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Abstract

BERT and other pre-trained language models
(PLMs) are ubiquitous in modern NLP. Even
though PLMs are the state-of-the-art (SOTA)
models for almost every NLP task (Qiu et al.,
2020), the significant latency during infer-
ence prohibits wider industrial usage. In this
work, we propose Patient and Confident Early
Exiting BERT (PCEE-BERT), an off-the-shelf
sample-dependent early exiting method that
can work with different PLMs and can also
work along with popular model compression
methods. With a multi-exit BERT as the back-
bone model, PCEE-BERT will make the early
exiting decision if enough numbers (patience
parameter) of consecutive intermediate layers
are confident about their predictions. The en-
tropy value measures the confidence level of an
intermediate layer’s prediction. Experiments
on the GLUE benchmark demonstrate that our
method outperforms previous SOTA early ex-
iting methods. Ablation studies show that: (a)
our method performs consistently well on other
PLMs, such as ALBERT and TinyBERT; (b)
PCEE-BERT can achieve different speed-up
ratios by adjusting the patience parameter and
the confidence threshold. The code for PCEE-
BERT can be found at https://github.
com/michael-wzhu/PCEE-BERT.

1 Introduction

Since BERT (Devlin et al., 2018), the pre-trained
language models (PLMs) have become the de-
fault state-of-the-art (SOTA) models for natural
language processing (NLP). The recent years have
witnessed the rise of many PLMs, such as GPT
(Radford et al., 2019), XLNet (Yang et al., 2019),
ALBERT (Lan et al., 2020), and so forth. These
BERT-style models achieved considerable improve-
ments in many Natural Language Processing (NLP)
tasks by pre-training on the unlabeled corpus and
fine-tuning on labeled tasks, such as text classifi-
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cation, natural language inference (NLI) and se-
quence labeling. Despite their excellent perfor-
mances, there are two issues for PLMs.

First, previous studies show that PLMs such
as BERT suffer from the over-thinking problem.
(Zhou et al., 2020; Zhu et al., 2021) shows that in
the sentence classification task, BERT’s last few
layers may be too deep for some samples. For a
sentence classification task, if we insert a classifier
on a certain intermediate layer and drop the deeper
layers, these intermediate layers may outperform
the last layer.

Figure 1: This figure demonstrates the overthinking
problem in BERT when it is applied to the sentence
classification task, such as CoLA from the GLUE bench-
mark.

The second drawback of PLMs is their high la-
tency. Sentence classification (CLS) tasks play a
central role in many application scenarios, such
as dialogue systems, document analysis, content
recommendation, etc. However, these applications
are time-sensitive. For example, if a task-oriented
dialogue (TOD) system takes a lot of time to re-
spond, users will no doubt stop using this system.
User experience studies show that a response has to
be made in between 0-100 ms. Thus, a CLS mod-
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(a) PABEE (b) PCEE-BERT

Figure 2: Comparison between PABEE (Zhou et al., 2020) and our PCEE-BERT, a novel early exiting method that
combines the score-based early exiting with the patience-based early exiting.

ule should be efficient and accurate. In addition, a
special feature of consumer queries is that there are
times when the number of queries is extremely high.
For example, during the flu season, online medical
consultation will be used much more often than
usual. Thus, it is important for deployed models
to adjust their latency dynamically. During peak
hours, it switches to a low-latency mode to deal
with more queries. And in other hours, it makes
the best of itself to provide accurate answers. So
how can we make model inference dynamically?
The answer is adaptive inference.

