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Abstract
Understanding the biological mechanisms of dis-
ease is crucial for medicine, and in particular, for
drug discovery. AI-powered analysis of genome-
scale biological data holds great potential in this
regard. The increasing availability of single-cell
RNA sequencing data has enabled the develop-
ment of large foundation models for disease biol-
ogy. However, existing foundation models only
modestly improve over task-specific models in
downstream applications. Here, we explored
two avenues for improving single-cell foundation
models. First, we scaled the pre-training data to a
diverse collection of 116 million cells, which is
larger than those used by previous models. Sec-
ond, we leveraged the availability of large-scale
biological annotations as a form of supervision
during pre-training. We trained the TEDDY fam-
ily of models comprising six transformer-based
state-of-the-art single-cell foundation models with
70 million, 160 million, and 400 million param-
eters. We vetted our models on several down-
stream evaluation tasks, including identifying the
underlying disease state of held-out donors not
seen during training, distinguishing between dis-
eased and healthy cells for disease conditions and
donors not seen during training, and probing the
learned representations for known biology. Our
models showed substantial improvement over ex-
isting works, and scaling experiments showed that
performance improved predictably with both data
volume and parameter count.
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1. Introduction
The complexity of cell biology and the mechanisms of dis-
ease pathogenesis are driven by an intricate regulatory net-
work of genes (Chatterjee and Ahituv, 2017; Theodoris et al.,
2015; 2021). A better resolution of this complex interac-
tome network would enhance our ability to design drugs that
target the causal mechanism of the disease rather than inter-
ventions that aim to modulate the downstream effects (Ding
et al., 2022). However, accurate inference of gene regula-
tory networks is challenging. The possible space for genetic
interactions is vast (Bunne et al., 2024), the networks to be
inferred are highly context-dependent, different cell types
and tissue types exhibit different regulatory networks and
exhibit significant variations across donors (Chen and Dahl,
2024). Moreover, the data required to study gene regulatory
networks for a specific disease is usually limited and highly
specialized, often plagued by experimental artifacts (Hicks
et al., 2018).

However, a confluence of recent technological progress
promises to make this challenging problem more tractable.
The advent of accurate single-cell sequencing technologies
that remove the artifacts of bulk cell data, better reflect nat-
ural variability, and provide signals at higher resolutions.
This, along with the increasing availability of atlas-scale
scRNA-seq datasets that span an extensive range of dis-
eases, cell types, tissue types, and donors provide an un-
precedented opportunity for studying disease mechanisms
at scale. Parallel and complementary progress (Vaswani
et al., 2017) in artificial intelligence has produced tools,
so-called foundation models, capable of absorbing and ef-
fectively learning from massive amounts of data (Devlin,
2018; Radford et al., 2019; Brown et al., 2020; Meta, 2024;
Achiam et al., 2023). These approaches use self-supervised
learning to learn from large volumes of unlabeled data, for
instance, data scraped from all of the internet, and then adapt
to specific tasks from modest amounts of task-specific, typi-
cally labeled, data (Devlin, 2018; Brown et al., 2020) and
have revolutionized the ability of algorithms to understand
natural language and images. Whether the same learning
paradigm can be used to enhance our understanding of the

1



TEDDY: A FAMILY OF FOUNDATION MODELS FOR UNDERSTANDING SINGLE CELL BIOLOGY

language of genes, specifically disease biology, has been a
subject of recent research (Theodoris et al., 2023; Cui et al.,
2024; Schaar et al., 2024; Chen et al., 2024). This interest
is fueled by the fact that seemingly many of the basic prin-
ciples that drive success in natural language carry over to
the gene space: gene embeddings, i.e., gene representations
in the vector space, can capture rich context-dependent rela-
tions (Wagner et al., 2016) that can be learned at scale from
single-cell measurements in an unsupervised fashion.

Despite recent progress, open questions remain about the
usefulness and the potential of foundation models for
scRNA-seq. Theodoris et al. showed that downstream
performance correlates with pre-training dataset size, but
others (Liu et al., 2023; Boiarsky et al., 2023) found that
untrained transformer models and traditional machine learn-
ing methods are competitive and can sometimes surpass
foundation models pre-trained on large single cell corpora.
Yet others (Kedzierska et al., 2023) found the zero-shot
embeddings extracted from various foundation models to
not substantially improve over less resource-intensive ap-
proaches. Moreover, methods for extracting gene regulatory
information from foundation models remain under explored,
with existing attempts (Cui et al., 2024) relying on simple
clustering methods over gene embedding tables.

In this work, we took a systematic approach to the develop-
ment of single-cell foundation models, seeking to advance
the state-of-the-art in understanding disease biology. We
trained a new family of foundation models adapted to dis-
ease biology, the TEDDY family of models1. These models
incorporate architectural choices inspired by existing works
SCGPT (Cui et al., 2024), GENEFORMER (Theodoris et al.,
2023), and NICHEFORMER (Schaar et al., 2024), train on to-
date the largest corpus of single-cell data, and use biological
ontologies to supervise gene and cell representation learn-
ing. TEDDY is trained on data sourced from CELLXGENE
(CZI Single-Cell Biology Program et al., 2023). The pre-
training dataset contains 116 million (116M) cells from
mouse, human, spatial, and dissociated scRNA-seq data.
The TEDDY family ranges from 10M to 400M parameters,
allowing us to examine the scaling behavior with respect to
the number of parameters and the amount of pre-training
data. To evaluate performance on the downstream task of
disease understanding, we benchmark TEDDY against ex-
isting models on two disease classification tasks. We find
that the larger TEDDY models improve on existing mod-
els on one task substantially and are within noise of the
best-performing competitor in the other.

We believe TEDDY is an important step towards design-
ing foundation models that understand disease biology.
Nonetheless, significant innovations such as principled ap-
proaches for incorporating existing biological knowledge,

1TEDDY: Transformer for Enabling Drug DiscoverY

continuing to scale the amount of pre-training data, and
incorporating other complementary modalities will all likely
be required to design foundation models that fully represent
the complexity of single-cell biology.

2. Related work
The success of transformer-based foundation models in mod-
eling natural language (Devlin, 2018; Achiam et al., 2023)
and vision (Radford et al., 2021) has inspired a growing
body of research in modeling single-cell transcriptomic data
similarly. These models, analogously to natural language,
treat cells as sentences and genes expressed in cells as words.
They primarily differ in how they represent gene expression
data, the training data quality and volume, and the self-
supervised objectives they use for learning. We highlight
these design choices below.

