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Abstract

Commonsense reasoning in natural language
is a desired ability of artificial intelligent sys-
tems. For solving complex commonsense rea-
soning tasks, a typical solution is to enhance
pre-trained language models (PTMs) with a
knowledge-aware graph neural network (GNN)
encoder that models a commonsense knowl-
edge graph (CSKG). Despite the effectiveness,
these approaches are built on heavy architec-
tures, and can’t clearly explain how external
knowledge resources improve the reasoning ca-
pacity of PTMs. Considering this issue, we con-
duct a deep empirical analysis, and find that it is
indeed relation features from CSKGs (but not
node features) that mainly contribute to the per-
formance improvement of PTMs. Based on this
finding, we design a simple MLP-based knowl-
edge encoder that utilizes statistical relation
paths as features. Extensive experiments con-
ducted on five benchmarks demonstrate the ef-
fectiveness of our approach, which also largely
reduces the parameters for encoding CSKGs.
Our codes and data are publicly available
at https://github.com/RUCAIBox/SAFE.

1 Introduction

In the era of artificial intelligence, it is desirable
that intelligent systems can be empowered by the
capacity of commonsense reasoning in natural lan-
guage. For this purpose, a surge of commonsense
reasoning tasks and datasets are proposed to evalu-
ate and improve such an ability of NLP models, e.g.,
CommonsenseQA (Talmor et al., 2019) and So-
cialIQA (Sap et al., 2019b). Although large-scale
pre-trained models (PTMs) (Devlin et al., 2019; Liu
et al., 2019) have surpassed human performance in
a number of NLP benchmarks, it is still hard for
PTMs to accurately capture and understand com-
monsense knowledge for accomplishing complex
reasoning tasks (Talmor et al., 2021).

∗ Equal contributions.
† Corresponding authors.

In order to enhance the reasoning capacity, com-
monsense knowledge graphs (CSKGs) (e.g., Con-
ceptNet (Speer et al., 2017) and ATOMIC (Sap
et al., 2019a)) have been adopted for injecting ex-
ternal commonsense knowledge into PTMs. By
conducting entity linking to CSKGs, existing meth-
ods (Yasunaga et al., 2021; Feng et al., 2020a) aim
to capture the structured knowledge semantics via
knowledge graph (KG) encoders (e.g., graph neu-
ral network (GNN) (Velickovic et al., 2018; Kipf
and Welling, 2017)), and then integrate the KG en-
coders for improving the commonsense reasoning
capacity of PTMs (Yasunaga et al., 2021).

Despite the effectiveness, these approaches are
built on highly complicated network architectures
(involving both PTMs and GNNs). Thus, it is
difficult to explain how and why external com-
monsense knowledge improves the commonsense
reasoning capacity of PTMs. Besides, existing
CSKGs (Mehrabi et al., 2021; Nguyen et al., 2021)
are mostly crowdsourced from massive selected
resources (e.g., books, encyclopedias, and scraped
web corpus), containing a wide variety of content.
Without a clear understanding of how these ex-
ternal resources should be utilized, it is likely to
incorporate irrelevant concepts or even knowledge
biases (Mehrabi et al., 2021; Nguyen et al., 2021)
into PTMs, which might hurt the reasoning perfor-
mance. Indeed, some researchers have noted this
issue and questioned whether existing GNN-based
modules are over-complicated for commonsense
reasoning (Wang et al., 2021a). Furthermore, they
find that even a simple graph neural counter can
outperform existing GNN modules on Common-
senseQA and OpenBookQA benchmarks.

However, existing studies can’t well answer the
fundamental questions about knowledge utiliza-
tion for commonsense reasoning: How do external
knowledge resources enhance the commonsense
reasoning capacity of PTMs? What is necessar-
ily required from external knowledge resources
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for PTMs? Since the simplified knowledge-aware
GNN has already yielded performance improve-
ment on the CommonsenseQA (Wang et al., 2021a),
we speculate that there might be a simpler solution
if we could identify the essential knowledge for
commonsense reasoning.