There exists a branch of literature focusing on
making PLMs’ inference more efficient via net-
work pruning (Zhu and Gupta, 2018; Xu et al.,
2020; Fan et al., 2020; Michel et al., 2019), knowl-
edge distillation (Sun et al., 2019; Sanh et al., 2019;
Jiao et al., 2020a), weight quantization (Zhang
et al., 2020; Bai et al., 2020; Kim et al., 2021) and
adaptive inference (Zhou et al., 2020; Xin et al.,
2020; Liu et al., 2020). Adaptive inference has
drawn much attention. The idea of adaptive in-
ference is to deal with simple examples with only
shallow layers of BERT and process more diffi-
cult queries with deeper layers, thus significantly
speeding up the inference time on average while
maintaining high accuracy. The speed-up ratio can
be easily controlled with certain hyper-parameters
to handle significant changes in query traffic with-
out re-deploying the model services or maintaining
a group of models.

Early exiting is one of the most important adap-
tive inference methods (Bolukbasi et al., 2017).

As depicted in Figure 2(b), it implements adaptive
inference by installing an early exit, i.e., an inter-
mediate prediction layer, at each layer of BERT
and early exiting "easy" samples to speed up infer-
ence. At the training stage, all the exits are jointly
optimized with BERT’s parameters. At the infer-
ence stage, there are two different settings. First,
in budgeted exiting mode, the model makes a pre-
diction with a fixed exit for all queries. This mode
deals with heavy traffic by assigning a shallower
exit for prediction. The other one is dynamic exit-
ing mode. That is, some strategies for early exiting
are designed to decide whether to exit at each layer
given the currently obtained predictions (from pre-
vious and current layers) (Teerapittayanon et al.,
2016; Kaya et al., 2019; Xin et al., 2020; Zhou
et al., 2020). In this mode, different samples can
exit at different depths.

There are mainly three early exiting strategies
for BERT dynamic exiting. The first one is score-
based early exiting. BranchyNet (Teerapittayanon
et al., 2016), FastBERT (Liu et al., 2020), and Dee-
BERT (Xin et al., 2020) calculated the entropy of
the prediction probability distribution as an esti-
mation for the confidence of exiting classifiers to
enable dynamic early exiting. Shallow-Deep Nets
(Kaya et al., 2019) and RightTool (Schwartz et al.,
2020a) leveraged the maximum of the predicted
distribution as the exiting signal. The second type
is the learned exiting (Elbayad et al., 2020). In this
type of work, an early exiting signal is generated
by a learnable module in the neural network. For
example, BERxiT (Xin et al., 2021) install a fully



connected layer right after each transformer block
of BERT to output a score that is used to decide
whether the BERT should stop inference and exit
early. The third type is patience-based early exiting,
which relies on cross-layer comparison to formu-
late the exiting signal. PABEE (Zhou et al., 2020)
propose a dynamic exiting strategy analogous to
early stopping model training. That is, if the ex-
its’ predictions remain unchanged for a pre-defined
number of times (patience), the model will stop
inference and exit early. PABEE achieves SOTAs
results for BERT early exiting.

Despite its state-of-the-art performances during
early exiting, PABEE is inflexible in adjusting the
speedup ratios. On a given task, once the multi-
exit BERT is fine-tuned and the patience parame-
ter is fixed, PABEE can only achieve a fixed aver-
age speedup ratio. Thus, PABEE can not achieve
speedup ratios of certain values. This drawback
makes PABEE inconvenient to use in real indus-
trial scenarios. Thus, it is of great importance to
come up with a method that can flexibly adjust
its speedup ratios and performs comparable to or
better than PABEE.

In this work, we propose Patiently Confidently
Early Exiting BERT (PCEE-BERT), a novel early
exiting method that combines the advantage of
score-based methods and the patience based early
exiting method. A multi-exit BERT is adopted as
the backbone model, and an intermediate classi-
fier (i.e., an exit) is installed right after each trans-
former block. PCEE-BERT will early exit if there
are enough numbers (i.e., the patience parameter)
of consecutive exits being confident for their pre-
dicted distributions. We mainly use entropy as the
confidence measure. Intuitively, our method re-
quires patience and confidence. It will not rush
into an early exiting if we only see a couple of
intermediate layers being confident. In addition,
it allows the next layer to modify the predictions.
In this way, our PCEE-BERT can exit with higher
accuracy while maintaining flexibility.

