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Abstract

Meta-learning algorithms have made significant
progress in the context of meta-learning for image
classification but less attention has been given to
the regression setting. In this paper we propose
to learn the probability distribution representing a
random feature kernel that we wish to use within
kernel ridge regression (KRR). We introduce two
instances of this meta-learning framework, learn-
ing a neural network pushforward for a translation-
invariant kernel and an affine pushforward for a
neural network random feature kernel, both map-
ping from a Gaussian latent distribution. We learn
the parameters of the pushforward by minimiz-
ing a meta-loss associated to the KRR objective.
Since the resulting kernel does not admit an ana-
lytical form, we adopt a random feature sampling
approach to approximate it. We call the resulting
method Implicit Kernel Meta-Learning (IKML).
We derive a meta-learning bound for IKML, which
shows the role played by the number of tasks T ,
the task sample size n, and the number of ran-
dom features M . In particular the bound implies
that M can be the chosen independently of T and
only mildly dependent on n. We introduce one syn-
thetic and two real-world meta-learning regression
benchmark datasets. Experiments on these datasets
show that IKML performs best or close to best
when compared against competitive meta-learning
methods.

1 INTRODUCTION

A common scenario in the real world is learning from sim-
ilar tasks in order to transfer this knowledge to new tasks.
In machine learning this setting is called meta-learning or
learning-to-learn [Baxter, 2000, Thrun and Pratt, 1998],

where we assume that a set of tasks are sampled from a meta-
distribution on supervised learning problems. The goal is
to design meta-algorithms which from a set of tasks output
a learning algorithm. This algorithm should perform well
on average with respect to the tasks sampled from the meta-
distribution, analogous to having low risk in supervised
learning.

Meta-learning operates on top of an inner algorithm, tuning
it to perform better on new tasks. The meta-algorithm acts
at an outer level, relying on the inner algorithm to com-
pute a meta-loss and corresponding meta-gradient, based on
which a meta-parameter associated to the inner algorithm
is updated [see e.g. Franceschi et al., 2018]. For example,
in regression settings, a common choice of inner algorithm
is ridge regression and the meta-parameter is a representa-
tion or embedding shared across the tasks that we wish to
meta-learn [Bertinetto et al., 2018].

There has been considerable interest in meta-learning for
few-shot image classification [Finn et al., 2017, Koch et al.,
2015, Li et al., 2017, Ren et al., 2018, Rusu et al., 2018,
Snell et al., 2017, Vinyals et al., 2016] but less attention
has been given to designing meta-learning algorithms for
regression. Most few-shot regression benchmarks fall under
that of interpolating sinusoidals or a variety thereof [Finn
et al., 2017, 2018, Oreshkin et al., 2018] which lacks many
aspects of real-world regression problems such as being
multivariate and noisy. This highlights the importance of
more realistic meta-learning regression datasets and how to
design meta-learning algorithms in this setting. In this paper
we aim to close this gap.

Meta-learning algorithms employ a variety of different kinds
of base algorithms, ranging from metric based to optimiza-
tion based, and to black-box ones. A common theme is to
learn a shared representation which lead to faster adaptation
of a base learning algorithm to new tasks. Often the repre-
sentation is modeled by a neural network. Indeed, recently
[Raghu et al., 2019, Tian et al., 2020] observed that the
representation is the most important part of meta-learning
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algorithms.

In this paper we extend this thinking further, in that we im-
plicitly learn the representation via a kernel function from a
large class of kernels defined by a random feature form. This
kernel is in turn implicitly parametrized by a neural network
pushforward which is learned by a meta-algorithm. When
using the random feature family of translation-invariant ker-
nels this has two main advantages: since kernel algorithms
can be expressed in terms of inner products of features
which are simple to compute we don’t have to work with
this high-dimensional feature space directly. We show that
modeling the kernel directly leads to improved performance
in the meta-learning regression case. A second advantage is
that translation invariant kernels might be used as “plug-in”
representations. We also experiment with using a neural net-
work random feature representation, effectively combining
ensembling with with random features.

Contributions The principal contribution of this paper is a
method for meta-learning regression together with a bound
on the excess risk which highlights how problem-specific
quantities impact the number of random features needed to
generalize. In particular, our method can be used to learn
within a family of translation invariant kernels that is well-
suited when using kernel ridge regression as the class of base
learning algorithms. According to Bochner’s Theorem [see
e.g. Rahimi et al., 2007], these kernels are parameterized by
a distribution in the frequency space. In line with [Li et al.,
2019], we parametrize this distribution as a neural network
pushforward. The weights of the network are learned from
a sequence of datasets within a meta-learning setting. Al-
though we focus on distributions in the context of Bochner’s
theorem, our framework extends directly to radial kernels us-
ing Schoenberg’s theorem [Schoenberg, 1938]. Additionally
we experiment with using a neural network random feature
kernel, an extension of R2D2 [Bertinetto et al., 2018], and
show competitive performance.

Finally, we introduce three novel meta-learning regression
benchmark datasets, one synthetic and two real-world and
show that our algorithm ranks at the top or close to compet-
ing meta-learning regression algorithms. We believe these
results, including the theoretical guarantees together with
the flexibility and ease of our method, make it a competitive
candidate to be used as a plug-in meta-learning algorithm
in general contexts.