Owing to the lack of natural ordering among genes ex-
pressed in a cell, BERT (Devlin, 2018) style models that em-
ploy bi-directional self-attention and are trained via masked
language modeling (MLM) are popular in the literature.
scBERT (Yang et al., 2022), an early example of this cat-
egory, was trained on a corpus of one million (1M) cells
from PanglaoDB (Franzén et al., 2019) and primarily eval-
uated on the downstream tasks of cell-type annotation and
discovery.

Subsequent models, including the GENE-
FORMERv1 (Theodoris et al., 2023) and v2 (Chen
et al., 2024), were trained on larger corpora of 30M and
95M cells. These works represent a cell as a ranked list
of genes it expresses. This rank-value encoding scheme
ranks genes expressed in a cell based on their (normalized)
expression values from most to least expressed. The pre-
training task then involves predicting the gene expressed
at a particular position in the ranked list, having observed
the other genes in the ranked list. The authors demonstrate
that pre-training in this fashion endows the models with
diverse downstream capabilities, including network and
chromatin dynamic predictions, in-silico gene-network
analysis, and batch integration. Another recent model,
NICHEFORMER (Schaar et al., 2024), also makes use of
rank-value encoding but trains on a corpus of 110M cells
containing both dissociated (53M) and spatially resolved
(57M) cells drawn from both humans and mice to decode
spatially resolved cellular information.

Others, for instance, SCGPT(Cui et al., 2024), a 53M2 pa-
rameter model trained on 33M cells, bin gene expression
counts independently for each cell and train the model to
predict the bin a gene’s expression in a cell discretizes to
given the other binned gene expressions and optional meta-
data about the cell. Yet others, scFoundation (Hao et al.,
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2024), AIDO.Cell (Ho et al., 2024) represent gene expres-
sions as weighted combinations of embeddings, where the
mapping from the expression level of a gene to weights in
the weighted combination are learned along with the em-
beddings during pre-training. They are trained on a corpus
of 50M cells on a pre-training task of predicting observed
gene expression levels from corrupted versions. Decoder-
only architectures (Bian et al., 2024) and approaches (Rosen
et al., 2023) combining transcriptomic foundation models
with foundation models for other modalities are also starting
to emerge.

Beyond model development, there is also fledgling literature
focused on evaluating the effectiveness of foundation mod-
els (Liu et al., 2023; Kedzierska et al., 2023; Boiarsky et al.,
2023) on various downstream tasks and reporting mixed
results with foundation models showing promise but not
consistently outperforming task-specific traditional methods
that do not leverage large cell atlases.

Motivated by the shortcomings of current approaches, we
explore two avenues for improving over the state-of-the-art.
First, we scale the pre-training dataset to 116M cells which
is an order of magnitude larger than data scBert, scMulan,
and scGPT (Yang et al., 2022; Bian et al., 2024) were pre-
trained on and a few million cells larger than those used by
Nicheformer (Schaar et al., 2024) and Geneformerv2 (Chen
et al., 2024). Second, we note that in contrast with do-
mains like text and natural images, where training datasets
are largely scraped from the internet, experimental data
in scRNA-seq atlases such as CELLXGENE come with
rich meta-data annotations that can aid in learning better
representations. We explicitly leverage these annotations
while training our TEDDY family of models by augmenting
the self-supervised pre-training task of masked language
modeling with an additional supervised task of predicting
available meta-data annotations from gene expressions.

3. The TEDDY family of foundation models
The TEDDY family of models contains two variants
that differ in how they represent gene expressions and
what pre-training tasks they use. TEDDY-G follows the
GENEFORMER recipe. It uses rank-value encoding and
trains on the self-supervised task of predicting the gene
expressed at a particular position in the ranked list repre-
senting a cell. TEDDY-X follows the SCGPT approach of
binning gene expressions and training the model to predict
the binned expression level of a gene. Both TEDDY-G and
TEDDY-X additionally use the supervised annotation loss de-
tailed in Section 3.2. We train a series of performant models
for both variants containing approximately 70M, 160M, and
400M parameters. We also train smaller, less effective 10M
and 30M parameter models to carefully probe the scaling
behavior of these models and find that the two approaches

present different challenges for downstream applications.

3.1. Pre-training dataset

We derive our training corpus from CELLXGENE (CZI
Single-Cell Biology Program et al., 2023), a collection
of 1,399 single-cell RNA-seq datasets from open-source
publications. At the time of download3, CELLXGENE
contained 160M cells, of which 70M were from primary
datasets, from 24,000 donors, 122 different diseases, 413
tissue types, 860 cell types, and 23M diseased cells.

We filtered low quality cells containing fewer than 225 gene
counts and more than 10% mitochondrial transcript abun-
dance. Dying or highly stressed cells often exhibit high
levels of mitochondrial gene expression and were removed
following recommendations from previous work (Satija
et al., 2023). We also excluded studies using 10x Genomics
Chromium v1 chemistry in favor of newer datasets captured
with v2 and v3 chemistry. After quality control, our corpus
contained 116M cells. We held out a subset of the data for
validation and removed all data sets used for downstream
testing in Section 4 to avoid data contamination.

3.2. Supervision via biological annotations

Table 1. Biological annotations. Each ontology term in CELLX-
GENE is mapped to one of the forty-three categories below, and
the corresponding special token is added to the vocabulary.

Special tokens Annotation labels

<disease> brain, cancer, cardiovascular, genetic, immune, infectious, kidney, respiratory,
other, healthy

<tissue_type> adipose, cardiovascular, central nervous, digestive, embryonic, endocrine, ex-
ocrine, eye, hematopoietic, hepatic, integumentary, musculature, renal, repro-
ductive, respiratory, sensory, unknown

<cell_type> ciliated, connective, contractile, embryonic, epithelial, hematopoietic, immune,
neural, perivascular, precursor, secretory, skeletal, unknown

<sex> male, female, unknown

Annotations such as disease, cell type, tissue type, sex, and
other labels capturing cell-specific metadata are available
in CELLXGENE data. Existing foundation models either
do not use these annotations during pre-training or only use
these labels as metadata tokens to provide additional context
for gene modeling, i.e., predicting gene expression levels
in a cell. In early experiments, we found that adding meta-
data as context for gene modeling brought no measurable
improvements in gene modeling abilities (data not shown).
Instead, we leverage the available annotations as supervisory
signals during pre-training. Our pre-training task involves
biological annotation modeling, i.e., predicting biological
annotations associated with a cell, in addition to gene mod-
eling. This encourages models to learn embeddings that,
in addition to being predictive of gene expression levels,
align with high-level biological properties encoded in the
annotations.