Extensive experiments are conducted on the
GLUE benchmark (Wang et al., 2018). The re-
sults show that our method outperforms the pre-
vious SOTA early exiting methods, especially in
cases where the speedup ratio is large. In addition,
one can adjust the patience and confidence thresh-
old so that PCEE-BERT can arrive at different
speedup ratios. A series of ablation studies are con-
ducted, resulting in the following observations: (a)

PCEE-BERT can work with different confidence
measures; (b) our method performs consistently
well on different PLMs, and can work alongside
model compression methods to further speed up
the BERT’s inference; (c) our PCEE-BERT can
also be applied to computer vision tasks.

The rest of the paper is organized as follows.
First, we introduce the preliminaries for multi-exit
BERT and early exiting. Second, we elaborate
on our PCEE-BERT method. Third, we conduct
experiments on the GLUE benchmark and conduct
a series of ablation studies. Finally, we conclude
with possible future works.

2 Preliminaries

In this section, we introduce the necessary back-
ground for BERT early exiting. Throughout this
work, we consider the case of multi-class classifi-
cation with samples {(x, y), x ∈ X , y ∈ Y, i =
1, 2, ..., N}, e.g., sentences, and the number of
classes is K.

2.1 Backbone models
In this work, we adopt BERT as the backbone
model. BERT is a multi-layer Transformer
(Vaswani et al., 2017) network, which is pre-trained
in a self-supervised manner on a large corpus. The
number of transformer layers of our backbone is
denoted as M , and the hidden dimension is d.

2.2 Early-exiting Architecture
As depicted in Figure 2, early exiting architec-
tures are networks with exits at each transformer
layer. With M exits, M classifiers f (m)(x; θ(m)) :
X → ∆K (m = 1, 2, ...,M ) are designated at M
layers of BERT, each of which maps its input to
p(m)(x; θ(m)), a probability distribution over the
K classes. All the parameters of the transformer
layers and exits are denoted as Θ.

2.2.1 Training
At the training stage, all the exits are jointly op-
timized with a summed loss function. Following
Huang et al. (2017) and Zhou et al. (2020), the
loss function is the weighted average of the cross-
entropy (CE) losses given by

L =

∑M
m=1m ∗ L(m)∑M

m=1m
, (1)

where L(m) = CE(y, p(m)(x; θ(m))) denotes the
cross-entropy loss of the m-th exit. Note that the



weight m corresponds to the relative inference cost
of exit m.

2.2.2 Inference
During inference, the multi-exit BERT can exit
early in two different modes, depending on whether
the computational budget to classify an example is
known or not.

Budgeted Exiting. If the computational budget
is known, we can directly appoint a suitable exit m∗

of BERT, f (m∗)(x; θ(m
∗)), to predict all queries.

Dynamic Exiting. Under this mode, after re-
ceiving a query input x, the model starts to predict
on the classifiers f (1)(x; θ(1)), f (2)(x; θ(2)), ..., in
turn in a forward pass, reusing computation where
possible. It will continue to do so until it receives a
signal to stop early at an exit m∗ < M , or arrives
at the last exit M . At this point, it will output the
final predictions based on the current and previous
predictions. Note that under this early exit setting,
different samples might exit at different layers.

3 PCEE-BERT

3.1 Motivation
PABEE achieves the SOTA performances for BERT
early exiting by applying an early exiting decision-
making process that mimics the early stopping of
model training. However, one drawback of PABEE
is that it can not flexibly adjust the average infer-
ence layers (i.e., speed-ups) for a given dataset once
its patience parameter is set. Table 1 shows PABEE
can not achieve certain values for average inference
layers, such as around 4.0, 6.0, or 9.0 on RTE. This
drawback may limit the industrial usage of early
exiting techniques. Thus, it is of great importance
to develop a new method that performs comparably
with PABEE and is more flexible than PABEE.

