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Abstract

Data attribution quantifies the influence of individual training data points on ma-1

chine learning models, aiding in their interpretation and improvement. While prior2

work has primarily focused on single-task learning (STL), this work extends data3

attribution to multitask learning (MTL). Data attribution in MTL presents new4

opportunities for interpreting and improving MTL models while also introducing5

unique technical challenges. On the opportunity side, data attribution in MTL of-6

fers a natural way to efficiently measure task relatedness, a key factor that impacts7

the effectiveness of MTL. However, the shared and task-specific parameters in8

MTL models present challenges that require specialized data attribution methods.9

In this paper, we propose the MultiTask Influence Function (MTIF), a novel data10

attribution method tailored for MTL. MTIF leverages the structure of MTL mod-11

els to efficiently estimate the impact of removing data points or excluding tasks12

on the predictions of specific target tasks, providing both data-level and task-level13

influence analysis. Extensive experiments on both linear and neural network mod-14

els show that MTIF effectively approximates leave-one-out and leave-one-task-out15

effects. Moreover, MTIF facilitates fine-grained data selection, consistently im-16

proving model performance in MTL, and provides interpretable insights into task17

relatedness. Our work establishes a novel connection between data attribution and18

MTL, offering an efficient and scalable solution for measuring task relatedness19

and enhancing MTL models.20

1 Introduction21

Data attribution aims to quantify the influence of individual training data points on machine learning22

models and has been widely used to interpret and improve these models (Koh & Liang, 2017; Ham-23

moudeh & Lowd, 2024). However, most existing literature on data attribution focuses on single-task24

learning (STL) settings. In contrast, this work explores data attribution in the context of multitask25

learning (MTL), where multiple related tasks are trained simultaneously to enhance overall perfor-26

mance (Caruana, 1997). Data attribution in MTL presents new opportunities for interpreting and27

improving MTL, while also introducing distinct technical challenges in comparison to data attribu-28

tion in STL.29

MTL has demonstrated success across a wide range of domains, including computer vision (Za-30

mir et al., 2018), natural language processing (Hashimoto et al., 2017), speech processing (Huang31

et al., 2015), and recommender systems (Ma et al., 2018). In practice, however, MTL does not al-32

ways help with the overall performance—training unrelated tasks together often harms the learning33

performance, a phenomenon known as negative transfer (Standley et al., 2020; Wang et al., 2020;34

Parisotto et al., 2016; Rusu et al., 2016). As a result, understanding and quantifying task relatedness35

has become a key focus in MTL research (Ma et al., 2018; Standley et al., 2020; Fifty et al., 2021).36

Despite this, there is still no consensus on a universally effective and efficient method for measur-37

ing task relatedness. In practical applications, practitioners often rely on trial and error—repeatedly38

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



training models with different task combinations—as a gold standard to assess task relatedness, a39

process that is computationally expensive.40

Generalizing data attribution methods to MTL offers a promising, efficient, and interpretable way to41

measure task relatedness in MTL. Many data attribution methods are designed to efficiently approx-42

imate the change of model performance when retraining the model with certain data points excluded43

from the training dataset (Koh & Liang, 2017; Park et al., 2023). Extending these methods to MTL44

naturally leads to an efficient approximation of the aforementioned trial-and-error process for deter-45

mining task relatedness. Moreover, data attribution methods allow for fine-grained analysis at the46

individual data instance level, revealing how data points from one task impact performance on an-47

other task. This data-level influence analysis offers more interpretable insights into task relatedness48

by moving beyond a single metric, providing concrete evidence of how tasks are related through49

specific data points and their cross-task effects. Please see Appendix A for more related work for50

data attribution and task relatedness in MTL.51

However, MTL introduces unique challenges that require tailored data attribution methods. MTL52

models typically consist of both shared parameters across all tasks and task-specific parameters for53

each individual task. When making predictions for a specific task, only a submodel with a subset54

of the parameters is utilized. As the number of tasks increases, this brings several computational55

challenges for data attribution. Firstly, since each task corresponds to a separate attribution tar-56

get, retraining-based data attribution methods (Ghorbani & Zou, 2019; Jia et al., 2019) become57

prohibitively expensive. Therefore, in this paper, we focus on influence function (IF)-based data58

attribution methods that do not require repeated retraining. Additionally, tasks in MTL may employ59

different loss functions, and the number of parameters scales with the number of tasks, further com-60

plicating the application of existing IF-based data attribution methods designed for single-task learn-61

ing (STL). These factors present significant technical and computational challenges when adapting62

such methods to the MTL setting.63

In this paper, we propose the MultiTask Influence Function (MTIF) to address these challenges.64

Similar to the IF-based data attribution methods for STL (Koh & Liang, 2017), MTIF leverages a65

first-order approximation to efficiently estimate the impact of removing a data point from one task66

on the prediction for another task, without the need for model retraining. Specifically designed for67

MTL, MTIF derives the influence of data points on the shared and task-specific parameters sepa-68

rately, and exploits the unique structure of MTL models to enhance computational efficiency. MTIF69

enables the efficient estimation of both data-level and task-level influence, providing a scalable and70

interpretable solution for data attribution in MTL settings.71

We conduct extensive experiments on both linear and neural network models to evaluate the effec-72

tiveness of the proposed MTIF. On linear models, the data-level influence scores predicted by MTIF73

shows a near perfect correlation with the actual change of model outputs obtained by brute-force74

leave-one-out retraining; the task-level influence estimated by MTIF also strongly correlates with75

the leave-one-task-out retraining, with an average Pearson correlation around 0.7. On neural net-76

work models, the task-level influence estimated by MTIF also shows significant correlation with77

leave-one-task-out retraining, with Pearson correlation ranging from 0.1 to 0.4. Moreover, the data-78

level influence estimated by MTIF enables fine-grained data selection for MTL, which demonstrates79

consistent performance improvements over baselines. Finally, we provide case studies of the most80

negative data points from one task to another task, providing interpretations about negative transfer.81

2 Influence Function for Multitask Data Attribution82

In this section, we generalize influence function in STL (see Appendix B) to MTL settings.83

2.1 Problem Setup for Multitask Data Attribution84

Multitask Learning. MTL aims to solve multiple tasks simultaneously. In many real-world sce-85

narios, tasks are often related and share common underlying structures. MTL leverages shared86

structures by jointly training tasks to enhance generalization and improve prediction accuracy, es-87

pecially when tasks are related or when data for individual tasks is limited. A common approach in88

MTL to facilitate information sharing across tasks is through either soft or hard parameter sharing89