3June 11, 2024.
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Figure 1. An illustration of differences between TEDDY vari-
ants. On the left we illustrate a cell with five non-zero ex-
pressed genes with non-zero median normalized expression values.
TEDDY-G represents a cell as a list of genes ordered by their ex-
pression levels and the pre-training task involves predicting the
index of masked out genes. TEDDY-X ranks expression values,
scales them to the interval [−1,+1], and then learns to predict a
masked rank scaled to the interval [−1,+1].

Focusing on disease, cell type, tissue type, and sex annota-
tions, we use the CELLXGENE ontology tree to organize
the 1399 labels that occur in these four categories into forty-
three broad labels, which correspond to metadata labels
for the data sets in the CELLXGENE corpus, shown in
Table 1. We emphasize that the ontology terms we train
with are coarse-grained annotations. They do not include
fine-grained disease labels used in downstream model eval-
uation.

To incorporate the biological annotations, we add
four special tokens <disease>, <tissue_type>,
<cell_type>, <sex> to the model’s vocabulary, one
for each annotation category of interest. We prepend these
special tokens to the sequence of genes expressed by a cell
and train the model to predict the annotation labels from
gene expression data.

3.3. Pre-training objective

We introduce notation to state the pre-training objective used
by TEDDY variants formally. Let V denote the vocabulary
size of the model, xv ∈ Rd denote a d-dimensional em-
bedding, and v ∈ [1, . . . , V ] denote the index of gene v in
the vocabulary. Denote by x<disease>, x<tissue>, x<cell>,
x<sex> the embeddings associated with the special tokens.
Let tn = {tnj}Jn

j=1 with tnj ∈ [1, . . . , V ] and Jn < V ,
represent the indices of the genes expressed by the cell cn,
the self supervised objective employed by TEDDY-G is,

ℓMLM−G(θ) = Ecn∼D
[
Em∼M[− logCat(tnm|gθ(cn\m))]

]
,

where D = {cn}Nn=1 is a dataset containing N cells, θ are
TEDDY-G parameters, Cat represents a V -way categorical
distribution, M is the set of masked genes, and cn\m =
{xnj}j ̸=m

⋃
{x<disease>,x<tissue>,x<cell>,x<sex>}

represents the unmasked portion of the cell and gθ(cn\m)
is the softmax-transformed mean of the categorical
distribution predicted by TEDDY-G. Throughout this
work, we create M by masking out 15% of the genes
uniformly at random. Let rnj represent the rank of gene j
in cell cn scaled to the interval [−1, 1]. That is, the most
expressed gene in cell cn is mapped to 1 and the gene with
the smallest non-zero expression is mapped to −1. The
self-supervised objective employed by TEDDY-X is,

ℓMLM−X(θ) = Ecn∼D
[
Em∼M[− logN (rnm|fθ(cn), 1)]

]
,

where fθ(cn) is predicted by TEDDY-X and
cn = cn\m

⋃
{xnm}.

Let y<disease>n ,y<cell>n ,y<tissue>n ,y<sex>n denote one-hot
vectors representing the disease, cell-type, tissue-type, and
sex annotations associated with cell cn. The supervised
component of the pre-trained objective is,

ℓCLS−G(θ)

= Ecn∼D
[
Em∼M[− logCat(y<disease>n |gdcls

θ (cn\m))

− logCat(y<cell>n |gccls
θ (cn\m))

− logCat(y<tissue>n |gtcls
θ cn\m))

− logCat(y<sex>n |gscls
θ (cn\m))]

]
,

where gdcls
θ (cn\m)), gccls

θ (cn\m)), gtcls
θ (cn\m)), gscls

θ (cn\m))
represent TEDDY-G’s softmax-transformed predictions.
ℓCLS−X is analogously defined. Finally, the overall
pre-training objective for TEDDY-G is,

ℓpre−G(θ) = ℓMLM−G(θ) + ℓCLS−G(θ). (1)

The pre-training objective for TEDDY-X involves replacing
ℓMLM−G with ℓMLM−X and ℓCLS−G with ℓCLS−X in Equa-
tion (1). In preliminary experiments, we found weighting
the two components of the pre-training objective differently
did not substantially affect pre-training or downstream per-
formance. A more careful exploration is part of planned
future work. Other recent work (Wang et al., 2025) cau-
tions against using granular cell-type labels for supervision,
demonstrating that models trained with such supervision dis-
tort underlying biological relationships among cells. They
instead advocate for weaker supervision. The coarse cell-
type labels we employ, along with the additional regular-
ization provided by the masked language modeling loss,
provide precisely such weak supervision.

3.4. Training details and scaling laws

We used a context length of 2048 genes for TEDDY models.
We based this choice on results from pilot experiments on
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a small subset of the data (see Appendix B.3. We trained
all model variants for a single epoch, on 116M cells. We
performed non-zero median normalization (Theodoris et al.,
2021) of the expression data and use a vocabulary of 48, 308,
which includes human and mouse protein-coding and micro-
RNA genes as well as special tokens and tokens correspond-
ing to biological annotation labels. We included micro-RNA
genes (Theodoris et al., 2023) and mouse data (Schaar et al.,
2024) based on similar choices made in previous work. We
used a batch size of 256, a linear warmup with a linear de-
cay learning rate scheduler with a warmup of 10000 steps,
a maximum learning rate of 1e-4 decayed to zero at the end
of training, and the AdamW optimizer. We also found that a
relatively large weight decay of 0.1 was necessary to avoid
loss spikes and divergences during training. See Appendix B
for additional details and Figure 1 for a summary.

Figure 2 illustrates performance on held-out data for TEDDY-
G models as a function of model size and training data
volume. We observe that performance improves with both
increasing model size and data volume but improves only
modestly between the 160M and 400M parameter models
and not in the straight power law regime.