3.2 PCEE-BERT: a novel dynamic exiting
method

The inference process of PCEE-BERT is illustrated
in Figure 2(b). Assume the feed forward process
for predicting sample x has gone through layers 1,
..., m− 1, and we are now at layer m. After going
through the transformer layer m, the intermediate
classifier f (m)(x; θ(m)) predicts a class label distri-
bution p(m)(x; θ(m)). The confidence level of layer
m is measured by the entropy value of distribution
p(m)(x; θ(m)):

C(m) =

∑K
k=1 p

(m)
k log p

(m)
k

log(1/K)
, (2)

RTE QNLI MRPC
patience=1 3.24 2.25 2.00
patience=2 4.96 3.87 3.00
patience=3 6.69 5.32 4.18
patience=4 7.77 6.50 5.60
patience=5 8.78 7.61 6.81
patience=6 9.75 8.64 7.91
patience=7 10.68 9.54 8.83
patience=8 11.47 10.36 9.72
patience=9 11.79 11.04 10.51

patience=10 11.92 11.57 11.26
patience=11 12.00 12.00 12.00

Table 1: Average inference layers of PABEE on the
RTE, QNLI and MRPC tasks.

where p(m)
k is the probability mass for k-th class la-

bel. If C(m) is smaller than a pre-defined threshold
τ , the predictions of layer m is considered confi-
dent. Otherwise, it is considered in-confident.

We use a patience counter pct to store the num-
ber of times that the predictions remain confident
in consecutive layers. Formally, at layer m, pct(m)

is calculated as

pct(m) =

{
pct(m−1) + 1, if C(m) < τ,

0, otherwise.
(3)

We stop inference early at layer m when pct(m)

reaches a predefined integer number t (the patience
parameter). If this condition is never fulfilled, we
use the final classifier M for prediction. In this way,
the model can make an early exit without passing
through all layers to make a prediction.

Our method draws advantages from the previ-
ous score-based early exiting method (Teerapit-
tayanon et al., 2016) and patience-based method
(Zhou et al., 2020) and overcomes their shortcom-
ings. First, the score-based early exiting method
relies on the confidence score from only the cur-
rent layer. However, as revealed by Szegedy et al.
(2014); Jiang et al. (2018), prediction of probability
distributions (i.e., softmax scores) suffers from be-
ing over-confident to one class, making it an unreli-
able metric to represent confidence. In our method,
early exiting occurs when a group of consecutive
layers is confident, thus making the early exiting
decision more reliable. Second, with a patience-
based early exiting method like PABEE, when a
deeper layer tries to correct the predictions, the pa-
tience count resets to zero. As a result, PABEE is
less efficient than our PCEE-BERT. Third, since
our method is a combination of PABEE and the



score-based method, one can conveniently adjust
the threshold and patience parameters to control
the speed-up ratios, which makes our method more
flexible than PABEE.

4 Experiments

4.1 Datasets

We evaluate our proposed approach to the classi-
fication tasks on the GLUE benchmark. We only
exclude the STS-B task since it is a regression task,
and we exclude the WNLI task following previous
work (Devlin et al., 2018; Xu et al., 2020).

4.2 Baselines

We compare our approaches with three groups of
baselines.

Backbone models: We mainly choose the
BERT-base model open-sourced by Devlin et al.
(2019) as the backbone model. We also investi-
gate whether our method is applicable across dif-
ferent backbones, so we also run ablation experi-
ments with ALBERT base (Lan et al., 2020) and
TinyBERT6 (Jiao et al., 2020b).

Budgeted exiting: In the section 2.2 we have in-
troduced how to train a multi-exit BERT. Once the
multi-exit BERT, we can conduct budgeted early
exiting, that is, asking a designated intermediate
layer to encode and predict all the samples. Bud-
geted exiting is a direct way to speed up BERT’s
inference, but it is not instance adaptive. Some of
the samples may not need to go through many of
the BERT’s layers, and the others may be more
difficult and require deeper feature encoding from
the deeper layers of BERT.

