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Abstract

In Reinforcement Learning (RL), tasks with in-
stantaneous hard constraints present significant
challenges, particularly when the decision space
is non-convex or non-star-convex. This issue is
especially relevant in domains like autonomous
vehicles and robotics, where constraints such
as collision avoidance often take a non-convex
form, and the state-space may be large. In this
paper, we establish a regret bound of Õ

((
1 +

1
τ

)√
log
(
1
τ

)
d3H4K

)
, applicable to both star-

convex and non-star-convex cases, where d is the
feature dimension, H the episode length, K the
number of episodes, and τ the safety threshold for
a linear MDP setting. Moreover, the violation of
safety constraints is zero with a high probability
throughout the learning process. A key technical
challenge in these settings is bounding the cover-
ing number of the value-function class, which is
essential for achieving value-aware uniform con-
centration in model-free function approximation.
For the star-convex setting, we develop a novel
technique called Objective–Constraint Decompo-
sition (OCD) to properly bound the covering num-
ber, and resolves an error in a previous work on
the constrained RL. In non-star-convex scenarios,
where the covering number can become infinitely
large, we propose a two-phase algorithm, Non-
Convex Safe Least Squares Value Iteration (NCS-
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LSVI), which first reduces uncertainty about the
safe set by playing a known safe policy. After that,
it carefully balances exploration and exploitation
to achieve the regret bound. Finally, numerical
simulations on an autonomous driving scenario
demonstrate the effectiveness of NCS-LSVI.

1. Introduction
Safe Reinforcement Learning (RL) has emerged as a pow-
erful framework for safe online learning, enabling agents
to learn autonomously from their environments while re-
specting safety constraints (Tessler et al., 2018; Ghosh et al.,
2022b). In many safety-critical applications—such as au-
tonomous driving, healthcare, and financial planning—it
is imperative that the agent not only maximizes cumula-
tive rewards but also maintains safety at every step of the
decision-making process (Shi et al., 2023; Amani et al.,
2021). These applications often feature instantaneous hard
constraints, which must be satisfied at each time step to pre-
vent catastrophic outcomes (e.g., avoiding collisions in au-
tonomous driving). Unlike constraints that allow violations
in expectation or across an entire trajectory, instantaneous
hard constraints demand adherence strictly at every decision
point, highlighting the need for RL methods that can explore
and exploit without compromising immediate safety.

Amani et al. (2021) tackled this challenge by introducing
a strategy for Safe RL with instantaneous hard constraints
in star-convex decision spaces within linear MDPs. Amani
et al. (2021) assume that at every state, there exists an initial
safe action that is known to the RL agent. The agent begins
interacting with the environment using this initial safe ac-
tion, subsequently constructing and refining an estimated
safe set of actions that remain within the actual safe set
of actions. However, as described below, their analysis to
prove sublinear regret is not correct (with further details
provided in Section 5.1). The key issue arises in bounding
the covering number for the value function, a crucial step for
achieving value-aware uniform concentration in model-free
function approximation. Their Theorem 2 relies on results
from unconstrained RL (Lemma D.6 in Jin et al. (2020)),
where the value function is obtained by maximizing the

1



Provably Efficient RL for Linear MDPs under Instantaneous Safety Constraints in Non-Convex Feature Spaces

Q-function over a fixed action set. In such cases, a cov-
ering of the Q-function automatically induces a covering
of the value function, thanks to the contraction property of
the max operator. However, in the constrained RL frame-
work of Amani et al. (2021), the value function is computed
by maximizing the Q-function over an estimated safe set
that depends on the random historical data. Consequently,
even when the Q-function remains the same, differences in
the corresponding safe sets can lead to drastically different
value functions. This invalidates the direct application of
unconstrained RL’s covering-number bounds, and the analy-
sis in Amani et al. (2021) must be significantly revised to
account for the dynamic nature of the safe set.

As our first main contribution, we show how to correctly
bound the covering number when the feasible action set is
updated over time in the star-convex case. Specifically, we
identify that star-convexity provides a form of smooth geom-
etry—small variations in the safety parameters do not cause
drastic changes in the estimated safe set. Consequently, if
two Q-functions are close, the corresponding value func-
tions—obtained by maximizing each Q-function over these
slightly different feasible sets—also remain close. Lever-
aging this property, we introduce the novel OCD (Objec-
tive–Constraint Decomposition) technique, which replaces
the unconstrained covering-number argument with a re-
fined bound that includes an additional term of the form
O
(√

log
(
1
τ

))
, where τ is the safety threshold. This fac-

tor reflects how tighter safety requirements (i.e., smaller
τ ) make bounding the covering number more challenging,
offering a fresh perspective on the cost of satisfying instan-
taneous constraints (See Remark 6.1).

While star-convex geometry can be gentle on covering-
number bounds, real-world problems such as autonomous
driving and robotics often induce non-star-convex or highly
irregular safe decision spaces—e.g., disjoint regions due
to obstacles or kinematic constraints. In these settings, as
detailed in Section 5.2, the covering number can become
arbitrarily large, rendering existing star-convex-based meth-
ods insufficient and highlighting the necessity of developing
new methods for non-star-convex environments.