4. A disease benchmark for transcriptomic
foundation models

To assess the performance of the TEDDY foundation mod-
els, we carried out a benchmarking exercise. The extensive
pre-training datasets used to train these models increase
the risk of unintentionally contaminating the benchmark
evaluation data with information that the model may have
encountered during pre-training. Cognizant of these issues,
we designed two downstream tasks that hold out data at
different levels of granularity to assess the disease modeling
capabilities of transcriptomic foundation models.

4.1. Held-out diseases task

In the first task, we evaluate the models’ ability to generalize
to unseen disease conditions. This involves assessing the
models using data from donors with diseases that were not
included in the pre-training phase.

We sourced five datasets from the CELLXGENE
database, each containing cells from healthy donors
and donors with a single disease condition. We
sub-sampled these datasets to ensure that the pro-
portion of diseased and healthy cells is equal. The
disease conditions included are Chronic Kidney
Disease (CKD), Alzheimer’s Disease,
Gastric Cancer, Rheumatoid Arthritis, and
Pediatric Crohn’s Disease. To prevent data
contamination, we excluded these five datasets, as well as
any other datasets from CELLXGENE that contained these

disease labels, from our pre-training corpus. Additional
details about the data can be found in Appendix C.

The benchmark task involves solving five binary classifica-
tion problems–one for each disease condition–to identify
whether a cell is healthy or diseased. We performed three-
fold cross validation for these tasks and ensure that there is
no donor overlap across folds. The final reported accuracy
is averaged over the each of the three held-out test sets in
the folds.

4.2. Held-out donors task

We designed the second task to investigate whether founda-
tion models generalize across the biological variability ex-
hibited by different cell donors. To this end, we held out data
from 82 donors, with thirteen different disease (or Normal)
conditions — COVID-19, Alzheimer’s Disease,
Acute Myeloid Leukemia, Blastoma,
Luminal A Breast Carcinoma, Gingivitis,
Luminal B Breast Carcinoma, Multiple
Sclerosis, Myocardial Infarction,
Normal, Periodontitis, Pilocytic
Astrocytoma, Premalignant Hematological
System Disease, and type-2 Diabetes
Mellitus from the pre-training corpus. We then
evaluated the effectiveness of different methods at labeling
whether a cell comes from a donor with one of these thirteen
disease conditions or a healthy donor given the genes
expressed by the cell. Unlike the coarse-grained disease
annotations during pre-training (Table 1), these disease
annotations are finer-grained, making this a non-trivial
classification problem. We additionally collected 511
donors from the pre-training corpus and thirteen donors
with Alzhiemer’s disease which had been left out of the
pre-training dataset for a total of 524 donors for training
and validation. We finetuned on 70% of the 524 donors
and held-out out 30% of the donors for validation. Finally,
we tested on the 82 donors that were held out from the
pretraining corpus. By construction our train, validation,
and test splits had no overlapping donors. See Appendix C
for additional details about the dataset.

5. Vetting the TEDDY family of foundation
models

With the benchmark in hand, we performed careful ex-
periments to vet the various modeling choices made
by TEDDY models. We then proceed to compare
TEDDY against existing state-of-the-art foundation mod-
els – NICHEFORMER (Schaar et al., 2024), SCGPT (Cui
et al., 2024), six-layer GENEFORMER, and twelve-layer
GENEFORMER 12L variants (Theodoris et al., 2023), and
task-specific machine learning approaches.
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Figure 2. Scaling behavior. Left: Pre-training loss on held-out data for TEDDY-G as a function of pre-training data and model size. Right:
Validation loss at the end of one epoch of training against the number of parameters in the model. The dashed line in black is the linear
best-fit: 14.95× (# parameters)−0.10.

Figure 3. Performance on held-out donors as a function of
model size and biological annotaions Left:F1 scores improve
for both TEDDY-G and TEDDY-X with increasing size. TEDDY-G
outperforms TEDDY-X across model scale and improves on XG-
Boost trained exclusively for this task. Right: The x-axis plots the
F1 scores achieved by TEDDY-G 70M and TEDDY-X 70M when
pre-trained with supervision from biological ontologies. The y-axis
plots F1 scores achieved by the same models without ontologies.

The held-out donors task exhibits class imbalance; we thus
report both accuracy and weighted F1 metrics. The results
are aggregated over three random initializations of the foun-
dation models. In the held-out diseases tasks, we evaluate
on class-balanced datasets and hence only report accuracies.
The results for this task are aggregated over the three cross-
validation folds, each using a different random initialization.

5.1. Downstream performance improves with model
scale and biological annotations

We begin with experiments comparing the impact of model
size on our evaluations benchmark. Figure 3 plots fine-
tuning performance of TEDDY-G and TEDDY-X across dif-
ferent model sizes on the held-out donors task. We observe
that both model variants improve in performance with the
number of parameters, but TEDDY-G performs substantially
better across all parameter sizes. Moreover, while TEDDY-G
160M and 400M outperform a task-specific XGBoost clas-

sifier trained on log- transformed, filtered gene expression
count data TEDDY-X does not.

We also evaluated the impact of adding supervision through
biological ontologies as described in Section 3.2. To this
end, we compared the performance of TEDDY-G 70M and
TEDDY-X 70M pre-trained with and without explicit super-
vision. On the downstream held-out donors task, Figure 3
summarizes our results. We find that both TEDDY variants
benefit from supervision; models pre-trained with biolog-
ical ontologies result in better downstream performance.
Moreover, we found that adding supervision led to more
stable pre-training with fewer loss divergences and had no
adverse impact on gene-modeling abilities of the model, as
illustrated in A4.

Having observed TEDDY-G to generally outperform TEDDY-
X on the held-out donors task, we only experimented with
TEDDY-G on the remaining tasks.

5.2. TEDDY models outperform existing foundation
models on held-out donors task

Table 2 summarizes the performance of different models
on the held-out donors task. We observe that in compar-
ison to competing foundation models, TEDDY-G gener-
alizes better across donor variability. Upon finetuning,
TEDDY-G 400M achieved an accuracy of 0.72, outper-
forming NICHEFORMER, the best-performing non-TEDDY
model, by 8.0% (0.72 vs. 0.64) and GENEFORMER, the
worst-performing model, by 45.8% (0.73 vs. 0.39). Simi-
larly, TEDDY-G improves the F1 score over NICHEFORMER
by 17.6% (0.68 vs. 0.56) and a 67.6% improvement over
GENEFORMER (0.68 vs. 0.22). These results highlight that
TEDDY-G effectively generalizes across donors, an impor-
tant use-case in practice.
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Table 2. Performance of different foundation models on held-out donors task
TEDDY-G 400M NICHEFORMER SCGPT GENEFORMER GENEFORMER12L

Held-out donors - Fine-tuning

Accuracy 0.72±0.04 0.64±0.01 0.64±0.01 0.39±0.00 0.55±0.002
Weighted F1 0.68±0.06 0.56±0.01 0.54±0.01 0.22±0.02 0.45±0.02

Table 3. Logistic regression and TEDDY-G 400M on held-out dis-
eases task.