Related Work Learning-to-learn or meta-learning can be
traced back to at least [Schmidhuber, 1987] with one semi-
nal work being [Baxter, 2000]. Well-developed theory exists
in the batch case [Maurer, 2005, Maurer et al., 2016] and
lately similar results have been developed in the online set-
ting [Balcan et al., 2019, Denevi et al., 2019].

Recent advances in the image few-shot classification set-
ting [Fei-Fei et al., 2006, Lake et al., 2011] starting with
the work of [Finn et al., 2017, Snell et al., 2017, Vinyals

et al., 2016] has lead to renewed interest in meta-learning,
notably from the deep learning community by formulating
it as an optimization problem [Ravi and Larochelle, 2017].
While classification has received a lot of interest, regression
has been given less attention. Some examples are given by
[Patacchiola et al., 2020, Titsias et al., 2020, Tossou et al.,
2019] who apply gaussian processes [Williams and Ras-
mussen, 2006] together with deep kernel learning [Wilson
et al., 2016] to regression. From the ridge regression point of
view; Kong et al. [2020] investigate theoretically the meta-
mixed linear regression setting while Nguyen et al. [2021]
applied kernel ridge regression (KRR) to meta-learn dataset
compression.

Our work can be traced directly to ideas from [Li et al.,
2019, Sinha and Duchi, 2016, Zhen et al., 2020] to lever-
age the characterization provided by Bochner’s theorem for
kernel learning [Cristianini et al., 2006, Ong et al., 2005].
In [Sinha and Duchi, 2016] they fine-tune a convex combi-
nation of sampled kernels in a supervised learning setting
using kernel target alignment [Cristianini et al., 2006]. We
also mention the work [Zhen et al., 2020] which apply vari-
ational inference to optimize a latent variable model for
few-shot learning, and [Li et al., 2019] where they learn
an implicit kernel using a pushforward in the case that the
learning objective is linear in the kernel evaluations.

Organization Sec. 2 introduces the meta-learning setting.
We describe our proposed method in Sec. 3, analyze it in
Sec. 4 and benchmark it in Sec. 5. We discuss our findings
in Sec. 6.

2 META-LEARNING PROBLEM

In this section we introduce the main elements of the meta-
learning setting and introduce the notion of stochastic meta-
learning algorithm. To this end, we first recall the standard
notion of supervised learning problem.

Supervised Learning Given an input X and output Y set,
a supervised learning problem is characterized by a data
generating distribution µ ∈ P(X × Y) on the joint space
X × Y and a loss function ℓ : Y × Y → R measuring
prediction errors. The goal of a supervised learning problem
is to find a map f : X → Y minimizing the risk

Rµ(f) = E(x,y)∼µ ℓ(f(x), y). (1)

In practice, the data generating distribution is unknown and
only a finite number ntr of examples Dtr = (xi, yi)

ntr
i=1

independently sampled from µ are available (denoted here
by Dtr ∼ µntr ). A learning algorithm is a function mapping
datasets into candidate solutions to (1).

Learning Algorithm Let YX = {f : X → Y} be the
space of all functions from X to Y and D the space of
all datasets of any size on X × Y . Then, a learning algo-
rithm (referred to as inner algorithm in meta-learning) is



a function A : D → YX , mapping datasets D ∈ D to
functions f : X → Y . Typically, learning algorithms are
parametrized as A(·) = A(θ, ·), by a set of so-called hyper-
parameters (here referred to as meta-parameters) θ ∈ Θ,
that allow to adapt the algorithm to the specific problem.
Typical examples of hyperparameters include the regularizer
in Tikhonov regularization or the number of iterations of an
early-stopping procedure. Ideally, we aim to find the best
meta-parameter for a given task, namely the θ minimizing
the expected risk R(A(θ,D)). We do not have access to
µ but we can sample a validation set Dval ∼ µnval and
consider the empirical risk

R̂(f,Dval) =
1

nval

∑
(x,y)∈Dval

ℓ(f(x), y), (2)

as a suitable proxy. Since Dval and Dtr are sampled in-
dependently, R̂(A(θ,Dtr), Dval) is an unbiased estima-
tor of Rµ(A(θ,Dtr)). Given a train and validation set
D = (Dtr, Dval), the process of minimizing the meta-loss

L(θ,D) = R̂(A(θ,Dtr), Dval), (3)

with respect to θ is known as cross-validation.

Meta-Learning The meta-learning paradigm lifts the no-
tion of cross-validation to the level of multiple tasks: as-
suming that we have access to many supervised learning
problems (or tasks) sharing some form of similarity, meta-
learning aims to find a single set of meta-parameters θ that
works well across all tasks. More formally, we assume that
the tasks are sampled from a meta-distribution ρ. From each
µ ∈ P(X × Y) sampled from ρ, we then sample a pair
of datasets D = (Dtr, Dval) ∼ µn with n = ntr + nval
(even though in the following we assume ntr and nval to be
fixed for simplicity, our discussion can be extended to more
general settings). Then, meta-learning is formulated as the
problem of finding the meta-parameters θ ∈ Θ minimizing
the transfer risk [Denevi et al., 2018]

E(θ) = Eµ∼ρED∼µn L(θ,D). (4)

If L(·, D) is (sub)differentiable, we can adopt standard
stochastic first order method (e.g. SGD or Adam [Kingma
and Ba, 2015]) to approximate the optimal meta-parameters.
This consists in iteratively sampling a task µt ∼ ρ and a
train-val split Dt ∼ µnt at each time step t = 1, . . . , T .
Then, update the meta-parameters, e.g. via the SGD rule
θt+1 = θt−η∇θL(θ,Dt). We refer to Alg. 1 for a concrete
example in the setting discussed in this work.

