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Abstract

Generative Adversarial Networks (GANs) are proficient at generating synthetic data; how-
ever, they face the ongoing issue of mode collapse. This problem arises when the generator
focuses on producing a limited set of data patterns that trick the discriminator during the
optimization process, requiring novel solutions. In our endeavor to address mode collapse in
Deep Convolutional Generative Adversarial Networks (DCGAN) and foster greater sample
diversity, we introduce a Bayesian framework applied to DCGAN, referred to as Bayesian
DCGAN. This framework makes three key contributions: (i) the integration of a weight
distribution within the network, achieved through the application of the Bayes by Backprop
method; (ii) employing a mean-field variational inference approach to approximate the pos-
terior distributions of weights; and (iii) putting forth a mathematical approach to quantify
the diversity present in the samples generated by Bayesian DCGAN, contrasting it with the
output of conventional DCGAN. Our experimental results showcase that Bayesian DCGAN
generates more diverse samples compared to its conventional counterpart, thereby signifi-
cantly reducing uncertainty in neural networks. This enhancement in diversity is pivotal for
creating robust and adaptable models, particularly in scenarios where a broader spectrum
of data representations is essential for effective learning and generalization.

1 Introduction

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have gained significant attention for their
ability to transform white noise into realistic candidate samples using deep neural networks. The inherent
adversarial process of GANs revolves around the interactive relationship between a generator (G) and a
discriminator (D). The fundamental principle guiding the adversarial learning in GANs is rooted in the
generator’s endeavor to trick the discriminator by generating samples that follow the real distribution of
data, pdata. Concurrently, the discriminator strives to distinguish between the artificially created samples by
G and the real ones originating from the actual data distribution. This competition is through a min-max
game between G and D (Goodfellow et al., 2014):

min
G

max
D

V (G, D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

A prominent variant of GAN, the Deep Convolutional Generative Adversarial Network (DCGAN) (Radford
et al., 2015) architecture, was introduced to augment the internal complexity of both the generator and
discriminator networks, and it serves as a foundational pillar in GAN research. Like traditional GANs,
DCGAN consists of a discriminator (D) and a generator (G) sharing the same objective function. Both
networks undergo an adversarial process, updating their weights based on calculated losses. This design
employs convolution layers for both the generator (Figure 1) and discriminator networks, as opposed to
the multilayer perceptrons used in the traditional GAN, which helps stabilize the training process of GANs
(Radford et al., 2015; Farajzadeh-Zanjani et al., 2022).

GANs and DCGANs have significantly impacted the fields of artificial intelligence and machine learning
(Saxena & Cao, 2021; Jabbar et al., 2021; Motwani & Parmar, 2020). It has been demonstrated that DCGAN
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Figure 1: Generator architecture in DCGAN

is effective in addressing the challenges posed by unbalanced image datasets. This proves particularly valuable
in the medical field, where detecting new emerging diseases often faces limitations due to insufficient datasets
(Kazeminia et al., 2020; Bushra & Shobana, 2020; Frid-Adar et al., 2018a;b; Chuquicusma et al., 2018;
Kitchen & Seah, 2017). GANs showed promising results in generating realistic images from poorly drawn
forensic sketches for facial recognition applications (Bushra & Maheswari, 2021). It can be applied in the
anomaly detection field (Schlegl et al., 2017), and has demonstrated remarkable results in representation
learning (Lee et al., 2018; Mathieu et al., 2016). The development of GANs, especially with the advent of
DCGANs, has opened new horizons for generating high-quality, realistic data, laying a foundation for future
advancements in the field of generative modeling.

Despite the numerous benefits of GAN models (including DCGAN), they face several training challenges,
such as vanishing gradients (Wiatrak et al., 2019), non-convergence (Lee & Seok, 2020), and mode collapse
(Cao et al., 2018). If the discriminator becomes too good, the generator’s training can stagnate due to
vanishing gradients (Arjovsky & Bottou, 2017). Essentially, an overly optimal discriminator fails to provide
the generator with sufficient feedback to improve its performance. On the other hand, as the generator
improves during training, the discriminator’s performance declines because it becomes harder to distinguish
between real and fake data. If the generator becomes perfect, the discriminator’s accuracy drops and makes
random predictions. This creates a convergence issue for the GANs. DCGANs similar to GANs suffer from
mode collapse (Durgadevi et al., 2021; Thanh-Tung & Tran, 2020). Mode collapse occurs when the generator
concentrates on generating a restricted range of data patterns to mislead the discriminator. It fixates on
a small number of predominant modes within the training data, falling short of capturing the complete
diversity inherent in the data distribution. Consequently, the generator is prevented from exploring the
entirety of the data distribution, resulting in the generation of repetitive data samples and overlooking the
diverse variations present in the real dataset. Among these issues, mode collapse is particularly intriguing
because it significantly limits the diversity of the generated samples. Addressing mode collapse is essential
for improving the overall performance and robustness of GANs.