(Ruder, 2017). In soft parameter sharing, regularization is applied to the task-specific parameters to90
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encourage them to be similar across tasks (Xue et al., 2007; Duong et al., 2015). In contrast, hard91

parameter sharing learns a common feature representation through shared parameters, while task-92

specific parameters are used to make predictions tailored to each task (Caruana, 1997). Recently,93

Duan & Wang (2023) proposed an augmented optimization framework for MTL that accommodates94

both hard parameter sharing and various types of soft parameter sharing.95

We consider a general multitask learning objective that incorporates these common parameter-96

sharing schemes. Specifically, consider K tasks and for each task k = 1, . . . ,K, we observe nk97

independent samples, denoted by {zki}nk
i=1. Let ℓk(·; ·) be the loss function for task k. The MTL98

objective is given by99

L(w) =

K∑
k=1

[
1

nk

nk∑
i=1

ℓk(θk, γ; zki) + Ωk(θk, γ)

]
, (1)

where θ = {θk ∈ Rdk}Kk=1 are task-specific parameters, γ ∈ Rp are shared parameters, w = {θ, γ}100

denotes all parameters, and Ωk(θk, γ) represents the task-level regularization. The parameters are101

estimated by minimizing (1), i.e., ŵ = argminw L(w).102

Below, we present two special cases of supervised learning within this general framework: one103

illustrating soft parameter sharing and the other demonstrating hard parameter sharing. Let zki =104

(xki, yki) for 1 ≤ k ≤ K and 1 ≤ i ≤ nk, where xki represents the features and yki represents the105

outcomes for the i-th data point in task k.106

We provide two concrete examples of MTL models, Multitask Linear Regression with Ridge Penalty107

(Example 1) and Shared-Bottom Neural Network (Example 2), in Appendix C.108

Multitask Data Attribution. In this work, we aim to estimate the contribution of a data point (or109

a task) to the learning performance on a specific target task k ∈ {1, . . . ,K}. The performance of110

any model with parameters (θk, γ) on task k can be measured by the average loss over a validation111

dataset Dv
k , i.e, Vk(θk, γ;D

v
k) =

∑
z∈Dv

k
ℓk(θk, γ; z)/|Dv

k |. Then the data-level influence of the i-th112

data point from task l on the target task k can be quantified by the following LOO effect:113

∆li
k := Vk(θ̂k, γ̂;D

v
k)− Vk(θ̂

(−li)
k , γ̂(−li);Dv

k), (2)

where θ̂k and γ̂ are from the minimizer of (1) with the full training data, while θ̂
(−li)
k and γ̂(−li) are114

obtained by excluding the data point zli from task l. This data-level attribution metric allows for a115

fine-grained understanding of the impact each data point from one task has on another task.116

Similarly, the task-level influence of task l on the target task k is quantified by the leave-one-task-out117

(LOTO) effect:118

∆l
k := Vk(θ̂k, γ̂;D

v
k)− Vk(θ̂

(−l)
k , γ̂(−l);Dv

k), (3)

where θ̂
(−l)
k and γ̂(−l) are obtained by excluding all the data points from task l. The LOTO effect119

provides a natural and interpretable measure of task relatedness.120

2.2 The Proposed Method: Multitask Influence Function121

The computational burden of evaluating LOO and LOTO effects becomes even more pronounced in122

MTL setting compared to STL setting, particularly when the number of tasks is large. To address123

this challenge, we extend the IF-based approximation to LOO and LOTO effects in MTL. This124

approach builds on the similar idea of using infinitesimal perturbations on the weights of data points125

to approximate the removal of individual data points. Specifically, we consider the following data-126

level σ-weighted version of the general objective function in (1):127

L(w,σ) =

K∑
k=1

[
1

nk

nk∑
i=1

σkiℓki(θk, γ) + Ωk(θk, γ)

]
, (4)

where ℓki(·) is shorthand for ℓk(·; zki). For each weight vector σ, we solve w(σ) =128

argminw L(w,σ). We propose to use the partial derivative with respect to σli, i.e.,129

∂Vk(θ̂k(σ), γ̂(σ);D
v
k)

∂σli

∣∣∣∣∣
σ=1

= ∇θVk(θ̂k, γ̂;D
v
k) ·

∂θ̂k(σ)

∂σli

∣∣∣
σ=1

+∇γVk(θ̂k, γ̂;D
v
k) ·

∂γ̂(σ)

∂σli

∣∣∣
σ=1

,

(5)
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to approximate the LOO effect defined in (2). By applying the chain rule in (5), the key is to130

efficiently compute the influence scores of the data point zli on the task-specific parameters θ̂k and131

shared parameters γ̂.132

To achieve this, we present the following proposition that provides the explicit analytical form for133

the influence of a data point on task-specific parameters for the same task (within-task influence),134

task-specific parameters for another task (between-task influence), and shared parameters (shared135

influence). Before introducing the results, we first define some notation. Let Hkl denote the (k, l)-th136

block components of the Hessian matrix of the MTL objective function L(w,σ), as defined in (4),137

with respect to w. This Hessian matrix has the following block structure:138

H(w,σ) =


H1,1 · · · 0 H1,K+1

...
. . .

...
...

0 · · · HK,K HK,K+1

HK+1,1 · · · HK+1,K HK+1,K+1

 . (6)

The details of each block are described in Lemma F.1. A naive computation of the influence func-139

tion would require inverting the entire Hessian matrix in (6), with dimensions (
∑K

k=1 dk + p) ×140

(
∑K

k=1 dk + p), which could be computationally expensive and numerically unstable. We take141

advantage of Hessian’s block structure in MTL and simplify the computation to only require the142

inversion of submatrices.143

Proposition 1 (Data-Level Within-task Influence, Between-task Influence, and Shared Influence).144

Assuming the objective function L(w,σ) in (4) is twice-differentiable and strictly convex in w. For145

any two tasks k ̸= l and 1 ≤ k, l ≤ K, the following results hold:146

(Shared influence) For 1 ≤ i ≤ nk, the influence of the i-th data point from task k on the shared147

parameters, γ̂, is given by148

∂γ̂

∂σki
= −

(
N−1 ·HK+1,kH

−1
kk

∂ℓki
∂θk

+N−1 ∂ℓki
∂γ

)
, (7)

where the matrix N := HK+1,K+1 −
∑K

k=1 HK+1,kH
−1
kk Hk,K+1 ∈ Rp×p is invertible;149

(Within-task influence) For 1 ≤ i ≤ nk, the influence of the i-th data point from task k on the150

task-specific parameters for the same task k, θ̂k, is given by151

∂θ̂k
∂σki

= −H−1
kk

∂ℓki
∂θk

+H−1
kk Hk,K+1 ·

∂γ̂

∂σki
; (8)