Dynamic exiting: In this part, we compare
our methods with a series of strong baselines, in-
cluding BranchyNet (Teerapittayanon et al., 2016),
Shallow-Deep (Kaya et al., 2019), BERxiT (Xin
et al., 2021), and PABEE (Zhou et al., 2020). Note
that PABEE can not flexibly adjust the average in-
ference layers on a task once the patience parameter
is set. So we will adjust the thresholds in the other
baselines and our PCEE-BERT so that all methods’
number of average inference layers are close.

4.3 Evaluation of early exiting method

In this work, we strictly follow the GLUE bench-
mark to report the performances metrics on each
task. Note that this work focuses on investigat-
ing the early exiting of PLMs. Thus we have to
consider the trade-offs between performance and

efficiency. Following PABEE (Zhou et al., 2020),
we mainly report the speedup ratio as the efficiency
metric. Assume the PLM backbone has N layers
in total. For each test sample xi (i ∈ {0, 1, ..., N}),
the early exiting layer is mi, then the average
speedup ratio on the test set is calculated by

Speedup = 1−
∑N

1 mi∑N
1 M

. (4)

We choose this efficiency metric for the following
reason: (1) it is linear w.r.t. the actual amount of
computation; (2) according to our experiments, it
is proportional to actual wall-clock runtime and is
also more stable across different runs compared
with actual runtime due to randomness by other
processes on the same machine.

4.4 Experimental settings

Training We add a linear output layer after each
intermediate layer of the pre-trained BERT or other
backbone models as the internal classifiers. We
perform grid search over batch sizes of 16, 32,
128, and learning rates of 1e-5, 2e-5, 3e-5, 5e-5
with an Adam optimizer. The hyper-parameters
are selected via the 5-fold cross validation on the
train set of GLUE tasks. We implement PCEE-
BERT on the base of Hugging Face’s Transformers
(Wolf et al., 2020). Experiments are conducted on
a single Nvidia V100 16GB GPU.

Inference Following prior work on input-
adaptive inference (Teerapittayanon et al., 2016;
Kaya et al., 2019), inference is on a per-instance
basis, i.e., the batch size for inference is set to 1.
This is a common scenario in the industry where
individual requests from different users (Schwartz
et al., 2020b) come at different time points. We
report the median performance over five runs with
different random seeds.

4.5 Main results

In Table 2, we report the performance comparisons
of each method on the GLUE benchmark under
three different speedup settings. The three speedup
settings are: (1) 74% to 82% speedup; (2) 46%
to 54% speedup; (3) 23% to 28% speedup. Since
PABEE can not flexibly adjust the speedup ratios
for a given patience parameter and a given task,
we adjust the hyper-parameters (such as entropy
threshold) of our PCEE-BERT and the other base-
lines to achieve similar speedups with PABEE. The
results in table 2 clearly show that our PCEE-BERT



(a) MRPC task (b) QNLI task

(c) MNLI task (d) QQP task

Figure 3: Performance–efficiency trade-offs using different exiting strategies. We can see that our PCEE-BERT
consistently outperforms the strong baseline, PABEE, especially when the speed-up ratio is large.