In this study, we address the problem of mode collapse in GANs by incorporating a Bayesian framework.
Rather than using fixed weights in the network, we treat them as random variables with associated distri-
butions. This approach allows the model to capture uncertainty and variability in its parameters, thereby
facilitating the generation of more diverse samples. This framework makes three key contributions:

• Integrating a weight distribution within the network using the Bayes by Backprop method.
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• Employing mean-field variational inference to approximate the posterior distributions of weights.

• Proposing a mathematical approach to quantify and compare the diversity of samples generated by
Bayesian DCGAN with those from conventional DCGAN.

2 Related Work

To avoid mode collapse in GANs, various losses for discriminator have been proposed, such as f-GAN
(Nowozin et al., 2016), least-squares (LSGAN) (Mao et al., 2017), Wasserstein distance (WGAN) (Arjovsky
et al., 2017), and WGAN-GP (Gulrajani et al., 2017). Arjovsky et al. (2017) introduced the Wasserstein
GAN (WGAN), a widely adopted metric that addresses this issue by enabling the discriminator to be trained
to optimality without experiencing vanishing gradients. By enabling the discriminator to effectively learn
and reject the generator’s stable outputs, the generator is compelled to produce more diverse results. The
WGAN proposes a new cost function based on the Wasserstein distance, also known as the Earth Mover’s
Distance, between probability distributions, which provides a smoother gradient throughout the training
process. In WGAN, the discriminator (referred to as the critic) is required to be within the space of 1-
Lipschitz functions, a condition enforced by the authors through weight clipping.

Saatci & Wilson (2017) introduces an innovative formulation for GANs employing Bayesian techniques. This
method considers weight uncertainty in the construction of the GAN for data generation. To achieve this, the
stochastic gradient Hamiltonian Monte Carlo (HMC) algorithm was employed as a sampling technique. It
facilitates the marginalization of the posterior distributions over the weight parameters of both the generator
θg and discriminator θd. More specifically, it provides an approximation of the entire distribution over
the parameters of both the generator and discriminator. Their findings illustrate that Bayesian GAN can
effectively encompass a varied set of complementary representations of data.

Chien & Kuo (2019) proposes a Bayesian framework for GANs, drawing inspiration from GANs, Variational
Autoencoders (VAE), and Bayesian neural networks. The introduced approach maximizes the variational
lower bound of log likelihood within the GAN framework, resulting in a variational Bayesian GAN capable
of exploring parameter posteriors and generating realistic synthesized samples. They applied the variational
Bayesian inference for the posterior over parameter weights instead of using the stochastic gradient HMC
algorithm for posterior sampling (see Figure 2). They argued that the variational Bayesian version of GAN
demonstrated favorable performance in both unsupervised learning for a regression task and semi-supervised
learning for a classification task, as evidenced by the experiments.

Figure 2: VGAN architecture presented by Chien & Kuo (2019)
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In the present study, to address the issue of mode collapse in DCGANs, our approach introduces a Bayesian
framework. This framework integrates a probability distribution over the weights within the network. We
accomplish this by leveraging the Bayes by Backprop method, which employs mean field variational inference
to approximate the posterior distributions of these weights (Blundell et al., 2015). In fact, instead of having
fixed weights in the network, we treat them as random variables with distributions. This enables the model
to capture uncertainty and variability in its parameters, which can help in generating more diverse samples.
Moreover, we propose a mathematical method to quantify the diversity of the generated samples from our
Bayesian DCGAN model compared to conventional DCGANs.

3 Method

In this section, we discuss the Bayesian Neural Network in 3.1, the application of mean-field variational
inference in BNN in 3.2, and the Bayes by Backprop method as well as our proposed Bayesian DCGAN
architecture in 3.3.