Meta Representation Learning In practice, the above ap-
proach might pose computational challenges since, by the
chain rule, differentiating L requires computing∇θA(θ,D).
Depending on the inner algorithm A, its gradient with re-
spect to the meta-parameters θ might be hard to compute
or not even exist. In the literature, a wide range of meta-
learning strategies have been proposed, considering different

choices of inner algorithm A and meta-parameters θ. For
example, [Bertinetto et al., 2018] considered the case that
A performs ridge regression (see Sec. 3.1) and θ parame-
terizes the weights of a feature map ϕθ : X → Rd (e.g.
a neural network). Leveraging the closed-form solution of
the ridge regression estimator, this allows us to efficiently
compute the gradient ∇θA(θ,D). In settings where A is
minimizing the empirical risk but with a loss function that
does not admit a closed form, we can adopt a bi-level opti-
mization perspective [Franceschi et al., 2018]. This amounts
to interpret A as returning the T -th iteration of an iterative
optimization algorithm. This allows to access ∇θA(θ,D)
by recursively differentiating along the iterates. This ap-
proach is related to the well-known MAML algorithm [Finn
et al., 2017], which proposed to perform fine-tuning of a
shared starting network fθ : X → Y with weights θ, that is
adapted by A(θ,D) = fθ′ to each new task by performing
a step of gradient descent θ′ = θ− η∇θR̂(ϕθ, D), to fit the
training data. In the following we introduce the family of
inner algorithms (and corresponding parameters) proposed
in this work to tackle the meta-learning problem.

3 IMPLICIT KERNEL META-LEARNING

We now introduce the propose meta-learning strategy. While
most previous work focused on learning a shared data repre-
sentation or feature map [Bertinetto et al., 2018, Finn et al.,
2017, Franceschi et al., 2018] across tasks, here we propose
the dual approach of learning a shared kernel function.

3.1 REPRODUCING KERNELS AND FEATURE
MAPS

Reproducing kernels are a well-established tool in machine
learning, at the root of most non-parametric algorithms
[Schölkopf and Smola, 2002]. They consist of positive
definite functions K : X × X → R that may be inter-
preted as a similarity between data points. A fundamental
result dating back to Moore and Aronszajn [see e.g. Aron-
szajn, 1950, Cucker and Smale, 2002, Schölkopf and Smola,
2002, and references therein] establishes that a kernel is
into one-to-one correspondence with a (possibly infinite di-
mensional) Hilbert space HK of real-valued functions on
X , such that for every x ∈ X and f ∈ HK , the function
K(x, ·) ∈ HK and ⟨f,K(x, ·)⟩K = f(x), where ⟨·, ·⟩K
denotes the inner product inHK . A kernel is in duality with
the notion of feature map: given a mapping ϕ : X → H
into a Hilbert space H with inner product ⟨·, ·⟩ such that
Kϕ(x, x

′) ≡ ⟨ϕ(x), ϕ(x′)⟩ is a reproducing kernel. The
converse is also true, namely for any kernel K there ex-
ists a Hilbert space H and feature map ϕK : X → H
such that K(x, x′) = ⟨ϕK(x), ϕK(x′)⟩ [Aronszajn, 1950];
when X is compact we can choose H = ℓ2, the space of
square summable sequences. A key practical advantage of



kernels is that they allow to learn functions parametrized as
f(x) = ⟨f, ϕK(x)⟩ even whenHK is infinite dimensional
(namely the feature vector ϕK(x) has infinitely many en-
tries). As a concrete example we recall the case of kernel
ridge regression [see e.g Caponnetto and De Vito, 2007,
Steinwart and Christmann, 2008] which we will use also
as plug-in inner algorithm for the proposed meta-learning
approach in this work.

Kernel Ridge Regression Kernel ridge regression (KRR)
performs Tikhonov regularization using the least-square
loss function over the space of hypotheses associated to a
reproducing kernel [see e.g. Schölkopf and Smola, 2002].
More precisely, assume Y ⊂ R. Given a dataset Dtr =
(xi, yi), and a kernel function K : X ×X → R, KRR is the
algorithm

AKRR(K,D
tr) = argmin

f∈HK

R̂(f,Dtr) + λ∥f∥2K , (5)

with λ > 0 a regularization parameter. Thanks to the repro-
ducing property of the kernel, (5) can be solved in closed
form. We have that for any x ∈ X , that

AKRR(K,D
tr)(x) =

n∑
i=1

αiK(xi, x) (6)

with α=(G + λnI)−1y, where G=(K(xi, xj))
ntr
i,j=1 is

the ntr × ntr kernel (Gram) matrix, I the d × d iden-
tity matrix, and with some abuse of notation we let y =
(y1, . . . , yntr

)⊤ ∈ Rntr be the vector of output examples.
Notice that we highlighted the dependency of KRR with
respect to the kernel K. This suggests that in meta-learning
settings one might be interested in learning the kernel as a
meta-parameter.