(Between-task influence) For 1 ≤ i ≤ nl, the influence of the i-th data point from task l on the152

task-specific parameters for another task k, θ̂k, is given by153

∂θ̂k
∂σli

= H−1
kk Hk,K+1 ·

∂γ̂

∂σli
. (9)

Interpretation of Data-Level Influences In MTL, data points have more composite influences on154

task-specific parameters compared to STL due to interactions with other tasks and shared parame-155

ters. In STL, each data point only affects its own task’s parameters through the gradient and Hessian156

of the task-specific objective, which is solely the first term in (8). However, in MTL, shared param-157

eters introduce a feedback mechanism that allows data from one task to influence the parameters of158

other tasks. As shown in (7), the influence of i-th data point from task k on the shared parameters159

stem from two sources: the first term reflects the change on the task-specific parameter θ̂k, which160

then indirectly affects the shared parameters γ̂, while the second term accounts for the direct impact161

on γ̂. Consequently, within-task influence in (8) includes an additional influence propagated through162

the shared parameters, and between-task influence in (9) arises as data from one task indirectly im-163

pacts the parameters of another task via the shared parameters. In particular, in STL, between-task164

influence does not occur because tasks are independent and do not interact.165

3 Experiments166

In this section, we empirically demonstrate the performance of MTIF in two experimental setups.167

In Section 3.1, we present results from a linear regression setup, as described in Example 1. In168

Section 3.2, we report results from a shared-bottom neural network setup, detailed in Example 2.169
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Through these experiments, we show the following benefits of MTIF. Firstly, our data-level influ-170

ence score provides a strong approximation to the leave-one-out (LOO) effect in (2), as evidenced171

by the high degree of linearity between the two measures. Secondly, our task-level influence score172

effectively approximates the leave-one-task-out (LOTO) effect in (3), demonstrated by the strong173

correlation in task contribution rankings between the two measures. Moreover, data selection en-174

abled by our method leads to both improved model performance across various dynamic weighting175

algorithms for MTL, and interpretable insights about the task relationships through case studies.176

Due to page limit, some results are shown in Appendix E.177

3.1 Linear Regression178

Our experiments in the linear regression setting, as described in Example 1, consist of evaluations179

on two datasets. The first dataset is a synthetic dataset with 10 tasks, each contains 200 samples180

(xji, yji) randomly split into training and testing set with equal size. The second dataset is a real-181

world dataset, HAR (Anguita et al., 2013), as referenced in Duan & Wang (2023). We leave more182

details of both datasets in Appendix H.1.183

3.1.1 Data-level Influence184

In this experiment, we compare our data-level influence scores (5) with the gold standard LOO185

scores (2) on both the synthetic and HAR datasets. We evaluate both within-in task influence and186

between-task influence.187

Figure 1: LOO experiments on linear regression. The x-axis is the actual loss difference obtained
by LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two
figures from the left show within-task and between-task results (in order) results on the synthetic
dataset, while the other two figures present within-task and between-task results (in order) on the
HAR dataset. Each figure corresponds to a randomly picked test data point. The scatter points
correspond to training data points in the first task of each dataset. The trend holds more broadly.

Figure 1 presents our results. The strong linear correlation between MTIF influence scores and188

the gold standard LOO scores across all scenarios indicates that MTIF effectively approximates189

the LOO effect, both for within-task and between-task influence, on both the synthetic and HAR190

datasets.191

3.1.2 Task-level Influence192

In this experiment, we compare our task-level influence scores (D.3) with the gold standard LOTO193

scores (3) on both the synthetic and HAR datasets. We randomly split 20% of the data from each194

task as the validation set. Specifically, for a given target task, we use MTIF to calculate the influence195

score of each training task to the model’s performance on the target task’s validation set. We also196

calculate the LOTO scores for each task by retraining the model. We then report the Spearman197

correlation coefficient between the MTIF influence scores and the LOTO scores. Table 1 shows the198

results on the synthetic dataset for each task selected as the target task. We leave the results for HAR199

dataset to Appendix H.1.2 due to space limit. On both datasets, the proposed MTIF achieves high200

correlation coefficients with the LOTO scores, indicating that MTIF aligns well with LOTO.201

Table 1: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
Error bars indicate the standard error of the mean.

Task 1 Task 2 Task 3 Task 4 Task 5
0.84 ± 0.05 0.72 ± 0.05 0.74 ± 0.11 0.81 ± 0.05 0.71 ± 0.09

Task 6 Task 7 Task 8 Task 9 Task 10
0.74 ± 0.04 0.74 ± 0.07 0.84 ± 0.03 0.74 ± 0.03 0.65 ± 0.07
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3.2 Neural Networks202

We further demonstrate that the proposed MTIF remains effective for neural networks. We conduct203

the experiments with the Shared-Bottom neural network (as discussed in Example 2) on the CelebA204

dataset (Liu et al., 2015).205

3.2.1 Application: Data Selection206

We demonstrate the practical usefulness of the proposed MTIF through a downstream application207

of data selection. While most existing MTL literature predominantly investigates task relatedness at208

the task level, the data-level influence estimated by MTIF provides a unique opportunity to improve209

MTL by removing a small portion of training data points that cause negative impact to the overall210

performance.211

In this experiment, we remove top 5% most negative training data points as estimated by MTIF on212

the validation dataset, and then report the test performance after retraining the MTL models on the213

rest of the training dataset.214

As a reference, we include several re-weighting-based methods, such as GradNorm (GN) (Chen215

et al., 2018), Dynamic Weight Average (DWA) (Liu et al., 2019), Impartial MultiTask Learning216

(IMTL) (Liu et al., 2021a), Random Loss Weighting (RLW) (Lin et al., 2022), and Uncertainty217

Weighting (UW) (Kendall et al., 2018), which aim to improve MTL performance by dynamically218

measuring and accounting for the task relatedness during training. Since such re-weighting-based219

methods are orthogonal to data selection, we also experiment with combining re-weighting methods220

with data selection. We refer to the vanilla method without re-weighting as Equal Weighting (EW).221

We use EW+DS to represent the combination of Equal Weighting and data selection. We adopt the222

implementation from libMTL (Lin & Zhang, 2023) for all the re-weighting methods. Due to page223

limit, we only show the results for EW and EW+DS below in Table 2 (the full results are in Table 2224

in Appendix E.1.2).225

As shown in Table 2 (and full results in Table 4), we first observe that removing the most negative226

data points appears to be more effective than re-weighting methods. Among all the re-weighting227

methods, only RLW (0.889) outperforms the vanilla baseline EW (0.885) in terms of average per-228

formance, while the data selection EW+DS achieves an average performance of 0.892. Moreover,229

DS consistently leads to performance improvement when combining with different re-weighting230

methods. This result suggests that methods accounting for the fine-grained data-level influence may231

lead to better improvement for MTL compared to methods that only examine task-level relatedness.232

