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Abstract
Sparse autoencoders (SAEs) are a popular method
for interpreting concepts represented in large lan-
guage model (LLM) activations. However, there
is a lack of evidence regarding the validity of their
interpretations due to the lack of a ground truth
for the concepts used by an LLM, and a grow-
ing number of works have presented problems
with current SAEs. One alternative source of evi-
dence would be demonstrating that SAEs improve
performance on downstream tasks beyond exist-
ing baselines. We test this by applying SAEs to
the real-world task of LLM activation probing
in four regimes: data scarcity, class imbalance,
label noise, and covariate shift. Due to the diffi-
culty of detecting concepts in these challenging
settings, we hypothesize that SAEs’ basis of in-
terpretable, concept-level latents should provide
a useful inductive bias. However, although SAEs
occasionally perform better than baselines on indi-
vidual datasets, we are unable to ensemble SAEs
and baselines to consistently improve over just
baseline methods. Additionally, although SAEs
initially appear promising for identifying spuri-
ous correlations, detecting poor dataset quality,
and training multi-token probes, we are able to
achieve similar results with simple non-SAE base-
lines as well. Though we cannot discount SAEs’
utility on other tasks, our findings highlight the
shortcomings of current SAEs and the need to
rigorously evaluate interpretability methods on
downstream tasks with strong baselines.

1. Introduction
Dictionary learning is a popular method for interpreting
LLM activations (Arora et al., 2018; Yun et al., 2021); most
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Figure 1. SAE probes underperform the baseline of logistic re-
gression in each regime when taking the mean across datasets.
Additionally, we find that baseline methods can provide many of
the interpretability insights of SAE probes. Bars compare the best
performing baseline method (logistic regression) to the best per-
forming SAE probe (width = 16k, k = 128).

notably, Bricken et al. (2023); Cunningham et al. (2023)
demonstrated the promise of sparse autoencoders (SAEs)
and sparked considerable follow-up work. This includes
papers focused on improving the downstream cross entropy
loss of SAE reconstructions (Gao et al., 2024; Braun et al.,
2024; Rajamanoharan et al., 2024a;b), improving SAE train-
ing efficiency (Mudide et al., 2024; Gao et al., 2024), finding
weaknesses in SAEs and proposing solutions (Chanin et al.,
2024; Bussmann et al., 2024b), using SAEs to understand
model representation structure (Engels et al., 2024a;b; Li
et al., 2024), training large suites of SAEs (Lieberum et al.,
2024; He et al., 2024), and developing benchmarks for SAEs
(Huang et al., 2024; Karvonen et al.; 2024b).

Unfortunately, we lack a “ground truth” to know whether
SAEs truly extract the interpretable concepts used by lan-
guage models. Prior work has largely avoided this limitation
by evaluating SAEs with proxy metrics like reconstruction
loss (Rajamanoharan et al., 2024a;b; Gao et al., 2024; Olmo
et al., 2024; Braun et al., 2024). These metrics are tractable
to optimize for, but do not necessarily align with mecha-
nistic interpretability’s (MI) goal of better understanding
neural networks (see Bereska & Gavves (2024) and Sharkey
et al. (2025) for surveys of MI). We argue that if SAEs truly
advance MI’s goal, they should improve performance on a
real, hard-to-fake model control or explainability task.
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However, despite the extensive body of work on SAEs, there
are relatively few cases where SAEs have been shown to
help on such a task: Marks et al. (2024) show that SAE
feature circuits can help identify and remove bias from
classifiers; Smith & Brinkmann (2024) show that SAEs
can identify misaligned features learned by a preference
model; and Karvonen et al. (2024a) show that SAE feature
ablations are better at preventing regex output than baselines
in a setting with scarce supervised data. While these results
are promising, they all study a single example in detail, and
consider comparative baselines with varying levels of rigor.

At the same time, there are also surprisingly few negative
results finding that SAEs do not help on downstream tasks;
in fact, we are only aware of Chaudhary & Geiger (2024),
which finds that SAE latents are worse than neurons at dis-
entangling geographic data, and Farrell et al. (2024), which
finds that pinning related SAE latents is less effective than
baselines for unlearning bioweapon knowledge. Thus, it is
not clear whether SAEs are just one result away from being
differentially useful, or if MI should seek fundamentally dif-
ferent methods. We defer a thorough examination of related
work to Appendix A.

In this work, we attempt to fairly evaluate the utility of SAEs
by examining their competitive advantage on a concrete task:
training probes from language model activations to targets
(Alain, 2016). Probing has two important qualities:

1. Probing is practically useful: Probing has been used
to investigate LLM representations (Gurnee & Tegmark,
2023; Nanda et al., 2023; Heinzerling & Inui, 2024), de-
tect safety relevant quantities (Zou et al., 2023), remove
knowledge from models (Elazar et al., 2021), and catch
synthetic sleeper agents (MacDiarmid et al., 2024).

2. SAEs might reasonably improve probing: Theoreti-
cally, SAE latents are a more interpretable basis of model
activations, and we hypothesize that this inductive bias
will help train probes in difficult regimes. Recent work
has also found some positive results for the utility of SAE
probes (Bricken et al., 2024a; Gallifant et al., 2025).

Thus, we curate 113 linear probing datasets from a variety
of settings and train linear probes on corresponding SAE
latent activations (see Figure 2). We compare to a suite of
baseline methods across 4 difficult probing regimes: 1) data
scarcity, 2) class imbalance, 3) label noise, and 4) co-variate
shift. Unfortunately, we find that SAE probes fail to offer a
consistent overall advantage when added to a simulated
practitioner’s toolkit.

Further, we explore areas that Bricken et al. (2024a) suggest
SAEs may be valuable for, including detecting attributes
distributed over multiple tokens and identifying dataset is-
sues. Although SAEs initially seemed promising in these
settings, we were able to achieve the same results with im-
proved baselines. Our results underscore the necessity for

Class 0 Activation Vectors

SAE Encoder

            Select top
k latents by avg.
latent diff across

classes

i Train logistic regression
probe, L1 regularization

Class 1 Activation Vectors

KNN

LogReg

XGBoost

MLP

PCA +
LogReg

SAE
Probe

SAE Probe

Figure 2. Left: An illustration of our SAE probing method. We
pass in training activation vectors from each class and train an L1

regularized logistic regression probe on the latents that differ the
most between classes. Right: We ensure robustness of our results
with the ”quiver of arrows” approach (see Section 2.4): we add
SAE regression into a set of methods, and see if the test accuracy
of the best method (chosen by validation accuracy) increases.

MI works to rigorously design baselines when evaluating
the utility of interpretability techniques.

2. Methodology
We apply probes to the hidden states of two language mod-
els, Gemma-2-9B (Riviere et al., 2024) and Llama-3.1-8B
(Grattafiori et al., 2024). Our main paper results use Gemma-
2-9B. We replicate core results on Llama-3.1-8B in Ap-
pendix I. We use JumpReLU (Rajamanoharan et al., 2024b)
sparse autoencoders (SAEs) from Gemma Scope (Lieberum
et al., 2024) for Gemma-2-9B and TopK (Gao et al., 2024)
SAEs from Llama Scope (He et al., 2024) for Llama-3.1-8B.
See Appendix A for further background on SAEs.

2.1. Classification Datasets

We collect a diverse set of 113 binary classification
datasets listed in Table 4 (Appendix C) For example,
26 headline isfrontpage requires probes to identify front-
page headlines and 136 glue mnli entailment requires
probes to identify logically entailment. For other exam-
ple datasets, refer to Table 1. All datasets are titled in the
form ID description. We originally collected datasets for
other purposes and discarded some of them; thus, while we
have 113 datasets, ID ranges from [5, 163].

All datasets contain prompts and targets. Probes are tasked
with predicting the target from the model’s hidden activa-
tions when run on a prompt. We focus on binary classifi-
cation, since SAEs are mostly thought of as representing
binarized latents (see Bricken et al. (2023)). Thus, target is
either 0 or 1. The prompts in our datasets range in length
from 5 tokens to a (left-truncated) maximum of 1024 tokens.
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Table 1. Example probing tasks. Only tasks with short prompts shown for conciseness.
Dataset Name Prompt Target

26 headline isfrontpage Sebelius’s Slow-Motion Resignation From the Cabinet. 1
MI5 References Emerge in Phone Hacking Lawsuit. 0

36 sciq tf Q: Binary fission is an example of which type of production? A: asexual 1
Q: What occurs when light interacts with our atmosphere? A: prism
effect

0

114 nyc borough Manhattan INWOOD BASKETBALL COURTS 1
PS 18 JOHN G WHITTIER 0

149 twt emotion happiness All moved in to our new apartment. So exciting 1
is noow calmmm eating polvoron .. yuumm 0

155 athlete sport basketball Jimmy Butler 1
Steve Balboni 0

2.2. Probing Strategy

To train a probe on a given dataset, we first run the model on
all prompts from that dataset to generate model activations
at each layer l on the last token, X l

−1.X l
−1 is of shape

(len(prompts),model dim). We probe the last token to
ensure the target information was present in the preceding
context. For activation probes, we then train a probe p to
map from X l

−1 7→ t, where t are the targets in our dataset.

