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Abstract

Understanding documents with rich layouts plays a vital role in digitization and
hyper-automation but remains a challenging topic in the NLP research community.
Additionally, the lack of a commonly accepted benchmark made it difficult to
quantify progress in the domain. To empower research in this field, we intro-
duce the Document Understanding Evaluation (DUE) benchmark consisting of
both available and reformulated datasets to measure the end-to-end capabilities
of systems in real-world scenarios. The benchmark includes Visual Question
Answering, Key Information Extraction, and Machine Reading Comprehension
tasks over various document domains and layouts featuring tables, graphs, lists,
and infographics. In addition, the current study reports systematic baselines and
analyzes challenges in currently available datasets using recent advances in layout-
aware language modeling. We open both the benchmarks and reference imple-
mentations and make them available at https://duebenchmark.com and
https://github.com/due-benchmark.

1 Introduction

While mainstream Natural Language Processing focuses on plain text documents, the content one
encounters when reading, e.g., scientific articles, company announcements, or even personal notes, is
seldom plain and purely sequential. In particular, the document’s visual and layout aspects that guide
our reading process and carry non-textual information appear to be an essential aspect that requires
comprehension. These layout aspects, as we understand them, are prevalent in tasks that can be much
better solved when given not only text sequence on the input but pieces of multimodal information
covering aspects such as text-positioning (i.e. location of words on the 2D plane), text-formatting
(e.g., different font sizes, colors), and graphical elements (e.g., lines, bars, presence of figures) among
others. Over the decades, systems dealing with document understanding developed an inherent aspect
of multi-modality that nowadays revolves around the problems of integrating visual information
with spatial relationships and text [36, 2, 50, 13].
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Figure 1: Document Understanding covers problems ranging from the ⌅ extraction of key information,
through ⌅ verification statements related to rich content, to ⌅ ⌅ answering open questions regarding
an entire file. It may involve the comprehension of multi-modal information conveyed by a document.

In general, when document processing systems are considered, the term understanding is thought
of specifically as the capacity to convert a document into meaningful information [10, 57, 16]. This
fits into the rapidly growing market of hyperautomation-enabling technologies, estimated to reach
nearly $600 billion in 2022, up 24% from 2020 [42]. Considering that unstructured data is orders of
magnitude more abundant than structured data, the lack of tools necessary to analyze unstructured
data and extract structured information can limit the performance of these intelligent services. The
process of structuring data and content must be robust to various document domains and tasks.

Despite its importance for digital transformation, the problem of measuring how well available
models obtain information from a wide range of tasks and document types and how suitable they are
for freeing workers from paperwork through process automation is not yet addressed. Meanwhile,
in other research communities, there are well-established progress measuring methods, like the
most recognizable NLP benchmarks of GLUE and SuperGLUE covering a wide range of problems
related to plain-text language understanding [53, 52] or VTAB and ImageNet in the computer vision
domain [59, 11]. We intend to bridge this major gap by introducing the first Document Understanding
benchmark (available at https://duebenchmark.com).

It includes tasks that either originally had a vital layout understanding component or were reformulated
in such a way that after our modification, they require layout understanding. In particular, there is no
structured representation of the underlying text, such as a database-like table given in advance, and it
has to be determined from the input file as a part of the end-to-end process. Every time, there is only
a PDF file provided as an input. Additionally, for the convenience of other researchers, we provide
information about textual tokens and their locations (bounding boxes) which are coming from the
OCR system or directly from the born-digital PDF file (see Section 4).
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Contribution. The idea of the paper is to gather, reformulate and unify a set of intuitively dissimilar
tasks that we found to share the same underlying requirement of understanding layout concepts. In
order to organize them in a useful benchmark, we contributed by performing the following steps:

1. We reviewed and selected the available datasets. Additionally, we reformulated three tasks
to a document understanding setting and obtained original documents for all of them (PWC,
WTQ, TabFact).

2. We performed data cleaning, including the improvements of data splits (DeepForm, WTQ),
data deduplication, manual annotation (PWC, DeepForm), and converted data to a unified
format (all datasets).