Table 2: Results of model performance using different dynamic weighting methods, both with and
without data selection (DS). The DS method removes the top 5% of the most negative data points
based on the data-level influence scores estimated by MTIF. EW refers to Equal Weighting, which is
the vanilla Shared-Bottom model without any re-weighting. The reported values are averaged over
5 random seeds, with † indicating standard error of the mean < 0.01 and * indicating standard error
of the mean < 0.002. The last column shows the average performance across all tasks.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Average

EW 0.861† 0.813† 0.901† 0.784† 0.927† 0.946† 0.856† 0.918* 0.957† 0.885*

EW+DS 0.869† 0.818† 0.902† 0.792† 0.934† 0.952* 0.868† 0.929† 0.958† 0.892*

Finally, while it is a bit counter-intuitive that most re-weighting based methods fail to outperform233

the vanilla baseline EW, similar observations also present in the benchmark study by libMTL (Lin234

& Zhang, 2023).235

4 Conclusion236

In this work, we proposed the MultiTask Influence Function (MTIF), a novel data attribution method237

for multitask learning (MTL). MTIF efficiently estimates the influence of individual data points on238

task performance across multiple tasks, without the need for retraining. By leveraging the struc-239

ture of MTL models, MTIF enables scalable and interpretable data-level and task-level influence240

analysis. Extensive experimental results demonstrate the effectiveness of the proposed methods.241
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A Related Work444

Data Attribution Data attribution methods quantify the influence of individual training data445

points on model performance. These methods can be broadly categorized into retraining-based and446

gradient-based approaches (Hammoudeh & Lowd, 2024). Retraining-based methods (Ghorbani &447

Zou, 2019; Jia et al., 2019; Kwon & Zou, 2022; Wang & Jia, 2023; Ilyas et al., 2022) require retrain-448

ing the model multiple times on different subsets of the training data. Retraining-based methods are449

usually computationally expensive due to the repeated retraining. The computation cost can be fur-450

ther exacerbated in MTL due to the combination of tasks. Gradient-based methods (Koh & Liang,451

2017; Guo et al., 2021; Barshan et al., 2020; Schioppa et al., 2022; Kwon et al., 2024; Yeh et al.,452

2018; Pruthi et al., 2020; Park et al., 2023) instead rely on the (higher-order) gradient information453

of the original model to estimate the data influence, which are more efficient. Many gradient-based454

methods can be viewed as variants of IF-based data attribution methods (Koh & Liang, 2017). In455

this paper, we develop an IF-based data attribution method tailored for the MTL settings.456

Task Relatedness in Multitask Learning Quantifying task relatedness has been a central focus457

in multitask learning. Broadly, two lines of work address this topic. The first focuses on task458

grouping or task selection, aiming to develop methods for grouping or selecting positively related459

tasks to improve prediction performance. Standley et al. (2020) and Li et al. (2023) introduced460

task selection methods based on model retraining, which are less efficient than our method. Fifty461

et al. (2021) proposed an efficient method for calculating heuristic pairwise task affinities, but their462

estimator heavily depends on the training trajectory, which limits its interpretability. Additionally,463

Wu et al. (2020) incorporated task data covariance to estimate task similarity, though their work is464

restricted to specific types of models.465

Another line of research focuses on developing advanced training algorithms for MTL by explicitly466

accounting for inter-task relations during training. These methods generally fall into two categories.467

The first category manipulates per-task gradients to mitigate negative influences between tasks (Yu468

et al., 2020; Wang et al., 2021; Liu et al., 2021a; Chen et al., 2020; Peng et al., 2024). The second469

category employs task reweighting techniques to balance the contribution of each task or to empha-470

size on critical tasks (Chen et al., 2018; Liu et al., 2019; Guo et al., 2018; Kendall et al., 2018).471

Beyond these two categories, Duan & Wang (2023) proposed a family of methods that automati-472

cally leverage task similarities to improve multitask learning. These approaches are orthogonal to473

our method and can be potentially combined with the data and task selection enabled by our method.474

There is also a body of work on task relatedness in transfer learning (Zamir et al., 2018; Achille475

et al., 2021; Dwivedi & Roig, 2019; Zhuang et al., 2021; Achille et al., 2019). However, Standley476

et al. (2020) demonstrated that task similarity metrics in transfer learning do not generalize well to477

the multitask learning domain.478

B Preliminary: Influence Function as an Approximation to LOO479

As a widely used data attribution metric, the leave-one-out (LOO) effect measures the contribution480

of a training data point by the change of model performance after removing this data point and481

retraining the model (Koh & Liang, 2017; Schioppa et al., 2022; Grosse et al., 2023). However,482

repeatedly retraining the model can be computationally extensive. To address this issue, in the483

single-task learning (STL) setting, Koh & Liang (2017) proposed the use of influence functions,484

which approximate the LOO effect by leveraging small perturbations to the weight of the loss at485

each data point.486

Specifically, for a given data point z ∈ Z and parameter vector θ ∈ Θ, consider a loss487

function ℓ(θ; z). Given a training dataset {zi}ni=1, we minimize the empirical risk, i.e., θ̂ =488

argminθ∈Θ

∑n
i=1 ℓ(θ; zi)/n, and evaluate the performance of θ̂ using certain evaluation metrics. A489

common metric is the average loss on the validation data Dv, i.e., V (θ̂;Dv) =
∑

z∈Dv ℓ(θ̂; z)/|Dv|.490

The LOO effect of the i-th data point is defined as the difference in the evaluation metric when using491

the parameters learned from all data points versus the parameters learned by excluding the data point492

zi. Formally, we introduce a weight vector σ = (σ1, · · · , σn) into the objective function, then the493
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minimizer can be written by494

θ̂(σ) = argmin
θ∈Θ

L(θ,σ), where L(θ,σ) := 1

n

n∑
i=1

σiℓ(θ; zi).