Our SAE probe training technique is summarized in Fig-
ure 2. We first pass the training dataset X l

−1 through the
SAE encoder, resulting in a batch of vectors in the SAE
latent space Z = SAE(X l

−1) of shape (len(prompts),W ),
where W is the width of the SAE. We do not train probes di-
rectly on the SAE latent space because we hypothesize that
a small number of SAE latents encodes the desired concept.
Instead, we create a basis of latents with the highest average
absolute difference between the set of training prompts T1

with target = 1 and the set of training prompts T0 with
target = 0. More formally, if SAE(X l

−1) ∈ RW , where
W ≫ dmodel, we choose k ≪ W and find indices I as
follows:

I = arg top k
i∈{W}

∣∣∣∣∣∣ 1

|T1|
∑
j∈T1

Zj,i −
1

|T0|
∑
j∈T0

Zj,i

∣∣∣∣∣∣ (1)

We then train a probe pSAE to map from Z[:, I] 7→ t.

We note that Equation (1) has a bias toward latents with
larger ranges. We thus also experiment with replacing Zi,j

with Zi,j

λi
, where λi is the average value of latent i when it

is active. This alternative selection metric leads to better
results for small k (k < 32) and similar results for larger
k, but does not change our overall quiver of arrow results
significantly (Gemma experiments use the normalized se-
lection metric and the Llama experiments do not).

Note that previous work in SAE probing has aggregated
SAE latents across tokens to provide a richer input space for

SAE probes (Karvonen et al., 2024b; Bricken et al., 2024b).
However, most probing studies operate on the final token,
which we choose to emulate. In Appendix K, we present
results considering probes on multiple tokens.

Throughout this study, we use the area under the ROC curve
(AUC) to evaluate the quality of a probe. AUC is the like-
lihood that the classifier assigns a higher probability of
target = 1 to a target = 1 example than to a target = 0
example. Using AUC allows us to comprehensively assess
probe performance agnostic to classification thresholds. For
additional details on AUC, see Appendix D.1.

Often, a probe p has hyperparameters hp we would like to
optimize. We select hp that has the maximal validation AUC
using the cross-validation strategy described in Table 5. We
then test p with optimal hp on a held out test set to calculate
AUCtest

p . All datasets have at least 100 testing examples,
with most having more (the average test set size is 1945).

2.3. Probing Methods

We use 5 baseline probing methods, detailed with their re-
spective hyperparameters in Table 2. We evaluate 10 hyper-
parameter values hp for each probing method p. For the first
three probing methods, we use grid search, while for MLPs
and XGBoost, we randomly sample from a hyperparameter
grid to manage the larger search space. For additional de-
tails on hyperparameter ranges, see Appendix D.3. We use
all five probing methods as baselines, but for SAE probes
we only use logistic regression.

2.4. Experimental Setup: Quiver of Arrows

To evaluate whether SAE probes provide an advantage over
baselines, we use an evaluation metric we call the “Quiver
of Arrows”: we ask whether adding SAE probes (a new
“arrow”) to the set of existing probing methods available to a
practitioner (the “quiver”) increases performance compared
to a practitioner without access to SAE probes. In other
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Method Hyperparameters
Logistic Regression L1 regularization for SAE probes, L2 otherwise
PCA Regression Number of PCA components to reduce X l

−1 to before using unregularized logistic
regression

K-Nearest Neighbors (KNN) Number of nearest neighbors
XGBoost (Chen & Guestrin, 2016) n estimators, max depth, learning rate, subsample, colsample bytree,

reg alpha, reg lambda, min child weight
Multilayer Perceptron (MLP) Network depth, hidden state width, learning rate, and weight decay

Table 2. Overview of baseline methods and their associated hyperparameters.
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Figure 3. For a given width, using higher L0 and constructing
probes with a larger basis of latents (k) is more performant.

words, over a collection of methods we choose the best
method by validation AUC and then report the test AUC of
that method. We can then compare the marginal improve-
ment of adding SAE probes to a practitioner’s toolkit by
comparing the Quiver of Arrows AUC of baeline methods
with and without SAE probes.

The quiver of arrows can be defined formally as follows.
Given a set of probing methods P = p1, . . . , pn (listed in
Section 2.3), we find AUCval

pi
for each method using the pro-

cedure described in Section 2.2. We then choose the probing
method p∗ with maximal AUCval

pi
and record its AUCtest

P =

AUCtest
p∗

. We can then compare AUCtest
P to AUCtest

P ′ for a
different set of methods P ′ = p′1, . . . , p

′
n. If we let P be a

set of baseline methods, and P ′ = P ∪ {SAE probes}, then
AUCtest

P ′ −AUCtest
P directly represents the increase in test

performance when adding SAE probes to a practitioner’s
toolbox. We then aggregate AUCtest

P − AUCtest
P ′ across

many different datasets and testing regimes (e.g., dataset
size) to give an overall sense of the improvement due to
SAE probing.

The quiver of arrows approach is designed as a robustness
check to fairly evaluate the benefit of adding SAE probes to
a practioner’s toolkit. If we instead constructed probes from
a large set of SAEs and chose the best one based on test
AUC, we could be tricked into thinking SAEs outperform
baselines because we accessed the held-out test set. With
the quiver of arrows approach, we emulate the information
a real practioner has access to, allowing us to make a robust
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Figure 4. In standard conditions, when SAE probes are added to the
quiver, they are chosen by validation AUC 14/133 times. However,
we find a slight decrease in test AUC. Datasets not directly on the
diagonal signify that an SAE method was chosen from the quiver.

recommendation on the usefulness of SAE probes. Addi-
tional discussion of the metircs of the Quiver of Arrows is
in Appendix D.4.

3. Comparing Probing Techniques in Different
Regimes

3.1. Standard Conditions

We initially assess probes under standard conditions, char-
acterized by sufficient data for probe convergence and bal-
anced classes. We find that both baseline methods and SAE
methods perform the best on layer 20 (see Figure 12a, Ap-
pendix E.1), so we run experiments with this layer. We train
baselines on 1024 data points (or the maximum number of
points in the dataset).

We first conduct a preliminary investigation to cut down the
large space of Gemma Scope SAEs. We train probes for
all SAEs using k latents (for logspaced values of k) on all
datasets using 1024 training examples. We calculate the
average test AUC for each SAE probe across all datasets.
We find that SAE width is relatively unimportant to probe
success, while larger L0s lead to more performant probes
(Appendix E.2). Additionally, as we might expect, using
a larger value of k leads to better probe performance, as
shown in Figure 3.

Thus, throughout the paper we train probes using the largest
available L0 for SAEs with width = 16k,width = 131k,
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Data Scarcity Class Imbalance Label Noise

Figure 5. For three of the datasets in Table 1, we visualize the performance when SAE probes are in the quiver (dashed) versus when they
are not (solid) for the regimes of data scarcity (left), class imbalance (middle), and label noise (right). In all three regimes, we see that on
average (bottom row), SAEs do not help.
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Figure 6. For the regimes of data scarcity, class imbalance, and label noise, we see no average improvement across datasets when adding
SAEs to the quiver. Shading represents 95% confidence intervals.

and width = 1M. We use k = 16 to construct easily
interpretable probes that potentially overfit less and use
k = 128 for performance.

Using this set of probes, we consider our quiver of arrows
approach in standard conditions. SAEs are chosen as the “ar-
row” for 14/113 tasks, however, we see a slight decrease in
performance when they are added to the quiver in Figure 4.

It is unsurprising that SAE probes underperform baselines
in standard conditions, as their inductive bias is marginal
given a large, balanced dataset. Thus, we now investigate
more difficult settings to test if the inductive bias of SAEs
translates into a competitive advantage for probing.

3.2. Data Scarcity, Class Imbalance, and Label Noise

In this section, we consider more difficult probing regimes:
limiting the training data (Data Scarcity), changing the
relative frequency of target = 1 examples (Class Imbal-
ance), and randomly flipping a fraction of the targets (Label
Noise). All of these settings are realistic workflows - for

example, a researcher observing a rare model phenomena
would like a probe that generalizes with few total exam-
ples or few examples of the desired class, while a researcher
working with collected user data wants a generalizable probe
even if some fraction of users respond randomly. See Ap-
pendix G for an explanation of why we expect SAE probes
to provide a benefit in each of these regimes.