3.2 LEARNING TRANSLATION INVARIANT
KERNELS

The definition of positive definite function underlying the
notion of reproducing kernel is very general. Therefore, to
formulate the problem of meta-learning a kernel, we need
first to identify a suitable family. In [Rudi and Rosasco,
2017] they introduce a "recipe" for random feature kernels
defined by a random feature map φ : X × Ω → Ro and a
distribution τ so that any kernel in this family has the form

K(x, x′) =

∫
Ω

φ(x, ω)⊤φ(x, ω)dτ(ω). (7)

Given the focus of this work towards regression settings,
we first consider the class of translation invariant kernels,
which are particularly suited to deal with such settings and
are interpretable ( see e.g. Fig. 2 in the appendix). Let
X = Rd. A kernel K is called translation invariant if
K(x, x′) = g(x−x′) for some function g : Rd → R; a well-
known example is the Gaussian K(x, x′) = e−∥x−x′∥2/σ2

with σ > 0. A famous theorem by Bochner [see e.g. Rahimi
et al., 2007, Rudin, 1962, Sriperumbudur and Szabo, 2015],
adapted here to real-valued kernels, establishes that any
properly re-scaled continuous bounded translation invariant
function K : Rd × Rd → R is a kernel if and only if there
exists a probability measure τ ∈ P(Rd) such that

K(x, x′) = Kτ (x, x
′) ≡

∫
cos(⟨ω, x− x′⟩)dτ(ω), (8)

which can be written in the form of (7) by expanding
the cosine using the trigonometric identity cos(x − y) =
cos(x) cos(y) + sin(x) sin(y). We call any kernel that can
be written in the form of (7) a Bochner kernel. Eq. (8) im-
plies that we can represent the class of translation invariant
kernels as T = {Kτ | τ ∈ P(Rd)}. Thus we can trans-
late the problem of learning a kernel to that of learning a
probability distribution. This perspective is in line with the
implicit kernel learning approach devised in [Li et al., 2019]
for generative modeling and single task settings. The second
type of kernel is inspired by the success of using neural
network to extract features and is given by letting φ(x, ω)
be a neural network with ω the weights and τ a distribution
over ω.

Pushforward Models To learn the underlying distribution
τ we consider a parametrization in terms of a pushforward
model. More formally, let N be the unit Gaussian distribu-
tion over a latent space Z and let ψθ : Z → Rd be a vector-
valued function parameterized by a vector θ ∈ Θ (e.g. a
neural network with weights θ). We denote by τθ = ψθ#N
the probability distribution such that, the process of sam-
pling ω ∼ τθ is equivalent to first sampling z ∼ N and
then taking ψθ(z) = ω.1 This is the strategy adopted to
model the generator distribution in generative adversarial
networks (GAN) settings and in the implicit kernel learning
approach of [Li et al., 2019]. Several alternatives for the
latent distribution N are possible (e.g. uniform). Under the
notation above, we adopt as inner algorithm,

A(θ,D) = AKRR(Kτθ , D), (9)

namely KRR trained with a translational invariant kernel
Kτθ meta-parametrized by the pushforward map τθ. Below
we give an example where a parametrization of τθ yields an
analytic form for the corresponding Kτθ ; see the appendix
for a derivation.

Example 1 (Affine Pushforward Maps). Let θ = (Q, b)
with Q ∈ Rd×d and b ∈ Rd and consider the affine pushfor-
ward map ψ(Q,b)(s) = Qs+ b. In these settings, the kernel
Kτ(Q,b)

can be expressed analytically as

Kτ(Q,b)
(x, x′) = cos(⟨b, x− x′⟩)e−∥Q⊤(x−x′)∥2/2. (10)

The example above identifies a relevant family of kernels
that are particularly amenable for meta-learning. Thanks

1Formally, for any B ⊆ Rd, τθ(B) = N ({z | ψθ(z) ∈ B}).



to the analytic form of affine pushforward kernels, we can
easily compute meta-gradients and thus directly minimize
the transfer risk E(θ). On the other hand, if we consider
more expressive maps ψθ, we will hardly be able to obtain
Kτθ in analytic form. Still, this may be well worth the effort:
while for large training sets the difference between (10)
and a more sophisticate kernel may be less severe since
any universal kernel is optimal [Caponnetto and De Vito,
2007], in the few-shot learning setting (where we have small
training sets) the inductive bias plays an important role and
being able to modify the kernel in a flexible way is key.

3.3 STOCHASTIC META-LEARNING

The discussion above highlighted that except for a few spe-
cial cases (see e.g. Example 1), given a distribution τθ it
is not possible to compute the kernel Kτθ (and its gradi-
ent with respect to θ) analytically. In principle, this might
prevent us from applying meta-learning algorithms of the
form in (9). To circumvent this issue, we consider a strategy
based on random features [Rahimi et al., 2007, Rudi and
Rosasco, 2017]. Rather than evaluating Kτθ , we sample a
set S = (sj)

M
j=1 from N and then approximate the ideal

Bochner kernel by the random features kernel

Kτ̂θS (x, x
′) =

1

M

M∑
j=1

cos(⟨ψθ(sj), x− x′⟩), (11)

where τ̂θS = 1
M

∑M
j=1 δψθ(sj) is an empirical distribution

associated to τθ and δω denotes a Dirac’s delta centered in
ω ∈ Rd which we call frequency. Thanks to the characteri-
zation of Kτθ as an expectation in (8), we have that

Kτθ (x, x
′) = ES∼NM Kτ̂θS (x, x

′), (12)

namely Kτ̂θS is an unbiased estimator of Kτθ . It is possible
to prove also non-asymptotic results bounding the distance
beetween the two kernels in sup norm [Rahimi et al., 2007].