The LOO effect of the i-th data point is given by V (θ̂(1);Dv) − V (θ̂(1(−i));Dv), where 1 is an495

all-ones vector with length n and 1(−i) is a vector of all ones except for the i-th element being 0. The496

LOO effect requires retraining the model multiple times — once for each data point being left out -497

to obtain θ̂(1(−i)). To reduce computational cost, Koh & Liang (2017) proposed to approximate the498

LOO effect by using the partial derivative ∇θV (θ̂(σ);Dv)⊤ · ∂θ̂(σ)
∂σi

∣∣∣
σ=1

. Under certain regularity499

conditions, the effect of perturbing the weight for data point zi on the learned parameters is given by500

∂θ̂(σ)

∂σi

∣∣∣
σ=1

= −H(θ̂(1),1)−1 · ∇θℓ(θ̂(1); zi), (B.1)

where H(θ,σ) =
∑n

i=1 σi
∂2ℓ(θ;zi)
∂θ∂θ⊤ /n is the Hessian matrix. This approximation is referred to as501

influence function (IF)-based data attribution. Compared to the LOO effect, IF-based data attribution502

only requires the evaluation of the inverse Hessian matrix and the gradient at the model parameters503

trained on the full dataset.504

While IF-based data attribution has been shown as a scalable and effective tool for many appli-505

cations, it has been primarily developed for STL settings, where a single model is trained on a506

homogeneous task. However, in many real-world applications, multiple related tasks are learned507

jointly, with shared parameters across tasks and different evaluation metrics of interest. In the next508

section, we extend IF-based data attribution to the multitask learning (MTL) setting, broadening its509

applicability.510

C Examples of MTL Models511

Example 1 (Multitask Linear Regression with Ridge Penalty). Regularization has been inte-512

grated in MTL to encourange similarity among task-specific parameters; see (Evgeniou & Pontil,513

2004; Duan & Wang, 2023) for examples. Consider the regression setting where yki = x⊤
kiθ

∗
k + ϵki,514

with ϵki being independent noise and xki ∈ Rd for 1 ≤ i ≤ nk and 1 ≤ k ≤ K. Additionally,515

we have the prior knowledge that {θ∗k}Kk=1 are close to each other. Instead of fitting a separate516

ordinary least squares estimator for each θk, a ridge penalty is introduced to shrink the task-specific517

parameters θ1, . . . , θK ∈ Rd toward a common vector γ ∈ Rd, while γ is simultaneously learned518

by leveraging data from all tasks.519

The objective function for multitask linear regression with a ridge penalty is given by520

L(w) =

K∑
k=1

[
1

nk

nk∑
i=1

(yki − x⊤
kiθk)

2 + λk∥θk − γ∥22

]
,

where λk controls the strength of regularization. This can be viewed as a special case of (1) by521

setting ℓk as the squared error (depending only on the task-specific parameters) and defining the522

regularization term Ωk(θk, γ) = λk∥θk − γ∥22.523

Example 2 (Shared-Bottom Neural Network Model). The shared-bottom neural network archi-524

tecture, first proposed by Caruana (1997), has been widely applied to MTL across various domains525

(Zhou et al., 2023; Liu et al., 2021b; Ma et al., 2018). The shared-bottom model can be represented526

as fk(x) = g(θk; f(γ;x)), where f(γ; ·) represents the shared layers that process the input data527

and produce an intermediate representation, and γ denotes the parameters shared across tasks. The528

function g(θk; ·) corresponds to task-specific layers, which take the intermediate representation and529

produce task-specific predictions, with θk representing task-specific parameters.530

The loss function for this model can be written as:531

L(w) =

K∑
k=1

[
1

nk

nk∑
i=1

ℓk(yki, g(θk; f(γ;xki))) + Ωk(θk, γ)

]
,

where ℓk(·, ·) represents the task-specific loss function, and Ωk(θk, γ) denotes the regularization532

term. A simple choice for regularization is Ωk(θk, γ) = λk(∥θk∥22 + c∥γ∥22), where λk and c are533

positive constants.534
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D Task-Level Influences535

The LOTO effect, introduced in (3) is a natural measure for task relatedness. To provide a computa-536

tionally efficient approximation of the LOTO effect, we similarly apply infinitesimal perturbations537

on the data weights. Specifically, we consider the following task-level σ-weighted objective, where538

we assign the same weight to data from the same task:539

L(w,σ) =

K∑
k=1

σk

[
1

nk

nk∑
i=1

ℓki(θk, γ) + Ωk(θk, γ)

]
. (D.2)

Note that, the regularization terms Ωk(θk, γ) in (D.2) are also weighted by σk, unlike the data-level540

σ-weighted objective (4), where the weights are only applied to the individual losses lki(θk, γ). This541

difference is due to the nature of multitask learning - excluding a task results in the removal of its542

task-specific parameters along with the regularization term.543

The IF-based approximation for the LOTO effect ∆l
k is given by544

∂Vk(θ̂k(σ), γ̂(σ);D
v
k)

∂σl

∣∣∣∣∣
σ=1

= ∇θVk(θ̂k, γ̂;D
v
k) ·

∂θ̂k(σ)

∂σl

∣∣∣
σ=1

+∇γVk(θ̂k, γ̂;D
v
k) ·

∂γ̂(σ)

∂σl

∣∣∣
σ=1

.

(D.3)
In Proposition 2, we provide the analytical form for the influence of data from one task on the545

parameters of another task and the shared parameters. The Hessian matrix of L(w,σ) with respect546

to w shares the same block structure as shown in (6). Let Hkl denote the (k, l)-th block of the547

Hessian matrix, with the details provided in Lemma F.2. Let N be defined as in Proposition 1.548

Proposition 2 (Task-Level Between-task Influence). Under the assumptions of Proposition 1, for549

any two tasks k ̸= l where 1 ≤ k, l ≤ K, the influence of data from task l on the task-specific550

parameters of task k, θ̂k, is given by551

∂θ̂k
∂σl

= H−1
kk Hk,K+1 ·

∂γ̂

∂σl
, (D.4)

where ∂γ̂
∂σl

is the influence of data from task l on the shared parameters, γ̂, and is given by552

∂γ̂

∂σl
= −

(
N−1HK+1,lH

−1
ll

[
nl∑
i=1

∂ℓli
∂θl

+
∂Ωl

∂θl

]
+N−1

[
nl∑
i=1

∂ℓli
∂γ

+
∂Ωl

∂γ

])
. (D.5)

Proof. The result follows directly from the application of Lemma F.4 and Lemma F.6.553

As shown in Proposition 2, task-level influences ∂θ̂k
∂σl

and ∂γ̂
∂σl

are sums of data-level influence scores554

for all points in task l, with additional terms arising from σ-weighted regularization.555

E More Experiments556

E.1 Neural Networks557

E.1.1 Task-level Influence558

In this experiment, we compare the task-level influence estimated by MTIF with the gold standard559

LOTO scores on the neural network setting, following a similar setup as the linear model setting560

in Sec 3.1.2. Table 3 reports the average Spearman correlation coefficients across 5 random seeds561

with each task selected as the target task. In comparison to the linear model setting in Table 1, the562

correlation coefficients are lower. This is not surprising as data attribution for non-convex models is563

more challenging and the evaluation is more noisy due to the inherent randomness in model retrain-564

ing (Koh & Liang, 2017). Nevertheless, the influence scores estimated by MTIF still demonstrate565

non-trivial correlations with the LOTO scores in most cases, with the highest correlation coefficient566

achieving 0.43. This indicates that MTIF still effectively captures useful signals.567
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Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