Each regime is characterized by a parameter which we vary
to compare SAEs and baselines.

• Data Scarcity - We use 20 values of n logspaced in
[2, 1024], where n is the number of training examples.
We use a standard test set.

• Class Imbalance - We use 19 values of ratio linearly
spaced between [0.05, 0.95], where ratio = n1

n and n1 is
the number of target = 1 training examples. The test set
uses the same ratio.

• Label Noise - We use 11 values of fraction linearly
spaced between [0, 0.5], where fraction =

ncorrupted

n . We
use a standard test set (uncorrupted).
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We evaluate the first two regimes with the quiver of arrows
method. However, the quiver of arrows method relies on the
validation data being representative of the test data. This
assumption fails for the label noise setting since the vali-
dation data is corrupted. Thus, a hypothetical practitioner
would likely deploy their most performant method from
other settings instead of allowing corrupted validation AUC
to arbitrarily choose a method. To emulate this, we compare
logistic regression and the width = 16k, k = 128 SAE
probe head-to-head in the setting of label noise. We choose
this SAE probe because it has the smallest width and highest
k, which we have empircally found to be most performant.

In Figure 5, we visualize the SAE versus non-SAE quiv-
ers for a sample of datasets listed in Table 1 across the
three regimes. Additionally, we visualize the average perfor-
mance difference between the SAE and non-SAE quivers for
each regime across all datasets in Figure 6. At all parameter
values in each regime, SAEs show no meaningful improve-
ment over baselines. This is not because SAEs are not
chosen from the quiver; in Appendix F we see that SAEs are
chosen for up to 40 datasets in each regime. SAEs simply
underperform baselines in these settings. See Appendix F
for results for individual datasets.

3.3. Covariate Shift

We now investigate if SAE probes are more resilient to dis-
tribution shifts in prompts. To model this covariate shift, we
create or use 8 out-of-distribution (OOD) datasets: two pre-
existing GLUE-X datasets which are designed as “extreme”
versions of tasks 87 and 90 to test grammaticality and logi-
cal entailment respectively; three datasets (tasks 66, 67, and
73) which we alter the language of; and three datasets (tasks
5, 6, and 7) where we use syntactical alterations to names or
use cartoon characters instead of historical figures. We train
probes on these datasets in standard settings and evaluate
on 300 covariate shifted test examples.

Like the label noise setting, our validation data is unfaithful
to our test data. Thus, we compare logistic regression to
a single SAE probe. We construct SAE probes from the
width = 131k,L0 = 114 SAE, as latent descriptions are
available for this SAE on Neuronpedia (Lin, 2023), which
facilitates later interpretability related investigations. Our re-
sults (Figure 7) show that baselines outperform SAE probes
when generalizing to covariate shifted data.

4. Interpretability
While we find that SAE probes are not helpful in traditional
probing settings, one intrinsic advantage of SAE probes is
that their input basis is interpretable. To leverage this, we
use the technique of automatic interpretation, or autointerp,
to create natural language descriptions of top latents for
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Figure 7. SAE probes often generalize worse than baseline logistic
regression with covariate shift.

each dataset (see Bills et al. (2023)). We investigate three
applications of labeled latents:

1. Probe Interpretability: In Section 4.1, we investigate
why SAE probes fail to perform well by pruning latents
that o1 (OpenAI, 2024) ranks as spurious.

2. Latent Interpretability: In Section 4.2, we generate
autointerp explanations of each dataset’s top latent to find
spurious latents and latents that fit well to our probes in a
way not explained by the autointerp label.

3. Detecting Dataset Quality Issues: In Section 4.3, we
invesigate spurious dataset features and label errors us-
ing insights from the top latent descriptions and firing
patterns.

4.1. Probe Intepretability: Pruning and Latent
Generalization

We first use autointerp to investigate why SAE probes fail
to generalize to covariate shift. We have two initial hypothe-
ses: 1) the latents SAE probes rely on leverage spurious
correlations in the training data and 2) the latents are not
spurious, but they are not robust to the distribution shift.

First, we investigate hypothesis 1. Specifically, we attempt
to improve SAE probes OOD performance by pruning la-
tents deemed spurious by their autointerp description. We
focus on three OOD tasks that SAE probes perform poorly
on: 7 hist fit ispolitician, 66 living-room, and 90 glue qnli
(Figure 7). We use the width = 131k,L0 = 114 SAE.

For each task, we take the k = 8 top latents by mean differ-
ence and use Claude-3.5-Sonnet (Anthropic, 2024) to gen-
erate latent descriptions with autointerp, in addition to one
of the authors manually labeling latents. We use a smaller
k = 8 probe in this experiment as a proof-of-concept, given
the additional expense of labeling. For this and all sub-
sequent experiments, we generate autointerp labels using
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Neuronpedia (Lin, 2023), which leverages a language model
to produce consistent natural language explanations for a
latent based on its top activating tokens (the Neuronpedia
autointerp implementation is based on (Paulo et al., 2024)).
We then use OpenAI’s o1 model to rank the relevance of
each latent’s description to the task. We also prompt o1 to
downrank spurious latents given the OOD transformation.
An example of this procedure for the task 66 living-room,
which identifies if the phrase “living room” is in an English
sentence, is shown in Table 7, Appendix J.1. For this task,
o1 ranked latent 12274, which identifies “mentions of living
rooms” first, while ranking latent 51330, which identifies
“objects and materials related to scientific experiments,” last.

We then construct a probe with the top k latents using
o1’s relevance rank for k ∈ [1, 8]. If there are spurious
latents in the k = 8 probe, we expect a probe with k < 8
to have better OOD generalization. We visualize each
task’s performance by k in Figure 21, Appendix J.1. For
two of the datasets, 66 living-room and 90 glue qnli, we
see that pruning works, with a 0.024 and 0.052 increase
in AUC between the k = 8 and k = 1 probe for each
dataset. However, for 7 hist fig ispolitician, OOD test AUC
increases by 0.077 after pruning. This indicates that the task
7 hist fig ispolitician requires k = 8 latents to represent.
This procedure is dependent on the efficacy of autointerp.
To remove this confounder, a separate author ranked the
relevance of human labeled latents for all three tasks, with
no change to the results.

Our preliminary results show that pruning helps SAE probes
generalize. However, the drop between in-distribution (ID)
and OOD performance is much larger than the modest im-
provement from pruning. This indicates that spurious cor-
relations are not the primary reason SAE probes fail to
generalize. Thus, we consider the second hypothesis - that
the underlying SAE latents do not generalize well OOD.

On the task 66 living-room, latent 122774 has an ID test
AUC of 0.99 while only having an OOD test AUC of
0.64. Since the OOD transformation involves translating
the prompts to French, we hypothesize that this latent is
active on the phrase “living room” in English but not other
languages. We use GPT-4o to translate “living room” to 15
languages, and in Figure 8 we indeed observe that latent
122774 is more active on the English translation than all
other languages, and it is not active on the French translation
at all. Thus, latent 122774 does not generalize OOD, which
explains why the SAE probe also failed to generalize.

4.2. Latent Interpretability

We next generate autointerp descriptions for the most de-
terminative latent for each dataset, allowing us to identify
interesting categories of latents. Specifically, we consider
each of the top 128 latents (by mean difference between
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Figure 8. Latent 122774 is most active on the English translation
of “living room,” and does not fire on French.

classes) for each dataset for the width = 131k,L0 = 114
SAE, and evaluate each latent’s k = 1 SAE probe in stan-
dard settings. We then generate an autointerp explanation
with GPT-4o for the best latent.

Table 7 (Appendix J.2) contains a breakdown of a selec-
tion of interesting top latents that we find. We see that
some latents’ descriptions fit their tasks, like latent 81210
for 5 hist fig ismale, which activates on “references to fe-
male individuals.” Another interesting category is incorrect
autointerp labels (e.g. for 125 wold country Italy, latent
50817 has 0.989 AUC, implying (correctly) that it fires on
Italian concepts; however, the description reads “names of
researchers and scientific authors”). However, some latents
appear to be spurious and unrelated to the semantics of their
dataset. For example, 22 headline isobama, which targets
headlines published during the Obama administration, is
classified with 0.782 AUC by latent 10555, which activates
on “strings of numbers, often with mathematical notations.”

The spurious latent category seems especially promising
because finding a spurious latent may help us identify spu-
rious features in the dataset. However, in a case study in
Section 4.3.2, we find that similar findings may be possible
using baseline classifiers: we apply a logistic regression
probe to model hidden states on tokens from the Pile (Gao
et al., 2020) and show that maximally activating examples
also exhibit the spurious correlation.

