
SCERL: A Benchmark for intersecting language and
Safe Reinforcement Learning

Lan Hoang 12 Shivam Ratnakar 13 Nicolas Galichet 2 Akifumi Wachi 24

Keerthiram Murugesan 2 Songtao Lu 2 Mattia Atzeni 45

Declan Millar2 Michael Katz2 Subhajit Chaudhury2

Abstract

The issue of safety and robustness is a critical focus for AI research. Two lines1

of research are so far distinct, namely (i) safe reinforcement learning, where an2

agent needs to interact with the world under safety constraints, and (ii) textual3

reinforcement learning, where agents need to perform robust reasoning and mod-4

eling of the state of the environment by interacting with it using text (prompts5

and commands). In this paper, we propose Safety-Constrained Environments for6

Reinforcement Learning (SCERL), a benchmark to bridge the gap between these7

two research directions. The contribution of this benchmark is safety-relevant8

environments with i) a sample set of 20 games built on new logical rules to rep-9

resent physical safety issues; ii) added monitoring of safety violations and iii) a10

mechanism to further generate a more diverse set of games with safety constraints11

and their corresponding metrics of safety types and difficulties. This paper shows12

selected baseline results on the benchmark. SCERL benchmark and its flexible13

framework aims at providing a set of tasks to demonstrate language-based safety14

challenges to inspire the research community to further explore safety applications15

in a text-based domain.16

1 Introduction17

Safety has emerged as an important issue for machine learning applications in real-life, with multiple18

frameworks to categorise the types of safety [Garcıa and Fernández, 2015]. We present a new19

benchmark called Safety Constrained Environments for Reinforcement Learning (SCERL) for20

safe RL tasks with natural language, as depicted in Figure 1. SCERL is a sandbox environment that21

directly measures the physical safety aspect of the agent learning process with contributions are as22

follows:23

• Text-based safety constraints and goals24

• A sample set of games from easy to difficult with different safety goals and constraints25

• Automatic generation of games with unsafe items and potential goals26

• Monitoring of the agent performance and safety events27

1equal contribution
2IBM Research
3IBM Consulting
4work done while the author is at IBM Research
5EPFL & ETH Zurich

LaReL 2022 Workshop (NeurIPS 2022). Do not distribute.

Figure 1: An illustration of SCERL augmented safety challenges. The white boxes with orange
border highlight the new components included in this benchmark

2 Related Work28

Real-life decision-making problems are associated with natural language; thus, the intersection29

between RL and natural language has attracted the attention of the research community [Luketina30

et al., 2019, Osborne et al., 2021]. Although there are multiple safe RL and text-based RL benchmark,31

there has not been an integrated benchmark combining physical safety issues together with natural32

language interactions [Yang et al., 2021, Mahmood et al., 2018, Brunke et al., 2021]. There is a33

need to incorporate safety constraint types into a text-based RL benchmark that can drive further34

development of language and safe Reinforcement Learning.35

3 SCERL: a safety-focused framework and benchmark for text-based36

Reinforcement Learning37

3.1 Our safety gameset38

SCERL has been developed from the core of TextWorld [Côté et al., 2018] by generating set of games39

representing safety constraints for language-instructed agents. We have introduced a schema for40

safety annotation which includes constraints, goals and additional scripts to generate safety games.41

There is a monitoring script which gives information on safety violation and yields different levels42

of language-assisted warnings. The safety conditions are sourced from real life examples of safety43

constraints such as reports of incidents and summary reports of hazards. These unsafe conditions were44

included in the logic of the game to create safety constraints. For example, we introduce conditions45

relating to fire risks and chemical risks:46

• Electric or hot item: fire hazard if not turned off or being attended by the agent.47

• Chemical items: dangerous if not kept in a locked cabinet or a designated area.48

• Other mechanical risks: such as open drawers can pose risks of harming the agent.49

3.2 New schema for safety annotation50

There is a variety of goal and constraint specifications to provide different challenges for an RL agent51

to learn from a range of tasks and safety constraints. In this benchmark, users can introduce safety52

restrictions under two forms: soft penalties and terminating penalties. Additionally, the user can53

specify the goals of the games, the goal of which may or may not directly involve unsafe items.54