Logistic Regression Linear probed TEDDY-G 400M Finetuned TEDDY-G 400M

Chronic Kidney Disease 0.90±0.03 0.95±0.02 0.94±0.03
Alzheimer’s Disease 0.64±0.08 0.86±0.07 0.75±0.18
Gastric Cancer 0.49±0.04 0.70±0.09 0.56±0.09
Rheumatoid Arthritis 0.47±0.03 0.93±0.10 0.56±0.06
Pediatric Crohn’s Disease 0.63±0.20 0.72±0.16 0.74±0.18

5.3. TEDDY offers modest improvements over existing
foundation models on held-out diseases task

The performance of TEDDY-G 400M and other foundational
models on the held-out diseases dataset is summarized in
Table A3 and Figure 4. We found that across the five binary
classification sub-tasks TEDDY-G improves on all five when
compared to GENEFORMER12L, on all but one task com-
pared to the six layered GENEFORMERand SCGPT. TEDDY-
G’s performance was within noise of NICHEFORMER, a
model trained on similar volume of data as TEDDY and an
order of magnitude larger than SCGPTand GENEFORMER.
This suggests that data volume is important for performing
well on diseases not encountered during training. Scaling to
larger volumes of data may lead to improved performance.

5.4. TEDDY improves over task-specific machine
learning approaches

We also benchmarked TEDDY against a diverse set of
task-specific machine learning methods—logistic regres-
sion, linear SVM, XGBoost, and lightGBM. We trained
each of these methods to predict disease labels given log-
transformed, filtered count data. We performed feature se-
lection using the highly_variable_genes function
from the SCANPY V1.10.1 library with default parame-
ters. This method identifies genes exhibiting high variability
across cells by calculating the normalized dispersion and
selecting the top genes based on a predefined threshold. We
performed the highly_variable_genes analysis for
each cross-validation training fold and filtered the training
and testing folds to only retain the identified genes.

In Table 3 we highlight comparisons of fine-tuned TEDDY-G
400M and linearly (with logistic regression) probed TEDDY-
G 400M against logistic regression. We note that the TEDDY
variants typically outperform logistic regression with linear-
probing performing the best and often by a substantial mar-
gin. Additional results are detailed in Table A2. Comparing
these with Figure 4 and Table A3 we found that TEDDY-

G 400M and NICHEFORMER consistently improve over
task-specific approaches.

We conducted an additional experiment to evaluate whether
the representations learned by TEDDY-G are useful for
disease classification. To do this, we replaced the hand-
engineered features used by the task-specific methods with
pre-trained embeddings from TEDDY-G 400M. We con-
structed cell-level embeddings by averaging over output
gene embeddings produced by TEDDY-G 400M. We note
that these embeddings are zero-shot, they were not fine-
tuned on the held-out disease datasets. We then trained the
task specific methods as before. The results are summa-
rized in Figure A2, with numbers available in Table A2.
Observe that across all methods and all diseases replacing
hand-engineered features with zero-shot embeddings leads
to substantially better performance. These results suggest
that embeddings better capture disease-relevant information
than hand-engineered features based on log-transformed
transcript counts.

5.5. Zero-shot TEDDY embeddings produce coherent
clusters

Next, to probe the zero-shot embeddings produced by
TEDDY-G we looked at the embeddings produced by
TEDDY-G 400M on data from (Thomas et al., 2024) that
contains human gut single cell transcriptomes from donors
with Ulcerative Colitis (UC), Crohn’s Disease (CD), and
those not afflicted by either disease. Importantly for our
purposes, (Thomas et al., 2024) provided detailed cell-type
annotations at varying levels of granularity, allowing us to
benchmark our embeddings quantitatively. We used a ver-
sion of the data reprocessed using Cell-Ranger v7.1.0. After
filtering out cells with greater than 10% mitochondrial pro-
portion and those with no author-provided labels, we ended
up with 536,207 cells with cell-type annotations. We bench-
marked TEDDY-G 400M against a recently proposed single-
cell foundation model – Cell2Sentence (Rizvi et al., 2025).
For this comparison, we selected the Cell2Sentence-410M
model, which is of similar scale (410 million parameters)
and fine-tuned for cell type prediction tasks.

In Figure A3, we plot two-dimensional embeddings from
both models and present quantitative clustering metrics com-
puted using the scib (Luecken et al., 2022) package in Ta-
ble A6. We found TEDDY-G 400M to produce largely
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Figure 4. Performance of existing foundation models compared with TEDDY-G TEDDY-G consistently outperforms other foundation
models. The x-axis plots fine-tuning accuracy achieved TEDDY-G 400M. The y-axis is the accuracy achieved by other foundation models.
Points below the diagonal indicate TEDDY-G 400M achieves higher accuracy.

coherent clusters and outperform Cell2Sentence 410M at
both the coarse (low) and intermediate cell-type annota-
tion resolutions. In particular, we found TEDDY-G 400M
embeddings capable of distinguishing subtle cell-state dif-
ferences, for instance, between CD_4 and CD_8 cell-states
that Cell2Sentence fails to separate. Additional details about
this experiment are in Appendix D.1.

5.6. In-silico single-gene perturbations with TEDDY
align with experimental evidence

To probe whether TEDDY-G encodes causal gene–network
structure, beyond merely capturing co-expression statistics,
we used the single-gene knockout benchmark introduced as
an evaluation for GENEFORMER (Theodoris et al., 2023).
We evaluated the models with an in silico single-gene per-
turbation that mimics a loss-of-function experiment for the
cardiac transcription factor GATA4. Crucially, we did not
update any model parameters for this experiment, so these
results reflect zero-shot mechanistic knowledge acquired by
the model during pre-training and underscores the potential
of large pretrained models for in-silico target discovery.