However, a practical advantage for SAEs is that the in-
frastructure to perform autointerp is pre-existing through
platforms like Neuronpedia, and a theoretical advantage is
that the baseline classifier can only identify the single most
relevant coarse-grained feature, while the decomposabil-
ity of SAE probes into latents allows for identifying many
independent features of various importance.

4.3. Detecting Dataset Quality Issues

In addition to generating top latent descriptions for all
datasets, we present in-depth case studies on two datasets:
87 glue cola and 110 aimade humangpt3. These datasets
were selected after an initial investigation of five datasets
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Figure 9. Latent 369585 outperforms a dense SAE probe and lo-
gistic regression when testing on mislabeled CoLA examples.

whose top latent representations exhibited unexpectedly
strong performance. During this analysis, we discovered
that both 87 glue cola and 110 aimade humangpt3 con-
tained labeling errors. While the SAE latents successfully
highlight these errors, we observe that baseline methods are
also capable of identifying them.

4.3.1. GLUE COLA

We first examine 87 glue cola, an established linguistic
acceptability dataset. CoLA prompts are standard English
sentences with target = 1 if the sentence is grammatically
correct and 0 otherwise. Latent 369585 from the width =
1M SAE has a test AUC of 0.76 and appears to fire on
ungrammatical text. Surprisingly, when we look at prompts
that latent 369585 fires on, those that it “disagrees” with the
labels on (ones that are labeled grammatical), often appear
to be ungrammatical. Although we first found this result
with SAE probes, we later found that logistic regression was
also capable of the same identification. In Table 9, we show
the sentences that a baseline logistic regression classifier
and latent 369585 mark as ungrammatical while the label is
grammatical; most such sentences are truly ungrammatical.
Thus, both SAE and baseline methods lead us to hypothesize
that the CoLA dataset is partially mislabeled.

To test our hypothesis, we choose 3 LLMs - GPT-4o (Ope-
nAI), Claude-3.5-Sonnet-New, and Llama-3.1-405B In-
struct (Grattafiori et al., 2024) - to judge the linguistic ac-
ceptability of 1000 random CoLA prompts. We take the
LLM majority vote as the ensembled, clean label. This is
analogous to the experiment performed in Warstadt et al.
(2019) that validated the CoLA dataset by ensembling the
predictions of native English speakers, but with LLM judges
instead of English speakers. We find that 22% of CoLA la-
bels are mislabeled by this metric (higher than the 13%
disagreement rate from Warstadt et al. (2019)). Notably, the
Table 9 sentences are identified as ungrammatical by the
ensemble while being labeled as grammatical in CoLA.

Next, we train a baseline logistic regression, a k = 128
dense SAE probe, and the latent 369585 classifier on the
original CoLA labels. We then test on a held-out set with
the clean, ensembled predictions. In Figure 9, we find that
the original labels, the baseline classifier, the dense SAE
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Figure 10. Left: Top 3 latents (w/ descriptions) by mean activation
difference between AI generated and human SAE latent activations.
Right: Histograms of the identity of the 4 most common last
tokens in AI generated and human text.

probe, and latent 369585 all have about the same accuracy
on the clean labels. Remarkably, when we test all classifiers
on examples which were misclassified in CoLA (where the
ensembled labels disagree with the original labels), we find
that the latent 369585 classifier outperforms the dense SAE
probe, which itself outperforms the baseline considerably.

4.3.2. AI VS HUMAN

We also investigate 110 aimade humangpt3, which tests
if probes can distinguish between human and ChatGPT-
3.5 generated text. Latent 105150 has an AUC of 0.82
on this task, yet appears to fire primarily on periods and
punctuation.1 Since this latent is syntactical and unrelated
to the content of the dataset, we hypothesize it represents a
spurious correlation in the dataset.

We examine the final token of each prompt in the dataset
and indeed find a spurious feature: AI text is more likely to
end in a period while human text is more likely to end in a
space (see Figure 10). Although we discovered this by inves-
tigating SAE latents, we could reach the same conclusion
with baselines: in Table 10 (Appendix J.4), we apply the
logistic regression classifier to 2.8 million tokens from the
Pile, and find that it is most active on punctuation tokens.

5. Assessing Improvements in SAE
Architectures

While SAE probes do not robustly outperform baselines,
a separate interesting question is whether recent SAE ar-
chitectural developments have improved SAE probing per-
formance. We investigate this question by examining the
performance of eight different SAE architectures released
in the last two years, as outlined in Table 3.

We use width = 16k Gemma-2-2B layer 12 SAEs with a
variety of L0 values trained by Karvonen et al. (2024b). We
create k = 16, 128 SAE probes on all regimes and datasets

1See Neuronpedia for examples.
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Table 3. Timeline of SAE Architecture Improvements.
SAE Architecture Publication Date
ReLU (original)
Bricken et al. (2023)

October 4, 2023

ReLU (updated)
Conerly et al. (2024)

April 26, 2024

Gated
Rajamanoharan et al. (2024a)

May 1, 2024

TopK
Gao et al. (2024)

June 6, 2024

JumpReLU
Rajamanoharan et al. (2024b)

July 19, 2024

BatchTopK
Bussmann et al. (2024a)

July 19, 2024

p-annealing
Karvonen et al.

July 31, 2024

Matryoshka
Bussmann et al. (2024b)

December 19, 2024

for each architecture, and additionally k = 1 for standard
conditions. In Figure 11, we plot each SAE architecture’s
k = 16 probe performance in standard conditions. We
find the average test AUC of each SAE and then take the
max across L0 for each SAE architecture (using a single
L0 value is somewhat noisy, see Appendix L). This metric
tests how expressive individual SAE latents are for different
SAE architectures. While we see a slight positive trend
for probing performance with more recently released SAE
architectures, the effect is not statistically significant. For
plots in all regimes, see Appendix L; in some regimes there
is a slight improvement with newer SAE architectures.

6. Conclusion
Our evaluation of sparse autoencoders (SAEs) reveals funda-
mental limitations in current SAE methodologies. Despite
expectations that interpretable SAE latents would provide
a competitive advantage in probing, we found no improve-
ment over traditional methods across multiple regimes and
over 100 datasets. Some failures expose critical weaknesses
– for instance, SAE latents struggle to be robust to distribu-
tional shifts and fail to represent complex concepts – while
others are more mundane – lower L0 SAEs create worse
sparse probes. More broadly, our findings highlight the need
for the field of mechanistic interpretability to evaluate tech-
niques with rigorous baselines. While prior work reported
advantages for SAE probes, our robust quiver of arrows
methodology, use of stronger baselines, and evaluation on
a large set of datasets demonstrate these advantages to be
illusory. Even in our own analysis, initial conclusions favor-
ing SAE interpretability were later overturned when proper
baselines were considered. We do not consider this work
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Figure 11. We see that there is a slight uptick in probing perfor-
mance compared to baselines in standard conditions with more
recent architectures. However, the spread of the data is consider-
ably larger than this improvement.

to be a wholesale critique of the SAE paradigm. Instead,
we view it as a single rigorously evaluated datapoint to
contextualize SAE utility and to motivate a more thorough
examination of methods in mechanistic interpretability.

Limitations We study the performance of SAE probes as a
proxy for SAE utility. While we believe that probing perfor-
mance is a more effective measurement than typical SAE
evaluations like reconstruction error, it is still a proxy metric.
We chose to study difficult probing regimes to try to find
cases where the inductive bias of SAE latents outweighed
imperfect SAE reconstruction, but it is possible that even
a basis of “true” model representations would offer only a
mild inductive bias advantage over traditional linear probing.
We are thus excited for future work studying probing on
toy models (e.g. models trained on board games (Karvonen
et al., 2024c)) where the “true” model features are known.