3. We implemented competitive baselines and measured human performance where it was
required (PWC, DeepForm, WTQ).

4. We identified challenges related to the current progress in the DU domain’s tasks and
provided manually annotated diagnostic sets (all datasets).

These contributions are organized and described in Table 2. Additionally, a wider review of available
tasks is described in Appendix A.

2 The state of Document Understanding

We treat Document Understanding as an umbrella term covering problems of Key Information
Extraction, Classification, Document Layout Analysis, Question Answering, and Machine Reading
Comprehension whenever they involve rich documents in contrast to plain texts or image-text pairs
(Figure 1).

In addition to the problems strictly classified as Document Understanding, several related tasks can
be reformulated as such. These provide either text-figure pairs instead of real-world documents or
parsed tables given in their structured form. Since both can be rendered as synthetic documents with
some loss of information involved, they are worth considering bearing in mind the low availability of
proper Document Understanding tasks.

2.1 Landscape of Document Understanding tasks

KIE. Key Information Extraction, also referred to as Property Extraction, is a task where tuple values
of the form (property, document) are to be provided. Contrary to QA problems, there is no question
in natural language but rather a phrase or keyword, such as total amount, or place of birth. Public
datasets in the field include extraction performed on receipts [20, 38], invoices, reports [45], and
forms [24]. Documents within each of the mentioned tasks are homogeneous, whereas the set of
properties to extract is limited and known in advance – in particular, the same type-specific property
names appear in both test and train sets. In contrast to Name Entity Recognition, KIE typically does
not assume that token-level annotations are available, and may require normalization of values found
within the document.

Classification. Classification in our context involves rich content, where comprehension of both
visual and textual aspects is required since unimodal models underperform. Though document image
classification was initially approached using solely the methods of Computer Vision, it has recently
become evident that multi-modal models can achieve significantly higher accuracy [55, 56, 40].
Similar conclusions were recently reached in other tasks, e.g., assigning labels to excerpts from
biomedical papers [54].

DLA. Document Layout Analysis, performed to determine a document’s components, was initially
motivated by the need to optimize storage and the transmission of large information volumes [36].
Even though its motivation has changed over the years, it is rarely an end in itself but rather a means
to achieve a different goal, such as improving OCR systems. A typical dataset in the field assumes
detection and classification of page regions or tokens [61, 30].

QA and MRC. At first glance, Question Answering and Machine Reading Comprehension over
Documents is simply the KIE scenario where a question in natural language replaced a property
name. More differences become evident when one notices that QA and MRC involve an open set of
questions and various document types. Consequently, there is pressure to interpret the question and
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to possess better generalization abilities. Furthermore, a specific content to analyze demands a much
stronger comprehension of visual aspects, as the questions commonly relate to figures and graphics
accompanying the formatted text [33, 32, 49].

QA over figures. Question Answering over Figures is, to some extent, comparable with QA and
MRC over documents described above. The difference is that a ‘document’ here consists of a single
born-digital plot, reflecting information from chosen, desirably real-world data. Since questions in
this category are typically templated and figures are synthetically generated by authors of the task,
datasets in this category contain as many as millions of examples [34, 4].

QA and NLI over tables. Question Answering and Natural Language Inference over Tables are
similar, though in the case of NLI, there is a statement to verify instead of a question to answer.
There is never a need to analyze the actual layout, as both assume comprehension of a provided data
structure in a way that is equivalent to a database table. Consequently, the methods proposed here are
distinct from those used in Document Understanding [39, 7].

2.2 Gaps and mistakes in Document Understanding evaluation

Currently available datasets and previous work in the field cannot on their own provide enough
information that would allow researchers to generalize results to other tasks within the Document
Understanding paradigm. It is crucial to validate models on many tasks with a variety of characteristics
a Document Understanding system may encounter in real-world applications. Notably, the scope
of the challenges in a single dataset is limited to a specific task (e.g., Key Information Extraction,
Question Answering) or to a particular (sub)problem (e.g., processing long documents in Kleister [45],
layout understanding in DocBank [30]).