Motivated by these observations, we propose a new two-
phase algorithm for non-star-convex scenarios that satisfy
our Local Point Assumption (see Section 3), which we refer
to as Non-Convex Safe Least Squares Value Iteration (NCS-
LSVI). Drawing from our insight in star-convex analysis, we
observe that controlling drastic changes in the estimated safe
set under small variations in constraint parameters is a key
strategy for bounding the covering number. Based on this,
NCS-LSVI includes a pure-safe exploration phase, where
the agent samples randomly from safe actions in a small
neighborhood of the initial safe policy (whose existence is
guaranteed by the Local Point Assumption). By the end of

this phase, the estimated safe set remains stable with high
probability, enabling tighter covering-number bounds.

Having established this stable safe set, the agent then pro-
ceeds to an exploration–exploitation phase, refining its pol-
icy under a bounded covering-number framework. As our
second contribution, we show that NCS-LSVI achieves a
regret bound of Õ(

(
1 + 1

τ

)√
log
(
1
τ

)
d3H4K + 1

ϵ2ι2 ) with
high probability, nearly matching the regret in convex and
star-convex cases while also respecting instantaneous hard
constraints. Here, d represents the feature space dimension,
H the episode length, K the number of episodes, and τ a
safety related parameter. The bounded constant parameters
ϵ and ι are related to our Local Point Assumption (3.2). To
the best of our knowledge, this is the first result for non-star-
convex settings. Additionally, we conduct a numerical exper-
iment on a merging scenario in autonomous driving, where
the safe set is non-star-convex due to collision-avoidance
constraints. The results demonstrate sublinear regret, con-
sistent with the theoretical upper bound, and highlight the
practical potential of our two-phase framework.

Pure exploration has also been studied in the context of safe
linear bandits by Amani et al. (2019), where it was specifi-
cally designed to ensure that the optimal point is included
in the estimated safe set at the end of the exploration phase.
In comparison, linear bandits are simpler than RL, as they
do not involve estimating a value function or managing the
covering number. In our work, the safe pure exploration
phase serves a different purpose: it is specifically designed
to control the covering number in the second phase of our
algorithm, enabling near-optimal performance even in non-
star-convex spaces.

Altogether, our work highlights the pivotal role of the de-
cision space’s geometry in shaping the complexity of safe
RL. While this study focuses on linear function approxi-
mation and local connectivity, the broader takeaway is that
additional mechanisms beyond those used in unconstrained
RL are crucial for maintaining tight covering numbers un-
der instantaneous hard constraints. This insight opens up
promising directions for future research, particularly in deep
RL, where nonlinear representations often create irregular
feature spaces. These complexities further underscore the
importance of understanding how the geometry of the fea-
ture space impacts overall performance.

Other related works. RL problems with cumulative con-
straints are studied (Wu et al., 2016; Achiam et al., 2017;
Tessler et al., 2018; Yang et al., 2019; Efroni et al., 2020;
Qiu et al., 2020; Ding et al., 2021; Bai et al., 2022; Wei
et al., 2022; Paternain et al., 2022; Ghosh et al., 2022b;
Vaswani et al., 2022; Ghosh et al., 2022a; Ding & Lavaei,
2023; Ghosh & Zhou, 2023; Huang et al., 2023; Ghosh et al.,
2024). This line of work focuses on ensuring the expected
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cumulative cost remains below a threshold, unlike instanta-
neous constraints that must be satisfied with high probability
at each time step. Another relevant direction is explored
in Berkenkamp et al. (2017), which explicitly considers
stability-based safety guarantees using Lyapunov methods
within model-based reinforcement learning to certify policy
safety during exploration.

Bandits with instantaneous hard constraints: Bandits
with instantaneous constraints have been studied in Amani
et al. (2019); Khezeli & Bitar (2020); Moradipari et al.
(2020a;b; 2021); Pacchiano et al. (2021); Zhou & Ji (2022);
Deng et al. (2022); Pacchiano et al. (2024); Hutchinson et al.
(2024); Afsharrad et al. (2024). Unlike RL, Bandits do not
require the estimation of a value function, and therefore the
problem of covering number does not arise in this setting.
This distinction significantly simplifies the analysis and al-
gorithm design in the context of Bandits compared to RL
with instantaneous hard constraints.

RL with instantaneous hard constraints: Problems with
unsafe states in a star-convex setting have been studied in
Shi et al. (2023). However, this setting focuses on the linear
mixture model, which is fundamentally different from our
setting, as explained in Section 2. Lastly, work in Wei et al.
(2024) relaxed the assumption that a prior safe action is
given to the algorithm, instead allowing sublinear constraint
violation. Thus, none of the above works have studied
RL with instantaneous hard constraints for non-star-convex
decision spaces.