3.1 Bayesian Neural Network

Deep learning has gained significant attention across various fields but suffers from overfitting (Szegedy et al.,
2013) and overconfident estimates (Goan & Fookes, 2020), necessitating careful management. A Bayesian
Neural Network (BNN) deviates from the traditional deep neural network paradigm, offering a distinctive
solution to the challenges posed by overfitting in deep learning models. In contrast to conventional neural
networks that provide point estimates for weights, a BNN incorporates uncertainty into its predictions
by representing the weights and biases as probability distributions instead of fixed values (Figure 3). This
distinctive approach enables the incorporation of prior knowledge regarding these parameters into the model,
allowing for the continuous refinement of beliefs as new data becomes available. By embracing probabilistic
representations, Bayesian Neural Networks provide a flexible and adaptive framework, particularly useful for
scenarios where uncertainty estimation is crucial. This design allows the model to not only make predictions
but also express the range of potential outcomes, offering a more comprehensive understanding of the data
and facilitating informed decision-making.
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Figure 3: Bayesian Neural Networks (right) vs conventional Neural Networks

BNNs represent a unique class of stochastic neural networks that integrate Bayesian inference principles
into their architecture. In the context of BNNs, network parameters, encompassing weights and biases,
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are treated as random variables, and a probability distribution is systematically defined over them (Goan &
Fookes, 2020). The distinguishing feature of BNNs lies in their capacity to learn and adapt to the distribution
of weights. This learning process empowers BNNs to provide not just point estimates but a comprehensive
measure of uncertainty regarding their predictions. This aspect of quantifiable uncertainty proves to be
highly advantageous across a diverse array of applications.

Bayes’ Theorem offers a powerful tool for representing a distribution over parameters conditioned on the
observed data, denoted as the posterior probability distribution P (W |D). The theorem is expressed through
the equation:

P (W |D) = P (D|W )P (W )
P (D) = P (D|W )P (W )∫

W ′ P (D|W ′)P (W ′) dW ′ (2)

In this context, P (W ) represents the prior probability distribution, P (D|W ) denotes the data likelihood,
and P (D) is the marginal probability (also refers as normalization constant). This method of computing
the posterior P (W |D) is commonly referred to as exact inference. However, as indicated in the equation 2,
computing P (D) requires an integral over the weight space, which is often intractable. To overcome this
challenge, two primary approaches have been proposed: Markov Chain Monte Carlo (MCMC) and Variational
Inference. While Saatci & Wilson (2017) utilizes Hamiltonian Monte Carlo (an MCMC method), Blundell
et al. (2015) employs the Variational Inference method to estimate the posterior distribution, a technique
also employed in the current study and will be discussed in section 3.2.

3.2 Mean Field Variation Inference Method for BNN

Variational Inference is a method that seeks to approximate the posterior distribution P (W |D) by introducing
a surrogate distribution denoted as q. This surrogate, known as the variational distribution, is selected from
a tractable family of distributions. The objective is to find the distribution q that is the “closest” to the
true posterior, thereby facilitating more manageable computations. In mean field variational inference, the
algorithm operates under the assumption that the variational family is fully factorized. This means that the
joint posterior distribution, denoted as p(w|D), can be approximated by the product of individual variational
distributions for each latent random variable. In other words, the approximation is expressed as:

p(w|D) ≈
n∏

i=1
qi(wi) (3)

As previously stated, Variational Inference aims to identify the distribution q(w) that best approximates the
true posterior. The proximity between the two distributions is quantified using the Kullback-Leibler (KL)
divergence (Kullback & Leibler, 1951; Joyce, 2011), denoted as KL(q||p), defined as:

KL(q(w)||p(w|D)) =
∫

w

q(w) log q(w)
p(w|D) dw = E

[
log q(w)

p(w|D)

]
(4)

where q(w) is the variational distribution and p(w|D) is the true posterior distribution given observed data
x. Also referred to as information gain, KL divergence measures the “information lost when p(w|D) is
approximated by q(w)”. If the true posterior distribution p(w|D) and the variational distribution q(w) are
identical, the KL divergence KL(q(w)||p(w|D))) equals zero, indicating that no information is lost in the
approximation. On the contrary, as p and q diverge, the value of KL(q(w)||p(w|D)) increases, signifying the
growing difficulty in predicting the true distribution p(w|D) based on the approximation q(w). Minimizing
the KL divergence corresponds to making the variational distribution q(w) as close as possible to the true
posterior p(w|D). By expanding equation 4, we have:
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KL(q(w)||p(w|D)) =
∫

w

q(w) log q(w)
p(w|D) dw

=
∫

w

q(w) log q(w)p(w)
p(w, D) dw

=
∫

w

q(w) log q(w)
p(w, D) dw +

∫
w

q(w) log p(D) dw

=
∫

w

q(w) log q(w)
p(D|w)p(w) dw + log p(D)