0.21 ± 0.04 0.35 ± 0.19 0.23 ± 0.10 0.43 ± 0.12 0.14 ± 0.17 0.36 ± 0.10 0.29 ± 0.05 0.10 ± 0.10 0.15 ± 0.15

Table 3: The average Spearman correlation coefficients over 5 random seeds on the CelebA dataset.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Average

DWA 0.864† 0.804† 0.903† 0.786† 0.931† 0.945* 0.854† 0.920* 0.955† 0.885*

DWA+DS 0.873† 0.815† 0.904† 0.795† 0.937† 0.950* 0.866† 0.929* 0.956† 0.892*

GN 0.864† 0.808† 0.900† 0.781† 0.928† 0.946† 0.856† 0.922† 0.954† 0.884*

GN+DS 0.873† 0.817† 0.898† 0.791† 0.934† 0.951* 0.870† 0.931* 0.957† 0.891*

IMTL 0.858† 0.800† 0.896† 0.775† 0.930† 0.947* 0.869† 0.917† 0.957† 0.883*

IMTL+DS 0.871* 0.806† 0.897† 0.788† 0.934† 0.952* 0.873† 0.925† 0.961† 0.890*

UW 0.857† 0.808† 0.897† 0.781† 0.925† 0.945* 0.859† 0.920* 0.956† 0.883*

UW+DS 0.867† 0.816† 0.900† 0.792† 0.931† 0.953* 0.866† 0.929† 0.958† 0.890*

RLW 0.870† 0.821† 0.901† 0.789† 0.934† 0.951† 0.856† 0.927* 0.955† 0.889*

RLW+DS 0.881* 0.820† 0.907† 0.798† 0.936† 0.954* 0.868* 0.932* 0.958† 0.895*

EW 0.861† 0.813† 0.901† 0.784† 0.927† 0.946† 0.856† 0.918* 0.957† 0.885*

EW+DS 0.869† 0.818† 0.902† 0.792† 0.934† 0.952* 0.868† 0.929† 0.958† 0.892*

Table 4: Results of model performance using different dynamic weighting methods, both with and
without data selection (DS). The DS method removes the top 5% of the most negative data points
based on the data-level influence scores estimated by MTIF. EW refers to Equal Weighting, which is
the vanilla Shared-Bottom model without any re-weighting. The reported values are averaged over
5 random seeds, with † indicating standard error of the mean < 0.01 and * indicating standard error
of the mean < 0.002. The last column shows the average performance across all tasks.

E.1.2 Full Results of Data Selection568

E.1.3 Visualization of Most Negative Samples569

Finally, we demonstrate how MTIF might bring us interpretable insights about task relatedness. In570

Figure 2, we visualize some of the most negative samples between specific task pairs.571

Figure 2: The images on the left represent four samples from the task “Mustache” that negatively
influence the task “No Beard.” They are labeled positive for “Mustache” but negative for “No
Beard.” On the right, there are four samples from the task “Wearing Hat” that negatively influence
the task “Black Hair.” They are labeled positive for “Wearing Hat” but negative for “Black Hair.”

On the left side of Figure 2, we visualize the samples from the task “Mustache” that negatively572

influence the task “No Beard”. Intuitively, these two tasks are related tasks, as someone with a573

mustache is certainly with a beard. However, these images are all negative samples for the task574

“Mustache,” yet the individuals clearly have beards. These images could potentially confuse the575

model. Similarly, the images on the right depict individuals all wearing a black hat, but are labeled576

as not having black hair, either because their hair is not visible in the picture or because their natural577

hair color is not black, though this is not obvious from the image. The model may confuse the578

presence of a black hat with having black hair. These examples show that MTIF is capable of579

finding samples from one task that negatively influence another task, offering interpretable insights580

about task relationships.581
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F Lemma582

The first two lemmas describe the structure of the Hessian matrices for data-level and task-level583

inference.584

Lemma F.1 (Hessian Matrix Structure for Data-Level Inference). Let H(w,σ) be the Hessian585

matrix of data-level σ-weighted objective (4) with respect to w, i.e., H(w,σ) = ∂2L(w,σ)
∂w∂w⊤ , then we586

have587

H(w,σ) =


H1,1 · · · 0 H1,K+1

...
. . .

...
...

0 · · · HK,K HK,K+1

HK+1,1 · · · HK+1,K HK+1,K+1

 ,

where588

Hkk =

nk∑
i=1

σki
∂2ℓki(θk, γ)

∂θk∂θ⊤k
+

∂2Ωk(θk, γ)

∂θk∂θ⊤k
∈ Rdk×dk for 1 ≤ k ≤ K,

Hkl = 0 ∈ Rdk×dl for 1 ≤ k, l ≤ K and k ̸= l,

H⊤
K+1,k = Hk,K+1 =

nk∑
i=1

σki
∂2ℓki(θk, γ)

∂θk∂γ⊤ +
∂2Ωk(θk, γ)

∂θk∂γ⊤ ∈ Rdk×p for 1 ≤ k ≤ K,

HK+1,K+1 =

K∑
k=1

nk∑
i=1

σki
∂2ℓki(θk, γ)

∂γ∂γ⊤ +

K∑
k=1

∂2Ωk(θk, γ)

∂γ∂γ⊤ ∈ Rp×p.

Lemma F.2 (Hessian Matrix Structure for Task-Level Inference). Let H(w,σ) be the Hessian589

matrix of task-level σ-weighted objective (D.2) with respect to w, then590

H(w,σ) =


H1,1 · · · 0 H1,K+1

...
. . .

...
...

0 · · · HK,K HK,K+1

HK+1,1 · · · HK+1,K HK+1,K+1

 ,

where591

Hkk = σk

[
nk∑
i=1

∂2ℓki(θk, γ)

∂θk∂θ⊤k
+

∂2Ωk(θk, γ)

∂θk∂θ⊤k

]
∈ Rdk×dk for 1 ≤ k ≤ K,

Hkl = 0 ∈ Rdk×dl for 1 ≤ k, l ≤ K and k ̸= l,

H⊤
K+1,k = Hk,K+1 = σk

[
nk∑
i=1

∂2ℓki(θk, γ)

∂θk∂γ⊤ +
∂2Ωk(θk, γ)

∂θk∂γ⊤

]
∈ Rdk×p for 1 ≤ k ≤ K,

HK+1,K+1 =

K∑
k=1

σk

[
nk∑
i=1

∂2ℓki(θk, γ)

∂γ∂γ⊤ +
∂2Ωk(θk, γ)

∂γ∂γ⊤

]
∈ Rp×p.

