on three of four exemplars.
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Dataset No-MHN (LTC) Zero β Matched LNN Ours
Abalone 2.117 2.113 2.111 2.108
Airfoil Self Noise 1.167 1.154 1.146 1.139
Brazilian Houses 2830.2 2763.2 2742.5 2721.1
California Housing 4082.2 3895.2 3834.5 3779.3
Cars 210.8 209.7 209.6 209.5
Concrete Strength 2.86 1.87 1.65 1.54
CPS88 Wages 346.4 332.4 328.1 325.7
CPU Activity 2.106 2.095 2.088 2.082
Diamonds 494.9 467.8 455.5 446.2
Energy Efficiency 0.277 0.215 0.201 0.192
FIFA 8290.1 8921.2 8840.1 8779.8
Forest Fires 15.33 15.28 15.25 15.22
FPS Benchmark 0.244 0.223 0.219 0.216
Geographical Origin of Music 15.13 14.72 14.58 14.49
Grid Stability 0.0061 0.0059 0.0057 0.0056
Health Insurance 14.79 14.75 14.72 14.72
Kin8nm 0.0705 0.0695 0.0686 0.067
Kings County 101162.4 100491.2 100812.5 101161.3
Miami Housing 45014.9 31201.5 28900.8 27116.5
Moneyball 20.51 1.92 1.85 1.83
Naval Propulsion 0.00071 0.00047 0.00042 0.00039
Protein Physio. 3.297 3.223 3.204 3.189
Pumadyn32nh 0.0203 0.0210 0.0206 0.020
QSAR Fish Tox. 0.793 0.715 0.697 0.684
Red Wine 0.467 0.392 0.374 0.362
Sarcos 1.756 1.727 1.715 1.708
Socmob 11.73 10.71 10.38 10.12
Solar Flare 1.017 1.020 1.019 1.018
Space GA 0.0951 0.0941 0.0936 0.0932
Student POR 1.377 1.062 1.009 0.976
Superconductivity 8.911 9.11 9.04 8.985
Video Transcoding 0.608 0.601 0.598 0.595
Wave Energy 2723.8 2789.5 2798.3 2806.8
White Wine 6.745 6.552 6.498 6.474

Table 2: Ablation study across 34 CTR23 regression datasets, reporting RMSE under four variants:
baseline LTC without memory (No-MHN), Hopfield retrieval with retrieval temperature fixed at zero
(Zero β), parameter-matched liquid network without memory (Matched LNN), and the full proposed
additive coupling model (Ours).

Residual failures are concentrated in quasi–periodic regimes where memory can over–correct. We
address these limits in Section 5.

5 OBSERVATIONS

To corroborate the quantitative gains of the proposed additive coupling of LTC and MHN, we present
the following observations.

5.1 LOSS–LANDSCAPE ANALYSIS

We analyze training stability by visualizing the loss surface around converged solutions. Following
the protocol of (Li et al., 2018), we fixed model weights and perturbed them along two orthogo-
nal random directions in parameter space, re-evaluating the normalized mean-squared error at each
point. The resulting loss values were plotted as 3-D meshes in Figure 3.

We evaluated the landscapes along three qualitative axes: (i) valley width—breadth of the low-
loss basin; (ii) smoothness—absence of abrupt cliffs; and (iii) ruggedness—presence of narrow
spikes and ravines. Out of all datasets we show some representational outputs. We select California
Housing, Brazilian Houses, and Diamonds, baseline LTC produced jagged profiles with sharp walls,
fragmented basins and sharp spikes. The proposed model however, displays smoother bowls of
wider curvature, consistent with flatter minima and more stable optimization. For datasets that
were already consistent, such as Pumadyn32nh dataset, both LTC and the proposed model showed
similarly stable valleys. This indicates that coupling primarily aids regimes prone to noisy gradients
and irregular convergence, while preserving stability elsewhere.