=
∫

w

q(w) log q(w)
p(w) dw −

∫
w

q(w) log p(D|w) dw + log p(D)

(5)

In the above equation,
∫

w
q(w) log q(w)

p(w) dw −
∫

w
q(w) log p(D|w) dw is negative of evidence lower bound

(ELBO) (Kingma et al., 2019), so that:

ELBO =
∫

w

q(w) log p(D|w) dw −
∫

w

q(w) log q(w)
p(w) dw (6)

Considering equation 4, ELBO can be rewritten as follows:

ELBO = Ew∼q(w) [log p(D|w)] − KL(q(w)||p(w)) (7)

Therefore, minimizing KL(q(w)||p(w|D)) is equivalent to minimizing −ELBO, or maximizing ELBO.

3.3 Bayesian DCGAN Architecture

The Generative Adversarial Network utilized in the current study is specifically the DCGAN. DCGAN
is a variant of GAN that exhibits a distinctive architecture where both the discriminator and generator
incorporate convolutional layers. The use of convolutional layers is particularly advantageous as it allows
the network to effectively capture spatial dependencies within the data. This spatial awareness significantly
contributes to enhancing the overall quality of the generated images. In the endeavor to incorporate Bayesian
Neural Networks (BNNs) into the framework of DCGAN, the methodology presented by Blundell et al. (2015)
was followed. This approach involves treating the weights within the neural network as random variables and
introducing a distribution over these weights. The motivation behind adopting this Bayesian perspective is
to enable the model to account for uncertainty in its predictions, contributing to a more robust and versatile
generative model.

A main aspect highlighted in Blundell et al. (2015) involves the utilization of the reparametrization tech-
nique. This technique plays a crucial role in ensuring that the variational parameters are sampled from a
specific distribution, introducing a layer of stochasticity to the model. The assumption made in the study is
that the variational posterior follows a diagonal Gaussian distribution. The process initiates by generating
a sample from a unit Gaussian distribution, labeled as ϵ. This sample undergoes a deterministic transfor-
mation, involving a shift by a mean µ and a scaling by a standard deviation σ, as specified in Equation 8.
Consequently, this process yields the weight parameters W .

W = µ + log(1 + exp(ρ)) ⊙ ϵ (8)

Here, µ represents the mean of the distribution, and ρ is a parameter used to determine the standard deviation
through the transformation σ = log(1 + exp(ρ)). Taking into account the shift and scaling operations, the
weight parameters W follow a normal distribution N (µ, σ2), where the set of learnable variational posterior
parameters is represented as θ = (µ, ρ). Thus, the variational posterior can be denoted as q(w|θ).
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As previously mentioned, we adopt (similar to Blundell et al. (2015)) a Gaussian variational posterior.
However, in terms of the prior, a scale mixture of two Gaussian densities with zero mean and distinct
variances, where σ1 > σ2 and σ2 ≪ 1, is considered. The prior distribution is expressed as follows:

P (w) = ΠjπN (wj |0, σ1) + (1 − π)N (wj |0, σ2) (9)

Here, wj represents the jth component of the weight vector W , and π signifies the mixture weight, controlling
the influence of each Gaussian component in the prior.