Focusing on this issue, we think about designing
the solution by further simplifying the KG encoder.
Based on our empirical analysis, we observe a sur-
prising result that it is indeed relation features from
CSKGs, but not node features, that are the key to
the task of commonsense reasoning (See more de-
tails in Section 3). According to this finding, we
propose a rather simple approach to leveraging ex-
ternal knowledge resources for enhancing the com-
monsense reasoning capacity of PTMs. Instead
of using a heavy GNN architecture, we design a
lightweight KG encoder fully based on the multi-
layer perceptron (MLP), which utilizes Statistical
relation pAth from CSKGs as FEatures, namely
SAFE. We find that semantic relation paths can pro-
vide useful knowledge evidences for PTMs, which
is the key information for helping commonsense
reasoning. By conducting extensive experiments on
five benchmark datasets, our approach achieves su-
perior or competitive performance compared with
state-of-the-art methods, especially when training
data is limited. Besides the performance improve-
ment, our approach largely reduces the parame-
ters for encoding CSKGs (fewer than 1% train-
able parameters compared to GNN-based KG en-
coders (Yasunaga et al., 2021)).

Our main contributions can be summarized as
follows: (1) We empirically find that relation fea-
tures from CSKGs are the key to the task of com-
monsense reasoning; (2) We design a simple MLP-
based architecture with relation paths as features
for enhancing the commonsense reasoning capacity
of PTMs; (3) Extensive experiments conducted on
five benchmark datasets demonstrate the effective-
ness of our proposed approach, which also largely
reduces the parameters of the KG encoder.

2 Task Description

According to pioneer works (Talmor et al., 2019;
Mihaylov et al., 2018), the commonsense reason-
ing task can be generally described as a multi-
choice question answering problem: given a nat-
ural language question q and a set of n choices
{c1, · · · , cn} as the answer candidates, the goal is
to select the most proper choice c⋆ from these can-

didates to answer the question based on necessary
commonsense knowledge.

To explicitly capture commonsense knowledge,
external commonsense knowledge graphs (CSKGs)
have often been utilized in this task, e.g., Concept-
Net (Speer et al., 2017). A CSKG can be for-
mally described as a multi-relational graph G =
(V,R, E), where V is the set of all concept (or en-
tity) nodes (e.g., hair and water), R is the set of
relation types (e.g., relatedto and atlocation), and
E ⊆ V × R × V is the set of relational links that
connect two concept nodes in V .

Following prior studies (Lin et al., 2019),
we solve the commonsense reasoning task in a
knowledge-aware setting, where a CSKG G is avail-
able as input. We first link the mentioned concepts
from the question and the answer candidates to the
CSKG, so that we can leverage the rich semantic
knowledge from the CSKG for commonsense rea-
soning. Based on the linked concepts in the ques-
tion and each answer candidate, we further extract
their neighbouring nodes from G and the relational
links that connect them, to compose a subgraph
Gq,ci for characterizing the commonsense knowl-
edge about the question q and the answer candidate
ci.

3 Empirical Analysis on the
Commonsense KG Encoder

In this section, we conduct an empirical study to in-
vestigate how the external KG encoder helps PTMs
with commonsense reasoning.

3.1 Analysis Setup

To conduct the analysis experiments, we select
QA-GNN (Yasunaga et al., 2021), a representative
approach that integrates PTM with GNN for the
commonsense QA task, as the studied model. We
adopt the CommonsenseQA (Talmor et al., 2019)
and OpenBookQA (Mihaylov et al., 2018), two
of the most widely used commonsense reasoning
benchmarks, for evaluation, with the same data
split setting in (Lin et al., 2019).

We perform two analysis experiments: one ex-
amines the effect of the commonsense KG encoder,
and the other one examines the effect of different
features in the commonsense KG encoder. To be
specific, the two experiments focus on two key
questions about commonsense reasoning: (1) what
is the effect of the commonsense KG encoder on
PTMs? (2) what is the key information within the
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Figure 1: Performance comparison on Common-
senseQA and OpenBookQA (Dev accuracy).

commonsense KG encoder?

3.2 Results and Findings

Next, we conduct the experiments and present our
findings of commonsense reasoning.

Effect of Commonsense KG Encoder. Since ex-
isting studies have widely utilized a GNN module
to encode the commonsense knowledge, we exam-
ine its contribution to the improvement of reason-
ing performance. We consider comparing three
variants of QA-GNN: (A) PTM-Only that directly
removes the GNN module and degenerates into a
pure PTM, (B) PTM-Pred that trains the PTM and
GNN simultaneously but only makes the predic-
tion with the PTM module, and (C) GNN-Pred that
trains the PTM and GNN simultaneously but only
makes the prediction with the GNN module.