Lemma F.3 (Influence Scores for Data-Level Analysis). Assume that the objective L(w,σ) is twice592

differentiable and strictly convex in w. Then, ŵ(σ) = argminw L(w,σ) satisfies ∂L(ŵ(σ),σ)
∂w = 0.593

Moreover, we have:594

∂ŵ(σ)

∂σki
= −H(ŵ(σ),σ)−1

0, · · · , 0, ∂ℓki
∂θ⊤k

k-th block

, 0, · · · , 0, ∂ℓki
∂γ⊤

(K+1)-th block


⊤

,

where H(w,σ) ∈ R(
∑K

k=1 dk+p)×(
∑K

k=1 dk+p) is the Hessian matrix of L(w,σ) with respect to w.595

Proof. The result is obtained by applying the classical influence function framework as outlined in596

Koh & Liang (2017).597
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Lemma F.4 (Influence Scores for Task-Level Analysis). Assume that the objective L(w,σ) is twice598

differentiable and strictly convex in w. Then, the optimal solution ŵ(σ) = argminw L(w,σ)599

satisfies ∂L(ŵ(σ),σ)
∂w = 0. Furthermore, we have:600

∂ŵ(σ)

∂σk
= −H(ŵ(σ),σ)−1

0, · · · , 0,
nk∑
i=1

∂ℓki
∂θk

+
∂Ωk

∂θk
k-th block

, 0, · · · , 0,
nk∑
i=1

∂ℓki
∂γ

+
∂Ωk

∂γ

(K+1)-th block


⊤

,

where H(w,σ) ∈ R(
∑K

k=1 dk+p)×(
∑K

k=1 dk+p) is the Hessian matrix of L(w,σ) with respect to w.601

Proof. The result is obtained by applying the classical influence function framework as outlined in602

Koh & Liang (2017).603

The following two lemmas provide tools for verifying the invertibility of the Hessian matrix and604

calculating its inverse.605

Lemma F.5 (Invertibility of Hessian). If Hkk is invertible for 1 ≤ k ≤ K, define606

N := HK+1,K+1 −
K∑

k=1

HK+1,kH
−1
kk Hk,K+1 ∈ Rp×p. (F.6)

If N is also invertible, then H is invertible.607

Proof. The proof is in Section G.608

Lemma F.6 (Hessian Inverse). Let
[
H−1

]
k,l

denote the (k, l) block of the inverse Hessian609

H(w,σ)−1. Then for 1 ≤ k, l ≤ K,610 [
H−1

]
k,l

= 1(k = l) ·H−1
kk +H−1

kk Hk,K+1N
−1HK+1,lH

−1
ll , for 1 ≤ k, l ≤ K,[

H−1
]
k,K+1

= H−1
kk Hk,K+1N

−1, for 1 ≤ k ≤ K,[
H−1

]
K+1,K+1

= N−1.

Proof. The proof is in Section G.611

G Proof612

Proof of Lemma F.5 and Lemma F.6. Denote613

H =

(
A B
C D

)
,

where A =

 H11 0
. . .

0 HKK

 ∈ R(
∑K

k=1 nk)×(
∑K

k=1 nk), B = C⊤ =

 H1,K+1

...
HK,K+1

 ∈614

R(
∑K

k=1 nk)×p, and D = HK+1,K+1 ∈ Rp×p. Under the conditions, the matrices Hkk for 1 ≤ k ≤615

K are invertible. Note that A is a diagonal block matrix. It is also invertible and its inverse is given616

by617

A−1 =

 H−1
11

. . .
H−1

KK

 .

In addition, under the conditions, D − CA−1B = HK+1,K+1 −
∑K

k=1 HK+1,kH
−1
kk Hk,K+1 = N618

is invertible. Using the inverse formula for block matrix, we have619

H−1 =

( (
A−BD−1C

)−1 −A−1B
(
D − CA−1B

)−1

−D−1C
(
A−BD−1C

)−1 (
D − CA−1B

)−1

)
, (G.7)

16



where the upper left block is equivalent to620 (
A−BD−1C

)−1
= A−1 +A−1B

(
D − CA−1B

)−1
CA−1,

by using the Woodbury matrix identity. Further, by expanding the RHS of Equation (G.7) in terms621

of the blocks in H , we can get the block-wise expression of H−1. In particular, for 1 ≤ k, l ≤ K,622 [
H−1

]
k,l

≡
[(
A−BD−1C

)−1
]
k,l

= 1(k = l) ·H−1
kk +

[
A−1B

(
D − CA−1B

)−1
CA−1

]
kl

= 1(k = l) ·H−1
kk +H−1

kk Hk,K+1 ·N−1 ·HK+1,lH
−1
ll .

Further, for 1 ≤ k ≤ K,623 [
H−1

]
k,K+1

=
[
H−1

]⊤
K+1,k

= H−1
kk Hk,K+1N

−1,

and624 [
H−1

]
K+1,K+1

= N−1.

625

H Experiment Details626

H.1 Detailed Description of Datasets627

H.1.1 Synthetic Dataset628

The synthetic data for multi-task linear regression is generated with m = 10 tasks, where each629

dataset contains n = 200 samples (xji, yji) split into training set and test set. The input vectors xji630

are sampled independently from a normal distribution N (0, Id) with dimensionality d = 50. The631

response yji is generated using a linear model yji = x⊤
jiθ

⋆
j +ϵji, where ϵji ∼ N (0, 1) is independent632

noise.633

The coefficient vectors θ⋆j for task j are generated by setting a common vector β⋆ = 2e1 and634

adding random perturbations δj with norm δ sampled from a sphere. For a fraction ϵm of the635

tasks, the corresponding θ⋆j are replaced with i.i.d. random vectors. Different methods, such as636

vanilla ARMUL (Duan & Wang, 2023) and independent task learning, are compared against this637

data generation.638

Therefore, δ and ϵ are two parameters controlling the task similarity. The higher δ or ϵ is, the639

more dissimilar the tasks will be likely to be synthesized. We refer the readers for more detailed640

illustration in Duan & Wang (2023). Here, we provide several other results with different δ and ϵ.641

Leave One Task Out (LOTO) From Table 5 Table 6 Table 7 Table 8 Table 9 Table 10, it is evident642

that our attribution score continues to perform strongly across various values of δ and ϵ. Notably, as643

δ and ϵ increase, the alignment between our task influence measure and the ground truth improves.644

This corresponds to the fact that tasks become more dissimilar, leading to a greater influence of each645

task on others due to the shared parameter γ. As a result, our task influence measure is better able646

to approximate the true relationships between tasks.647
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Task 1 Task 2 Task 3 Task 4 Task 5
0.84 ± 0.05 0.72 ± 0.05 0.74 ± 0.11 0.81 ± 0.05 0.71 ± 0.09

Task 6 Task 7 Task 8 Task 9 Task 10
0.74 ± 0.04 0.74 ± 0.07 0.84 ± 0.03 0.74 ± 0.03 0.65 ± 0.07

Table 5: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
δ = 1.0 and ϵ = 0.2

Task 1 Task 2 Task 3 Task 4 Task 5
0.75 ± 0.07 0.67 ± 0.06 0.81 ± 0.03 0.70 ± 0.05 0.60 ± 0.10

Task 6 Task 7 Task 8 Task 9 Task 10
0.39 ± 0.13 0.66 ± 0.06 0.75 ± 0.03 0.71 ± 0.05 0.61 ± 0.03

Table 6: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
δ = 1.0 and ϵ = 0.