Finally, it is possible that further optimization of the SAE
probe baseline might increase performance such that it beats
baseline methods. For example, Gallifant et al. (2025) find
that SAE probing with a number of modifications (multi-
token probes, binarization of latents, and probing with k =
full SAE dimension) beats baseline methods on safety-
relevant datasets (albeit only comparing to single-token
baseline probes). Additionally, we only tried logistic regres-
sion on SAE probes, and it is possible that other probing
techniques could perform better. However, we believe a
main takeaway of our paper is that equivalent effort should
be put into optimizing baselines. Indeed, we examine the
effect of binarizing latents in Appendix M and find that it
does not significantly help.
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A. Related Work
A.1. Probing

Probing has a rich history in computational neuroscience, where linear decoders were used to study information representation
in biological neural networks (Mur et al., 2009). This technique was later adapted to study artificial neural networks by Alain
(2016). Since then, probing has become a fundamental tool in neural network interpretability, revealing that many high-level
concepts are linearly represented in model activations (Gurnee & Tegmark, 2023; Heinzerling & Inui, 2024; Nanda et al.,
2023). Similar to our work studying sparse probing, Gurnee et al. (2023) study sparse probing of activations and identify
individual monosemantic neurons by setting k = 1. Recent work has also used probing to study safety-relevant properties of
language models, such as truthfulness (Marks & Tegmark, 2023) and the presence of sleeper agents (MacDiarmid et al.,
2024), without relying on potentially unreliable model outputs. Two recent works have investigated the utility of SAEs for
probing. First, Bricken et al. (2024a) investigate a synthetic bioweapons dataset and show that SAE probes can sometimes
offer an advantage against baseline probes when aggregated across multiple tokens; we discuss these results in our section
on multi-token probing in Appendix K. Second, Gallifant et al. (2025) use feature binarization, multi-token feature pooling,
and probing on the entire SAE vector to report that SAE probes outperform baselines. We discuss Gallifant et al.’s (2025)
results in our limitations section and in Appendix M.

A.2. Challenges in Neural Network Interpretability

Our work connects to broader concerns about the reliability of neural network interpretation methods. Adebayo et al. (2018)
studied saliency methods, a classical technique for understanding models, and found that randomizing the model and dataset
labels did not change many aspects of saliency maps; thus, while the method produced plausible-looking explanations, they
were not faithful to the true model and dataset. Similarly, (Bolukbasi et al., 2021) demonstrated that seemingly interpretable
neurons in BERT were artifacts of running on only a particular dataset rather than more general representations. For SAEs
specifically, (Chanin et al., 2024) identified feature absorption and splitting as fundamental challenges, Gao et al. (2024)
showed that SAEs have an irreducible error component, and in extremely recent work Heap et al. (2025) show that SAEs
trained on random models also result in interpretable features. Our work extends these critiques by finding that many settings
where SAE probes were thought to be helpful turn out not to be when compared to stronger baselines.

A.3. SAE and SAE Applications

Sparse autoencoders (SAEs) provide a map from model activations to a sparse, higher dimensional latent space (Bricken
et al., 2023; Cunningham et al., 2023). Individual latents are hypothesized to represent mono-semantic concepts LLMs use
for computation. An SAE is parameterized by its width, or the dimension of its latent space, and its L0, or how many latents
are nonzero on average. While our work focuses on evaluating SAEs as probing tools, prior work has explored various
downstream applications of SAEs. Templeton et al. (2024) first used SAE latents for steering, and in follow-up work Chalnev
et al. (2024) found that SAEs can help find better steering vectors (although see (Wu et al., 2025) for a very recent work
finding that SAEs are not competitive for steering). Karvonen et al. (2024b) implement a set of comprehensive benchmarks
for evaluating SAE performance, including SHIFT (Marks et al., 2024), sparse probing, unlearning, and feature absorption.
Recent work has also used SAEs to interpret preference models (Smith & Brinkmann, 2024) and prevent unwanted behavior
in model output (Karvonen et al., 2024a), both specific applications where SAEs seem to be state of the art.

B. Disentangled Representations
An interesting connection of our work is to the field of disentangled representations, which studies representations that
are identifiable. That is, disentangled representations have individual dimensions (or small groups of dimensions) that
correspond to independent parts of the input, such that changes to other parts do not change that part of the representation
(Bengio et al., 2013; Suter et al., 2019; Higgins et al., 2018). These disentangled representations are similar to sparse
autoencoders latents or language model features as hypothesized by the linear representation hypothesis, and in fact prior
work directly examines this connection (Joshi et al., 2025). Past work finds that disentangled representations are sometimes
helpful for downstream tasks, improving sample-efficiency (Van Steenkiste et al., 2019) and generalization in classification
(Lachapelle et al., 2023). Unlike these works, we find minimal benefits of plain SAE representations, perhaps implying that
they are not disentangled enough, or that the probing setup w differs from these past works.
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C. Classification Datasets
Below we list in a (large) table all of the classification datasets we use, as well as their source. Note that datasets 161-163
are modified from their source -a mistake in our formatting reframes them as differentiating between news headlines and
code samples.

Table 4: Binary classification tasks used.

Citation Dataset Name
Gurnee & Tegmark (2024) 5 hist fig ismale

6 hist fig isamerican
7 hist fig ispolitician
21 headline istrump
22 headline isobama
23 headline ischina
24 headline isiran
26 headline isfrontpage
114 nyc borough Manhattan
115 nyc borough Brooklyn
116 nyc borough Bronx
117 us state FL
118 us state CA
119 us state TX
120 us timezone Chicago
121 us timezone New York
122 us timezone Los Angeles
123 world country United Kingdom
124 world country United States
125 world country Italy
126 art type book
127 art type song
128 art type movie

Johannes Welbl (2017) 36 sciq tf
Lin et al. (2022) 41 truthqa tf
Ben Zhou & Roth (2019) 42 temp sense

130 temp cat Frequency
131 temp cat Typical Time
132 temp cat Event Ordering

Bisk et al. (2020) 44 phys tf
Tafjord et al. (”2019”) 47 reasoning tf
Hendrycks et al. (2021) 48 cm correct

49 cm isshort
50 deon isvalid
51 just is
52 virtue is

Talmor et al. (2022) 54 cs tf
Gurnee et al. (2023) 56 wikidatasex or gender

57 wikidatais alive
58 wikidatapolitical party
59 wikidata occupation isjournalist
60 wikidata occupation isathlete
61 wikidata occupation isactor
62 wikidata occupation ispolitician
63 wikidata occupation issinger

Continued on next page
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Citation Dataset Name
64 wikidata occupation isresearcher
65 high-school
66 living-room
67 social-security
68 credit-card
69 blood-pressure
70 prime-factors
71 social-media
72 gene-expression
73 control-group
74 magnetic-field
75 cell-lines
76 trial-court
77 second-derivative
78 north-america
79 human-rights
80 side-effects
81 public-health
82 federal-government
83 third-party
84 clinical-trials
85 mental-health

Wang et al. (2019) 87 glue cola
89 glue mrpc
90 glue qnli
91 glue qqp
92 glue sst2
136 glue mnli entailment
137 glue mnli neutral
138 glue mnli contradiction

Gerami 94 ai gen
Lin et al. (2023) 95 toxic is
AI & Ishii 96 spam is
clmentbisaillon 100 news fake
Kotari 105 click bait
Davidson et al. (2017) 106 hate hate

107 hate offensive
Gaggar et al. (2023) 110 aimade humangpt3
Pang & Lee (2005) 113 movie sent
AllenAI 129 arith mc A
Rogers et al. (2020) 133 context type Causality

134 context type Belief states
135 context type Event duration

Dublish 139 news class Politics
140 news class Technology
141 news class Entertainment

Falgunipatel19 142 cancer cat Thyroid Cancer
143 cancer cat Lung Cancer
144 cancer cat Colon Cancer

Kasaraneni 145 disease class digestive system diseases
146 disease class cardiovascular diseases
147 disease class nervous system diseases

Continued on next page
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Citation Dataset Name
Gupta 148 twt emotion worry

149 twt emotion happiness
150 twt emotion sadness

Goh 151 it tick HR Support
152 it tick Hardware
153 it tick Administrative rights

Stathead 154 athlete sport football
155 athlete sport basketball
156 athlete sport baseball

Karvonen et al. (2024b) 157 amazon 5star
158 code C
159 code Python
160 code HTML
161 agnews 0
162 agnews 1
163 agnews 2

D. Probing Setup
D.1. AUC

The Area Under the Curve (AUC) quantifies the overall performance of a binary classifier using the Receiver Operating
Characteristic (ROC) curve. An ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at
various threshold levels, illustrating the trade-offs between correctly predicting positives and incorrectly predicting negatives.
The AUC, ranging from 0 to 1, measures the entire two-dimensional area beneath this curve. An AUC of 1.0 signifies
perfect classification, 0.5 indicates performance no better than random chance, and closer to 0 implies poor classification.
This metric provides a single, aggregate measure of performance across all possible classification thresholds, making it
particularly useful for comparing different classifiers.

Technically, when choosing k and the baseline SAE to use for the other section, we use test AUC on normal datasets, which
constitutes a slight leakage of test data. However, we used trends observed over a large number of datasets, in the same way
we might provide heuristics for constructing SAE probes to a future practitioner.

D.2. Probing Method Validation Details

For each strategy, we use hp that has the maximal average AUC across held out validation sets, AUCval
p . We choose a

validation method from Table 5 based on the dataset size n (most of the time this is the last row in the table for large n,
except for the low data regime tests).