Simultaneously, a common practice in the community is to evaluate models on private data [27, 12,
37, 31] or task-specific datasets selected by authors independently [55, 56, 63, 40, 1, 19], making fair
comparison difficult. Many publicly available datasets are too small to enable reliable comparison
(FUNSD [24], Kleister NDA [45]) or are almost solved, i.e., there is no room for improvement due to
annotation errors and near-perfect scores achieved by models nowadays (SROIE [21], CORD [38],
RVL-CDIP [17]).

In light of the above circumstances, the review and selection of representative and reliable tasks is of
great importance.

3 End-to-end Document Understanding benchmark

The primary motivation for proposing this benchmark was to select datasets covering the broad range
of tasks and DU-related problems satisfying the highest quality, difficulty, and licensing criteria.

Importantly, we opt for an end-to-end nature of tasks as opposed to, e.g., problems assuming some
prior information on document layout. In particular, there is no structured representation of the
underlying text, such as a database-like table given in advance, and it has to be determined from the
raw input file as part of the end-to-end process.

We consider the aforementioned principle of end-to-end nature crucial because it ensures measurement
to which degree manual workers can be supported in their repetitive tasks, i.e., how the ultimate goal
of document understanding systems is supported in real-world applications. The said alignment with

real applications is a vital characteristic of a good benchmark [29, 43].

3.1 Selected datasets

Extensive documentation of the selection process, including the datasheet, is available in Appendices
A-H and in the supplementary materials. Table 1 summarizes the selected tasks described in detail
below, whereas Appendix A covers the complete list of considered datasets and reasons we omitted
them.

Lack of the classification, layout analysis and figure QA tasks in this selection results from the fact
that none of the available sets fulfills the assumed selection criteria.
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Table 1: Comparison of selected datasets with their base characteristics, including information
regarding whether an input is an entire document (Doc.) or document excerpt (Exc.)

Task Size (k documents) Mean samples Type Metric Features DomainTrain Dev Test per document Input Scanned

DocVQA 10.2 1.3 1.3 3.9 Visual QA ANLS
9
>>>=

>>>;
Doc.

+ Business
InfographicsVQA 4.4 0.5 0.6 5.5 Visual QA ANLS � Open
Kleister Charity 1.7 0.4 0.6 7.8 KIE F1 +/� Legal
PWC 0.2 0.06 0.12 25.5 KIE ANLS2 � Scientific
DeepFormF 0.7 0.1 0.3 4.8 KIE F1 +/� Finances
WikiTableQuestionsF 1.4 0.3 0.4 11.3 Table QA Acc.

�
Exc.

� Open
TabFactF 13.2 1.7 1.7 7.1 Table NLI Acc. � Open

The F symbol denotes that the dataset was reformulated or modified to improve its quality or align
with the Document Understanding paradigm (see Table 2 and Appendix C). This symbol is not used to
distinguish minor changes, such as data deduplication introduced in multiple datasets (Appendix B).

DocVQA. Dataset for Question Answering over single-page excerpts from various real-world
industry documents. Typical questions present here might require comprehension of images, free
text, tables, lists, forms, or their combination [33]. The best-performing solutions so far make
use of layout-aware multi-modal models employing either encoder-decoder or sequence labeling
architectures [40, 56].

InfographicsVQA. The task of answering questions about visualized data from a diverse collection
of infographics, where the information needed to answer a question may be conveyed by text, plots,
graphical or layout elements. Currently, the best result is obtained by an encoder-decoder model
[32, 40].

Kleister Charity. A task for extracting information about charity organizations from their published
reports is considered, as it is characterized by careful manual annotation by linguists and a significant
gap to human performance [45]. It addresses important areas, namely high layout variability (lack of
templates), need for performing an OCR, the appearance of long documents, and multiple spatial
features (e.g., tables, lists, and titles).

PWCF. Papers with Code Leaderboards dataset was designed to extract result tuples from machine
learning papers, including information on task, dataset, metric name, score. The best performing ap-
proach involves a multi-step pipeline, with modules trained separately on identified subproblems [26].
In contrast to the original formulation, we provide a complete paper as input instead of the table.
This approach allows us to treat the problem as an end-to-end Key Information Extraction task with
grouped variables (Appendix C).