Stochastic Meta-Learning We now introduce a stochas-
tic variant to the meta-learning approach from Sec. 2, by
defining the meta-loss associated to a set of random features

L(θ, S,D) = R̂(AKRR(KτθS , D
tr), Dval), (13)

and the corresponding transfer risk

EM (θ) = Eµ∼ρED∼µnES∼NM L(θ, S,D), (14)

which we will also denote E(θ, S) when wanting to high-
light the dependence on S explicitly.

In this work we propose to address the stochastic meta-
learning problem

min
θ∈Θ

EM (θ). (15)

Alg. 1 provides the pseudocode for a (meta) stochastic gra-
dient descent algorithm applied to this problem. At each it-
eration t = 1, . . . , T , we sample a new task µt and datasets

Algorithm 1 Implicit Kernel Meta-Learning

Input: meta-distribution ρ, step-sizes (γt)∞t=1, number
of random features M , initial meta-parameters θ0, total
number of iterations T .
For t = 1, . . . , T

Sample a task/dataset D = (Dtr, Dval) from ρ
Sample M random features S from N
Form KτθtS

and compute L(S, θt, D) as in (13)
Get ∇θL(θt, S,D) =AUTOGRAD(L(·, S,D), θt)
Update θt+1 ← θt − γt∇L(θt, S,D)

Return θT

Dt = (Dtr
t , D

val
t ) ∼ µnt and a set of random features

St ∼ NM and then perform a gradient descent step in
the direction of ∇θL(θt, St, Dt). Note that the gradient
can be computed by means of automatic differentiation
(AUTOGRAD) [see e.g. Baydin et al., 2018]. Many other
strategies to perform this optimization step are available,
such as Adam [Kingma and Ba, 2015]. While using a large
number of random feature may seem expensive, both train-
ing and prediction time is linear in M , see the section on
computational complexity in the appendix. We refer to this
method as Implicit Kernel Meta-Learning (IKML).

4 GENERALIZATION BOUND

We now study the generalization ability of the proposed
meta-learning method. In particular, our goal is to study the
effect of the number of random features on the performance
of the meta algorithm. To present our observations we focus
for simplicity on the case that the meta loss uses the task
dataset for both training and validation, that is we use the
empirial risk

L̃(θ, S,D) = R̂(AKRR(Kτ̂θS , D), D) (16)

which is the empirical error of KRR with kernel (11) on
the dataset D instead of (13). For a collection of datasets
(Dt)

T
t=1 and a sample S = (sj)

M
j=1 from N , define the

multitask empirical risk

ÊT (θ, S) =
1

T

T∑
t=1

L̃(θ, S,Dt). (17)

We aim to bound the excess transfer risk

EM (θ̂)− E(θ∗) (18)

where θ∗ ∈ Θ is such that E(θ∗) = minθ E(θ) and θ̂ is the
minimizer of the multitask empirical risk, which we call
the multitask empirical risk minimizer (MERM) which in
practice we approximate by the solution returned by Alg. 1.

Theorem 1. Assume that Z = X × Y ⊆ Rd × [0, 1], ρ is
a meta-distribution on Z , the loss ℓ(y, ŷ) = (y − ŷ)2 and



kernel family K = {Kτθ | θ ∈ Θ} is a family of Bochner
kernels parameterized by some latent distribution N with
support on Rl and a family of measurable functions {ψθ :
Rl → Rd | θ ∈ Θ}. For any n,M, T ∈ N let the training
task datasets D1, . . . , DT be given by iteratively sampling
a task µt ∼ ρ and Dt ∼ µnt and S ∼ NM , the family of
inner algorithms being KRR with kernelsKτθ ∈ K and fixed
regularization parameter λ > 0 and θ̂ being the MERM over
the task datasets and random features. Then, for δ ∈ (0, 1),
with probability at least 1− δ over the datasets and random
features

EM (θ̂)− E(θ∗) ≤ O

√MRn,M,T

Tλ
√
n

+

√
log 1

δ

T

+ (19)

O

(
1

λ
√
n

)
+ (20)

O

(
1√
Mλ3

(
1 +

√
G∗
n log n

λ2n

))
(21)

where

Rn,M,T = E(Dt)Tt=1∼ρ̂TES,ϵ sup
θ∈Θ

n,M,T∑
i,j,t

ϵi,j,t⟨ψθ(sj), xti⟩,

(22)
the random variables ϵi,j,t being i.i.d Rademacher andD ∼
ρ̂ means first sampling µ ∼ ρ and then D ∼ µn, and
G∗
n = Eµ∼ρED∼µn∥(Kθ∗(xi, xj))

n
i,j=1∥∞.