The objective function of Bayesian Neural Networks is to minimize KL divergence, according to Blundell
et al. (2015) and the Equation 7, which can be rewritten as follows:

KL(q(w|θ)||p(w|D)) = −ELBO

= KL(q(w|θ)||p(w)) − Ew∼q(w|θ) [log p(D|w)]

= Ew∼q(w|θ)

[
log q(w|θ)

p(w)

]
− Ew∼q(w|θ) [log p(D|w)]

= Ew∼q(w|θ) [log q(w|θ)] − Ew∼q(w|θ) [log p(w)] − Ew∼q(w|θ) [log p(D|w)]

(10)

According to the Law of Large Numbers (LLN) (Uhlig, 1996), a fundamental statistical principle,
limn→∞

1
n

∑n
i=1 xi = E(x) with a probability of 1. This law ensures that as the size of a sample increases,

the sample mean converges towards the expected mean of the entire population. Utilizing LLN and drawing
a sufficient number of Monte Carlo samples from the variational posterior q(w|θ), we can rewrite Equation 10
as follows:

KL(q(w|θ)||p(w|D)) = 1
n

n∑
i=1

(
log q(w(i)|θ) − log p(w(i)) − log p(D|w(i))

)
(11)

where w(i) represents the ith Monte Carlo sample drawn from the variational posterior q(w|θ).

In the present study, we build upon the foundational concepts of Bayesian neural networks introduced by
Blundell et al. (2015) by integrating them into a Convolutional 2-dimensional (Conv2D) and Convolutional
2-dimensional transpose (Conv2D Transpose) architecture to develop our Bayesian DCGAN model. This
innovative approach allows us to leverage the strengths of convolutional layers in processing image data while
incorporating the Bayesian framework to enhance diversity of the generated samples.

Therefore, the formulation of loss function for our model involves the consideration of two key loss functions
outlined in Equations 1 and 11. These loss functions encapsulate the essential components for training the
Bayesian DCGAN model. The discriminator loss, as expressed in Equation 12, is calculated by evaluating the
difference between two main components. The first component entails a probabilistic comparison between
the variational posterior and prior of the discriminator network. The second component is related to the
adversarial nature of GANs and consists of the binary cross-entropy between the log probability of the real
data D(x) and the log probability of the generated data D(G(z)), Equation 12.

Likewise, the generator loss, as described in Equation 13, is determined by assessing the probabilistic dis-
tinction between the variational posterior and the prior distribution of the generator network. The second
component involves the binary cross-entropy between the log probability of the generated data D(G(z)).

Discriminator_loss = 1
n

n∑
i=1

(
log q(w(i)

d |θd) − log p(w(i)
d )
)

− (log(D(x, wd)) + log(1 − D(G(z, wg), wd)))
(12)
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Generator_loss = 1
n

n∑
i=1

(
log q(w(i)

g |θg) − log p(w(i)
g )
)

− log(D(G(z, wg), wd))
(13)

The “D” and “G” in equations 12 and 13 represent the discriminator and the generator network, respec-
tively. Consequently, the pseudo-code for the learning process is structured around iteratively optimizing
the parameters of both the discriminator and generator networks based on their respective loss functions,
Algorithm 1.

Algorithm 1 Learning procedure for Bayesian DCGAN
Require: : m, batch size

1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior distribution pa(z).
4: Sample minibatch of m examples {x(1), ..., x(m)} from data distribution Pdata(X).
5: Sample ϵ ∼ N (0, I)
6: Calculate w = µ + log(1 + exp(ρ)) ⊙ ϵ
7: Discriminator training:
8: Calculate loss as 12 for the discriminator network
9: Calculate the gradient of discriminator’s loss with respect to µd and ρd:

10: ∆µd = ∂loss(wd,θd)
∂wd

+ ∂loss(wd,θd)
∂µd

11: ∆ρd = ∂loss(wd,θd)
∂wd

ε
1+exp(−ρd) + ∂loss(wd,θd)

∂ρd

12: Update the discriminator
13: Generator training:
14: Calculate loss as 13 for the generator network
15: Calculate the gradient of generator’s loss with respect to µg and ρg:
16: ∆µg = ∂loss(wg,θg)

∂wg
+ ∂loss(wg,θg)

∂µg

17: ∆ρg = ∂loss(wg,θg)
∂wg

ε
1+exp(−ρg) + ∂loss(wg,θg)

∂ρg

18: Update the generator
19: end for
20: end for

4 Experiments

In this section, we evaluate the performance of our proposed Bayesian DCGAN model using the MNIST
dataset (Gangaputra; Qiao , 2007), a standard benchmark in machine learning. Our experiments are designed
to answer the following research questions:

RQ1: How does the Bayesian DCGAN compare with the traditional DCGAN in terms of loss and conver-
gence behavior?

RQ2: How do the generated images differ in terms of diversity?

RQ3: How does the inclusion of images generated by Bayesian DCGAN impact the performance of a simple
neural network model compared to traditional training methods?