First, we isolated two-hundred-thirty-six fetal-
cardiomyocyte transcriptomes from the heart cell
atlas (Knight-Schrijver et al., 2022) in which GATA4 is
expressed, so that the knockout is biologically relevant. We
then created a perturbed representation of these cells by
setting the GATA4 expression to zero. We then embedded
the before and after perturbation cells using TEDDY-G (and
other competing models). For every gene g expressed in
these cells we extracted its token-level representation before
(vbefore

g ) and after (vafter
g ) the perturbation and measured,

sg = cos
(
vbefore
g , vafter

g

)
, the cosine similarity between the

two embeddings. This yielded one similarity score per gene
per cell. We further partitioned genes into biologically anno-
tated groups: direct targets of GATA4, indirect targets, and

housekeeping genes, using labels provided in (Theodoris
et al., 2023). For each cell, we averaged the similarity scores
of the genes within each group to obtain average per-cell
effects, s̄

(i)
direct, s̄

(i)
indirect, s̄

(i)
direct+indirect and s̄

(i)
housekeeping, with

i indexing the cell. We then subjected the sets of similarities,
{s̄(i)direct}236i=1, {s̄

(i)
indirect}236i=1, {s̄

(i)
direct+indirect}236i=1, {s̄

(i)
housekeeping}236i=1

to paired one-sided Wilcoxon signed-rank tests whose
alternative hypothesis matched the biological expectation
(e.g. s̄housekeeping > s̄direct for the HK-vs-Direct comparison,
and s̄housekeeping < s̄indirect for Indirect-vs-Direct). The four
comparisons were (i) housekeeping vs. direct, (ii) house-
keeping vs. indirect, (iii) housekeeping vs. direct+indirect,
and (iv) indirect vs. direct and the resulting p-values
are in Table 4. Across all four paired comparisons, the

Model pHK−Dir pHK−Indir pHK−Dir+Indir pIndir−Dir

TEDDY-G 400M 9.45× 10−25 6.47× 10−22 1.66× 10−23 1.27× 10−20

Geneformer 12-layer 1.43× 10−5 7.72× 10−6 9.26× 10−7 0.96
Geneformer (base) 5.01× 10−6 4.59× 10−6 2.22× 10−6 0.98
Nicheformer 0.72 2.62× 10−6 9.21× 10−4 1.00
scGPT 0.75 0.20 0.32 0.99

Table 4. Paired Wilcoxon signed-rank p-values for the GATA4
knockout assay (n = 236 cells; four tests per model).

TEDDY-G 400M model yields small p-values, showing
that its embedding space separates gene sets exactly as
GATA4 biology predicts: housekeeping genes change the
least, direct targets change the most, indirect targets lie in
between, and the indirect–vs.–direct contrast is strongly
negative. Both GENEFORMER variants reproduce a
similar qualitative ordering, but fail to distinguish between
direct and indirect effects. NICHEFORMERcaptures only
downstream effects: it distinguishes indirect targets from
housekeeping genes yet fails to separate direct targets,
suggesting it encodes transcriptomic consequences rather
than primary transcription factor–target relationships.
SCGPT shows no significant housekeeping–target
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separation at all, indicating that its latent space is largely
insensitive to this perturbation.

Taken together, these results underscore two points: (i) in-
creasing model scale and using biologically informed objec-
tives markedly enhance zero-shot mechanistic knowledge,
and (ii) TEDDY-G can go beyond co-expression in the case
of GATA4, and arrange genes in a manner that mirrors their
causal proximity to the perturbed transcription factor.
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Appendix

A. Discussion
We have introduced the TEDDY family foundation models and developed a benchmark for probing the disease biology
learned by these models. The TEDDY family, trained on a comprehensive 116M dataset taken from the CELLXGENE
corpus, consists of two variants, TEDDY-G trained with masked gene modeling and TEDDY-X trained with masked gene
expression level modeling. Both come in 70M, 160M, and 400M parameter sizes, and our empirical validation found that
larger models and data led to improved performance, though with diminishing returns. Deviating from previous work, the
TEDDY models also used large-scale biological annotations as supervisory signals while pre-training. Our experiments
showed that the inductive biases introduced by such supervision substantially improve downstream performance on the
held-out donors task and do not hurt performance on the held-out diseases task.

The limited effectiveness of the current crop of transcriptomic foundation models, including TEDDY, on the held-out diseases
task, could be attributed to either the failure of the models to adequately generalize to data not seen during pre-training
or to the fact that the task itself is plagued by noise from experimental and data collection artifacts. After all, we do not
have healthy or diseased annotations for individual cells; instead, we rely on whether the cells were derived from healthy or
diseased donors. Carefully disentangling these factors is important for future work.

Other future directions include improvements in the data aspects, such as increasing the size of the pre-trained corpus,
quantifying the diversity of the corpus, augmenting it with additional disease-specific data, and more thoroughly filtering
it to remove data of poor quality, as well as complimentary modeling improvements – priors that carefully incorporate
known biology improve model performance. Augmenting the training data with large scale interventional data (Zhang et al.,
2025) and uniformly processed observational data (Youngblut et al., 2025) that reduce batch effects are of particular interest.
Another direction includes evaluations on more complex biological tasks, like perturbation prediction and inference of gene
regulatory networks (GRNs). Foundation models that can accurately predict expression changes after gene perturbations
in-silico would be powerful tools for reconstructing disease mechanisms by identifying key regulatory pathways. By
modeling how specific gene knockouts or activations impact downstream gene expression, these models could help biologists
pinpoint the drivers of dysregulated pathways in diseases and prioritize targets for therapeutic intervention.

TEDDY models could help facilitate the reconstruction of the GRN in two different ways. First, we plan to introduce a
new fine-tuning task in which the model predicts the probability that a regulatory edge exists between two genes, thus
enabling the identification of novel interactions that are otherwise more difficult to extract from experimental data. Second,
leveraging Perturb-seq fine-tuned models to use predicted expression profiles after gene knockouts as input for GRN
inference algorithms offers a data-driven approach to constructing regulatory networks. This dual strategy could empower
biologists to map regulatory interactions efficiently and on a large scale, thereby accelerating discoveries in complex
regulatory networks and their roles in disease biology. Both these tasks directly apply to drug target discovery and a better
understanding of disease biology. Finally, capturing multi-omics information via multi-modal integration would be critical,
considering that cellular regulation is multi-layered. Hence, we plan to extend TEDDY beyond its current scRNA-seq
modality. Notwithstanding, TEDDY establishes a new state-of-the-art for foundation models for scRNA-seq data.