CoLA MNLI MRPC QNLI QQP RTE SST-2
score speedup score speedup score speedup score speedup score speedup score speedup score speedup

BERT base 0.542 0% 0.831 0% 0.868 0% 0.898 0% 0.892 0% 0.691 0% 0.913 0%
Budgeted-Exit-3L 0.0 75% 0.700 75% 0.758 75% 0.774 75% 0.818 75% 0.547 75% 0.810 75%
Budgeted-Exit-6L 0.0 50% 0.796 50% 0.847 50% 0.853 50% 0.893 50% 0.681 50% 0.886 50%
Budgeted-Exit-9L 0.519 25% 0.830 25% 0.870 25% 0.884 25% 0.903 25% 0.690 25% 0.912 25%

BranchyNet
0.0, 74% 0.638 76% 0.757 76% 0.742 80% 0.716 80% 0.547 76% 0.799 76%
0.0 51% 0.783 53% 0.830 52% 0.871 47% 0.893 50% 0.674 47% 0.883 49%

0.521 27% 0.830 25% 0.858 24% 0.893 27% 0.901 26% 0.680 26% 0.912 24%

Shallow-Deep
0.0 75% 0.641 77% 0.756 76% 0.743 78% 0.714 79% 0.547 76% 0.795 77%
0.0 52% 0.782 51% 0.828 51% 0.872 49% 0.896 51% 0.672 48% 0.884 48%

0.523 26% 0.829 26% 0.857 25% 0.893 26% 0.901 27% 0.678 26% 0.912 25%

BERxiT
0.0 76% 0.635 76% 0.756 76% 0.733 78% 0.682 80% 0.553 77% 0.795 76%

0.1232 52% 0.784 51% 0.829 51% 0.870 48% 0.891 49% 0.673 47% 0.883 49%
0.522 25% 0.832 26% 0.862 26% 0.896 27% 0.901 26% 0.681 27% 0.914 24%

PABEE
0.0 75% 0.639 77% 0.758 75% 0.736 81% 0.686 82% 0.558 75% 0.799 77%
0.0 50% 0.789 52% 0.831 53% 0.872 46% 0.896 49% 0.677 46% 0.887 48%

0.524 26% 0.834 24% 0.861 26% 0.898 28% 0.904 24% 0.683 28% 0.917 22%

PCEE-BERT
0.098 79% 0.734 72% 0.788 77% 0.804 75% 0.796 82% 0.584 76% 0.836 76%
0.232 57% 0.801 53% 0.848 53% 0.871 54% 0.908 49% 0.694 47% 0.904 48%
0.528 27% 0.834 28% 0.868 26% 0.905 27% 0.912 25% 0.697 30% 0.918 23%

Table 2: Experimental results of different early exiting methods with the same fine-tuned BERT backbone on the
GLUE benchmark. The results show that PCEE-BERT is effective in accelerating BERT’s inference with less
performance loss compared with the baseline methods.

method outperforms the baseline methods under different speedup ratios. Table 2 also shows that



the PABEE method is the best performing baseline.
Thus, in order to further analyze and better visual-
ize the results, we draw the score-speedup curves
(in Figure 3) for budgeted early exiting, PABEE
and PCEE-BERT, on the QNLI and MRPC tasks.
1 With Table 2 and Figure 3, we can make the
following observations:

• Although it is clear that PABEE performs
better than the other baselines when the
speedup ratio is around 50% or 25%, its advan-
tages over the other baselines with the 75%
speedup ratio is relatively small. With the
75% speedup ratio for seven GLUE tasks, it
performs better than the score-based methods
only on three tasks. This observation moti-
vates us to improve PABEE by combining its
patience-based early exiting mechanism with
the score-based ones.

• Our PCEE-BERT consistently performs bet-
ter than the baseline methods, especially when
the speedup ratio is large. Note that our PCEE-
BERT also consistently outperforms the bud-
geted exiting speedup ratios, which the other
baselines do not achieve. Figure 3(b) and 3(a)
show that score-speedup curve for PABEE is
interleaving with that of the budgeted exiting.
However, the score-speedup curve for PCEE-
BERT distances itself from the others for most
of the GLUE tasks.

• The overthinking problem is prevailing in the
GLUE benchmark, and our PCEE-BERT early
exiting can effectively take advantage of this
phenomenon. For 6 of the GLUE tasks, PCEE-
BERT can outperform BERT-base with a 25%
(or more than) speedup ratio. And for 2 of
the GLUE tasks, PCEE-BERT can outper-
form BERT-base with a 50% (or more than)
speedup ratio.