Table 5. Selection methods to choose hyperparameters hp when training on different dataset sizes

Data Size (n) Selection method for probe p
n ≤ 3 Train p with each hp on all n points;

choose hp which maximizes AUC on
training set.

3 < n ≤ 12 Use leave-two-out cross validation;
train p with each hp on all training
splits of size n− 2 and evaluate on the
last 2 held out points

12 < n ≤ 128 Use 6-fold cross validation; split n in
sixths, train p with each hp on all sets
of 5 splits, and evaluate on the remain-
ing fold

n > 128 Use 80%/20% training/validation split
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Figure 12. Analysis of layer performance and methods. (a) Shows the optimal layer for baseline performance. (b) Demonstrates the
effectiveness of different methods across layers.

D.3. Probing Method Hyperparameter Details

In this section, we list each baseline method and the hyperparameters that we search over for that method.

• Logistic Regression:

– C: Ranges logarithmically from 105 to 10−5. The L2/L1 regularization is 1/C.

• PCA Regression:

– Number of PCA Components: Varies logarithmically from 1 up to the minimum of the number of samples, latents,
or 100.

• K-Nearest Neighbors (KNN):

– Number of Neighbors: Logarithmically spaced values up to the smaller of 100 or the number of samples minus
one.

• XGBoost:

– n estimators: Ranges from 50 to 250 in steps of 50.
– max depth: Ranges from 2 to 5.
– learning rate: Ranges logarithmically from 0.001 to 0.1.
– subsample and colsample bytree: Range from 0.7 to 1.0.
– reg alpha and reg lambda: Range logarithmically from 0.001 to 10.
– min child weight: Ranges from 1 to 9.

• Multilayer Perceptron (MLP):

– Network depth: 1 to 3 hidden layers
– Hidden layer width: 16,32, or 64.
– learning rate init: Five values ranging logarithmically from 10−4 to 10−2.
– alpha: Weight decay parameter, with 5 values ranging logarithmically from 10−5 to 10−2.
– Activation function: ReLU.
– Optimizer: Adam.
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Figure 14. Analysis of SAE width and L0 regularization effects on probe performance. (a) Shows the Pareto frontier of L0 vs width
trade-offs. (b) Illustrates the relationship between SAE width and probe performance.

D.4. Additional Discussion of Quiver of Arrows

We note that adding a batch of SAE probes as additional arrows to the quiver is potentially disadvantageous for SAE probes.
This is because using multiple SAE probes presents additional opportunities for these probes to overfit to the training data
and be chosen by the quiver of arrows approach without properly generalizing to the test data. Nevertheless, the quiver of
arrows is still appropriate because it is a proper counterfactual a practitioner would face. Additionally, the quiver of arrows
approach is not the reason we find negative results for SAE probes. For instance, in Figure 1, we directly compare the test
AUC of the most performant SAE probe and baseline in standard conditions across all regimes. Without using the quiver of
arrows approach, we still find SAEs underperform baselines.

E. Normal Conditions
E.1. Cross Layer-wise Comparisons
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Figure 13. Mean test AUC, largest ℓ0 width 16k SAEs across layers.

On Gemma, we see that layer 20 is best for baselines, so
we choose to use that layer moving forward (Figure 12a).
Logistic regression most often has the highest test AUC
across datasets in these conditions at layer 20 (Figure 12b).
Finally, in Figure 13 we examine the average AUC for
the width 16k SAEs with largest L0 and again find that
probes at layer 20 do the best.

E.2. Choosing which SAEs to Test

When constructing a pareto curve based on the width and
L0 of all available SAEs at layer 20 of Gemma-2-9B, we
find that width is unimportant, while constructing probes
from a higher L0 seems to improve probe performance
(Figure 14a).
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To ensure that width plays a minimal role, we average over all datasets, k, and L0s in Figure 14b. There is a clear negative
trend indicating that smaller SAE widths are better, but with almost 0 slope. Because we aim to make as few decisions based
off the test data as possible, we consider three widths throughout our experiments, 16, 000, 131, 000, and 1, 000, 000.

E.3. Plotting Dataset Performance vs. K

In Figure 15, we show the performance on all datasets vs. the number of latents we train the sparse probe on. Almost
all datasets are monotonically increasing in k; some have a sharp increase at some k value, but most increase relatively
smooththly.

F. Additional Results for Various Regimes
F.1. Data Scarcity

In the data scarce setting, we see that we choose mostly the SAE method from the quiver at smaller training fractions
(Figure 17a). This is because we break ties by explicitly preferring the SAE method, and most methods have perfect
validation AUC at small training fractions. Specifically, we first prefer the smallest width SAE, and then the SAE with the
largest value of k. In Figure 16, we visualize the improvement by using the quiver of arrows approach with SAE probes
across all datasets.

F.2. Class Imbalance

We show the improvement for all datasets in Figure 16 across all class imbalances. Generally, the SAE method is chosen at
more extreme imbalance ratios (Figure 17b)

F.3. Label Corruption

We show the performance of the SAE across datasets with all values of label corruption. Interestingly, the SAE still has
highest test AUC at many places (Figure 17c shows the percent of time that the SAE test AUC is larger). However, it is clear
from the per dataset imshow (Figure 16) that it struggles with more label noise.

G. Intuition for SAE Probe Utility Across Regimes
SAEs aim to construct a more interpretable basis for language model activations, with the latent space hypothesized to encode
semantically meaningful and disentangled features. We argue that if SAEs are successful at this task, well-generalizing
activation probes should be represented by just a few latents, and so requiring a probe to only use a sparse set of directions
in this basis should serve as a beneficial inductive bias. Specifically, in setting where it is hard for dense activation probes to
learn the correct direction, we argue that this inductive bias may especially help. We describe additional intuition for each
regime below:

• Data Scarcity: Limited data makes it difficult to determine the correctly generalizing probe direction; restricting the
probe to a few ”true model variables” seems like a helpful inductive bias.

• Class Imbalance: Because SAE latents are sparsely activating, choosing SAE latents that are positive on the minority
class and negative on the majority class may generalize well.

• Label Noise: If SAEs have a sparse basis of meaningful latents, SAE probes should be more robust to overfitting to
random, noisy labels because these random labels will not be consistent with any of the latents.

• Covariate Shift: If SAE latents indeed use a limited set of abstract, model-internal concepts rather than dataset-specific,
superficial features, then SAE probes that use a sparse set of these latents should generalize more robustly under
distributional shifts in the input.

Conversely, there are a few reasons to suspect SAE probes might not be as performative as baselines. Even if SAE
latents were true-to-model, abstract representations, SAEs ultimately lose information from baseline activations, leading
to a disadvantage in probing. Additionally, we bound k, or the number of latents used in a probe, to 128, when some
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Figure 15. Test AUC on all datasets vs. k = |I| using the Gemma Scope layer 20 SAE with width 131k and L0 = 193.
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and number of training examples
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Figure 17. Method selection analysis under different data conditions. (a) Selection under data scarcity. (b) Selection under class imbalance.
(c) Selection under data corruption.
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Figure 18. In the settings of data scarcity and class imbalance, we see that choosing an SAE probe for each task using validation AUC
performs strictly worse than using the quiver of arrows with SAEs, further confirming that the quiver of arrows approach serves as an
upper bound for SAE probing performance

concepts might require more than 128 latents to properly represent. Finally, it is unlikely that SAE latents are truly general,
true-to-model representations, reducing their expressiveness as a probing basis.

H. Evaluating the Validity of the Quiver of Arrows
The quiver of arrows approach we introduce is non-standard in the literature, but we adopt it to make the strongest possible
case for SAEs. Since we select the best method using validation AUC, we expect to choose SAEs only for tasks where
they perform best. To verify this, in the three settings where we employ the quiver of arrows—standard conditions, data
scarcity, and class imbalance—we compare its performance to that of using a single SAE across all tasks, as shown in
Table 6. Clearly, the quiver of arrows serves as an upper bound on the performance of any individual SAE. As an alternative
counterfactual, instead of comparing against a single SAE probe, we select the best SAE for each task using validation AUC
and compare this to the quiver of arrows. In Figure 18, we observe that the quiver of arrows also serves as an upper bound in
the settings of data scarcity and class imbalance.

Table 6. We evaluate the effectiveness of the quiver by comparing it to the performance of choosing a single SAE probe for all tasks. As
expected, the quiver of SAEs serves as an upper bound on the performance of any individual SAE.