B. Modeling Choices and Details
B.1. Architecture details and model sizes

The TEDDY models vary in the number of parameters from approximately 10 million parameters to approximately 400
million parameters. The exact parameter counts are detailed in Table A1. The 10M TEDDY models contain three transformer
blocks (layers) and use a token embedding dimension of 128. The 30M models use six transformer blocks and a embedding
dimension of 256. The 70M models use 12 transformer blocks and an embedding dimension of 512. The 160M models use
12 transformer blocks and an embedding dimension of 768 and finally the 400M models use 24 transformer blocks and 1024
dimensional embeddings.

B.2. Annotation labels

During pre-training, we balance the classes used for ontology classification. To achieve this, we compute the number of
cells with each label over the entire train set, and during training, we randomly prompt the model with classification tokens
with sampling probabilities designed to balance the probability of each label.
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Table A1. Training data size and model size for TEDDY models and existing foundation models.

Pretrain corpus size by number of cells Model size by number of parameters

TEDDY-G 400M 116M 394.2M
TEDDY-X 400M 116M 414.2M
TEDDY-G 160M 116M 154.0M
TEDDY-X 160M 116M 164.8M
TEDDY-G 70M 116M 71.2M
TEDDY-X 70M 116M 72.0M
TEDDY-G 30M 116M 26.2M
TEDDY-X 30M 116M 26.1M
TEDDY-G 10M 116M 11.9M
TEDDY-X 10M 116M 11.8M
Nicheformer 110M 46.8M
SCGPT 33M 51.3M
Geneformer 30M 10.3M
Geneformer 12L 30M 39.6M
Cell2Sentence 57M 410M

In particular, we balance disease classification so that the cells with <disease> tokens have a 50% probability of being
normal or diseased.

B.3. Other design explorations for the TEDDY family

To guide our model development efforts, we also explore the effect of different approaches to data pre-processing, the effect
of sequence length, and the effect of training on multi-species data.

We implemented the median scaling method introduced in (Theodoris et al., 2023). We compute the median non-zero
expression value of each gene after scaling each cell to 10,000 gene expression counts. We then scale each gene expression
by this median value, so that each gene has a median expression value of 1 over the entire training dataset. We trained
models with and without median-scaling on a subsampled version of our pre-training dataset comprising of four million (4M)
cells. The model trained on unscaled data achieved a 60% improvement in training loss, clearly indicating the importance of
median scaling. All our models are trained with median scaling.

We also compared the effect of pre-training with different sequence lengths.

We trained two TEDDY-G models (without biological annotations) on our 4M-cell dataset with sequence lengths of 2,048
and 1,500. After truncating the test set for both models down to 1,500-long sequences, the 2,048-long model achieved a test
loss of 2.84, whereas the 1,500-long model achieved a loss of 2.88. The loss achieved by the 2,048-long model on the full
2,048-long sequences was 2.63. This shows that single-cell foundation models benefit from pre-training on longer sequences
and understand shorter sequences better. Therefore, we train all our models with 2,048 tokens. We leave it as future work to
study the importance of sequence length, especially in relation with recent work on long-context large language models.

Our 116M pre-training dataset contains both human and mouse genes. We tokenize ENSMUS mouse genes separately from
human genes. Preliminary experiments on the 4M-cell data comparing models trained on both human and mouse data show
that they achieve similar test loss to a model trained exclusively on human data. A more large scale exploration of using
multi-species data is needed to better understand the benefit of jointly training on multi-species data and is interesting future
work, especially with the advent of large multi-species datasets (Youngblut et al., 2025).
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Figure A1. Evaluation benchmark statistics. Left: Distributions of disease conditions in train and test sets of the held-out donors dataset.
Right: Number of instances (cells) in the different held-out disease datasets.

C. Evaluation benchmark details
C.1. Held-out donors dataset

The training set comprises of cells from 524 donors. The test set, contains data from 82 donors who were excluded from
the pre-training data. The task is a 14-way classification problem, Figure A1 illustrates the distribution of cells across the
fourteen labels (thirteen disease conditions and healthy). As can be seen the proportion of labels vary widely across disease
conditions. To account for this, we report class-weighted F1 scores in addition to accuracy.

Evaluation details We used a single train/test split, with 70% of the training set used for training and 30% for validation.
We used AdamW to fine-tune the models. We ran a parameter sweep over six learning rates (1E-3, 1E-4, 2E-4, 2E-5, 5E-4,
5E-5) and using pytorch default values for other optimizer parameters. The best learning rate was selected based on accuracy
on the validation set. The final model was trained on the full training set and tested on the held-out set and repeated with
three random seeds per model.

C.2. Held-out diseases dataset

We use five datasets sourced from CellXGene for binary disease classification of cells as healthy or diseased in the held-out
diseases task. These 5 datasets, and any other datasets containing disease labels present in these, were explicitly excluded
from the pre-training corpus. The CellXGene datasets were preprocessed before inclusion, with minimal modifications
applied to maintain their original state for reproducibility, except for filtering of non-primary datasets. The datasets chosen
for evaluation were processed and required to meet several criteria: (1) inclusion of data from at least five donors to allow
for robust cross-validation splits by donor; (2) an equal balance of healthy and diseased cells to address the class imbalance
issue of the original data; and (3) a minimum of 10,000 cells per dataset, to provide sufficient training signal. We evaluated
the performance of the model for the binary disease classification task using k-fold accuracy. Since these datasets are
balanced between healthy and diseased cell types we just report accuracy as a measure of performance.