The comparison results are shown in Figure 1.
As we can see, using the predictions solely based
on the GNN module (i.e., GNN-Pred) can only
answer a relatively minor proportion of the ques-
tions (no more than 60% in CommonsenseQA).
As a comparison, when trained independently (i.e.,
PTM-Only) or jointly with the GNN module (i.e.,
PTM-Pred), the PTM module can answer a large
proportion of the questions (at least 70% in Com-
monsenseQA). Furthermore, the incorporation of
the GNN encoder is useful to improve the perfor-
mance of PTMs (PTM-Only v.s. QAGNN). These
results show that:
• In the joint PTM-GNN approach, PTM con-

tributes the most to the commonsense reasoning
task, which is the key to the reasoning performance.

• Commonsense KG encoder is incapable of
performing effective reasoning independently, but
can enhance PTM as the auxiliary role.

Effect of Node/Relation Features from KG. The
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Figure 2: Performance examination for KG encoder on
CommonsenseQA and OpenBookQA (Dev accuracy).

major aim of the KG encoder is to characterize the
commonsense knowledge and provide necessary
knowledge evidence for enhancing the reasoning
capacity of PTMs. Generally, a CSKG consists
of concept nodes and relational links. To identify
the key knowledge information that is necessarily
needed, we now examine the effect of node and
relation features from CSKG. To eliminate the ef-
fect of PTM module, we remove it and compare
the performance of only KG encoder under two
experiment settings: (A) reducing the dimension
of node embeddings to d (PCA (Jolliffe, 1986) is
applied to select d most informative dimensions),
and (B) randomly removing p percent of relational
links in the KG subgraph for a question-candidate
pair.

As shown in Figure 2, we surprisingly find that
even after reducing the dimension of node embed-
dings to 1, the performance of the GNN encoder
can be still improved. These results show that node
features are not the key information utilized by the
GNN encoder. In contrast, removing a consider-
able proportion of links significantly reduces the
performance. From these observations, we can con-
clude that: The relation features from the CSKG
are indeed the key knowledge information that is
actually needed by the KG encoder.

4 Approach

The former sections show that the role of the KG
encoder on CSKGs is to mainly complement PTMs
in the task of commonsense reasoning. Instead of
node features, relations features are the key to the
KG encoder for improving PTMs. Based on these
findings, we develop a simple commonsense KG
encoder based on the statistical relation features
from CSKGs, namely SAFE. Figure 3 presents the
overview of our model.



4.1 Capturing High-Order Relation
Semantics

Since relation features are shown useful to improve
the performance of commonsense reasoning, we
consider extracting relation features for better cap-
turing the knowledge semantics from the CSKG.
Inspired by KG reasoning studies (Lin et al., 2018;
Feng et al., 2020b), we construct multi-hop rela-
tion paths that connect question nodes with answer
candidate nodes on the CSKG to capture the higher-
order semantic relatedness among them.

Formally, given the commonsense subgraph
Gq,ci for the question q and the answer candidate
ci, we first extract a set of relation paths within k
hops that connect a question concept node vq ∈ Vq

and an answer concept node vci ∈ Vci , denoted as
Pq,ci . Specifically, a path p ∈ Pq,ci can be rep-
resented as a sequence of nodes and relations as
p = {v1, r1, · · · , rk−1, vk}. Based on the empiri-
cal findings in Section 3, we consider a simplified
representation for relation paths that removes node
IDs but only keeps the relations on a path. To keep
the role of each node, we replace a node ID by
a three-valued type, indicating this node belongs
to a question node (0), answer node (1) or oth-
ers (2). In this way, a path p can be represented
by p = {tv1 , r1, tv2 , r2, · · · , rk−1, tvk}, where tv
is the role type of node v. Since we remove ex-
plicit node IDs, our model can concentrate on more
essential relation features.

Based on the above method, for a question q
and an answer candidate ci, we extract all the sim-
plified relation paths and count their frequencies
among all the paths. We use Fq,ci = {⟨pj , fj⟩} to
denote all the paths for the question q and the an-
swer candidate ci, where each entry consists of the
j-th path pj and its frequency fj . Unlike prior ap-
proaches (e.g., QA-GNN), we use such very simple
features of relation paths from CSKGs to improve
the reasoning capacity of PTMs.

4.2 A MLP-based KG encoder
Our KG encoder is built on a full MLP architecture
based on simplified relation path features, consist-
ing of a path encoder and a feature aggregator.