Setting Baseline
Quiver

SAEs
Quiver

SAEs +
Baselines

Quiver

LogReg SAE 16k
k=16

SAE 16k
k=128

SAE 131k
k=16

SAE 131k
k=128

SAE 1m
k=16

SAE 1m
k=128

Standard Conditions 0.940 0.930 0.939 0.941 0.904 0.921 0.899 0.918 0.889 0.913
Data Scarcity 0.819 0.806 0.812 0.836 0.800 0.816 0.794 0.810 0.785 0.801
Class Imbalance 0.921 0.906 0.916 0.929 0.898 0.909 0.890 0.906 0.882 0.899
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Figure 20. We find that Llama-3.1-8b SAE probes do not improve on baselines in the settings of data scarcity, class imbalance, and label
noise.

I. Reproducing Core Results on Llama-3.1-8b
We use SAEs provided by Llama Scope to replicate our core results, namely, that SAEs underperform baseline probes in
normal, data scarce, class imbalance, and label noise settings when testing on Llama-3.1-8B. In Figure 19a, we show the
results for baseline probes applied to various layers of Llama-3.1-8b in standard settings. We see that the layer roughly
halfway through the model, layer 16, is best for probing experiments. In Figure 19b, we show that SAE probes in normal
settings on layer 16 of Llama-3.1-8b are not more performant than baselines, although there are a few positive outliers
we did not observe in Gemma-2-9b. Lastly, we use the quiver of arrows approach to show that SAE probes are not more
performant in the conditions of data scarcity, class imbalance, and label noise (Figure 20). Because of the increased effort of
testing OOD and interpretability, we do not replicate those results. Note that in all experiments, we use the provided width
128k, L0 55 SAE.

J. Interpretability
J.1. Pruning

We demonstrate the latent ranking procedure for the task 66 living-room in Table 7. We see that pruning works, for two of
the tasks, 66 living-room and 90 glue qnli, while failing for 7 hist fig ispolitician (Figure 21). However, even when pruning
works, the improvement is marginal compared to the decrease in performance when moving from an in-distribution test set
to an OOD test set. Thus, we hypothesize that the underlying latents are not sufficiently expressive. For example, latent
122774 is most active on the English translation of “living room,” and not activate at all for the French translation (Figure 8).
This indicates this latent does not sufficiently represent the concept of “living room” to be robust to OOD transformations.
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Figure 21. We prune using human labeler rankings (dashed) and traditional autointerp with Claude-3.5-Sonnet (solid). Two datasets
improve with pruning, but one does not, which indicates that more latents are required to establish the probing target.

Table 7. Description of Latent Variables for Out-of-Distribution Detection. We find that this procedure ranks latents roughly according to
their OOD test AUC, even though o1 did not have access to this information. However, the system is not perfect. For example, latent
51330’s natural language description is ranked last and seems unreleated to the task at hand. However, its OOD test AUC is the highest of
all latents. We do not investigate this further, but hypothesize that either the latent descriptions require additional tuning, or the test set
truly has some spurious quality that this latent identifies.

Latent o1
rank

Latent
Description

Val ID
AUC

Test OOD
AUC

122774 1 mentions of living rooms or parlors
in houses or apartments.

1.0 0.6402

98707 2 phrases and words related to loca-
tions or settings, particularly indoor
spaces like rooms, parlors, or living
areas, as well as time references like
afternoon or specific times.

0.8698 0.6177

100016 3 mentions of rooms or enclosed
spaces, particularly when discussing
physical locations or settings.

0.6895 0.4736

7498 4 locations within a house, particu-
larly upstairs, downstairs, basement,
bathroom, and kitchen areas.

0.7524 0.6206

78823 5 words and phrases related to specific
places, attractions, and experiences,
particularly in the context of travel
and tourism.

0.6697 0.4526

116246 6 numbers, dates, and numerical mea-
surements, particularly in scientific
or technical contexts.

0.7470 0.5398

40168 7 technical terms and components re-
lated to computer systems, engineer-
ing, and scientific analysis.

0.9219 0.4513

51330 8 objects and materials related to sci-
entific experiments and laboratory
equipment, particularly those involv-
ing fluids, particles, or microscopic
samples.

0.7320 0.6483
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J.2. Latent Investigation

We generate natural language descriptions of all the latents with GPT-4o. We find that most are either relevant to the task or
visibly spurious. We hypothesize that some latents have incomplete descriptions given their performance on the task. We list
a selection of the most interesting of these latents from each category in Table 8.

J.3. Glue CoLA

In Table 9, we show the top 5 examples where latent 369585 and the activation probe have the highest confidence that a
prompt is ungrammatical, but it is (incorrectly) labeled as grammatical in the CoLA ground truth.

J.4. AI Made

In Table 10, we show the tokens that the 110 aimade humangpt3 classifier activates on across the pile with the highest
average activation. Like the SAE feature, the baseline classifier has top activations on punctuation tokens.

K. Multiple tokens results
Bricken et al. (2024a) report that SAE probes outperform baselines slightly. A natural question is why our experiments fail
to replicate this result. One possible explanation is that Bricken et al. (2024a)’s findings were based on a single dataset,
whereas we evaluate across multiple datasets. We find that SAE probes outperform baselines on only a small subset of these
datasets (2.2%, see Figure 22). It is possible that the dataset used by Bricken et al. (2024a) falls within this subset; however,
without access to it, we cannot confirm this.

A separate explanation involves a potential illusion due to insufficiently strong baselines. Unlike our work, Bricken et al.
(2024a) uses multi-token SAE probing: they aggregate the maximum value for each latent across all prompt tokens, while
we only use last token latents. Crucially, they similarly max-pool each model dimension across prompt tokens for their
comparative baseline, even though activations are unlikely to have privileged dimensions (in Table 11 we show that pooling
activations in this way works poorly). We implement multi-token SAE probing using max-aggregation on 60 random
datasets from our list and k = 128; see Table 11 for full results on these datasets. We also implement a better baseline: we
train attention-pooled probes of the form[

softmaxt∈[1,CtxLen]{X l
t · q}

]
·
[
X l · v

]
(2)

for q, v ∈ Rd. We find that when compared to the last-token baseline, max-pooled SAE probes win 19.6% of the time, a
considerable improvement over win rate of last-token SAE probes (2.2%, see Figure 22). However, when implementing
attention-pooled baselines and using the quiver of arrows approach to select between pooled and last-token strategies for
SAE probes and baselines, the SAE probe win rate drops more than 50% to 8.7% (see Figure 22).

Finally, in Table 11, we show a comparison of all methods (including the attention based probes and multi-token SAE
methods discussed in Appendix K) on a random sample of 60 datasets.

L. SAE Architectural Improvements
We test if improvements in SAE architectures have led to improvements in probing performance. We test eight SAE
architectures on Gemma-2-2B in all regimes with k = 16, 128 SAE probes. We plot the performance of SAE probes for
all architectures in Figure 24 when averaging over all datasets. While there seems to be some improvement with later
architectures, we note that there is significant variance in the average across datasets that is not visualized.

M. Assessing SAE Probe Binarization
Gallifant et al. (2025) find that binarizing latents with a threshold improves probe performance. Binarization entails setting a
latent equal to 1 if its firing value is greater than a threshold, and setting it equal to 0 otherwise. Gallifant et al. (2025) use a
threshold equal to 1. Gallifant et al. (2025) performs probing in the multi-token pooled setting, so to use as similar of a
setup as possible we repeat our multi-token experiment with binarization and a threshold equal to 1. Following Gallifant
et al. (2025), we binarize after the max-pooling aggregation. As shown in in Figure 23, we find that binarizing results in
worse performance than not-binarizing.
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Figure 22. Illustration of a potentially misleading result we find: when comparing activation probes to pooled SAE probes, SAE probe
win rate increases considerably, but adding in a “pooled” attention-inspired probe brings down the SAE win-rate. To clarify, the right
graph compares the last token activation probe and last token SAE probe, the middle graph compares the attention softmax probe and the
last token SAE probe, and the third graph compares two quivers, “select between SAE max pool probe and SAE last token probe” versus
“select between activations softmax probe and activations last token probe”. The win rates do not sum to 100% because we consider test
AUCs within 0.005 to be tied, counting as a win for neither method.

0

20

40

60

W
in

 R
at

e 
Pe

rc
en

ta
ge

 
> 

0.
00

5 
 A

UC

56.5%

2.2%

FAIR 
Both = Last

39.1%

19.6%

ILLUSION 
Baseline = Last

SAE = Pool

34.8%

8.7%

FAIR 
Both =

Quiver(Pool, Last)

Baseline > SAE SAE > Baseline

(a) Multi-token non-binarized experiments (the same as Fig-
ure 22).
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(b) Multi-token binzarized experiments.