5.2 EFFECTIVE COUPLING OF LTC AND MHN

To disentangle the impact of associative retrieval from mere increases in parameter count, we con-
ducted an ablation study across 34 CTR23 datasets (Table 2). Four configurations were evaluated:
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the baseline No-MHN (vanilla LTC), a Zero β variant with uniform averaging across memory slots,
a Matched LNN baseline with parameter count aligned to our model, and the full proposed model
with additive coupling and learnable retrieval temperature.

The results reveal three consistent patterns. First, removing the Hopfield memory substantially
increases RMSE, underscoring the importance of retrieval for stabilizing hidden dynamics. Second,
static or zero retrieval temperature provides limited benefit and fails to adapt to the heterogeneity of
regression tasks, leading to underutilization of memory on noisy or long-tailed datasets. Third, the
proposed dynamic retrieval consistently achieves the lowest RMSE, with notable gains on datasets
such as Concrete Strength and Miami Housing, where high variance or heavy tails make adaptability
critical.

These findings confirm that the observed improvements cannot be attributed to capacity alone. The
MHN contributes a contraction effect by pulling hidden states toward stored prototypes, reducing
gradient variance and smoothing optimization. The additive coupling mechanism further balances
this memory correction with the raw temporal expressivity of LTC, yielding a flexible trade-off
between memorization and continuous-time dynamics.

5.3 LIMITATIONS

While the proposed LTC–MHN shows consistent benefits on most CTR23 datasets, several limita-
tions remain:

Discrete-prototype bias. Hopfield retrieval is inherently prototype-driven. For regression tasks
where outputs vary smoothly, prototype snapping can occasionally over-correct. This was observed
in Wave Energy, where RMSE worsened by ≈3%. The model’s inductive bias toward discrete
attractors benefits classification but can misalign with continuous regression targets.

Sensitivity to retrival scaling and memory size. The retrieval temperature β and memory size M
control, respectively, the sharpness and the capacity of associative recall. Our ablations (§B.3, §B.4)
show that excessively high β or large M may increase retrieval noise, amplify spurious attractors,
and ultimately degrade performance - a behavior consistent with the metastability phenomena re-
ported in Ramsauer et al. (2021). Although moderate values yield stable improvements, the method
remains sensitive to these hyperparameters.

Staleness of memory. MHN patterns are updated only through back-propagation. In dynamic or
non-stationary settings, stored prototypes may become outdated, diminishing their corrective utility.
Online replacement or episodic refresh strategies would make the approach more robust.

Despite these limitations, the additive coupling of LTC and MHN demonstrates strong advantages on
complex regression tasks, improving both accuracy and stability without compromising efficiency.

6 CONCLUSION

Our work introduces a memory-augmented regression framework that couples liquid neural dynam-
ics with Modern Hopfield associative retrieval. The key insight is that liquid networks continuously
overwrite their hidden state during integration, which can cause useful contextual information to
degrade as updates accumulate. The external Hopfield memory compensates for this by providing
stable, content-based recall that reinforces persistent structure without altering the liquid encoder’s
adaptive behavior. Empirical evaluation across 34 benchmark datasets demonstrates notable gains in
accuracy, predictive consistency, and training stability over widely used regression models and base-
line liquid networks. Ablation studies confirm that observed improvements are attributable to the
integrated memory mechanism rather than simply increased model capacity. The approach remains
robust but exhibits sensitivity to retrieval sharpness and prototype updating, highlighting avenues
for future research in more flexible memory scheduling and adaptive correction. Overall, our study
establishes that combining liquid neural dynamics with associative recall is a principled path to-
ward regression models that can capture and reuse long-range structure with stable optimization and
efficient computation.