2

4 Example Baselines and Additional features for Language-assisted warning55

and safety penalty monitoring56

4.1 Game design57

The games are designed to include constraints that make the agent refrain from taking certain actions58

which may change the state of an object to an unsafe one. For example, keeping the fridge open or59

leaving fire risk objects like candles and the induction cook-top unattended. The difficulty level (easy,60

medium and hard) of these games is decided from the number and complexity of the constraints,61

objects and rooms involved. Our categorisation of difficulty follows the room and object values62

used in [Murugesan et al., 2021] [Côté et al., 2018]; however the games can be generated with up63

to 8 rooms, 600 objects, and 100 unsafe objects (with one unsafe object having one to multiple64

safety constraints). For testing the agents, a subset of games were used from the baseline which65

had objectives like avoid eating rotten egg, where the agent is penalised if it uses the rotten egg but66

rewarded if it cooks and eats the big and small eggs. It is also rewarded for putting the rotten egg in67

the trashcan (hard game). The challenge for the agent is to determine the safety relating to objects of68

the same type. Second example, is regular eating egg game where the objective is to cook and eat an69

egg while avoiding the unsafe states of the stove being turned on and the fridge left open. Another70

example is the packing lunchbox game where the objective is to pack the cooked egg in a lunchbox.71

4.2 Example Baselines72

To test the current baselines of the benchmark, we have selected two state-of-the-art agents73

[Narasimhan et al., 2015, Ammanabrolu and Hausknecht, 2020, Murugesan et al., 2021]. The74

specific hyperparameters and computing resources are specified in the Supplementary.75

• Text-based agent (Simple agent): LSTM-A2C from [Narasimhan et al., 2015] which76

chooses actions based on the observed text.77

• Knowledge-aware and commonsense agent: KG-2AC [Ammanabrolu and Hausknecht,78

2020] which encodes the state of the world as a knowledge graph from the game observations.79

We leverage the Numberbatch embedding based on ConceptNet following the setup of80

Murugesan et al. [2021].81

Overall the agents violated safety constraints at the beginning of the training but learnt to reduce the82

risks. However, their performance has a high variation and the number of episodes it takes for the83

agents to converge (Figure 2) is well beyond the range of 80-100 episodes (of 50 steps per episode)84

reported in [Murugesan et al., 2021].85

(a) Packing Lunch Box game (b) Cooking and eating egg game

Figure 2: Example of different score signals across games

4.3 Using the benchmark’s modes on text-based warnings86

The mode of observations and warning appear to influence agent learning. For safe packing lunchbox,87

both agents improve the mean score and reduce the standard deviation of return with more information;88

however the standard deviation remains large - which suggests that the improvement is not consistent.89

3

Table 1 shows example results on a subset of games. The results show that both agents performs90

sub-optimally, far from the 100 score if performed optimally, across the different observation modes.91

This gives further scope for developing new language-assisted safe Reinforcement Learning agents92

that can tackle these challenges more effectively.93

Table 1: Baseline Results in SCERL
Observation Mode

Scenario Agent Default obs With warning With warning
and scores

Eating egg
game

Knowledge
Aware agent

-8.06 ± 20.8 21.44 ±23.3 6.28 ± 18.9

Simple agent 21.14 ± 28.1 11.72 ± 29.6 20.00 ± 38.4
Packing lunch-
box

Knowledge
Aware agent

82.5 ± 26.7 83.5 ± 24.3 90.5 ± 8.2

Simple agent 68.0 ± 68.6 60.0 ± 56.2 80.5 ± 27.8

4.4 Monitoring safety with the benchmark94

The benchmark also has a mechanism of monitoring the frequency of constraint violation (by looking95

at actions taken and consequent object states) which gives an insight into the training process of the96

agent. Figure 3 shows two of the example game-sets reflecting the avoid eating rotten egg, which97

can have a max score of 30 and regular eating egg challenge. The training progress showed that the98

agent learnt to achieve the eating-egg goal while reducing both turning on the stove and leaving the99

fridge open with every action contributing the following average scores per episode - turn on stove:100