Putting performance comparisons aside, one ben-
efit of PCEE-BERT is that it is flexible since by
adjusting the threshold and the patience parameter,
it can easily control the average inference layers
and cover (or achieve values close to) any speedup
ratios.2

1The score-speedup curves for the other five GLUE tasks
can be found in the appendix.

2See the Appendix for demonstration on MRPC.

Figure 4: This figure demonstrates that PCEE-BERT
can work with other confidence measures.

4.6 Ablation studies

4.6.1 Ablation on the confidence measures
Note that our PCEE-BERT is a novel combination
of PABEE and BranchyNet. Thus PCEE-BERT
mainly uses the entropy of predicted distributions
as the confidence measure of an intermediate layer.
However, can PCEE-BERT work with the other
confidence measures, such as Shallow-Deep? We
switch the entropy-based confidence level C(M)

(Equation 2) with that from Shallow-Deep (Kaya
et al., 2019):

C(M) = Argmaxkp
(m)
k , (5)

and we will call this version of PCEE-BERT as
PCEE-BERT-v1. Note that PCEE-BERT-v1 does
not require a newly fine-tuned model.

With BERxiT, we can come up with PCEE-
BERT-v2. Following BERxiT, PCEE-BERT-v2
fine-tunes the multi-exit BERT with a fully con-
nected layer right after each transformer block des-
ignated to evaluate the confidence score C(M) for
early exiting at that layer. C(M) is learned along
with the training of intermediate classifiers. Note
that PCEE-BERT-v2 can not reuse the fine-tuned
checkpoints used in PCEE-BERT and requires one
to fine-tune the BERT backbones on the task at
hand.

We conduct the experiments on the QNLI tasks,
and the results are reported in Figure 4. We can see
that PCEE-BERT-v1 and PCEE-BERT-v2 perform
comparably to PCEE-BERT. The results show that
the proposed PCEE-BERT early exiting mecha-
nism is off-the-shelf, and the reason for the success
of our PCEE-BERT is its early exiting mechanism,



(a) ALBERT base as backbone (b) TinyBERT6 as backbone

Figure 5: Ablation study on alternative PLMs.

Figure 6: Results for ablation study of whether PCEE-
BERT should apply the cross-layer ensemble.

that is, early exit if a group of consecutive exits is
confident for their predictions.

4.6.2 Ablation of PLM backbones
In the main experiments, we use BERT as the pre-
trained backbone model. However, PCEE-BERT
can also work with the other types of pre-trained
backbones, such as ALBERT base (Lan et al., 2020)
and TinyBERT6 (Jiao et al., 2020b). We conduct
the experiments on the QNLI task with these two
backbone models, and results are presented in Fig-
ure 5(a) and 5(b). We can see that when using
the other pre-trained backbones, PCEE-BERT also
performs better than the baseline methods.

The results for PCEE-BERT on the TinyBERT
also convey an important message: as an infer-
ence speedup method, our PCEE method can work
alongside the model compression methods to fur-
ther reduce the latency of BERT.

4.6.3 Ablation of cross-layer ensemble
Since we have a prediction module at each layer
of BERT, we can conduct model ensemble across
layers that the forward pass has gone through al-
ready. In Figure 6, we conduct the ablation studies
on the RTE and QNLI tasks. According to Figure 6,
cross-layer ensemble leads to performance degra-
dation when the speedup ratio is large, while when
the average inference layers is close to the num-
ber of BERT’s transformer blocks M , cross-layer
ensemble results in slight improvements. In con-
clusion, the cross-layer ensemble does not result in
consistent performance improvements.

A possible application of the above results is to
apply the cross-layer ensemble when a low speedup
ratio is applied. And when we ask the model to exit
early in the shallow layers, the cross-layer ensem-
ble is not used.