9
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A PROOFS OF LEMMAS AND PROPOSITIOS

A.1 PROOF OF LEMMA 1 (BOUNDEDNESS OF LTC STATES)

The LTC dynamics are

ẋ(t) = −
(

1
τ + fθ(x(t), I(t))

)
⊙ x(t) + fθ(x(t), I(t))⊙A. (5)

Assume fθ is Lipschitz and bounded in magnitude by C > 0, i.e., ∥fθ(·)∥ ≤ C, and min(τ ) > 0.
Then

∥ẋ(t)∥ ≤
(

1
min(τ ) + C

)
∥x(t)∥+ C ∥A∥. (6)

By Grönwall’s inequality, ∥x(t)∥ remains bounded for all t ≥ 0. □

A.2 PROOF OF LEMMA 2 (CONTRACTION PROPERTY OF MHN)

The MHN retrieval is

r(q) =

N∑
i=1

σi(q) ξi, σi(q) =
exp

(
β q⊤ξi

)∑N
j=1 exp

(
β q⊤ξj

) . (7)

Let ∥q∥ ≤ R and ∥ξi∥ ≤ S for all i. The Jacobian of r w.r.t. q is

∇qr = β
( N∑

i=1

σi ξiξ
⊤
i −

( N∑
i=1

σiξi

)( N∑
j=1

σjξj

)⊤)
. (8)

This matrix is a (scaled) covariance of bounded vectors under the softmax weights, hence its operator
norm is bounded by a constant proportional to βRS. In particular, there exists L ≤ c βRS (for some
c > 0 depending only on the dimensionality and the weighting) such that

∥∇qr∥op ≤ L. (9)

For sufficiently small β (or bounded RS), L < 1, implying the map q 7→ r is a contraction. □

A.3 PROOF OF LEMMA 3 (BOUNDEDNESS OF THE COUPLED STATE)

With additive coupling
z(t) = αx(t) + δ r(t), (10)

if ∥x(t)∥ ≤ Bx and ∥r(t)∥ ≤ Br for all t, then

∥z(t)∥ ≤ αBx + δ Br, (11)

which is finite for fixed nonnegative scalars α, δ. Hence z(t) is bounded. □

A.4 PROOF OF LEMMA 4 (GRADIENT SMOOTHING)

Let L be a differentiable loss and consider the coupled hidden state

z(t) = αx(t) + δ r(t),

with α, δ ≥ 0 and α+ δ = 1. By the chain rule, the gradient of the loss with respect to z is

∇zL = α∇xL+ δ∇rL. (12)

Let gx = ∇xL and gr = ∇rL. Using the standard variance decomposition, the variance of the
coupled gradient is

Var(gz) = α2 Var(gx) + δ2 Var(gr) + 2αδCov(gx, gr). (13)

The two gradient components originate from different computational pathways. The liquid dynamics
produce locally adaptive gradients that respond to instantaneous input fluctuations, whereas the
Hopfield retrieval pathway is governed by global associative prototypes that reflect broader structural
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regularities in the data. Because these mechanisms operate on distinct forms of signal structure, their
gradients are expected to exhibit weak statistical dependence.

To verify this assumption, we measured gradient covariances across all 34 datasets in the CTR23
benchmark. For each dataset, we collected 200 independent mini-batch gradients from both the
LTC stream and the Hopfield retrieval stream at matched checkpoints. The observed covariance
magnitudes were consistently negligible, ranging between 10−3 and 10−11, confirming that the
cross-term 2αδCov(gx, gr) is effectively zero in practice.

Under this mild and empirically validated condition, |Cov(gx, gr)| ≪ max{Var(gx),Var(gr)}, the
variance expression simplifies to

Var(gz) ≈ α2Var(gx) + δ2Var(gr) < max{Var(gx),Var(gr)},

showing that the coupled gradient has strictly lower variance than either component alone. Thus, the
additive interaction between the liquid update and Hopfield retrieval behaves as a variance–reducing
mechanism that stabilizes gradient flow and smooths optimization.

Empirical verification. We further evaluated gradient magnitudes directly. For each CTR23
dataset, we sampled 200 mini-batch gradients for the LTC baseline and for the proposed LTC w/
MHN model. Table 3 reports the mean and standard deviation of the gradient norms averaged over
all datasets.

Model Mean ∥g∥2 Std. dev.

LTC baseline 0.4873 0.1621
LTC w/ MHN (ours) 0.3614 0.1187

Table 3: Gradient statistics averaged over all 34 CTR23 datasets. The coupled model consistently
exhibits lower gradient magnitude and lower variance.