Proof Sketch. We discuss the key elements of the proof and
present the full details in the appendix. We write EM (θ̂)−
E(θ∗) = ES [EM (θ̂, S) − E(θ∗)] and decompose the term
inside the expectation as

E(θ̂, S)−Ê(θ̂,S)︸ ︷︷ ︸
(A)

+ Ê(θ̂,S)−ÊT (θ̂,S)︸ ︷︷ ︸
(B)

+ ÊT (θ̂, S)−ÊT (θ∗,S)︸ ︷︷ ︸
(C)

+ ÊT (θ∗,S)−Ê(θ∗,S)︸ ︷︷ ︸
(D)

+ Ê(θ∗,S)−E(θ∗,S)︸ ︷︷ ︸
(E)

+ E(θ∗,S)−E(θ∗)︸ ︷︷ ︸
(F )

where Ê(θ, S) and ÊT (θ, S) are the average empirical error
and the multitask empirical error, for the meta-parameter
θ and random features S; – see the secion on the bound in
the appendix. Bounding the terms (A) and (E) leads to (19)
while bounding the terms (B) and (D) leads to (20). The
term (C) is the optimization error and is negative if we can
minimize the empirical risk objective. Finally the term (F)
is bounded using [Tropp, 2019, Theorem 2.1] and auxiliary
results presented in the appendix.

We now comment on the implications of the above the-
orem. The first term in the r.h.s. of (19) contains the un-
normalized Rademacher complexity Rn,M,T of the set

{(⟨ψθ(sj), xti⟩)
n,M,T
i,j,t=1 : θ ∈ Θ} ⊆ Rn×M×T . This is a

measure of the capacity of the RKHS’s we consider as part
of using the kernel family K and quantifies the kernel fami-
lies ability to fit random noise. While this quantity requires
a case by case analysis it is often of order

√
T . Since in

meta-learning the number of tasks is very large this term
is negligible in many practical scenarios. For example fol-
lowing the reasoning in [Oneto et al., 2020] we obtain that
Rn,M,T = O(

√
nMT ). The number of random features

should then be chosen so that the quantity (21) is smaller
than (20). G∗

n represents the size of best RKHS needed to
explain the data averaged over the possible datasets sam-
pled from the environment. In some sense it represents the
degrees of freedom of the best model θ∗ given the meta-
distribution. A direct computation gives the condition

M > O

(
n

λ
+
G∗
n log n

λ3

)
.

Since G∗
n ∈ [1, n], we conclude that the number of random

features needed by the algorithm in order to be competitive
with meta-learning without random feature approximation
is independent of the number of tasks and only mildly de-
pendent on n. For example, assuming λ = 1/

√
n we obtain

that M = Ω(n
3
2 log n) or M = Ω(n

5
2 log n) when G∗

n = 1
or G∗

n = n, respectively. The case that G∗
n = O(n) requir-

ing more random features corresponds to a low rank Gram
matrix, meaning that the tasks are strongly related. This is
however worth the effort since in this case the optimal risk
E(θ∗) we compare to will be very small, because the optimal
low rank kernel makes learning very easy. Finally we note
that λ being in the denominator of all terms is an artifact
due to comparing to the best KRR algorithm θ∗ instead of
the quantity E∗ = Eµ∼ρRµ(fµ) where fµ = E[y|·] is the
optimal predictor for the distribution µ [see Denevi et al.,
2019, for a discussion].

5 EXPERIMENTAL RESULTS

We evaluate the performance of the proposed meta-learning
strategy on both synthetic and real experiments against sev-
eral baselines. We make all datasets and code available as a
Github repository.2

5.1 SYNTHETIC MULTIVARIATE REGRESSION

For IKML to be effective in realistic meta-learning regres-
sion scenarios it is important that it can approximate non-
trivial functions defined on Rd where d≫ 1. To investigate
this we create a synthetic high-dimensional meta-learning re-
gression setting where each task is sampled from an RKHS
H with a “complicated” kernel Ko. In particular, we choose
Ko to be the kernel given by Bochner’s theorem and a push-
forward of a 3-layers Multi-Layer Perceptron (MLP) with

2https://github.com/IsakFalk/IKML

https://github.com/IsakFalk/IKML


32 hidden units per layer, ReLU activation functions and a
16-dimensional latent Gaussian distribution. The network
was initialized with weights given by the PyTorch [Paszke
et al., 2019] default initialization scaled by 100. Since this
kernel lacks an analytic form, we sample 10000 frequencies
and use the random features kernel from (11) in its place.
The tasks are generated from a distribution on f ∈ H and
a marginal distribution on inputs fixed across all tasks. For
each task we sample n = ntr + nval = 50 + 50 inputs
(xi)

n
i=1, a function f and create the task (xi, f(xi))

n
i=1, for

more details see Sec. 5 in the appendix.

We compare the following meta-learning algorithms:

IKML. Alg. 1 parameterizing the pushforward ψθ for the
measure τθ with a three-layer MLP with hidden dimension
set to 32 and the dimension of the latent space Z = R16.
The number of random features is set to M = 104.

Gaussian MKL meta-KRR (GMKL). Multiple Kernel Learn-
ing (MKL) with KRR as inner algorithm. The meta-
algorithm consists in learning the weights of a kernel K =∑k
j=1 λjKj that is a convex combinations of Gaussian ker-

nels Kj(x, x
′) = exp(− 1

2σ2
j
∥x−x′∥2) with lengthscale σj

taken from an log-equidistant grid from 10−3 to 103. The
meta-learning algorithms learns the weights λ parameter-
ized in terms of the vector z ∈ Rk as λj =

exp(zj)∑k
i=1 exp(zi)

.