-1.50, open fridge: -1.58 and eat egg: 4.60. In the rotten egg game, the agent ended up developing a101

policy of collecting rewards from putting the rotten egg in the trashcan rather than cooking the eggs.102

(a) Avoid eating rotten egg game (b) regular egg eating game

Figure 3: Analysing agent safety performance with the benchmark’s monitor feature

5 Conclusion103

In this benchmark we have presented a dataset of games and a flexible framework to bridge the gap104

between the two research areas of safe reinforcement learning and textual reinforcement learning.105

SCERL is a flexible framework to provide a set of tasks to demonstrate physical safety challenges for106

reinforcement learning agents and aims to help the research community explore safety applications107

in a text-based domain. Currently the work is limited to the domestic setting and can be expanded108

to further context such as factory or commercial applications. Furthermore, the underlying logic109

and rule sets can be further expanded to incorporate a more extensive range of safety constraints.110

The benchmark provides a flexible architect to introduce further features, and direction for future111

development can include further autogeneration and other types of safety aligned to human risk-based112

constraints, such as commonsense-based moral and physical safety.113

4

References114

P. Ammanabrolu and M. Hausknecht. Graph constrained reinforcement learning for natural language action115

spaces. arXiv preprint arXiv:2001.08837, 2020.116

L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig. Safe learning in robotics:117

From learning-based control to safe reinforcement learning. Annual Review of Control, Robotics, and118

Autonomous Systems, 5, 2021.119

M. Côté, Á. Kádár, X. Yuan, B. Kybartas, T. Barnes, E. Fine, J. Moore, M. J. Hausknecht, L. E. Asri, M. Adada,120

W. Tay, and A. Trischler. Textworld: A learning environment for text-based games. CoRR, abs/1806.11532,121

2018. URL http://arxiv.org/abs/1806.11532.122

J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal of Machine123

Learning Research, 16(1):1437–1480, 2015.124

J. Luketina, N. Nardelli, G. Farquhar, J. N. Foerster, J. Andreas, E. Grefenstette, S. Whiteson, and T. Rocktäschel.125

A survey of reinforcement learning informed by natural language. CoRR, abs/1906.03926, 2019. URL126

http://arxiv.org/abs/1906.03926.127

A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra. Benchmarking reinforcement learning128

algorithms on real-world robots. In Conference on robot learning, pages 561–591. PMLR, 2018.129

K. Murugesan, M. Atzeni, P. Kapanipathi, P. Shukla, S. Kumaravel, G. Tesauro, K. Talamadupula, M. Sachan,130

and M. Campbell. Text-based rl agents with commonsense knowledge: New challenges, environments and131

baselines. In Thirty Fifth AAAI Conference on Artificial Intelligence, 2021.132

K. Narasimhan, T. Kulkarni, and R. Barzilay. Language understanding for text-based games using deep133

reinforcement learning. arXiv preprint arXiv:1506.08941, 2015.134

P. Osborne, H. Nõmm, and A. Freitas. A survey of text games for reinforcement learning informed by natural135

language. CoRR, abs/2109.09478, 2021. URL https://arxiv.org/abs/2109.09478.136

T.-Y. Yang, M. Y. Hu, Y. Chow, P. J. Ramadge, and K. Narasimhan. Safe reinforcement learning with natural137

language constraints. Advances in Neural Information Processing Systems, 34:13794–13808, 2021.138

5

http://arxiv.org/abs/1806.11532
http://arxiv.org/abs/1906.03926
https://arxiv.org/abs/2109.09478

SUPPLEMENTARY MATERIALS139

1 Computing resources140

Experiments were run on both a cluster and on a personal computer, using 2 NVDIA Tesla V100 GPUs and 16141