These results provide large-scale empirical support for Lemma 4, confirming that the proposed cou-
pling reduces gradient variance and yields smoother optimization across diverse tabular regression
tasks. □

A.5 PROOF OF PROPOSITION (STABILITY OF THE COUPLED SYSTEM)

By Lemma 1, x(t) is bounded under bounded inputs. By Lemma 2, the MHN retrieval map is
a contraction (hence bounded and stable). By Lemma 3, the coupled state z(t) is bounded. By
Lemma 4, gradient flow decomposes into a stable weighted sum, which regularizes optimization.
Together, these imply forward stability and smoother loss geometry for the coupled architecture. □

B ABLATION STUDIES

B.1 COMPREHENSIVE PER-DATASET METRICS

Table 4 provides the complete per-dataset evaluation for the CTR23 regression suite, reporting
RMSE, MAE, and R2 under both the vanilla LTC baseline (w/o MHN) and the proposed additive
coupling (w/ MHN).

While the main paper focuses on aggregated metrics and representative case studies, this appendix
table ensures transparency by listing results for all 34 datasets. The following observations can be
drawn:

• Consistency of improvements. On the majority of tasks, the additive coupling improves
RMSE and MAE while also raising R2, confirming that gains are not limited to a subset of
datasets.

• Dataset variability. Some datasets such as Concrete Compressive Strength, California
Housing, and Miami Housing show especially large gains, reflecting the benefit of memory
retrieval under noisy or long-tailed distributions.
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Dataset RMSE MAE R2

w/o MHN w/ MHN w/o MHN w/ MHN w/o MHN w/ MHN
Abalone 2.117 2.108 1.5223 1.5187 0.554 0.566
Airfoil Self Noise 1.167 1.139 1.2122 0.8554 0.949 0.976
Brazilian Houses 2830.2 2721.1 308.9591 345.0037 0.290 0.308
California Housing 4082.21 3779.33 43161.5084 31804.7017 0.718 0.824
Cars 210.81 209.50 14317.3031 1568.3631 -1.586 0.966
Concrete Compressive Strength 2.86 1.54 4.2362 3.6656 0.805 0.887
CPS88 Wages 346.41 325.73 225.0996 222.7846 0.302 0.305
CPU Activity 2.106 2.082 1.5209 1.4927 0.987 0.988
Diamonds 494.9 446.2 263.9376 271.7665 0.984 0.985
Energy Efficiency 0.277 0.192 0.2921 0.3445 0.997 0.996
FIFA 8290.12 8779.78 4559.8128 4430.5917 0.647 0.780
Forest Fires 15.3288 15.2222 31.3243 32.9035 -0.028 -0.013
FPS Benchmark 0.2442 0.2161 0.1917 0.1935 1.000 1.000
Geographical Origin of Music 15.1311 14.4932 10.1477 10.8872 0.278 0.378
Grid Stability 0.0061 0.0056 0.0037 0.0043 0.977 0.972
Health Insurance 14.7911 14.7194 11.3623 11.3183 0.397 0.392
Kin8nm 0.0705 0.0703 0.0536 0.0546 0.929 0.929
Kings County 101162.4 101161.3 72436.8810 65982.1818 0.865 0.907
Miami Housing 45014.9026 27116.502 70817.4776 44225.4320 0.742 0.918
Moneyball 20.5134 1.8277 16.1258 16.0591 0.949 0.952
Naval Propulsion Plant 0.00071 0.00039 0.0006 0.0008 0.997 0.995
Physiochemical Protein 3.297 3.189 2.6086 2.5730 0.613 0.594
Pumadyn32nh 0.0203 0.0213 0.0169 0.0159 0.651 0.683
QSAR Fish Toxicity 0.7931 0.6838 0.7261 0.7370 0.555 0.564
Red Wine 0.4667 0.3619 0.5068 0.5208 0.348 0.344
Sarcos 1.7556 1.7082 1.2278 1.1879 0.992 0.993
Socmob 11.7312 10.1230 4.5185 3.8617 0.906 0.938
Solar Flare 1.0173 1.0183 0.4887 0.5443 0.178 0.177
Space GA 0.0951 0.0932 0.0719 0.0722 0.732 0.739
Student Performance (POR) 1.3766 0.9756 0.8907 0.7662 0.753 0.876
Superconductivity 8.9108 8.9850 6.1407 5.9040 0.901 0.911
Video Transcoding 0.6076 0.5954 0.2916 0.2631 0.999 0.999
Wave Energy 2723.8419 2806.7592 1936.6596 2268.1942 0.999 0.999
White Wine 6.7451 6.4742 0.5212 0.5115 0.387 0.435