2. Problem formulation
In this study, we focus on an episodic constrained MDP,
denoted as (S,A, H,P, r, c), operating in an online setting
over K ∈ N episodes. Here, S represents the state space,
which may contain an infinite number of states; A denotes a
continuous action space; and H ∈ N determines the number
of steps within each episode. Additionally, {P}Hh=1, {r}Hh=1,
and {c}Hh=1 correspond to the state transition probability ker-
nel, reward function, and cost function at each step, respec-
tively. During episode k ∈ [K] and time step h ∈ [H], the
learner is in state skh ∈ S, interacting with the environment
by selecting an action akh ∈ A. Subsequently, the learner ob-
serves a noisy reward r̂kh(s

k
h, a

k
h) = rh(s

k
h, a

k
h) + ηkh, where

rh(.) : S × A → [0, 1] represents an unknown function,
and ηkh denotes a zero-mean σ-sub-Gaussian random vari-
able. In addition, it observes a corresponding noisy cost
ĉkh(s

k
h, a

k
h) = ch(s

k
h, a

k
h)+ζkh , where ch(.) : S×A → [0, 1]

is an unknown cost function, and ζkh is a zero-mean σ-sub-
Gaussian random variable as well. Finally, the transition to
the next state, skh+1, under the action akh at state skh, is deter-
mined by an unknown transition probability kernel denoted
as Ph(.|skh, akh). The episode terminates at step H + 1.

Instantaneous hard constraint. In each episode k and
at each step h, the learner is required to adhere to a hard
constraint: ch(s

k
h, a

k
h) ≤ τ , where τ is a known positive

constant that serves as the safety threshold. For each state
s ∈ S, the corresponding safe set of actions is given by
Asafe

h (s) = {a ∈ A : ch(s, a) ≤ τ}. Our framework natu-
rally extends to settings involving multiple constraints by
defining the estimated safe set as Ak

h(s) =
⋂M

j=1 A
k,j
h (s),

where each Ak,j
h (s) represents the safe action set associated

with the j-th constraint.

Safe policy. A deterministic policy is defined as a mapping
π(s, h) : S × [H] → A. Thus, a policy π is called safe, if,
for every state s ∈ S and time step h, it satisfies the instan-
taneous constraint. Therefore, the set of all safe policies is
defined by Πsafe = {π(.) : π(s, h) ∈ Asafe

h (s), ∀(s, h) ∈
S × [H]}.

Performance metric. Given a policy π, the corresponding
V -value and the Q-value are defined as follows: V π

h (s) =

E[ΣH
h′=h

rh′ (sh′ , π(h
′
, sh′ ))|sh = s], and Qπ

h(s, a) =

rh(s, a)+E[ΣH
h′=h+1

rh′ (sh′ , π(h
′
, sh′ ))|sh = s, ah = a].

Assume that each episode starts with a fixed initial state
s1 ∈ S. The agent, at each episode k ∈ [K], employs
the policy πk to interact with the environment. We then
evaluate the performance of the set of policies {πk}Kk=1

by the well-studied regret metric, defined as Regret(K) ≜∑K
k=1[V

π∗

1 (s1)−V πk

1 (s1)]. Note that π∗ is the optimal safe
policy that maximizes V -value function, while remaining
safe π∗ ∈ Πsafe.

Linear MDP. To handle the large and potentially infinite
number of states and actions, we concentrate on linear
MDPs. This choice enables us to employ linear function
approximation methods to solve our problem effectively.

Assumption 2.1. (Linear MDP (Ghosh et al., 2022b), (Jin
et al., 2020)) Consider an episodic constrained MDP de-
noted as (S,A, H,P, r, c), which is assumed to be a linear
MDP with a feature function ϕ : S × A → F ⊂ Rd.
Specifically, for each h ∈ [H], there exist d unknown mea-
sures µh = {µ1

h, . . . , µ
d
h} over the state space S and un-

known vectors θ∗h, γ
∗
h ∈ Rd such that for any (s, a, s′) ∈

S×A×S , the transition probabilities, cost function, and re-
ward function are given by: Ph(s

′|s, a) = ⟨ϕ(s, a), µh(s
′)⟩,

rh(s, a) = ⟨ϕ(s, a), θ∗h⟩, and ch(s, a) = ⟨ϕ(s, a), γ∗
h⟩, re-

spectively. Additionally, we assume without loss of gen-
erality that for all (s, a) ∈ S × A, we have ∥ϕ(s, a)∥≤ L
for some L ∈ (0, 1], and max(∥µ(S)∥, ∥θ∗h∥, ∥γ∗

h∥) ≤
√
d,

where d is the dimension of the feature space.

Assumption 2.1 encapsulates the linear relationship of the
transition probabilities, costs, and rewards with the feature
map. It is important to note that despite the linearity, the
feature map ϕ(.) itself may potentially be non-linear or
even non-convex. Note that, the linearity of the transition
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probabilities, results in the fact that all features points are
located on a d− 1 dimensional hyper plane as explained in
the following proposition:
Proposition 2.2. (Proposition A.1. from Jin et al. (2020)).
Let Fs ≜ {ϕ(s, a) ∈ Rd | a ∈ A}, and F ≜ {ϕ(s, a) ∈
Rd | (a, s) ∈ A× S}. Then, there exists a vector µ∗ ∈ Rd

such that Fs ⊂ F ⊂ H, where H is a d − 1 dimensional
hyper plane determined by H ≜ {x ∈ Rd | ⟨x, µ∗⟩ = 1}.