4.6.4 PCEE-BERT are effective for image
classification

Our main experiments are conducted on BERT, a
pre-trained language model, and the GLUE bench-
mark, a series of natural language understanding
tasks. However, our PCEE-BERT method is a plug-
and-play early exiting and can be applied to mod-
els and tasks of different modalities. To demon-
strate the effectiveness of PCEE-BERT on the im-
age classification task, we follow the experimen-
tal settings in PABEE (Zhou et al., 2020). We
conduct experiments on two image classification
datasets, CIFAR-10 and CIFAR-100 (Krizhevsky,
2009). The ResNet-56 model (He et al., 2016)
serves as the backbone, and we compare PCEE-
BERT with PABEE. We place an exiting classifier



Method CIFAR-10 CIFAR-100
speed-up Acc. speed-up Acc.

ResNet-56 0.0 91.8 0.0 68.6

PABEE
77% 78.3 76% 51.2
52% 86.7 48% 62.5
26% 91.9 24% 69.2

PCEE-BERT
76% 81.2 74% 55.6
51% 87.3 49% 64.8
25% 92.1 24% 69.4

Table 3: Experimental results of PCEE-BERT when
applied in the image classification tasks.

at every two convolutional layers. We set the batch
size to 128 and use an SGD optimizer with a learn-
ing rate of 0.1.

Table 3 reports the results. PCEE-BERT out-
performs PABEE when early exiting at different
speedup ratios. In addition, the performance advan-
tages of PCEE-BERT are larger when the speedup
ratio is large, which is also observed in the NLP
tasks. And PCEE-BERT outperforms the original
ResNet-56 on both tasks even when it provides
around 25% speedup.

5 Conclusion

In this work, we propose PCEE-BERT, a novel
efficient inference method that can yield a better
performance-speed trade-off than the existing early
exiting methods. PCEE-BERT adopts BERT as the
backbone model and makes the exiting decision if
there are enough intermediate layers to make confi-
dent predictions. The confidence level is measured
by the entropy of the predicted distributions. Exper-
iments on the GLUE benchmark demonstrate that
our method outperforms the previous SOTA early
exiting methods, especially when the speedup ratio
is large. In addition, PCEE-BERT can achieve dif-
ferent speedup ratios by adjusting the patience pa-
rameter and the confidence threshold, which makes
it more flexible in industrial usage. Ablation studies
show that: (a) our PCEE-BERT can adopt different
confidence measures, such as maximum probability
mass; (b) our method performs consistently well on
different PLMs and can work together with model
compression methods to speed up the BERT’s in-
ference; (c) our PCEE-BERT also performs well
on computer vision tasks.
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A Appendix

A.1 Quality–efficiency trade-offs on GLUE
benchmark tasks.

In the main content, we present the qual-
ity–efficiency trade-offs curves for four GLUE
tasks. And here we put the results of the other
three tasks in Figure 7.

A.2 Demonstrating PCEE-BERT can cover
(or achieve values close to) any speedup
ratios

PCEE-BERT’s speedup ratio can be conveniently
adjusted by setting different values for the patience
parameter and the confidence threshold. To vali-
date our claim, we alternate the threshold among
100 points between 0.0 to 1.0 when the patience
parameter takes the value of 1, 2, 3, 6. The average
numbers of inference layers are reported in the scat-
ter plot (Figure 8). We can see that by adjusting the
threshold and the patience parameter, one can eas-
ily control the average inference layers and cover
(or achieve values close to) any speedup ratios.
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(a) CoLA task (b) RTE task

(c) SST-2 task

Figure 7: Performance–efficiency trade-offs using different exiting strategies. We can see that our PCEE-BERT
consistently outperforms the strong baseline, PABEE, especially when the speed-up ratio is large.

Figure 8: This figure demonstrates that PCEE-BERT
can cover (or achieve values close to) any speedup ra-
tios.