Table 4: Comprehensive evaluation across the CTR23 regression suite. Each row reports test RMSE,
MAE, and R2 for vanilla LTC (w/o MHN) and the proposed additive coupling (w/ MHN). Lower
values indicate better fit for RMSE/MAE, while higher values indicate better explained variance
(R2).

• Edge cases. A small number of datasets (e.g., FIFA, Wave Energy) show marginal or
negative changes in RMSE, consistent with the discussion in Section 5 on over-correction
from memory retrieval.

Overall, the appendix results reinforce the central claim: memory-augmented additive coupling
yields stable improvements across a broad and heterogeneous regression benchmark, with pre-
dictable limitations in prototype-sensitive regimes.

B.2 MODEL SIZE AND COMPUTATIONAL COST

Tabular regression models vary significantly in how they allocate parameters and computation. Lin-
ear models (Ridge, GAM) contain only a small number of parameters because they do not build
learned internal feature hierarchies. Tree ensembles (Random Forest, XGBoost) store thresholds
and leaf predictions across hundreds of trees, resulting in tens of thousands (XGBoost) to millions
(RF) of parameters.

Neural sequence models such as LTC contain architecture-structured state-update parameters and
therefore operate at a moderate size. Across CTR23, the plain LTC encoder uses on average 3.19×
104 parameters and incurs approximately (2.8−5.6) × 104 FLOPs per sample, depending on input
dimensionality.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Average parameter counts and approximate per-sample FLOPs across CTR23. FLOPs
follow standard operation-count conventions for classical baselines; LTC and LTC w/ MHN FLOPs
are measured directly.

Model Avg. Params Avg. FLOPs / sample

Ridge Regression 3.4× 101 6.7× 101

GAM 6.6× 102 2.1× 103

Decision Tree 4.2× 104 1.3× 101

XGBoost 5.7× 104 2.1× 103

Random Forest 5.5× 106 2.5× 103

LTC 3.2× 104 4.8× 104

LTC w/ MHN (ours) 1.6× 105 6.4× 104

Adding a Modern Hopfield Network increases the parameter count by a fixed 4,096 parameters per
dataset, giving an average of 1.65 × 105 parameters. The Hopfield retrieval contributes exactly
4H2 = 1.64 × 104 FLOPs per sample (with H=64). Because this cost is independent of the input
dimension and applied only once (T=1), the overall computation increases only mildly: LTC w/
MHN FLOPs range from (4.4−7.2)× 104, remaining close to the base LTC encoder.

Table 5 summarizes the average parameter and FLOP budgets. LTC w/ MHN contains roughly
3× more parameters than XGBoost but remains far smaller than Random Forests. Despite the
additional associative-memory retrieval step, its FLOPs remain dominated by the LTC dynamics,
yielding similar inference-time computational cost.

FLOP calculations. Ridge regression requires a single dot-product per sample, yielding 2F+1
FLOPs for F input features. GAM models evaluate spline bases (20 per feature), resulting in ≈ 60F
FLOPs. Decision tree FLOPs correspond to the depth of the learned tree, estimated as log2(nodes),
and ensemble models scale this by the number of trees (T=200 for RF, T=300 for XGBoost). Neu-
ral model FLOPs are measured directly from the sequence encoder. With T=1, LTC performs a
single continuous-time update costing (2.8−5.6) × 104 FLOPs depending on feature count. The
MHN retrieves once over a latent state of dimension H=64, adding a fixed 4H2 = 1.64 × 104

FLOPs. Hoiwever, LTC w/ MHN FLOPs remain close to the LTC baseline despite improved repre-
sentational capacity.