MAML [Finn et al., 2017]. Optimizing through inner gra-
dient descent with MLP to learn a good initalization in the
outer loop. We use a three-layer MLP with 32 hidden units
and ReLU activation functions.

R2D2 [Bertinetto et al., 2018]. Ridge regression as inner
algorithm, learning a shared feature map in the outer loop.
We use a three-layer MLP with 32 hidden units and ReLU
activation functions.

Oracle. Running a separate instance of KRR on each task,
with the same kernel Ko used to generate the tasks, and
finding λ by cross validation on the test set.

5.2 REAL-WORLD DATA EXPERIMENTS

We evaluate the proposed approach on two new real world
meta-learning regression datasets adapted to the meta-
learning setting from the UCI repository [Dua and Graff,
2017]. Apart from IKML and Gaussian MKL meta-KRR,
we used the following algorithms in our experiments: LS Bi-
ased Regularization [Denevi et al., 2019] (LSBR). Running
linear ridge regression with biased regularization λ∥f − θ∥2
in the inner algorithm, learning the bias θ in the outer loop.

ANP [Kim et al., 2019]. Learns to map datasets to stochastic
processes over functions using neural networks to do meta-
learning. Predictor is the conditional mean of the stochastic
process.

Gaussian Oracle KRR (GO). Gaussian KRR addressing each
task as a separate learning problem but cross-validating the
kernel bandwidth and regularization parameters σ2 and λ
on the average validation error directly on the meta-test set.

We chose the baselines from landmark papers in the few-
shot learning (MAML, R2D2, ANP, LSBR) and multiple-
kernel learning (GMKL, GO) literature applicable to re-
gression. We think these are natural baselines to compare
against.

For both meta-learning datasets, we run the algorithms
above in an online fashion where we use a meta-batch of
4 tasks per iteration sampled from the meta-train set. For
IKML we fix the number of random features to 20000 which
is on the order of Ω(n5/2 log(n)) if we would have pooled
the train and validation set of 25 datapoints to one train set
of size 50. Note however that further experiments show that
in practice we can get away with as little as 2500 random
features while mainting performance. Every 250 steps we
sample 1000 tasks from the meta-validation set and eval-
uated the average meta-loss for each algorithm and save
the model parameters. After training we sample 3000 tasks
from the meta-test set. For the meta-test evaluation, for all
algorithms, we use the meta-parameters with the lowest
meta-validation error and get the test performance for all
algorithms. We measure performance in terms of the root
mean square error (RMSE). This procedure was run 5 times
over different random seeds in order to get learning curves
and results on the meta-test set. Below we describe the
datasets and comment on the empirical evidence.

Air Quality The Beijing Air Quality dataset [Zhang et al.,
2017] is a time-series dataset measuring air-quality and
meterological factors at 12 air-quality monitoring sites. The
meterological data for each site is matched with the closest
of available weather stations. The data was collected hourly
and from the period March 1st, 2013 to February 28th, 2017.
Further details in Sec. 4.1 in the appendix.

We generate a task of train and validation size ntr, nval
by randomly picking a station and picking a contiguous
subsequence of size n = ntr+nval at random from the split.
We append the feature “t” which is the local order of data
points and then randomly assign ntr of the n points to the
train set and the rest to the validation set. This can be seen as
a reconstruction problem: given data from sensor of which
some have failed, we want to infer the output given an input
at some points in time. We choose to use ntr = nval = 25.

After experimenting we use the following configuration of
the algorithms; For Gaussian MKL meta-KRR we use 20
Gaussian kernels with lengthscale sampled geometrically
from 1 to 1012 and learn the coefficients and regularisation
parameter using the same parameterization as in the syn-
thetic experiment with Adam and a meta-learning rate of
0.001. For LS Biased Regularization we learn the bias and
regularisation parameter using Adam with meta-learning



Figure 1: Learning curves of meta-test RMSE over three runs (mean ± 1 std) of Gaussian MKL meta-KRR , MAML, R2D2
and IKML together with the KRR Oracle on the synthetic meta-learning problem introduced in Sec. 5.1 for d = 1, 5, 10, 20.
We generate Ko once for each experiment and resample tasks for each run. Note that for low dimensions, MKL and R2D2
performs comparably to IKML. As the dimension increases, IKML outperforms all algorithms with performance on par
with Oracle.

rate 0.01. We parameterized MAML with a 2-layer MLP
with 64 hidden dimensions and with inner learning rate 10−7

and one adaptation step, learning the initialization using
Adam with meta-learning rate of 0.001. We found that using
a very small inner learning rate and few steps was important
to get MAML to converge. For R2D2, IKML and ANP we
cross-validated to find the best set of hyparparameters, see
Sec. 5 and Tab. 1 in the appendix for more information.
For Gaussian meta-KRR we learn the lengthscale and regu-
larisation parameter using Adam with a meta-learning rate
of 0.001. We benchmark a neural network IKML, called
IKML-MLP in where we use a 4-layer MLP with 64 hidden
units, 8 output features and 500 random features trained
using Adam with learning rate of 3 · 10−4, see Sec. 5 in the
appendix.

From Tab. 1 we can see that IKML performs best with R2D2
and IKML-MLP close seconds.