Path Encoder. The path encoder is a two-layer
MLP that encodes a relation path into a scalar fea-
ture value. As shown in Section 4.1, we can obtain
the path feature set Fq,ci = {⟨pj , fj⟩} for the ques-
tion q and the answer candidate ci. Different from
general KGs, CSKGs usually contain much fewer
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Figure 3: The illustration of our approach. We adopt
an all-MLP KG encoder to model the extracted relation
features from CSKG to enhance the PTM.

types of relations (e.g., 36 relations in Concept-
Net), we adopt one-hot representations of these
types to represent these relations. For node type
(from question, candidate or others), we also adopt
the similar representations. Then, we concatenate
these one-hot vectors to compose the sparse repre-
sentation of a relation path p in order, denoted as
vp. Subsequently, the sparse path representation
is encoded by a two-layer MLP (i.e., the path en-
coder) to produce the corresponding scalar feature
value xp:

xp = MLP2(MLP1(vp)), (1)

where xp reflects the importance of such a relation
path for commonsense reasoning.

Feature Aggregator. Based on the above path
encoder, we can generate the scalar feature val-
ues for all the relation paths in the feature set
Fq,ci = {⟨pj , fj⟩}. The feature aggregator aims
to aggregate these feature values to produce the
confidence score of the answer candidate w.r.t. the
question, from the KG perspective. Concretely, we
sum the different feature values of relation paths
weighted by their frequencies as follows:

xq,ci =
∑

⟨pj ,fj⟩∈Fq,ci

xpj · fj , (2)

where xpj is the mapping feature value of path pj
and fj is the frequency of path pj . Here, xq,ci aims
to capture the overall confidence score based on the
subgraph Gq,ci given the question and the answer
candidate. However, since the weighted sum is
likely to cause extreme values (i.e., too large or too
small), we add an extra two-layer MLP for scaling:

SKG(q, ci) = MLP4(MLP3(xq,ci)), (3)



where SKG is the prediction score indicating the
confidence level that candidate ci is the right an-
swer to question q from the perspective of KG.

4.3 Integrating KG Encoder with PTM

In this part, we integrate the above KG encoder
with the PTM for commonsense reasoning.

The PTM Encoder. Following existing works (Ya-
sunaga et al., 2021), we utilize a PTM as the back-
bone of commonsense reasoning. Given a question
q and an answer candidate ci, we concatenate their
text to compose the input of the PTM. After encod-
ing by the multiple Transformer layers, we select
the output of the [CLS] token in the last layer
as the contextual representation of the question-
candidate pair, denoted by hcls. Then, we feed hcls

into a MLP layer to produce a scalar output SPTM ,

hcls = PTM(q, ci), (4)

SPTM (q, ci) = MLP(hcls), (5)

which is the plausibility score of the answer candi-
date from the perspective of PTM.

Combining the Prediction Scores. We then de-
rive the prediction score of each answer candidate
for a question by leveraging both the PTM and KG
encoder based on either textual or structured seman-
tics. For each question-candidate pair (q, ci), we
combine the prediction scores of the two modules
as:

S(q, ci) = SPTM (q, ci) + SKG(q, ci), (6)

where SPTM (q, ci) (Eq. 5) and SKG(q, ci) (Eq. 3)
are the prediction scores of PTM and KG encoder,
respectively. Given a set of answer candidates
{c1, ..., cn}, we further normalize S(q, ci) into a
conditional probability Pr(ci|q) via the softmax op-
eration over the n candidates.

During the training stage, we optimize the param-
eters of the whole model (including both the PTM
and KG encoder) with the cross entropy loss be-
tween the predictions and the ground-truth answer
(based on the probability distribution {Pr(ci|q)}ni=1

). During inference, we first compute the probabil-
ity score Pr(ci|q) for each answer candidate, and
then select the highest one as the predicted answer.

4.4 Comparison with Existing KG Encoders

For the task of commonsense reasoning, it has be-
come a common approach by integrating PTM with

RGCN MHGRN QAGNN SAFE

Node emb.
√ √ √

×
Relation

√ √ √ √

GNN
√ √ √

×
MLP-based × × ×

√

# Params 365K 547K 2845K 4.7k

Table 1: Comparisons of different KG encoders for com-
monsense reasoning. Instead of using node embeddings
and GNN structure, we adopt relation paths as the input
features and incorporate a full MLP architecture.

an external KG encoder based on CSKGs. The ma-
jor difference among these methods (including our
approach) lies in the design of the KG encoder.
Next, we compare these variants for the KG en-
coder.