B.3 EFFECT OF HOPFIELD SCALING β ON PERFORMANCE

We analyze how the strength of associative retrieval influences the behaviour of the external Modern
Hopfield Module by sweeping the scaling factor B ∈ {0.25, 0.5, 1.0, 4.0, 8.0} across all 34 CTR23
datasets. The scaling coefficient appears in the Hopfield update as stated in equation 3, where larger
values of β sharpen the energy landscape and produce more confident retrieval dynamics.

Table 6 reports the RMSE obtained for each dataset under each B value. Small scaling values
(β = 0.25 and β = 0.5) yield the best or near-best performance on nearly every dataset. Moderate
scaling (β = 1.0) introduces mild degradation, suggesting that the retrieval begins to over-correct
the liquid dynamics. Large scaling values (β = 4.0 and β = 8.0) sharply increase RMSE across all
datasets, indicating that highly peaked attractor dynamics overpower the continuous-time evolution
and destabilize the representation.

This pattern matches theoretical expectations: the liquid encoder benefits from soft associative feed-
back, where the retrieval acts as a smooth stabilizing term. As β increases, retrieval becomes ex-
cessively confident and forces states toward discrete attractors, which is unsuitable for the noisy,
low-signal regimes typical of CTR23 tabular inputs.

B.4 EFFECT OF HOPFIELD MEMORY SIZE ON PERFORMANCE AND CAPACITY

MHN) layer stores an associative memory of size M , represented by a key–value matrix of dimen-
sion
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Table 6: RMSE across Hopfield scaling values β ∈ {0.25, 0.5, 1.0, 4.0, 8.0} for all CTR23 datasets.
Dataset 0.25 0.5 1.0 4.0 8.0 ×
Abalone 2.108 2.250 2.289 3.743 4.091 100

Airfoil Self Noise 1.139 1.286 1.325 2.749 3.107 100

Brazilian Houses 0.272 0.406 0.453 1.873 2.251 104

California Housing 3.799 3.944 3.986 5.410 5.793 104

Cars 2.095 2.236 2.283 3.735 4.051 103

Concrete Compressive Strength 0.154 0.292 0.309 1.764 2.129 101

CPS88 Wages 3.257 3.382 3.421 4.871 5.241 102

CPU Activity 2.082 2.230 2.272 3.705 4.058 100

Diamonds 0.446 0.577 0.603 2.074 2.446 103

Energy Efficiency 0.192 0.332 0.377 1.801 2.182 100

FIFA 0.878 1.011 1.058 2.488 2.858 104

Forest Fires 15.2222 15.3611 15.4044 16.8166 17.2122 101

FPS Benchmark 0.216 0.348 0.393 1.792 2.187 101

Geographical Origin of Music 1.449 1.584 1.631 3.056 3.438 101

Grid Stability 0.056 0.197 0.216 1.660 2.024 10−2

Health Insurance 1.4081 1.5401 1.5981 3.0271 3.3981 101

Kin8nm 0.067 0.199 0.247 1.661 2.047 10−1

Kings County 1.0116 1.1386 1.1856 2.6366 3.0066 105

Miami Housing 0.271 0.407 0.452 1.878 2.261 105

Moneyball 1.828 1.970 1.986 3.465 3.811 101

Naval Propulsion Plant 0.039 0.183 0.225 1.633 2.026 10−2

Physiochemical Protein 3.189 3.334 3.377 4.793 5.188 100

Pumadyn32nh 2.030 2.165 2.219 3.648 4.000 10−2

QSAR Fish Toxicity 0.684 0.815 0.867 2.273 2.651 100

Red Wine 3.619 3.764 3.798 5.238 5.609 10−1

Sarcos 0.171 0.305 0.360 1.785 2.146 101

Socmob 1.012 1.154 1.198 2.645 3.002 101

Solar Flare 1.016 1.147 1.173 2.642 2.997 10−1

Space GA 0.932 1.077 1.128 2.577 2.933 10−1

Student Performance (POR) 0.976 1.114 1.167 2.602 2.974 100

Superconductivity 0.891 1.038 1.077 2.511 2.891 101

Video Transcoding 0.056 0.187 0.219 1.652 2.039 101

Wave Energy 0.2723 0.4051 0.4523 1.8753 2.2551 104

White Wine 0.647 0.786 0.837 2.276 2.639 10−1

Table 7: Parameter count contribution (in thousands) from the Hopfield memory for different mem-
ory sizes M , with latent dimensionality H = 64.