4.1 Dataset and Preprocessing

The MNIST dataset, a benchmark in the field of machine learning, comprises handwritten digits ranging
from 0 to 9. Widely employed for diverse learning tasks, it is specifically crafted for image classification,
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serving as a foundational dataset for the development and enhancement of prediction models, especially
convolutional deep neural networks. This dataset includes 60, 000 training images and 10, 000 test images,
with each digit being centrally positioned in a grayscale image of dimensions 28 × 28. For our study, the
images were resized to a grayscale format with dimensions of 64 × 64 pixels, and Gaussian noise was added
to the entire training dataset.

4.2 Model Architecture

The architecture of the Bayesian DCGAN used in the present study is illustrated in Figure 4. This architec-
ture incorporates Bayesian Convolutional 2-dimensional and Bayesian Convolutional 2-dimensional transpose
layers within a Bayesian framework to enhance robustness and diversity.
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Figure 4: Bayesian DCGAN architecture used in the present study

4.3 Comparative Analysis of Loss Dynamics

To assess the performance of our proposed Bayesian DCGAN model, we conducted a comprehensive com-
parison with the standard DCGAN architecture. Figure 5a & 5b depict the generator and discriminator
loss across different iterations, providing insights into the training process, convergence patterns, and the
alignment of our Bayesian DCGAN model with the traditional DCGAN.

As it was mentioned, the generator loss measures how well the generator is performing in generating realistic
samples, while the discriminator loss assesses the ability of the discriminator to differentiate between real
and generated samples. In the initial stages, both losses fluctuate as the model undergoes learning. Sub-
sequently, the generator loss demonstrates a downward trend, reflecting an improvement in the generator’s
ability to produce realistic samples. The Bayesian DCGAN exhibits reduced fluctuations in the generator
loss throughout the training process compared to the traditional DCGAN. The convergence of both losses
indicates that the Bayesian DCGAN model has reached a certain optimum, suggesting that further improve-
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(a) Bayesian DCGAN architecture loss

(b) Traditional DCGAN architecture loss

Figure 5: The generator and discriminator loss during training for Bayesian DCGAN and Traditional DC-
GAN.

ment is limited. This convergence also signifies that the model has acquired a sufficient level of learning and
proficiency in generating and discriminating samples.

Figure 6a & 6b showcase a selection of randomly generated MNIST digit samples produced by both the
traditional DCGAN and the Bayesian DCGAN models. Notably, the Bayesian DCGAN model exhibits the
ability to generate images that closely resemble those from the real dataset. This demonstrates the model’s
enhanced capacity to capture and replicate the intricate patterns and features present in the original MNIST
dataset, emphasizing the efficacy of the Bayesian approach in improving generative performance.

4.4 Diversity Analysis of Generated Samples

To verify the diversity of the samples, we employed a rigorous mathematical analysis aimed at quantifying the
diversity inherent in the images generated by Bayesian DCGAN and contrasting them with those generated
by traditional DCGAN. The methodology involves the creation of two distinct datasets, each consisting of
32, 000 images produced by their respective GAN algorithms. Each image within these datasets possesses
dimensions of 64 × 64, amounting to a total of 4096 pixels, and is treated as a vector for the purpose of this
analysis. In viewing each generated image as a vector with a dimensionality of 4096, we computed the sample
covariance for each dataset, resulting in two covariance matrices of size 4096 × 4096. This mathematical
approach enables a comprehensive understanding of the relationships and variations present among the pixels
of the generated images, facilitating a quantitative assessment of diversity.
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(a) Bayesian DCGAN (b) Traditional DCGAN

Figure 6: MNIST digits generated from random noise by Bayesian DCGAN and Traditional DCGAN.