DeepFormF. KIE dataset consisting of socially important documents related to election spending.
The task is to extract contract number, advertiser name, amount paid, and air dates from advertising
disclosure forms submitted to the Federal Communications Commission [47]. We use a subset of
distributed datasets and improve annotations errors and make the annotations between subsets for
different years consistent (Appendix C).

WikiTableQuestions (WTQ)F. Dataset for QA over semi-structured HTML tables sourced from
Wikipedia. The authors intended to provide complex questions, demanding multi-step reasoning on a
series of entries in the given table, including comparison and arithmetic operations [39]. The problem
is commonly approached assuming a semantic parsing paradigm, with an intermediate state of formal
meaning representation, e.g., inferred query or predicted operand to apply on selected cells [58, 18].
We reformulate the task as document QA by rendering the original HTML and restrict available
information to layout given by visible lines and token positions (Appendix C).

TabFactF. To study fact verification with semi-structured evidence over relatively clean and simple
tables collected from Wikipedia, entailed and refuted statements corresponding to a single row
or cell were prepared by the authors of TabFact [7]. Without being affected by the simplicity of
binary classification, this task poses challenges due to the complex linguistic and symbolic reasoning

2The ANLS metric used in PWC, representing KIE with property groups, differs from one used in VQA.
Since it is not known how many groups are to be returned, the basis of the metric is the F1 score (in contrast to
accuracy). Moreover, we require exact math for numerical variables. See implementation in the repository.
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Figure 2: Number of annotated instances in each diagnostic subset category. All datasets in total.

required to perform with high accuracy. Analogously to WTQ, we render tables and reformulate the
task as document NLI (Appendix C).

3.2 Diagnostic subsets

As pointed out by Ruder, to better understand the strengths and weaknesses of our models, we

furthermore require more fine-grained evaluation [43]. We propose several auxiliary validation
subsets, spanning across all the tasks, to improve result analysis and aid the community in identifying
where to focus its efforts. A detailed description of these categories and related annotation procedures
is provided in Appendix F.

Answer characteristic. We consider four features regarding the shallow characteristic of the answer.
First, we indicate whether the answer is provided in the text explicitly in exact form (extractive

data point) or has to be inferred from the document content (abstractive one). The second category
includes, e.g., all the cases where value requires normalization before being returned (e.g., changing
the date format). Next, we distinguish expected answers depending on whether they contain a single

value or list of values. Finally, we decided to recognize several popular data types depending on
shapes or class of expected named entity, i.e., to distinguish date, number, yes/no, organization,

location, and person classes.

Evidence form. As we intend to analyze systems dealing with rich data, it is natural to study
the performance w.r.t. the form that evidence is presented within the analyzed document. We
distinguished table/list, plain text, graphic element, layout, and handwritten categories.

Required operation. Finally, we distinguish whether i.e., arithmetic operation, counting,

normalization or some form of comparison has to be performed to answer correctly.

Table 2: Brief characteristics of our contribution, major fixes and modifications introduced to
particular datasets. The enhancements of "Reformulation as DU" or "Improving data splits" are
marked with F and are sufficient to consider the dataset unique; hence, achieved results are not
comparable to the previously reported. See Appendix C for a full description of tasks processing.

Dataset Diagnostic Unified Human Manual Reformulation Improved
sets format performance annotation as DU split

DocVQA + + � � � �
InfographicsVQA + + � � � �
Kleister Charity + + � � � �
PWCF + + + + + +
DeepFormF + + + + � +
WikiTableQuestionsF + + + � + +
TabFactF + + � � + �

6



Datasets included in the benchmark differ in task type, origin, and answer form. As their random
samples were annotated, diagnostic categories are not distributed uniformly and reflect the character
of the problems encountered in a particular task (see Figures 10–11 in the Appendix). For example,
the requirement of answer normalization is prevalent in KIE tasks of DeepForm, PWC, and Kleister
Charity but not elsewhere. Consequently, the general framework of diagnostic subsets we designed
can be used not only to analyze model performance but also to characterize the datasets themselves.