We summarize the comparison between our KG
encoder and representative KG encoders in Table 1.
We can see that, our approach no longer lies in
the node embeddings and the structure of GNNs.
Instead, we mainly utilize relation paths as the fea-
tures of the KG encoder, which is built on a simple
MLP-based architecture. Therefore, the number
of the model parameters involved in our KG en-
coder is much smaller than those of existing KG
encoders. As will be shown in Section 5, our KG
encoder yields better or at least comparable per-
formance compared with existing GNN-based en-
coders, based on the same configuration for PTMs.

Specifically, our approach can largely reduce
the computational costs for encoding the CSKG.
For our approach, we need to extract the relation
paths from question nodes to all the answer can-
didate nodes on the CSKG, and it can be effi-
ciently fulfilled via a k-hop constrained Depth-First
Search (Tarjan, 1972), which can be pre-computed
in offline processing. When the relation paths have
been extracted, it is efficient to encode these paths
with our MLP architecture. Such a process can
be easily paralleled or accelerated by optimized
matrix multiplication. In contrast, existing GNN-
based encoders rely on iterative propagation and
aggregation on the entire subgraph, which takes a
much larger computational time cost.

5 Experiment

5.1 Experimental Setup

In this part, we introduce the experimental setup.

Evaluation Tasks. We conduct experiments on five
commonsense reasoning tasks, shown in Table 2.



Task Train Dev Test

CommonsenQA 9,741 1,221 1,140
OpenBookQA 4,957 500 500
SocialIQA 33,410 1,954 -
PIQA 16,113 1,838 -
CoPA - 500 500

Table 2: Statistics of the datasets. “-” denotes the unused
or not available dataset split in our experiments.

• CommonsenseQA (Talmor et al., 2019) is a
5-way multiple-choice QA dataset. It is created
based on ConceptNet (Speer et al., 2017).
• OpenBookQA (Mihaylov et al., 2018) is a 4-

way multiple-choice QA dataset about elementary
science questions to evaluate the science common-
sense knowledge.
• SocialIQA (Sap et al., 2019b) is a 3-way

multiple-choice QA dataset to evaluate the under-
standing of social commonsense knowledge.
• PIQA (Bisk et al., 2020) is a binary-choice

QA dataset about physical commonsense.
• CoPA (Roemmele et al., 2011) is a common-

sense inference dataset, to select the most plausible
alternative with the causal relation to the premise.

Data Preprocessing. For CommonsenseQA and
OpenBookQA, we use their original train/dev/test
split settings. Since the test set of Common-
senseQA is not available, we follow previous
work (Lin et al., 2019) that extracts 1,241 examples
from the original training set as the test set. Be-
sides, the test sets of SocialIQA and PIQA are not
available. Therefore, we report the experimental
results on their development sets for a fair com-
parison (Shwartz et al., 2020). For CoPA that
only provides development and test sets, we fol-
low Niu et al. (2021) to train models on the devel-
opment set and evaluate the performance on the
test set. For commonsense KG, we adopt Con-
ceptNet (Speer et al., 2017), a general-domain and
task-agnostic CSKG, as our external knowledge
source G for all the above models and tasks. For
each question-candidate pair (q, ci), we follow pre-
vious works (Lin et al., 2019; Feng et al., 2020a) to
retrieve and construct the subgraph Gq,ci from the
CSKG G.

Baseline Methods. We compare our model with
the following six baseline methods, including a
fine-tuned PTM and five PTM+GNN models:
• Fine-tuned PTM directly fine-tunes a PTM

without using any CSKG. We use RoBERTa-

large (Liu et al., 2019) for all tasks. Additionally,
we also use BERT-large (Devlin et al., 2019) and
AristoRoBERTa (Clark et al., 2020a) for Open-
BookQA to evaluate the generality of our KG-
encoder.
• PTM+GNN models integrate PTM with ad-

ditional GNN-based KG encoders. Based on the
same PTM (the above baseline), we consider five
variants with different KG encoders: (1) Relation
Network (RN) (Santoro et al., 2017) using a re-
lational reasoning structure over the CSKG; (2)
GcoAttn (Lin et al., 2019) using a graph concept
attention model to aggregate entity information
from the CSKG; (3) RGCN (Schlichtkrull et al.,
2018) extending the GCN with relation-specific
weights; (4) MHGRN (Feng et al., 2020a) using a
GNN architecture reasoning over the CSKG that
unifies both GNNs and path-based models; (5) QA-
GNN (Yasunaga et al., 2021) using a GAT to per-
form jointly reasoning over the CSKG.