Initial safe action. Designing a safe RL algorithm that
achieves sublinear regret requires at least one known safe
action per state s ∈ S, as shown in Theorem 3 of (Shi
et al., 2023). This assumption is often valid in real-world
scenarios where a known, albeit suboptimal, safe strategy
exists (Amani et al., 2019; 2021; Khezeli & Bitar, 2020).
In this study, we also adopt a similar assumption as stated
bellow.
Assumption 2.3. For each state s ∈ S, there exists a safe
action a0s that incurs a zero cost, i.e., ⟨ϕ(s, a0s), γ∗

h⟩ = 0.
Remark 2.4. We highlight that for problems where the ini-
tial action results in a non-zero cost τ0, the original problem
can be converted to an equivalent one that satisfies Assump-
tion 2.3 through a simple translation. In the new problem,
the safety threshold is adjusted to τ − τ0.

Notations. For any positive semi-define matrix A and vec-
tor v, the operator ∥v∥A defines the weighted norm as
∥v∥A ≜

√
vTAv. The symbol ∥.∥ denotes the l2 norm.

Also, we define PhV
π
h+1(s, a) ≜ Es′∼Ph(·|s,a)V

π
h+1(s

′).
The ball Bϵ(v) represents the set of all points within distance
ϵ from v.

3. Non-Convex Feature Spaces
Non-convexity often occurs in real-world problems due to
non-convex constraints such as traffic rules, collision avoid-
ance, and kinematic restrictions in autonomous vehicles, as
well as in feature selection and function approximation in
modern RL methods. Here, we define two key assumptions
in the feature space Fs—star-convexity and the Local Point
Assumption-commonly found in these applications and will
later provide near-optimal solutions for them. To start, we
define the notion of star-convexity, introduced in Amani
et al. (2021):
Assumption 3.1. (Star-Convex Sets) For each s ∈ S, the
feature space Fs is star-convex around ϕ(s, a0s). That is, for
all x ∈ Fs and α ∈ [0, 1]: αx+ (1− α)ϕ(s, a0s) ∈ Fs.

Although star-convexity simplifies the theoretical analysis,
many real-world applications—including autonomous driv-
ing—cannot satisfy this assumption as we explain the fol-
lowing example:

Example (Autonomous Driving): Consider an autonomous
vehicle approaching an intersection and facing a merging

Figure 1. An illustrative example of Assumptions 3.2 and 3.1. The
left figure demonstrates the Local Point Assumption, where a
sphere exists around the initial safe point. The right figure depicts
a Star-Convex Set, where all points are connected to the initial safe
point by a line segment.

decision (Figure 2). The car can either (i) drive slowly to
let oncoming traffic pass or (ii) accelerate rapidly to merge
before other vehicles arrive. These two action modes induce
disjoint feasible regions, violating Assumption 3.1 because
no straight line connecting the points in the slow mode
to the points in high acceleration mode resides entirely in
the decision space. Note that these distinct action subsets
naturally emerge from collision avoidance constraints and
results in a non-convex decision set.

To address the limitations of star-convex spaces, we in-
troduce a new class of non-convex sets, termed the Local
Point Assumption, which satisfies conditions relevant to au-
tonomous vehicles and robotics. These sets feature localized
properties around ϕ(s, a0s) and near constraint boundaries
within the feature space, while allowing arbitrary structures
outside these regions.

Assumption 3.2. (Local Point Assumption) Let H be the
(d− 1)-dimensional hyperplane containing F . There exists
ϵ ∈ (0, τ√

d
) such that Bϵ(ϕ(s, a

0
s)) ∩H ⊂ Fs for all s ∈ S .

Moreover, for any (s, a, h), if τ − ι ≤ ⟨ϕ(s, a), γ∗
h⟩ ≤ τ

for some ι < τ , then {ν ϕ(s, a) + (1 − ν)ϕ(s, a0s) | ν ∈
[ τ−ι
⟨ϕ(s,a),γ∗

h⟩
, 1]} ⊂ Fs.

Comparison with Assumption 3.1. The key difference
between Assumption 3.1 and Assumption 3.2 is that star-
convexity imposes global requirements on all points in Fs,
whereas the Local Point Assumption focuses solely on local
properties. Intuitively, the Local Point Assumption demands
that we can slightly perturb the initial safe action a0s and still
remain safe, enabling sampling from a small neighborhood
around a0s. For instance, in the autonomous driving scenario
described earlier, if a particular speed v0 is considered safe,
then speeds within the interval [v0 − ϵ, v0 + ϵ] must also
be safe. Furthermore, the second condition in the Local
Point Assumption requires local connectivity near the con-
straint boundary: if an optimal action v∗ lies exactly at the
constraint boundary, then actions in the range [v∗ − ι, v∗]
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must also remain within the safe region. However, the Local
Point Assumption is not always less restrictive, as it requires
the existence of a hypersphere on the plane H, a condition
not mandated by star-convexity. In practice, though, it is an
effective assumption for handling complex decision spaces,
particularly in applications such as autonomous vehicles
and robotics. For an illustrative example of star-convex sets,
see Figure 1. Consequently, these structural differences lead
to distinct regret bounds under the two assumptions (see
Section 5).