3.3 Intended use

Data. We propose a unified data format for storing information in the Document Understanding
domain and deliver converted datasets as part of the released benchmark (all selected datasets are
hosted on the https://duebenchmark.com/data and can be downloaded from there). It assumes
three interconnected dataset, document annotation and document content levels. The dataset level is
intended for storing the general metadata, e.g., name, version, license, and source. The documents
annotation level is intended to store annotations available for individual documents within datasets
and related metadata (e.g., external identifiers). The content level store information about output and
metadata from a particular OCR engine that was used to process documents (Appendix G).

Evaluation protocol. To evaluate a system on the DUE benchmark, one must create a JSON file
with the results (in the data format mentioned above) based on the provided test data for each dataset
and then upload all of the data to the website. Moreover, we establish a set of rules (Appendix H)
which guarantees that all the benchmark submissions will be fair to compare, reproducible, and
transparent (e.g., training performed on a development set is not allowed).

Leaderboard. We provide an online platform for the evaluation of Document Understanding models.
To keep an objective means of comparison with the previously published results, we decided to retain
the initially formulated metrics. To calculate the global score we resort to an arithmetic mean of
different metrics due to its simplicity and straightforward calculation.3 In our platform we focus
on customization, e.g., multiple leaderboards are available, and it is up to the participant to decide
whether to evaluate the model on an entire benchmark or particular category. Moreover, we pay
attention to the explanation by providing means to analyze the performance concerning document or
problem types (e.g., using the diagnostic sets we provide).4

4 Experiments

Following the evaluation protocol, the training is run three times for each configuration of model size,
architecture, and OCR engine. We performed OCR pre-processing stage for DocVQA, Infograph-
icsVQA, Kleister Charity, and DeepForm datasets since they have PDF (mix of scans and born-digital
documents) or image files as an input. PWC, WikiTableQuestions and TabFact datasets contain all
born-digital documents so the ground true data are available and there is no need to run OCR engine
(see Appendix C). In both cases, the pre-processing stage as an output return textual tokens and their
locations (bounding boxes and page number) as a list (as a result the reading order is also provided).

4.1 Baselines

The focus of the experiments was to calculate baseline performance using a simple and popular model
capable of solving all tasks without introducing any task-specific alterations. Employed methods
were based on the previously released T5 model with a generic layout-modeling modification and
pretraining.

T5. Text-to-text Transformer is particularly useful in studying performance on a variety of sequential
tasks. We decided to rely on its extended version to identify the current level of performance
on the chosen tasks and to facilitate future research by providing extendable architecture with a
straightforward training procedure that can be applied to all of the proposed tasks in an end-to-end
manner [41].

3Scores on the DocVQA and InfographicsVQA test sets are calculated using the official website.
4We intend to gather datasets not included in the present version of the benchmark to facilitate evaluations in

an entire field of DU, regardless of if they are included in the current version of the leaderboard.
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Table 3: Best results of particular model configuration in relation to human performance and external
best. The external bests marked with — were omitted due to the significant changes in the data sets.
U stands for unsupervised pretraining.

Dataset / Task type Score (task-specific metric)
T5 T5+2D T5+U T5+2D+U External best Human

DocVQA 70.4±2.1 69.8±0.7 76.3±0.3 81.0±0.2 87.1 [40] 98.1
InfographicsVQA 36.7±0.6 39.2±1.0 37.1±0.2 46.1±0.1 61.2 [40] 98.0
Kleister Charity 74.3±0.3 72.6±1.1 76.0±0.1 75.9±0.7 83.6 [63] 97.5
PWCF 25.3±3.3 25.7±1.0 27.6±0.6 26.8±1.8 — 69.3
DeepFormF 74.4±0.6 74.0±0.7 82.9±0.9 83.3±0.3 — 98.5
WikiTableQuestionsF 33.3±0.7 30.8±1.9 38.1±0.1 43.3±0.4 — 76.7
TabFactF 58.9±0.5 58.0±0.3 76.0±0.1 78.6±0.1 — 92.1