For all these methods, we adopt the same archi-
tecture and configuration for the PTM, so that we
can examine the effect of different KG encoders.

5.2 Implementation Details
We implement all PTMs based on HuggingFace
Transformers (Wolf et al., 2020). For all the base-
lines, we keep the common hyper-parameters as
identical as possible and set their special hyper-
parameters following the suggestions from the orig-
inal papers. In our approach, we extract the rela-
tion paths with no more than 2 hops between the
concept nodes from the question and the answer
candidate. We tune the hidden dimension of MLPs
from the path encoder in {32, 64, 100}, and the
batch size in {32, 48, 60, 120}. The parameters
of the model are optimized by RAdam (Liu et al.,
2020), and the learning rate of the PTM and the KG
encoder is also tuned in {1e-4, 1e-5, 2e-5} and {1e-
3, 1e-2}, respectively. To accelerate the training
process, we don’t incorporate Dropout regulariza-
tion in our model. All the above hyper-parameters
are tuned on the development set.

5.3 Results Analysis
Following previous works (Yasunaga et al.,
2021; Wang et al., 2021a), we take the re-
sults on CommonsenseQA and OpenBookQA
as the main experiments to compare different
methods. In order to test their robustness to
data sparsity, we examine the performance un-
der five different proportions of training data, i.e.,



Methods CommonsenseQA OpenBookQA

5% 10% 20% 50% 80% 100% 5% 10% 20% 50% 80% 100%

RoBERTa-large 29.66 42.84 58.47 66.13 68.47 68.69† 37.00 39.4 41.47 53.07 57.93 64.8†

+ RGCN 24.41 43.75 59.44 66.07 68.33 68.41† 38.67 37.53 43.67 56.33 63.73 62.45†

+ GconAttn 21.92 49.83 60.09 66.93 69.14 68.59† 38.60 36.13 43.93 50.87 57.87 64.75†

+ RN 23.77 34.09 59.90 65.62 67.37 69.08† 33.73 35.93 41.40 49.47 59.00 65.20†

+ MHGRN 29.01 32.02 50.23 68.09 70.83 71.11† 38.00 36.47 39.73 55.73 55.00 66.85†

+ QA-GNN 32.95 37.77 50.15 69.33 70.99 73.41† 33.53 35.07 42.40 54.53 52.47 67.80⋆

+ SAFE(Ours) 36.45 56.51 65.16 70.72 73.22 74.03 38.80 41.20 44.93 58.33 65.60 69.20

Table 3: Performance comparison on CommonsenseQA and OpenBookQA with different proportions of training
data. We report the average test performance of three runs, and the best results are highlighted in bold. † indicates
the reported results from Yasunaga et al. (2021). ⋆ indicates the reported results from Wang et al. (2021a)

Methods SocialIQA PIQA CoPA

RoBERTa-large 78.25 77.53 67.60

+ GcoAttn 78.86 78.24 70.00
+ RN 78.45 76.88 70.20
+ MHGRN 78.11 77.15 71.60
+ QAGNN 78.10 78.24 68.40

+ SAFE (Ours) 78.86 79.43 71.60

Table 4: Performance comparison on SocialIQA, PIQA,
and CoPA (Dev accuracy).

{5%, 10%, 20%, 50%, 80%, 100%}.

CommonsenseQA and OpenBookQA. The re-
sults of different methods on CommonsenseQA
and OpenBookQA are presented in Table 3.

Comparing the results under the full-data set-
ting (i.e., 100% training data), we can see that
all the PTM+GNN methods perform better than
vanilla PTM (i.e., RoBERTa-large). It indicates that
the KG encoder on the CSKG is able to incorporate
useful knowledge information to improve PTMs
on commonsense reasoning tasks. Additionally,
among all the PTM+GNN baselines, QA-GNN per-
forms the best. The major reason is that QA-GNN
uses the PTM to estimate the importance of KG
nodes and connects the QA context and the CSKG
to form a joint graph, which is helpful to improve
the reasoning ability on the CSKG. Finally, our
method consistently outperforms all the baselines.
Our approach incorporates a lightweight MLP ar-
chitecture as the KG encoder with relation paths
as features. It reduces the parameter redundancy
of the KG encoder and focuses on the most essen-
tial features for reasoning, i.e., semantic relation
paths. Such an approach is effective to enhance the
commonsense reasoning capacity of PTMs.