G

O

Figure 2. Left figure: The green car (G) must decide whether
to stop at the intersection for the approaching orange car (O) or
accelerate to pass before O arrives. Right figure: The green car’s
decision space, where the red region is inaccessible due to the
collision avoidance module.

4. Our Approach
We now describe our proposed algorithm, Non-Convex Safe
Least Square Value Iteration (NCS-LSVI), detailed in Algo-
rithm 1. This algorithm extends the standard SLUCB-QVI
from (Amani et al., 2021) to address safe RL problems in
non-star-convex environments. A key feature of our ap-
proach is the ability to handle large covering numbers in
non-star-convex environments using the pure exploration
phase. The algorithm consists of two main phases: pure
safe exploration and safe exploitation-exploration, imple-
mented over K episodes. At a high level, NCS-LSVI en-
sures safe learning by leveraging a Recursive Least Squares
(RLS) framework to construct an estimated safe set Ak

h(s).
Subsequently, it employs an optimistic Q-function estima-
tion to guide policy updates. Detailed explanations of the
algorithm’s components are provided below.

Lines 1−6 (Pure safe exploration). In this phase the agent
samples uniformly from a set Dϵ(s) defined as follows:

Dϵ(s) ≜ {a ∈ A | ∥ϕ(s, a)− ϕ(s, a0s)∥ = ϵ}. (1)

According to Assumption 3.2, Dϵ(s) represents the bound-
ary of Bϵ′(ϕ(s, a

0
s)) ∩ H. Note that given Assumption

2.3 and the linearity of the problem (Assumption 2.1), the
Cauchy-Schwarz inequality can be applied to confirm that

Algorithm 1 Non-Convex Safe Least Square Value Iteration
(NCS-LSVI)
Require: ϵ, K ′, K, ν, s1

1: Pure safe exploration
2: for k = 1, . . . ,K ′ do
3: for h = 1, . . . ,H do
4: At state s take action akhrandomly from Dϵ(s)

according to Eq. (1).
5: end for
6: end for
7: Safe exploitation-exploration
8: for episode k = K ′ + 1, . . . ,K do
9: for step h = H, . . . , 1 do

10: Compute Λk,Q
h ,Λk,γ

h , γk
h, w

k
h according to

Eqs. (2-3)
11: Compute estimated safe set,∀s ∈ S :

Ak
h(s) ≜ {a ∈ A : ⟨ϕ(s, a)− ϕ(s, a0s), γ

k
h⟩

+β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ
h )−1 ≤ τ}

12: Compute Qk
h(s, a) := ⟨ϕ(s, a), wk

h⟩+ bkh(s, a).
13: Take action akh = argmaxa∈Ak

h(s)
Qk

h(s, a).
14: end for
15: for step h = 1 to H do
16: Play akh and observe its reward rkh and cost ckh.
17: end for
18: end for

all actions during the pure exploration phase are safe, i.e.,
Dϵ(s) ⊂ Asafe

h (s).

Role of pure exploration. In non-convex environments,
small changes in constraint parameters can dramatically
alter the estimated safe set, leading to large covering num-
bers (as shown by our toy example in Section 5.2). How-
ever, once the pure exploration phase is complete, under
the Local Point Assumption (Assumption 3.2), the safe set
near the constraint boundary becomes smooth and stable.
Consequently, minor perturbations no longer cause drastic
changes, allowing us to control the covering number effec-
tively. Under Star-Convexity (Assumption 3.1), this global
smoothness and stability is inherent, we prove that the pure
exploration phase is not needed to achieve a bounded cover-
ing number (see Section 6).

Lines 7-14 (Safe exploitation-exploration). Once the
pure exploration phase has been finished, we start the safe
exploitation-exploration which contains two main stages:
Safe set construction and Q- function estimation.

Safe-set estimation. We use Recursive Least Squares (RLS)
for safe-set construction, with the modification that we con-
sider the difference in features relative to the initial starting
point. In fact, to satisfy the safety condition, it is crucial to
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determine how far we can deviate from the initial starting
point. Therefore, we formulate the following RLS problem:

Λk,γ
h ≜ Σk−1

τ=1(x
τ
h)(x

τ
h)

⊤ + λI

γk
h = (Λk,γ

h )−1Σk−1
τ=1(x

τ
h)c

τ
h(s

τ
h, a

τ
h)

(2)

wherexτ
h ≜ ϕ(sτh, a

τ
h)− ϕ(sτh, a

0
sh
) Note that Considering

Assumption 2.3, then Theorem 2 from Abbasi-Yadkori et al.
(2011) demonstrate that for any δ ∈ (0, 1), the choice of

β2 = σ

√
d log

(
2+ 2KH

λ

δ

)
+

√
λd ensures that Ak

h(s) ⊂

Asafe
h (s) holds with probability of at least 1− δ.