Visual QA 53.6 54.5 56.7 63.5 n/a 98.1
KIE 69.1 67.7 74.8 76.4 n/a 88.4
Table QA/NLI 29.4 29.0 38.0 39.3 n/a 84.4

Overall 50.7 50.4 56.5 59.8 n/a 90.3

T5+2D. Extension of the model we propose assumes the introduction of 2D positional bias that has
been shown to perform well on tasks that demand layout understanding [56, 40, 63]. We rely on
2D bias in a form introduced in TILT model [40] and provide its first open-source implementation
(available in supplementary materials). We expect that comprehension of spatial relationships
achieved in this way will be sufficient to demonstrate that methods from the plain-text NLP can be
easily outperformed in the DUE benchmark.

Unsupervised pretraining. We constructed a corpus of documents with a visually rich structure,
based on 480k PDF files from the UCSF Industry Documents Library. It is used with a T5-like
masked language model pretraining objective but in a salient span masking scheme where named
entities are preferred over random tokens [41, 15]. An expected gain from its use is to tune 2D biases
and become more robust to OCR errors and incorrect reading order.5

Human performance. We relied on the original estimation for DocVQA, InfographicsVQA, Charity,
and TabFact datasets. For the PWC, WTQ and DeepForm estimation of human performance, we
used the help of professional in-house annotators who are full-time employees of our company (see
Appendix E). Each dataset was handled by two annotators; the average of their scores, when validated
against the gold standard, is treated as the human performance (see Table 3). Interestingly, human
scores on PWC are relatively low in terms of ANLS value – we explained this and justified keeping
the task in Appendix C.

4.2 Results

Comparison of the best-performing baselines to human performance and top results reported in the
literature is presented in Table 3. In several cases, there is a small difference between the performance
of our baselines and the external best. It can be attributed to several factors. First, the best results
previously obtained on the tasks were task-specific, i.e., were explicitly designed for a particular task
and did not support processing other datasets within the benchmark. Secondly, there are differences
between the evaluation protocol that we assume and what the previous authors assumed (e.g., we do
not allow training models on the development sets, we require reporting an average of multiple runs,
we disallow pretraining on datasets that might lead to information leak). Thirdly, our baseline could
not address examples demanding vision comprehension as it does not process image inputs. Finally,
there is the case of Kleister Charity. An encoder-decoder model we relied on as a one-to-fit-all
baseline cannot process an entire document due to memory limitations. As a result, the score was
lower as we consumed only a part of the document. Note that external bests for reformulated tasks
are no longer applicable to the benchmark in its present, more demanding form.

5Details of the training procedure, such as used hyperparameters and source code, are available in the
repository accompanying the paper.
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Irrespective of the task and whether our competitive baselines or external results are considered, there
is still a large gap to humans, which is desired for novel baselines. Moreover, one can notice that
the addition of 2D positional bias to the T5 architecture leads to better scores assuming the prior
pretraining step, which is yet another result we anticipated as it suggests that considered tasks have
an essential component of layout comprehension.

Interestingly, the performance of the model can be significantly enhanced (up to 20.6 points difference
for TabFact dataset and T5+2D+U model) by providing additional data for the said unsupervised
pretraining. Thus, the results not only support the premise that understanding 2D features demand
more unlabeled data than the chosen datasets can offer but also lay a common ground between them,
as the same layout-specific pretraining improved performance on all of them independently. This
observation confirms that the notion of layout is a vital part of the chosen datasets.

4.3 Challenges of the Document Understanding domain

Owing to its end-to-end nature and heterogeneity, Document Understanding is the touchstone of
Machine Learning. However, the challenges begin to pile up due to the mere form a document is
available in, as there is a widespread presence of analog materials such as scanned paper records. In
the analysis below, we aim to explore the field of DU from the perspective of the model’s development
and point out the most critical limiting factors for achieving satisfying results.

Impact of OCR quality. We present detailed results for Azure CV and Tesseract OCR engine in
Table 5. The differences in scores are huge for most of the datasets (up to 18.4% in DocVQA) with
a clean advantage for Azure CV. Consequently, we see that architectures evaluated with different
OCR engines are incomparable, e.g., the choice of an OCR engine may impact results more than the
choice of model architecture. Moreover, with the usage of our diagnostic datasets we can observe
that Tesseract struggle the most with Handwritten and Table/list categories in comparison to Plain

text category. It is worth noting that we see a bigger difference in the results between Azure CV and
Tesseract for Extractive category, which suggest that we should use better OCR engines especially
for that kind of problems.