Denoting the 32, 000 images generated by traditional DCGAN as d1, d2, . . . , dN and those generated by
Bayesian DCGAN as b1, b2, . . . , bN (where N = 32000), individual components of these vectors are repre-
sented as follows:

di = (d1
i , · · · , d4096

i )

bi = (b1
i , · · · , b4096

i )

The population (or sample) mean is defined as:

d̄ = (d̄1, · · · , d̄4096)

where for any 1 ≤ j ≤ 4096:

d̄j = 1
N

(
N∑

i=1
dj

i

)

This definition holds for the images generated by Bayesian DCGAN as well. Further, for any 1 ≤ r, s ≤ 4096,
the population covariance between rth and sth components is defined as:

Cov(dr, ds) = 1
N

(
N∑

i=1
(dr

i − d̄r)(ds
i − d̄s)

)

This computation results in the (r, s) entry of the population covariance matrix for the data generated by
Bayesian DCGAN, and a similar definition can be applied for traditional DCGAN. The criteria for diversity
is the eigenvalues of the covariance matrix. Suppose

λ1 ≥ λ2 ≥ · · · ≥ λ4096

are the sorted eigenvalues of the traditional DCGAN population covariance, and

µ1 ≥ µ2 ≥ · · · ≥ µ4096

are those of Bayesian DCGAN. From our experiment, it was observed that:

λ1 < µ1

λ2 < µ2

.
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.

λ4096 < µ4096

Table 1 shows first six terms of the µ and λ. The observation that the claim holds for the first six terms,
and, in fact, for all indices j (i.e., µj > λj), provides compelling evidence supporting the assertion that
Bayesian DCGAN exhibits greater diversity when compared to traditional DCGAN. This comparison is
based on the eigenvalues of their corresponding population covariance matrices. The consistently larger
eigenvalues of the Bayesian DCGAN matrix signify a greater covariance matrix, indicating a broader spread
and increased variability in the generated samples. Therefore, the mathematical analysis strongly suggests
that the Bayesian DCGAN model produces a more diverse set of samples than traditional DCGAN.

Table 1: Comparing Eigenvalues Across Different Models

Bayesian DCGAN
µ

Traditional DCGAN
λ

26.298 11.399
18.938 9.089
16.208 7.628
14.185 6.457
11.764 5.500
11.603 4.990

4.5 Impact on Model Performance

To validate our findings, we compared two models: one trained solely on a 10% subset of the MNIST dataset
and another trained on a combination of a 10% subset of the MNIST dataset and approximately 1400 images
generated by Bayesian DCGAN. Both models were evaluated on unseen images from Bayesian DCGAN, and
the results are presented in Table 2. Interestingly, even when trained on a small amount of generated data,
the model exhibited better performance and greater generalization. On the other hand, in the pursuit of
reducing uncertainty in neural networks, deep ensembles have gained significant attention. This method
involves training neural networks from scratch multiple times on the dataset, resulting in distinct models.
During testing, the dataset is passed through each model, and the final output is obtained by averaging
their outputs. Ensemble strategies vary in their approaches to selecting baseline classifiers for training,
with two primary types: homogeneous and heterogeneous ensembles. While homogeneous ensembles utilize
the same type of baseline classifiers trained on different data subsets, heterogeneous ensembles employ
various types of classifiers trained on the same dataset (Mohammed & Kora, 2023). In our study, we chose
heterogeneous ensembles as the baseline method for uncertainty reduction (Table 2). Notably, the model
trained on a combination of MNIST and generated images outperformed ensemble learning models. It is
worth mentioning that we employed a simple model with only two convolutional layers and trained it for a
few epochs to facilitate result comparison.

Table 2: Comparison of different models

Trained on MNIST Ensemble learning
on MNIST

Trained on MNIST
and generated images

82% 83.6% 86%

5 Conclusion

This study focused on addressing mode collapse in DCGAN and enhancing sample diversity. This approach
involves the introduction of a Bayesian framework applied to DCGAN, referred to as Bayesian DCGAN.
Within this framework, a weight distribution is incorporated into the network using the Bayes by Backprop
method. Additionally, a mathematical approach is presented to evaluate the diversity in samples generated
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by Bayesian DCGAN, comparing it with the outcomes of conventional DCGAN. The experimental find-
ings reveal that Bayesian DCGAN consistently produces larger eigenvalues, indicating a broader spread and
variability in the generated samples compared to its conventional counterpart. This signifies a significant
reduction in mode collapse within DCGAN and highlights the effectiveness of the Bayesian DCGAN frame-
work in generating more diverse samples. While this study effectively tackled mode collapse in DCGAN and
demonstrated the efficacy of Bayesian DCGAN in improving sample diversity, there are several possibilities
for further exploration and improvement. This includes investigating ways to integrate domain-specific con-
straints or additional information into the Bayesian DCGAN framework. These constraints could pertain
to specific data distributions, allowing the model to generate samples that conform to particular desired
characteristics.
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