Q-function estimation: According to Proposition 2.3 in Jin
et al. (2020), for a linear MDP, the Q-value of the optimal
policy π∗ can be expressed as Qπ∗

h (s, a) = ⟨ϕ(s, a), wπ∗

h ⟩.
Thus, in line 12 of Algorithm 1, we utilize Regularized
Least Squares (RLS) to estimate wπ∗

h as follows:

wk
h = (Λk,Q

h )−1Σk−1
τ=1ϕ(s

τ
h, a

τ
h)
(
yτ,kh

)
, (3)

where yτ,kh ≜ rτh(s
τ
h, a

τ
h) + V k

h+1(s
τ
h+1),

Λk,Q
h = Σk−1

τ=1ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤ + λI, and
V k
h+1 ≜ min{maxa∈Ak

h(s)
Qk

h(s, a), H}.

Bonus design and geometric assumptions. Following
Amani et al. (2021), we include a bonus term in Step 5 to
encourage exploring unexplored safe actions: bkh(s, a) ≜
β1∥ϕ(s, a)∥(Λk

h)
−1+gkh,ν(s, a), where the first term is a stan-

dard exploration bonus from unconstrained RL (Jin et al.,
2020), and the second term is defined as follows:

gkh,ν(s, a) ≜ ν ×
(
β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ

h )−1

)
H.

(4)
gkh,ν accounts for the distance between the optimal
action π∗(s, h) and the estimated safe set Ak

h(s).
Under star-convex sets (Assumption 3.1), Amani
et al. (2021) show that there exists a scaling factor
α ≥ (1 − τ

τ+2β2∥ϕ(s,π∗(s,h))−ϕ(s,a0
s)∥(Λ

k,γ
h

)−1
) such that

αϕ(s, π∗(s, h)) + (1 − α)ϕ(s, a0s) ∈ ϕ(s,Ak
h(s)). In

non-star-convex settings satisfying our Local Point
Assumption 3.2, we show that this property holds for
k ≥ K ′, i.e., after the pure exploration phase. This ensures
that gkh,ν compensates for the remaining distance between
αϕ(s, π∗(s, h)) + (1 − α)ϕ(s, a0s) and ϕ(s, π∗(s, h)),
while encouraging the algorithm to expand the estimated
safe set toward the optimal action.

Lines 15-17 (Environment interaction). Finally, in steps
15-17, the algorithm plays the selected actions and observes
their corresponding rewards and costs, which are stored for
use in the next round. The steps 8-17 is repeated for K−K ′

iterations.

5. Analysis
In this section, we first present our main theoretical results
for star-convex cases. Then, we explain that ( quite interest-
ingly), in contrast to the unconstraned RL, the geometry of
the decision set, i.e. Fs, can affect the covering number of
the class of value functions in constrained RL.

5.1. Star-Convex Results

Theorem 5.1. Regret in Star-Convex Spaces (Refined
version of Theorem 1 in Amani et al. (2021)) Under
assumptions 2.1, 2.3, and 3.1, there exists a constant
cβ > 0 such that for any δ ∈ (0, 1

3 ), by setting

K ′ = 0, β1 = cβdH
√
log(dKτδ ), ν = 2

τ and λ = 1,
with the probability of at least 1 − 3δ Algortihm 1 re-
mains safe, Ak

h(s) ⊂ Asafe
h (s), ∀(h, k) ∈ [H] × [K].

Moreover, with probability at least 1 − 3δ, Algorithm 1

achieves: Regret(K) ≤ 2H
√

KH log(d(K)H
δ )+2(β1H+

3β2H
2

τ L )
√

2d(K) log(1 + K
dλ ).

Comparison with Theorem 1 in Amani et al. (2021).

Compared to our Theorem 5.1, the regret bound in Theo-

rem 1 of Amani et al. (2021) lacks the
√

log
(
1
τ

)
factor. This

omission arises due to a mistake in their Theorem 2, which
relies on a covering-number argument designed for uncon-
strained RL (Lemma D.6 in Jin et al. (2020)), an approach
that is not valid in our setting under instantaneous hard
constraints. To clarify, note that a κ-covering of the value
functions ensures that every possible V k

h can be approxi-
mated to within κ. For the unconstrained setting, Jin et al.
(2020) demonstrated that a κ-covering of the Qk

h-functions
directly induces a κ-covering of the V k

h -functions. This is
because V k

h is obtained by maximizing Qk
h over a fixed ac-

tion set A, and the contraction property of the max operator
ensures that small changes in Qk

h lead to small changes in
V k
h (Ghosh et al., 2022b). In our setting, however, V k

h is
defined by maximizing Qk

h over a data-dependent safe set
Ak

h. Consequently, a covering of the Qk
h-functions does not

directly imply a covering of the V k
h -functions, as changes

in Ak
h can cause significant differences in V k

h . To resolve
this issue, we develop a novel technique called OCD for
bounding the covering number in the star-convex setting
(see Section 6). Specifically, we show that when Fs is star-
convex, the changes in Ak

h can be controlled by variations
in the safety parameters γk

h and Λk,γ
h , enabling an effec-

tive bound on the covering number. Once this bound is
established, we provide a corrected version of Theorem 2
in Amani et al. (2021) for the event E2, which now includes

the missing
√

log
(
1
τ

)
term, as detailed below:

Theorem 5.2 (Corrected covering-number result). Un-
der the setting of Theorem 5.1, for any fixed policy

6



Provably Efficient RL for Linear MDPs under Instantaneous Safety Constraints in Non-Convex Feature Spaces

π, let the event E2 be defined as follows: E2 ≜
{
∣∣⟨wk

h, ϕ(s, a)⟩ −Qπ
h(s, a) + Ph

(
V π
h+1 − V k

h+1

)
(s, a)

∣∣
≤ β∥ϕ(s, a)∥(Ak,Q

h )−1 , ∀(a, s, h, k) ∈ A×S×[H]×[K]},

where β1 = cβdH
√
log(dKτδ ) for some constant cβ . Then,

the event E2 holds with the probability of at least 1− δ.

5.2. The Challenge of Covering Numbers in
Non-star-Convex Safe RL

Now, we can illustrate why a dedicated pure exploration
phase is critical for controlling the covering number when
Fs is not star-convex. Suppose we remove the pure-
exploration component from Algorithm 1 and start the sec-
ond phase of the algorithm, safe-exploration-exploitation.
The immediate issue, in contrast star-convex settings, is that
we would require a large κ-covering of the value functions.
The key distinction between these two settings lies in the
inability to control changes in Ak

h through variations in the
safety parameters γk

h and Λk,γ
h . In non-star-convex settings,

even small variations in these safety parameters can drasti-
cally alter Ak

h, leading to substantial shifts in V k
h . Thus, we

cannot bound the covering number in the same way as in
star-convex settings. In fact, the following formalizes this
phenomenon in a simple one-dimensional example, show-
ing that the covering number can grow at least as large as
the number of states, which can be prohibitively large in
environments with very large or continuous state spaces.

Lemma 5.3. (Covering number in non-star-convex settings)
Consider a one-dimensional setting where Q(s, a) = a for
a ∈ R, with a finite state space S =

⋃|S|
i=1{i} ⊂ N. Define

the class of parameterized functions V ≜ {Vγ | ∥γ∥ ≤ 1},
where Vγ(s) ≜ maxa∈Aγ(s) Q(s, a), and Aγ(s) ≜ {a |
a ∈ [0, 1

3 ]∪ [ 23 , 1], γ · s ·a ≤ τ}. Now, for an arbitrary pos-
itive real number κ < 1

6 , let the set Vκ ⊂ V be a κ-covering
for the function class V . Then, the following inequality
holds: |S| ≤ |Vκ|.

Despite the fundamental challenge highlighted in
Lemma 5.3, we show that under the Local Point Assump-
tion 3.2, the pure exploration phase in Algorithm 1 enables
us to control the covering number during the second phase
of Algorithm 1. This is because, by the end of the pure
exploration phase, the agent’s estimated safe set remains
stable under small variations in the safety parameter with
high probability. Below, we present our main result:

Theorem 5.4. (Regret under Local Point Assumption)
Under assumptions 2.1, 2.3, and 3.2, there exists a con-
stant cβ > 0 such that for any δ ∈ (0, 1

3 ), by setting

β1 = cβdH
√
log(dKτδ ) and ν = 2

τ and λ = 1, with
the probability of at least 1 − 3δ Algortihm 1 remains
safe, Ak

h(s) ⊂ Asafe
h (s), ∀(h, k) ∈ [H] × [K]. More-

over, with probability at least 1− 3δ, Algorithm 1 achieves

Regret(K) ≤ K ′H+2H
√
(K −K ′)H log(d(K−K′)H

δ )+

2(β1H + β2H
2

τ )H
√
2(K −K ′)d log((dλ+2KL2

λd )),for all

K ′ ≥ max{ 8d
ϵ2 log(dHδ ), 2d

ϵ2 (
16β2

2

ι2 − λ)}, where ϵ and ι are
defined in Assumption 3.2.

Comparison with Star-Convex Case. The regret depen-
dence on K in Theorem 5.4 is Õ(

√
K). The key distinc-

tion between Theorems 5.4 (non-star-convex) and 5.1 (star-
convex) arises due to the necessary pure exploration phase
in the non-star-convex setting. Specifically, while Theo-
rem 5.1 achieves a regret of Õ(

√
K) without an explicit

exploration phase (K ′ = 0), Theorem 5.4 introduces a
pure exploration phase with length K ′ = O( log(K)

ϵ2ι2 ), which
stems from the Local Point Assumption and reflects the
added complexity of non-star-convex settings compared to
star-convex ones. This term also appears explicitly in the
regret bound, capturing the cost of ensuring safe exploration
in such environments.