Task 1 Task 2 Task 3 Task 4 Task 5
0.84 ± 0.04 0.67 ± 0.07 0.69 ± 0.12 0.77 ± 0.05 0.71 ± 0.05

Task 6 Task 7 Task 8 Task 9 Task 10
0.73 ± 0.07 0.65 ± 0.06 0.77 ± 0.05 0.69 ± 0.05 0.56 ± 0.11

Table 7: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
δ = 0.6 and ϵ = 0.2.

Task 1 Task 2 Task 3 Task 4 Task 5
0.77 ± 0.05 0.56 ± 0.09 0.69 ± 0.07 0.63 ± 0.06 0.57 ± 0.13

Task 6 Task 7 Task 8 Task 9 Task 10
0.38 ± 0.16 0.62 ± 0.04 0.72 ± 0.03 0.65 ± 0.04 0.46 ± 0.09

Table 8: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
δ = 0.6 and ϵ = 0.

Task 1 Task 2 Task 3 Task 4 Task 5
0.79 ± 0.05 0.62 ± 0.06 0.56 ± 0.13 0.73 ± 0.05 0.64 ± 0.07

Task 6 Task 7 Task 8 Task 9 Task 10
0.67 ± 0.08 0.52 ± 0.05 0.70 ± 0.04 0.65 ± 0.04 0.56 ± 0.09

Table 9: The average Spearman correlation coefficients over 5 random seeds on the synthetic dataset.
δ = 0.4 and ϵ = 0.2.

Task 1 Task 2 Task 3 Task 4 Task 5
0.67 ± 0.08 0.52 ± 0.10 0.56 ± 0.09 0.64 ± 0.06 0.54 ± 0.15

Task 6 Task 7 Task 8 Task 9 Task 10
0.42 ± 0.16 0.52 ± 0.08 0.65 ± 0.05 0.56 ± 0.04 0.38 ± 0.12

Table 10: The average Spearman correlation coefficients over 5 random seeds on the synthetic
dataset. δ = 0.4 and ϵ = 0.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
0.57 ± 0.10 0.59 ± 0.08 0.73 ± 0.05 0.76 ± 0.05 0.60 ± 0.03 0.75 ± 0.03

Task 7 Task 8 Task 9 Task 10 Task 11 Task 12
0.85 ± 0.02 0.72 ± 0.04 0.67 ± 0.06 0.50 ± 0.07 0.74 ± 0.02 0.70 ± 0.06

Task 13 Task 14 Task 15 Task 16 Task 17 Task 18
0.58 ± 0.05 0.81 ± 0.00 0.74 ± 0.03 0.69 ± 0.02 0.82 ± 0.05 0.63 ± 0.03

Task 19 Task 20 Task 21 Task 22 Task 23 Task 24
0.74 ± 0.02 0.75 ± 0.04 0.67 ± 0.04 0.63 ± 0.04 0.58 ± 0.05 0.69 ± 0.05

Task 25 Task 26 Task 27 Task 28 Task 29 Task 30
0.66 ± 0.12 0.77 ± 0.02 0.72 ± 0.06 0.60 ± 0.09 0.84 ± 0.02 0.80 ± 0.04

Table 11: The average Spearman correlation coefficients over 5 random seeds on the HAR dataset.

Leave One Out Figure 3 and Figure 4, show the results on the synthetic dataset for each task648

selected as the target task with different δ and ϵ. Figure 5 and Figure 6 show results when the data649

to be deleted are from different tasks than the tasks in the main text. The linearity relation in both650

cases is still preserved, meaning our MTIF align well with LOO scores.651
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H.1.2 The Human Activity Recognition (HAR)652

The Human Activity Recognition (HAR) dataset (Anguita et al., 2013) was constructed from record-653

ings of 30 volunteers performing various daily activities while carrying a smartphone equipped with654

inertial sensors on their waist. On average, each participant contributed 343.3 samples (ranging from655

281 to 409). Each sample corresponds to one of six activities: walking, walking upstairs, walking656

downstairs, sitting, standing, or lying. The feature vectors for each sample are 561-dimensional,657

capturing both time and frequency domain information. We randomly select 10% of the data from658

each task for testing and another 10% for validation, using the remaining data to train linear models.659

Leave One Task Out Table 11 shows the results on the synthetic dataset for each task selected as660

the target task. The correlations scores are also all very high, meaning our MTIF align well with661

LOTO scores in real-life datasets662

H.2 Experimental Setting for Neural Networks663

We train our model for 200 epochs using a StepLR learning rate scheduler with a step size of 100664

and γ = 0.5. The model is optimized using cross-entropy loss and the Adam (Kingma & Ba, 2017)665

optimizer without weight decay, ensuring that the regularization term is zero.666
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Figure 3: LOO experiments on linear regression. The x-axis is the actual loss difference obtained
by LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first
two figures from the left show within-task and between-task LOO (in order) results with δ = 0.4
and ϵ = 0, while the other two figures present within-task and between-task results (in order) with
δ = 0.4 and ϵ = 0.2.

Figure 4: LOO experiments on linear regression. The x-axis is the actual loss difference obtained
by LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first
two figures from the left show within-task and between-task LOO (in order) results with δ = 0.8
and ϵ = 0, while the other two figures present within-task and between-task results (in order) with
δ = 0.8 and ϵ = 0.2.

Figure 5: LOO experiments on linear regression. The x-axis is the actual loss difference obtained
by LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two
figures from the left show within-task and between-task LOO (in order) results with deleted data
from task 1, while the other two figures present within-task and between-task results (in order) with
deleted data from task 2.

Figure 6: LOO experiments on linear regression. The x-axis is the actual loss difference obtained
by LOO retraining, and the y-axis is the predicted loss difference calculated by MTIF. The first two
figures from the left show within-task and between-task LOO (in order) results with deleted data
from task 3, while the other two figures present within-task and between-task results (in order) with
deleted data from task 5.
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