Comparing the results under different sparsity

Methods BERT-large AristoRoBERTa

Fine-tuned PTMs 59.00 78.40†

+ RGCN 45.40 74.60†

+ GconAttn 48.20 71.80†

+ RN 48.60 75.35†

+ MHGRN 46.20 80.60†

+ QA-GNN 58.47 82.77†

+ SAFE (Ours) 59.20 87.13

Table 5: Evaluation with other PTMs on OpenBookQA
(average test accuracy of three runs). Methods with
AristoRoBERTa use the textual evidence by Clark et al.
(2020b) as an additional input to the QA context. † indi-
cates reported results in (Yasunaga et al., 2021).

ratios of training data, we can see that the perfor-
mance substantially drops when the size of training
data is reduced. While, our method performs con-
sistently better than all baselines. It is because that
our KG encoder consists of significantly fewer pa-
rameters than those of the baselines, which reduces
the risk of overfitting and endows our approach
with better robustness in data scarcity scenarios.

Other Commonsense Reasoning Datasets. To
further verify the effectiveness of our method, we
also compare the results of different methods on
other commonsense reasoning datasets. These
datasets are from different domains or different
tasks. These results are shown in Table 4. Similarly,
our approach also achieves the best performance in
most cases. It indicates that our approach is gener-
ally effective for various commonsense reasoning
datasets or tasks, by outperforming competitive but
complicated baselines. Among all the datasets, our
approach improves the performance of the PTM
on CoPA dataset by a large margin. The reason is
that CoPA is a small dataset with only 500 training
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Figure 4: Analysis of different hidden dimension size
of our SAFE model.

examples. Baselines with heavy architectures are
easy to overfit on it. In contrast, our KG encoder is
lightweight, which is more capable of resisting the
overfitting issue.

5.4 Evaluation with Other PTMs

The major contribution of our approach lies in the
lightweight KG encoder, which can be also used
to enhance the commonsense reasoning capacity
of various PTMs. To validate it, we examine the
performance of our KG encoder when integrated
with two other PTMs, i.e., BERT-large and Aris-
toRoBERTa, on OpenBookQA dataset.

As shown in Table 5, the BERT-large and Aris-
toRoBERTa enhanced by our KG encoder per-
form better than original PTMs. Especially, our
KG encoder can improve the performance of Aris-
toRoBERTa by a large margin (with 8.73% im-
provement). These results show that our KG en-
coder is a general method to improve PTMs for
commonsense reasoning. In contrast, when adapt-
ing other KG encoders to these two PTMs, the
performance decreases in most cases. It is mainly
because these KG encoders have complicated archi-
tectures, which may not be easily adapted to other
PTMs.

5.5 Hyper-parameters Analysis

For hyper-parameter analysis, we study the hid-
den dimension size of the MLP in the path en-
coder. Concretely, we evaluate our model with
varying values of the hidden dimension size on
CommonsenseQA and OpenBookQA datasets us-
ing RoBERTa-large model. The results are shown
in Figure 4. We can see that with the increase of the
hidden dimension size, the performance improves
at first and then drops to some extent. The possible
reason lies in two aspects. On the one hand, a too
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Figure 5: The generated feature values of relation path
examples by the path encoder. Q and A denote the con-
cept nodes from the question and the answer candidate,
respectively.

small hidden dimension size makes the path en-
coder hard to represent sufficient information from
relation paths for commonsense reasoning. On the
other hand, a larger hidden dimension size enlarges
the parameter number of our KG encoder, which
increases the risk of overfitting that may cause per-
formance degradation.

5.6 Case Study
We propose a rather simple KG encoder to effec-
tively utilize the relation features from the CSKG,
which first computes the feature values of the rela-
tion paths and then aggregates these values as the
confidence score of the question and choice from
the perspective of KG. In this way, we can generate
a table in advance that maps each type of relation
path into its feature value that reflects its contribu-
tion to the confidence score. Based on this table, it
is convenient to directly judge the importance of
the relation path and quickly assess the confidence
about if the choice is the answer to the question
from the perspective of KG. Figure 5 shows some
path-value examples on CommonsenseQA dataset.
As we can see, the path with a higher value indeed
provide more persuasive evidence (e.g., causes and
capableof ) that indicates the choice is more likely
to be the answer to the question. In contrast, the
path with a lower value usually represents an am-
biguous relationship (e.g., relatedto), which con-
tributes less to the judge of whether the choice is
the answer.