CPUs (model Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz). One training takes 30 mins to 4 hours depending142

on the number of episodes and steps in each episode.143

2 Baseline Algorithmic and Hyperparameters144

In the paper we included two agents as described in Murugesan et al. [2021]:145

• Text-based agent (Simple agent): LSTM-A2C from Narasimhan et al. [2015] which chooses actions146

based on the observed text.147

• Knowledge-aware and commonsense agent: KG-2AC Ammanabrolu and Hausknecht [2020] which148

encodes the state of the world as a knowledge graph from the game observations. We leverage the149

Numberbatch embedding based on ConceptNet following the setup of Murugesan et al. [2021].150

The Hyperparameters used in the experiments are described in Table 2151

Table 2: Hyperparameters of the baseline agent runs
Hyperparametere

Hyperparameter Description Value
α Learning Rate 1e-5
γ Discount Rate 0.96
Number of episodes 500
Max step per episode No of steps 50
Observation Mode Observation of no

warning, with warn-
ings and with con-
straints

All 3 modes

Shield Unsafe actions whether to shield ac-
tions or not

False

3 Data documentation and intended uses152

The data’s intended uses are toward practical examples of safety problems that can benefit the Reinforcement153

Learning community.154

3.1 Benchmark workflows155

This subsection outlines the workflow of creating a new batch of games. Figure 2 shows the process includes156

these components:157

6

Figure 4: Overall workflow of the benchmark

In this benchmark, users can introduce safety restrictions under two forms: soft penalties and terminating158

penalties. Additionally, the user can specify the goals of the games, the goal of which may or may not directly159

involve unsafe items. To define the safety constraints relating to an object in the game, the user can define unsafe160

conditions relating to location, the object properties and actions on the object as follows and as described in161

Table 3: “fridge”: “0”: “location”: [], “properties”: [“open”], “actions”: [], “penalty”: [“soft”]162

These contributions were associated with new engineering features as follows:163

• A new feature in the game generation function to automatically source safety constraints from a json164

file including both soft or hard constraints165

• new logical predicates/properties and actions added to the game logic files such as "turn on", "turn166

off", "stained", "broken" and "unattended"167

• new logical rules to link the newly added actions/properties168

The objective of the game set is to present a set of challenges to the agent which needs an awareness about safety169

in order to be solved. SCERL game set is a set of 50 games which include various environments with different170

safety constraints. The objective in all these games is to navigate through an environment (E) with minimum171

safety constraint (C) violations to finally accomplish a goal (G).172

Safety constraints (C): these are conditions in a game which when met will result in a penalty or warning being173

issued by the environment. For example: Leaving the washing machine open in an environment where the174

objective is to wash dirty laundry will result into a penalty.175

Goal (G): it refers to the final task which the agent needs to perform to win the game. For example: Cooking an176

omelette. The games in the SCERL game set were created to offer a big range of safety related challenges which177

apply to a vast variety of objects. Game generation process: Textworld was modified to generate the178

safety-aware games in SCERL. The modification included two major steps:179

1. Introducing new entity types which don’t exist in Textworld. For example, “device” entity type was180

introduced in SCERL to incorporate all the electronic gadgets that could exist in real world. It has181

properties like flicked on and flicked off. This was done using inform7 (a programming language for182

creating interactive fiction games) and. twl (textworld logic files).183

2. Introducing new and complex actions to the entities which closely model the functionalities of these184

objects in a real world. For example, “cooking” a food item with a stove. Majority of these actions185

revolved around the theme of safety. Intentional pitfalls were introduced in the carry out mechanism186

of these actions. For example, of the agent overcooks a food item it gets burned, which will be187

considered a safety constraint violation in the game. This was done using inform7 and .twl files.188

7

Figure 5: Logical component of the benchmark

Table 3: Customising safety requirements in SCERL

Filename Notes
safety_goal.json The agent needs to achieve goals in the game

environment related to the state of objects. For
example, cooking an egg. Safety_goal.json acts
as config for adding these objects to the game
environment.

safety.json The safety world environment has certain con-
straints related to safety that can’t be violated
by the agent. An agent needs to ensure that
none of these constraints are violated in the pro-
cess of achieving the goal. For example, the
egg shouldn’t get burned in the cooking pro-
cess. Safety.json acts as a config to add these
constraints and penalties related to them.

twc_make_game.py Safety world provides allows the users to gener-
ate their own set of games using the safety.json
and the safety_goal.json. twc_make_game.py is
the driver file for the game generation process.