The dataset includes transcriptomic data from five different disease conditions, each with a balanced representation of
diseased and normal cells. The Chronic Kidney Disease (CKD) dataset comprises 123,982 kidney cells from 25 donors,
spanning 26 distinct kidney-related cell types, including epithelial cells of the proximal tubule, loop of Henle, and collecting
ducts. The Alzheimer’s Disease dataset consists of 57,010 cells from the prefrontal cortex, sourced from 11 donors, all
classified as inhibitory interneurons. The Gastric Cancer dataset contains 122,922 stomach-derived cells from 9 donors,
but all are labeled under an unknown classification. The Pediatric Crohn’s Disease dataset features 61,244 cells from 16
donors, representing 31 diverse immune and epithelial cell types, such as enterocytes, B cells, and intestinal crypt stem cells,
collected from the ileum. Lastly, the Rheumatoid Arthritis (RA) dataset is the largest, with 291,140 immune cells derived
from 25 donors, predominantly consisting of T cells (CD4+ and CD8+), monocytes, dendritic cells, and natural killer cells,
all obtained from blood samples. Together, these datasets offer a comprehensive resource for studying disease-related
transcriptomic variations across multiple organ systems.
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Figure A2. Performance of task-specific machine learning methods using handcrafted features and TEDDY-G 400M embeddings
Accuracy increases with use of TEDDY-G embeddings. The x-axis plots accuracy achieved by different methods using TEDDY-G 400M
embeddings as features. The y-axis is the accuracy achieved when using hand engineered features. Points below the diagonal indicate that
embedding features achieve higher accuracy.

Evaluation details We performed 3-fold cross-validation, creating three train/test folds such that there is no overlap in
donors across the train and test folds and the proportion of diseased and normal cells in each fold is 50%. Each training
fold was further divided into train and validation subsplits for model selection. We used AdamW to fine-tune the mdoels.
We ran a parameter sweep over six learning rates (1E-3, 1E-4, 2E-4, 2E-5, 5E-4, 5E-5) on each subsplit and selected the
best learning rate per model and disease based on accuracy on the validation sub-split. Finally we retrained the model on
the full training fold with the selected hyper-parameter and tested on the unseen test fold. Since the test folds are perfectly
disease-balanced so we reported only classification accuracy.

D. Experimental details
In Table A2, Table A3, Table A4, Table A4, Table A5 we provide detailed numbers from our expriments described in
Section 5 and Appendix C.

Table A2. Accuracy of task-specific methods on held-out diseases task.

LightGBM Linear SVC Logistic Regression XGBoost Classifier

Held-out diseases - Handcrafted features

CKD 0.87±0.05 0.88±0.03 0.90±0.03 0.88±0.06
Alzheimers 0.69±0.15 0.62±0.07 0.64±0.08 0.68±0.17
Gastric Cancer 0.52±0.08 0.49±0.03 0.49±0.04 0.53±0.07
Rheumatoid Arthritis 0.61±0.19 0.63±0.18 0.47±0.03 0.61±0.19
Pediatric Crohn’s 0.59±0.13 0.63±0.18 0.63±0.20 0.59±0.13

Held-out diseases - TEDDY-G embeddings as predictive features

CKD 0.90±0.03 0.96±0.01 0.95±0.02 0.90±0.03
Alzheimers 0.74±0.11 0.92±0.05 0.86±0.07 0.75±0.12
Gastric Cancer 0.62±0.06 0.71±0.08 0.70±0.09 0.60±0.07
Rheumatoid Arthritis 0.70±0.14 0.94±0.09 0.93±0.10 0.73±0.16
Pediatric Crohn’s 0.63±0.15 0.75±0.15 0.72±0.16 0.63±0.15

D.1. Zero-shot embeddings evaluation

We evaluated the clustering performance using four key metrics from scib (Luecken et al., 2022) package in Table A6:
Normalized Mutual Information (NMI), which measures the shared information between clustering results and true cell
labels (0 to 1, higher is better); Adjusted Rand Index (ARI), which assesses similarity while adjusting for chance (-1 to 1,
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Table A3. Accuracy of different foundation models on held-out diseases task.

TEDDY-G 400M Nicheformer SCGPT Geneformer Geneformer 12L

Held-out diseases - Fine-tuning

CKD 0.94±0.03 0.92±0.04 0.92±0.02 0.91±0.05 0.92±0.04
Alzheimers 0.75±0.18 0.76±0.16 0.70±0.12 0.70±0.06 0.67±0.06
Gastric Cancer 0.56±0.09 0.64±0.11 0.59±0.06 0.56±0.05 0.53±0.01
Rheumatoid Arthritis 0.56±0.06 0.51±0.01 0.52±0.02 0.51±0.01 0.50±0.00
Pediatric Crohn’s 0.74 ±0.18 0.71±0.19 0.63±0.10 0.65±0.08 0.67±0.13

Table A4. Adding the ontology classification training objective to the gene modeling objective during pre-training does not affect
gene-modeling loss, both for TEDDY-G and TEDDY-X.

Gene
modeling loss

TEDDY-G 2.48
- ontology classification (TEDDY-G 70M) 2.48

TEDDY-X 0.123
- ontology classification (TEDDY-X 70M) 0.125

higher is better). NMI and ARI are computed based on Louvain clusters generated from the embedding space; Average
Silhouette Width (ASW), which indicates cluster separation by computing within-cluster and between-cluster distances,
and dividing this by the larger of the two values (0 to 1, higher is better); and Average Bio (AvgBIO), the arithmetic mean
of ASW, NMI, and ARI. We used resolution optimized Leiden clustering using the cluster_optimal_resolution
function with default settings provided by scib.

In addition, we generate UMAPs using the following parameters in Figure A3: we first perform Principal Component
Analysis (PCA) on the dataset, setting the number of components to 50 with the “svd_solver” set to “arpack” and a random
seed of 42. Next, we compute the neighborhood graph with 15 neighbors, also using the same random seed. Finally, we
apply UMAP to visualize the data, with the same seed.
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Table A5. Performance on held-out donors as a function of model size. Fine-tuning F1 scores improve for both TEDDY-G and TEDDY-X
with increasing size.

TEDDY-G TEDDY-X

70M parameters 0.65± 0.02 0.52± 0.00
160M parameters 0.70± 0.03 0.53± 0.00
400M parameters 0.68± 0.06 0.55± 0.03

Table A6. TEDDY-G 400M offers better zero-shot clustering performance.

cell sub-clustering (low) cell sub-clustering (intermediate)

NMI ARI ASW Average BIO NMI ARI ASW Average BIO

Cell2Sentence 410M 0.7817 0.6385 0.5632 0.6611 0.7969 0.6768 0.5456 0.6731
Teddy-G 400M 0.8382 0.7154 0.6022 0.7186 0.8785 0.7929 0.5971 0.7562

Figure A3. Zero-shot embeddings. Two dimensional umaps of zero-shot embeddings from TEDDY-G 400M (left) and Cell2Sentence
410M (right). The top row labels the umaps with coarse-grained cell labels while the bottom row uses finer-grained labels.
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