6 Related Work

We review the related studies in two aspects, i.e.,
commonsense reasoning and KG-enhanced pre-
trained models.

Commonsense Reasoning. Commonsense rea-
soning tasks aim to evaluate the understanding



of commonsense knowledge (Davis and Marcus,
2015), e.g., physical commonsense (Zellers et al.,
2019), which are mostly formulated as a multi-
choice QA problem. Early studies either rely on
explicit text features (Clark et al., 2016) to cap-
ture the relations between the question and answer
candidates, or adopt neural networks (e.g., DNN
or LSTM) (Yu et al., 2014; Chen et al., 2017) to
model the implicit correlation features. Recently,
pre-trained models (PTM) (Devlin et al., 2019;
Liu et al., 2019) have achieved remarkable per-
formance on commonsense reasoning tasks. Fur-
thermore, a surge of works incorporate external
knowledge resources to further improve the reason-
ing performance. Among them, CSKG (e.g., Con-
ceptNet (Speer et al., 2017)) has been widely stud-
ied, and existing works mainly adopt graph neural
networks to learn useful commonsense knowledge
from the CSKG to enhance PTMs. Based on these
works, we systemically study what is necessarily
needed from CSKGs for improving PTMs. Our
analysis leads to an important finding that rela-
tion features mainly contribute to the performance
improvement, and we design a lightweight MLP
architecture to simplify the KG encoder.

KG-Enhanced Pre-trained Models. Recently, a
series of works focus on enhancing PTMs with ex-
ternal KGs to improve the performance on factual
knowledge understanding (Sun et al., 2020; Wang
et al., 2021b) and knowledge reasoning tasks (Tal-
mor et al., 2019; Zhang et al., 2019; He et al., 2020).
These works inject the structured knowledge from
the external KG into PTMs in either pre-training or
fine-tuning stage. The first class of works mainly
focus on devising knowledge-aware pre-training
tasks (Wang et al., 2021b; Zhang et al., 2019) to im-
prove the understanding of entities or triples from
the KG, e.g., knowledge completion (Wang et al.,
2021b) and denoising entity auto-encoder (Zhang
et al., 2019). Another class of works adopt task-
specific KG encoders to enhance PTMs during
fine-tuning, e.g., path-based relation network (Feng
et al., 2020a) and GNN (Yasunaga et al., 2021). Dif-
ferent from them, we aim to directly enhance PTMs
with a KG encoder on the downstream common-
sense reasoning tasks, and design a rather simple
yet effective KG encoder.

7 Conclusion

In this work, we study how the external common-
sense knowledge graphs (CSKGs) are utilized to

improve the reasoning capacity of pre-trained mod-
els (PTMs). Our work makes an important contri-
bution to understanding and enhancing the com-
monsense reasoning capacity of PTMs. Our results
show that relation paths from the CSKG are the
key to performance improvement. Based on this
finding, we design a rather simple MLP-based KG
encoder with relation paths from the CSKG as fea-
tures, which can be generally integrated with vari-
ous PTMs for commonsense reasoning tasks. Such
a lightweight KG encoder has significantly fewer
than 1% trainable parameters compared to previous
GNN-based KG encoders. Experimental results on
five commonsense reasoning datasets demonstrate
the effectiveness of our approach.

In future work, we will study how to effec-
tively leverage the commonsense knowledge from
large-scale unstructured data to improve PTMs.
We will also try to apply our approach to other
knowledge-intensive tasks, e.g., knowledge graph
completion and knowledge graph based question
answering (Lan et al., 2021).

8 Ethical Consideration

This work primarily investigates how external com-
monsense knowledge graphs (CSKGs) enhance the
commonsense reasoning capacity of pre-trained
models (PTMs) and proposes a simple but effec-
tive KG encoder on CSKGs to enhance PTMs. A
potential problem derives from using PTMs and
CSKGs in our approach. PTMs have been shown
to capture certain biases from the data that have
been pre-trained on (Bender et al., 2021). And
existing works (Mehrabi et al., 2021) have found
that CSKGs are likely to contain biased concepts
derived from human annotations. However, a com-
prehensive analysis of such biases is outside of the
scope of this work. It is a compelling direction
to investigate to what extent the combination of
CSKGs and PTMs can help mitigate such biases.
An alternative consideration is to consider filtering
biased concepts in the process of subgraph extrac-
tion from the CSKG. By devising proper rules, it
is promising to reduce the influence of biased con-
cepts on our approach.
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