Gas Sensor The Gas Sensor Modulation dataset [Burgués
et al., 2018] is a collection of multivariate timeseries col-
lected in a controlled environment using MOX sensors for
CO detection sampled at 3.5 Hz. Each task corresponds to
a subsampled time-series from an experiment. As noted in
[Burgués et al., 2018] the regression tasks are hard due to
being heteroscedastic, non-normal and non-linear as a func-
tion of time but with tasks sharing a lot of structure, making
it suitable as a meta-learning regression dataset. Further
details in Sec. 4.2 in the appendix.

We benchmark the algorithms for ntr = nval = 20. After
experimenting we use the following configuration of the
algorithms; For Gaussian MKL meta-KRR we use 20 Gaus-
sian kernels with lengthscale chosen geometrically from 1 to
108 and learn the coefficients and regularisation parameter
using the same parameterization as in the synthetic experi-
ment with Adam and a meta-learning rate of 0.001. For LS
Biased Regularization we learn the bias and regularisation
parameter using Adam with meta-learning rate 0.01.

We parameterized MAML with a 4-layer MLP with 64

Table 1: Test RMSE on Beijing Air Quality and Gas Sensor.
Best results in bold.

Model Air Quality
RMSE

Gas Sensor
RMSE

GMKL 23.27 ± 0.16 9.61 ± 0.07
LSBR 21.68 ± 0.29 12.44 ± 0.14

MAML 34.96 ± 3.58 2.81 ± 0.12
R2D2 20.23 ± 0.55 1.95 ± 0.06

Gaussian meta-KRR 25.08 ± 0.48 9.80 ± 0.09
GO 25.94 ± 0.91 12.78 ± 0.10

IKML 19.14 ± 0.93 2.80 ± 0.10
IKML-MLP 20.77 ± 0.57 2.06 ± 0.09

ANP 33.77 ± 0.70 2.12 ± 0.09

hidden units with inner learning rate 10−4 and one adapta-
tion step, learning the initialization using Adam with meta-
learning rate of 10−4. For R2D2, IKML and ANP we cross-
validated to find the best set of hyparparameters, see Sec. 5
and Tab. 1 in the appendix for more information. For Gaus-
sian meta-KRR we learn the lengthscale and regularization
parameter using Adam with a meta-learning rate of 0.001.
IKML-MLP is as for Gas Sensor, but with 2 layers and 100
random features.

As can be seen from the table, IKML and MAML gets a low
meta-test error after R2D2 and IKML-MLP as can be seen
in Tab. 1.

Additional Metrics For the algorithms R2D2, IKML and
ANP, with the same setting and training strategy as outlined
for Air Quality and Gas Sensor datasets, we evaluate them
on two additional metrics: mean average error (MAE) and
symmetric mean absolute scaled error (SMAPE)3 [Chicco
et al., 2021]. From Tab. 2 we see that IKML performs the
best on all metrics on the Air Quality dataset with ANP
performing poorly. For Gas Sensor R2D2 performs best

3Note that we present this as a ratio instead of as a percentage.



Table 2: Test RMSE / MAE / SMAPE on Beijing Air Quality and Gas Sensor datasets for R2D2, IKML and ANP.

Air Quality Gas Sensor

Model RMSE MAE SMAPE RMSE MAE SMAPE

R2D2 20.23 ± 0.55 11.67 ± 0.40 0.24 ± 0.01 1.95 ± 0.06 0.94 ± 0.09 0.18 ± 0.05
IKML 19.14 ± 0.93 10.62 ± 0.19 0.22 ± 0.00 2.80 ± 0.10 1.61 ± 0.26 0.24 ± 0.03
ANP 33.77 ± 0.70 21.08 ± 0.40 0.35 ± 0.01 2.12 ± 0.09 1.06 ± 0.06 0.09 ± 0.01

except for SMAPE where ANP performs much better.

6 CONCLUSION AND FUTURE WORK

We introduced a framework for implicit kernel meta-
learning (IKML) in context of translation-invariant and deep
random kernel families. Our approach focuses on problems
where data does not present a clear input structure (in con-
trast e.g. to image classification settings) and using a plug-in
translation invariant kernel might be a safer strategy. Our
approach leverages the characterization of random feature
kernels, in particular the translation invariant kernels granted
by Bochner’s theorem and ideas from the random features
literature to learn it in practice. We derive a novel bound on
the excess transfer risk shedding light on how to choose the
number of random features. To validate our method we in-
troduced two real-world meta-learning regression datasets.

IKML achieve best or close-to-best performance on all of
the datasets against state-of-the-art methods designed for
few-shot image classification. We hypothesize that when the
data does not have enough structure (e.g. in most regression
settings), learning a deep representation – as done by state-
of-the-art methods such as MAML or R2D2 – may be less
effective. We leave further investigation of this question to
future work.

We close by mentioning three relevant directions for future
research: i) Conditional meta-learning Is it possible to ex-
tend the framework to conditional meta-learning? One way
would be to use KTA similar to [Sinha and Duchi, 2016]
and adjusting the initial starting kernel similar to MAML; ii)
Theoretical guarantees Can we show that IKML converges
to a stationary point for benign settings? This would require
understanding the bias-variance decomposition of the gra-
dient; iii) Alternative Kernel Classes Can we extend IKML
to other kernel families? An example is dot-product kernels
[Kar and Karnick, 2012].
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