The safety conditions can be defined directly in the gameset, similar to a quest (a state-action pair with a189

penalty/reward) creation in the original TextWorld package. In this benchmark, we provide an additional190

mechanism to provide safety constraints as described in Table 3.191

8

Figure 6: Batch generation component of the benchmark

9

4 Example Games192

Table 4: Gamesets in SCERL
Safety-based RL challenges

Level Description Category Objective Types
Easy Such games usually

have 1 to 2 rooms with
3 to 6 objects with
half of them as unsafe.
These games usually
don’t have a safety
goal. They just have
1-2 safety constraints
which can’t be violated
while interacting with
the environment. For
example, “please avoid
having the washing
machine open”.

Category refers to the na-
ture of safety constraints
and goals applicable to the
objects in the game. De-
pending on the nature of
the objects and actions re-
lated to them. For exam-
ple, leaving the washing ma-
chine open belongs to safe
exploration.

The objective of such games
is to place the objects
present in the game in their
right position while ensur-
ing that none of the safety
constraints are violated.

Medium Such games usually
have 2 to 3 rooms with
6 to 12 objects with
half of them as unsafe.
These games usually
don’t have a safety
goal. They just have
5-6 safety constraints
which can’t be violated
while interacting with
the environment. For
example, “please avoid
having the candle
unattended”.

As medium games have sig-
nificantly greater number
of objects and safety con-
straints, they usually belong
to 3-4 categories.

The objective of such games
is to place the objects
present in the game in
their right position while
ensuring that none of the
safety constraints are vio-
lated. These games are
more difficult because of
the increased number of
rooms, unsafe objects and
constraints.

Hard Such games usually
have 2 to 3 rooms with
6 to 12 objects with
half of them as unsafe.
These games also have
a safety goal along with
5-6 safety constraints
which can’t be violated
while interacting with
the environment to
achieve the safety goal.
For example, “Please
avoid having the egg
burned. Let’s see if
you can get the egg
cooked.”.

As difficult games have sig-
nificantly greater number
of objects and safety con-
straints along with a safety
goal, they usually belong to
4-5 categories.

The objective of such games
is to achieve the safety
goal and to place the ob-
jects present in the game
in their right position while
ensuring that none of the
safety constraints are vio-
lated. These games are
more difficult because of
the inclusion of the safety
goal which usually involves
the agent performing an ac-
tion that leads to a change
in the state of the desired
object. For example, the
egg becoming cooked from
raw. Increased number of
rooms, unsafe objects and
constraints also add to the
difficulty.

10

4.1 Example of Interacting with the Game193

:194

This section provides some example of how to interact with the environment. The environment can be used as a195

gym environment or in the original TextWorld setup. In order to gain extra information about penalty scores196

from unsafe conditions, the user can wrap the environment in our custom-built Monitor Wrapper as197

demonstrated below.198

All of the other commands with the environment remains the same.199

The code below shows how a sequence of winning command play out in the game. The printout of the state and200

scores come directly from the Monitor Wrapper.201

The code below shows the case when the agent violates one of the safety constraints. This results in a negative202

score. In this case, since it does not have any concurrent rewards (such as by residual rewards from an ongoing203

winning event), the overall score reflects the safety penalty.204

11

	Introduction
	Related Work
	SCERL: a safety-focused framework and benchmark for text-based Reinforcement Learning
	Our safety gameset
	New schema for safety annotation
	Example Baselines and Additional features for Language-assisted warning and safety penalty monitoring
	Game design
	Example Baselines
	Using the benchmark's modes on text-based warnings
	Monitoring safety with the benchmark
	Conclusion

	Computing resources
	Baseline Algorithmic and Hyperparameters
	Data documentation and intended uses
	Benchmark workflows
	Example Games
	Example of Interacting with the Game