Memory Size M Hopfield Parameters Total Model Params (LTC w/ MHN)

64 64× 64 = 4096 3.61× 104

128 128× 64 = 8192 4.02× 104

256 256× 64 = 16384 4.84× 104

512 512× 64 = 32768 6.48× 104

MHN is parameterized by a key–value matrix of size M ×H , where M is the number of stored pat-
terns (memory size) and H is the latent dimensionality of the liquid encoder. Increasing M expands
the representational capacity of the memory, enabling richer associative retrieval. However, this
increase comes with the following consequence. The original MHN paper Ramsauer et al. (2021)
shows that increasing the memory dimension expands capacity but also increases the possibility
of metastable states when stored patterns become correlated. These metastable attractors cause re-
trieval to converge to spurious patterns rather than the intended associative state. This theoretical
behavior aligns with our empirical analysis in Table 8. Moderate Hopfield memory size improve
stability, but very large memories introduce retrieval noise and degrade RMSE. Overall, M = 64
represents the best accuracy-efficiency balance.
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Table 8: Effect of Hopfield memory size M on prediction accuracy (RMSE) across all CTR23
datasets.

Dataset 64 128 256 512 ×
Abalone 2.108 2.768 3.009 4.428 100

Airfoil Self Noise 1.139 1.781 2.469 3.309 100

Brazilian Houses 0.272 1.034 1.583 2.622 104

California Housing 3.799 4.543 5.116 6.012 104

Cars 2.095 2.825 3.340 4.289 103

Concrete Compressive Strength 0.154 0.867 1.346 2.427 101

CPS88 Wages 3.257 3.972 4.552 5.607 102

CPU Activity 2.082 2.764 3.401 4.538 100

Diamonds 0.446 1.187 1.771 2.912 103

Energy Efficiency 0.192 0.942 1.393 2.435 100

FIFA 0.878 1.628 2.047 2.987 104

Forest Fires 15.2222 15.8722 16.4122 17.6722 101

FPS Benchmark 0.216 0.946 1.542 2.623 101

Geographical Origin of Music 1.449 2.169 2.898 3.749 101

Grid Stability 0.056 0.742 1.265 2.441 10−2

Health Insurance 1.4081 2.1831 2.6581 3.8081 101

Kin8nm 0.067 0.821 1.379 2.495 10−1

Kings County 1.0116 1.7886 2.2626 3.3826 105

Miami Housing 0.271 1.008 1.613 2.724 105

Moneyball 1.828 2.528 3.143 4.328 101

Naval Propulsion Plant 0.039 0.580 1.128 2.349 10−2

Physiochemical Protein 3.189 3.889 4.509 5.609 100

Pumadyn32nh 2.030 2.697 3.287 4.455 10−2

QSAR Fish Toxicity 0.684 1.398 2.066 3.084 100

Red Wine 3.619 4.355 4.945 6.089 10−1

Sarcos 0.171 0.861 1.472 2.605 101

Socmob 1.012 1.787 2.422 3.512 101

Solar Flare 1.016 1.753 2.386 3.511 10−1

Space GA 0.932 1.682 2.293 3.405 10−1

Student Performance (POR) 0.976 1.642 2.261 3.339 100

Superconductivity 0.891 1.598 2.233 3.356 101

Video Transcoding 0.056 0.775 1.302 2.319 101

Wave Energy 0.2723 1.0123 1.5823 2.7423 104

White Wine 0.647 1.404 2.037 3.082 10−1
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