Figure 23. We run the multi-token experiments from Appendix K with and without binarizing aggregated latents.
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Figure 24. Across regimes, we see a slight positive trend in probing performance with more recent SAE architectures.
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Table 8. Latent categorization, characteristics, and performance.
Latent Cate-
gory

Dataset Latent
Num-
ber

Test
AUC

Latent Description

Description
Fits Task

5 hist fig ismale 81210 0.892 references to female individuals, espe-
cially focusing on pronouns and names.

61 wikidata occupation isactor 91505 0.830 names of well-known actors and film
industry personalities.

66 living-room 122774 0.999 references to specific rooms in a house,
particularly living rooms and parlors.

155 athlete sport basketball 83267 0.943 references to basketball teams, players,
and related sports terms.

Clever Latents 96 spam is 35460 0.907 keywords and phrases related to text
messaging and SMS communications.

100 news fake 31726 0.968 references to conspiracy theories and
secretive organizations.

Potentially
Spurious

21 headline istrump 22915 0.812 numerical dates and percentages within
a political or historical context.

22 headline isobama 10555 0.782 strings of numbers, often with mathe-
matical notations or identifiers.

110 aimade humangpt3 105150 0.816 statistical or numerical data and mea-
surements.

133 context type Causality 89524 0.947 questions or questioning phrases, partic-
ularly those beginning with ”Why?”.

134 context type Belief states 113152 0.638 words related to status or condition in
technical or medical contexts.

135 context type Event duration 18897 0.876 questions and phrases related to cost or
quantity.

Classified
by Context
Length (Spuri-
ous)

49 cm isshort 106376 1.000 sections of text related to mathematical
or programming notation and expres-
sions.

161 agnews 0 106376 0.990 sections of text related to mathematical
or programming notation and expres-
sions.

162 agnews 1 106376 0.988 sections of text related to mathematical
or programming notation and expres-
sions.

163 agnews 2 106376 0.991 sections of text related to mathematical
or programming notation and expres-
sions.

Task Shows
Latent De-
scription is
Imperfect

105 click bait 78823 0.967 mentions of specific events, activities, or
items in particular locations or settings.

123 world country United Kingdom 100153 0.978 information related to professional roles,
locations, and organizations.

125 world country Italy 50817 0.989 names of researchers and scientific au-
thors.
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Table 9. Left We show the top 5 examples where latent 369585 is active while the CoLA prompt is labeled as grammatical. Most of
these sentences are clearly ungrammatical, which illustrates that the CoLA data is corrupted. Right We then look at sentences a baseline
classifier trained on CoLA marks as ungrammatical when the label is grammatical. We reach the same conclusion - the CoLA data is
mislabeled.
Prompt (Labeled Grammatical) Latent 369585

I don’t remember what all I said? 23.09
Aphrodite said he would free the animals and
free the animals he will

15.87

Gilgamesh wanted to seduce Ishtar, and se-
duce Ishtar he did.

14.92

An example of these substances be tobacco. 14.85
He will can go 14.43

Prompt (Labeled Grammatical) P(y=0)

Rub the cloth on the baby torn. 0.933
In front of them happen. 0.926

Who did you give pictures of to friends of? 0.911

An example of these substances be tobacco. 0.893
Susan hopes herself to sleep. 0.890

Table 10. Logistic regression classifier for 110 aimade humangpt3’s top activating tokens when run on more than 2.5 million tokens from
the Pile. The classifier predominantly activates on punctuation. Only tokens with at least 10 occurences shown.

Token Mean Activation Occurrences
<bos> 6.8863 7625
!). 6.2529 10
Q 6.2271 1436
”. 6.0338 144
.” 5.9111 975
.). 5.7334 24

5.5035 17
.” 5.4455 1057
“. 5.4132 319
}$. 5.3990 24
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Table 11. Comparison of different logistic regression (“base”) and SAE probing methods on a selection of 60 random datasets. Last is last
token probing as in the rest of our paper, concat is concatenating the top 20 PCA dimensions of all tokens, mean is taking the mean across
activation dimensions across the context, max is taking the max across activation dimensions across the context, and Attn-like probe is
described in Appendix K.

Dataset
Base
(last)

Base
(concat)

SAE
(last)
l0=68

SAE
(mean)
l0=68

SAE
(max)
l0=68

SAE
(last)

l0=408

SAE
(mean)
l0=408

SAE
(max)
l0=408

Attn
-Like
Probe

6 hist fig 0.990 0.977 0.982 0.914 0.984 0.983 0.883 0.985 0.987
7 hist fig 0.750 0.698 0.738 0.661 0.739 0.746 0.613 0.738 0.760
21 headlin 0.987 0.986 0.950 0.993 1.000 0.964 0.990 1.000 1.000
24 headlin 0.991 0.979 0.892 0.995 0.997 0.947 0.994 0.998 0.996
44 phys tf 0.885 0.541 0.836 0.657 0.760 0.854 0.656 0.790 0.903
48 cm corr 0.833 0.659 0.788 0.699 0.779 0.794 0.708 0.784 0.860
54 cs tf 0.695 0.554 0.689 0.588 0.680 0.708 0.580 0.697 0.697
59 wikidat 0.961 0.787 0.933 0.809 0.864 0.939 0.809 0.875 0.935
62 wikidat 0.981 0.878 0.948 0.892 0.923 0.959 0.898 0.925 0.954
63 wikidat 0.959 0.840 0.925 0.869 0.893 0.946 0.848 0.862 0.928
66 living- 1.000 0.985 1.000 0.968 0.999 1.000 0.950 0.998 0.998
67 social- 1.000 0.992 0.999 0.985 0.999 1.000 0.971 0.998 0.999
68 credit- 1.000 0.959 0.998 0.942 0.986 0.998 0.920 0.981 0.993
71 social- 0.998 0.985 0.998 0.969 0.993 0.998 0.950 0.989 0.995
73 control 0.998 0.970 0.995 0.945 0.984 0.998 0.935 0.986 0.982
78 north-a 1.000 0.933 0.998 0.907 0.990 0.999 0.883 0.976 0.995
79 human-r 0.999 0.974 0.995 0.964 0.988 0.996 0.947 0.990 0.992
89 glue mr 0.891 0.761 0.785 0.784 0.796 0.823 0.796 0.777 0.867
90 glue qn 0.926 0.729 0.886 0.830 0.909 0.910 0.859 0.909 0.931
94 ai gen 0.998 0.996 0.993 0.997 0.996 0.996 0.996 0.997 0.996
96 spam is 0.999 0.999 0.997 0.996 0.997 0.998 0.995 0.999 0.999
100 news f 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
105 click 1.000 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.000
106 hate h 0.722 0.612 0.661 0.742 0.785 0.674 0.735 0.788 0.812
110 aimade 0.975 0.865 0.953 0.919 0.970 0.953 0.916 0.960 0.979
114 nyc bo 0.780 0.755 0.740 0.716 0.797 0.745 0.733 0.805 0.872
119 us sta 0.997 0.957 0.994 0.982 0.990 0.994 0.952 0.992 0.995
120 us tim 0.944 0.803 0.942 0.785 0.946 0.936 0.751 0.940 0.941
121 us tim 0.952 0.815 0.948 0.776 0.954 0.950 0.754 0.957 0.951
124 world 0.999 0.999 0.999 0.965 0.999 0.998 0.968 0.999 0.999
127 art ty 0.913 0.872 0.894 0.834 0.889 0.905 0.845 0.900 0.916
129 arith 0.979 0.903 0.880 0.867 0.951 0.938 0.861 0.975 0.977
132 temp c 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991
133 contex 0.984 0.982 0.975 0.973 0.979 0.968 0.973 0.980 0.986
134 contex 0.985 0.977 0.953 0.966 0.989 0.966 0.963 0.994 0.987
137 glue m 0.856 0.551 0.788 0.632 0.734 0.807 0.658 0.742 0.844
139 news c 0.978 0.950 0.944 0.972 0.953 0.962 0.967 0.973 0.965
141 news c 0.951 0.942 0.917 0.967 0.968 0.933 0.965 0.973 0.965
144 cancer 1.000 1.000 0.981 1.000 1.000 0.991 1.000 1.000 1.000
145 diseas 0.618 0.677 0.501 0.618 0.678 0.563 0.606 0.686 0.655
149 twt em 0.787 0.756 0.730 0.780 0.843 0.759 0.813 0.853 0.851
150 twt em 0.710 0.612 0.652 0.700 0.730 0.672 0.717 0.746 0.777
155 athlet 0.995 0.988 0.990 0.970 0.988 0.988 0.960 0.985 0.996
158 code C 1.000 0.998 1.000 0.999 1.000 1.000 0.999 1.000 0.997
162 agnews 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
163 agnews 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

32