Requirement of multi-modal comprehension. In addition to layout and textual semantics, part of
the covered problems demand a Computer Vision component, e.g., to detect a logo, analyze a figure,
recognize text style, determine whether the document was signed or the checkbox nearby was selected.
This has been confirmed by ablation studies performed by Powalski et al. [40] for the DocVQA and by
the fact that models with vision component achieve better performance on leaderboards for datasets
such as DocVQA and the InfographicsVQA datasets [40, 56, 23, 22]. Thus, Document Understanding
naturally incorporates challenges of both multi-modality and each modality individually (but not for
all tasks equally, see Figures 10–11 in the Appendix). Since none of our baselines contain a vision
component, we underperform on the category of problems requiring multi-modality, as is visible on
the diagnostic dataset we proposed. Nevertheless, better performance of the T5+2D model suggests
that part of the problems considered as visual, can be to some extent approximated by solely using
the words’ spatial relationships (e.g., text curved around a circle, located in the top-left corner of the
page presumably has the logo inside).

Single architecture for all datasets. It is common that token-level annotation is not available, and
one receives merely key-value or question-answer pairs assigned to the document. Even in problems
of extractive nature, token spans cannot be easily obtained, and consequently, the application of
state-of-the-art architectures from other tasks is not straightforward. In particular, authors attempting
Document Understanding problems in sequence labeling paradigms were forced to rely on faulty
handcrafted heuristics [40]. In the case of our baseline models, this problem is addressed straight-
forwardly by assuming a sequence-to-sequence paradigm that does not make use of token-level
annotation. This solution, however, comes with a trade-off of low performance on datasets requiring
comprehension of long documents, such as Kleister Charity (see Table 4).

Table 4: F1 score on the Kleister Charity challenge with various maximum input sequence lengths.

Dataset Maximum input sequence length
1024 2048 4096 6144 (max)

Kleister Charity 56.6 66 73.2 75.9
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Table 5: Scores for different OCR engines and datasets with T5+2D model performing on 1024
tokens.

OCR DocVQA IVQA Charity DeepForm Average Average scores for different diagnostic categories
Extractive Inferred Handwritten Table/list Plain text

Azure CV (v3.2) 71.8 40.0 57.7 74.8 61.1 51.3 33.0 31.3 46.0 65.3
Tesseract (v4.0) 55.7 28.3 55.7 66.8 51.6 43.1 29.5 12.5 27.2 61.1

Figure 3: Results for diagnostic subsets. See Appendix F for detailed description of these categories.

Diagnostic dataset. Our diagnostic datasets are an important part of the analysis of different
challenges in general (e.g., OCR quality or multi-modal comprehension, as we mentioned above) and
for debugging different types of architectural decisions (see Figure 3). For example, we can observe a
big advantage of unsupervised pretraining in the inferred, number, table/list categories, which shows
the importance of a good dataset for specific problems (dataset used for pretraining the original T5
model has a small number of documents containing tables). The most problematic categories for all
models were those related to complex logic operations: arithmetic, counting, comparison.

5 Conclusions

To efficiently pass information to the reader, writers often assume that structured forms such as tables,
graphs, or infographics are more accessible than sequential text due to human visual perception and
our ability to understand a text’s spatial surroundings. We investigate the problem of correctly mea-
suring the progress of models able to comprehend such complex documents and propose a benchmark
– a suite of tasks that balance factors such as quality of a document, importance of layout information,
type and source of documents, task goal, and the potential usability in modern applications.

We aim to track the future progress on them with the website prepared for transparent verification
and analysis of the results. The former is facilitated by the diagnostics subsets we derived to measure
vital features of the Document Understanding systems. Finally, we provide a set of solid baselines,
datasets in the unified format, and released source code to bootstrap the research on the topic.
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