6. Outline of the Proof
The proof steps presented here hold for both Theorem 5.4
and Theorem 5.1, albeit with different choices of K ′. For
Theorem 5.4, K ′ corresponds to the termination of the pure
exploration phase, while for Theorem 5.1, K ′ can be set to
0 as no pure exploration phase is needed in the star-convex
case. Our proof involves three main steps: (1) decomposing
the sum of regret and ensuring the constraint satisfaction, (2)
bounding the covering number of the value function class,
and (3) applying uniform concentration tools to achieve
sublinear regret. The key challenge lies in controlling the
covering number of the value function class, which critically
depends on how the geometry of the decision space.

Step 1: Decomposition. Following a similar approach as
in Ghosh et al. (2022b), we first establish a decomposition
that upper bounds the sum of regret: Regret(K) ≤ K ′H +
K∑

k=K′

(
V π∗

0 (s0)− V k
0 (s0)

)
︸ ︷︷ ︸

T1

+
K∑

k=K′

(
V k
0 (s0)− V πk

0 (s0)
)

︸ ︷︷ ︸
T2

.

To control T1 and T2, we need to carefully compare the
estimated value functions V k

h produced by our algorithm
at each episode k with the corresponding value functions
V π
h induced by a given policy π. A critical challenge is

dealing with the adaptive nature of the learning process,
where the chosen actions depend on previously observed
transitions and rewards. This adaptivity can make standard
self-normalized concentration inequalities inapplicable, as
the future sample distribution depends on the current value
estimates. To address this, we rely on value-aware uniform
concentration arguments. By fixing a suitable function class
V of candidate value functions in advance and ensuring

7
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that each V k
h belongs to V , we leverage the polynomial

log-covering number of V to obtain high-probability bounds
uniformly over all functions in the class. Concretely, for
each (k, h) ∈ [K] × [H], we aim to show that, with high
probability:

∥∥∥∥∥
k−1∑
τ=1

ϕ(sτh, a
τ
h)
[
V k
h+1(s

τ
h+1)− PhV

k
h+1(s

τ
h, a

τ
h)
]∥∥∥∥∥

(Λk
h)

−1

≤ O(d
√

logK),
(5)

where Ph is the transition operator at stage h. Achieving
such a bound ensures that our estimated value functions are
stable and close to the true policy-based value functions,
facilitating the desired sublinear regret guarantees.

Step 2: Controlling the Covering Number. We begin by
defining our class of value functions V . Consider parameters
θ, γ ∈ Rd and positive semi-definite matrices A,A′, with
bounded norms (e.g., ∥θ∥ ≤

√
d, ∥γ∥ ≤

√
d, ∥A∥F ≤

√
dB2

λ , and ∥A′∥F ≤
√
d(B′)2

λ ). Given these parameters, the
value function can be written as V (s) = min{V ′(s), H},
where:

V ′(s) = max
a∈A

⟨ϕ(s, a), w⟩+ ∥ϕ(s, a)∥A + gA′,1(s, a),

s.t. ⟨ϕ(s, a)− ϕ(s, a0s), γ⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′ ≤ τ,

where gA′,1(s, a) ≜ 2
τ ∥ϕ(s, a) − ϕ(s, a0s)∥A′ . We col-

lect all such value functions into the following class:
V ≜ {Vw,γ,A,A′ | ∥w∥ ≤ Lw, ∥γ∥ ≤

√
d, ∥A∥F ≤

√
dB2

λ , ∥A′∥F ≤
√
d(B′)2

λ }. In contrast to unconstrained
RL, where the value function V (.) is determined by max-
imizing the objective over the entire action space A, our
setup in Eq. (6) introduces constraints through the param-
eters (γ,A′), which directly affect the feasible decision
set. This distinction highlights the need to consider both
the objective and the constraints when constructing a log-
polynomial-sized covering for V , as we discuss next.

OCD: Objective–Constraint Decomposition. Here we
introduce our novel idea for bounding the covering num-
ber. Consider two arbitrary value functions V1 =
min{V ′

1(s), H} and V2 = {V ′
2(s), H} from our class V ,

where:

V ′
i (s) = max

a∈A
⟨ϕ(s, a), wi⟩+ ∥ϕ(s, a)∥Ai + gA′

i,1
(s, a)

s.t. ⟨ϕ(s, a)− ϕ(s, a0s), γi⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′
i
≤ τ,

(6)

for all i ∈ {1, 2}. To relate V1 and V2, we introduce an
intermediate value function V3 with objective parameters
from V1 and constraint parameters from V2. Specifically,

V3(s) = min{V ′
3(s), H}, where:

V ′
3(s) = max

a∈A
⟨ϕ(s, a), w1⟩+ ∥ϕ(s, a)∥A1 + gA′

1,1
(s, a)

s.t. ⟨ϕ(s, a)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′
2
≤ τ.

(7)

Now, we have: |V1(s)−V2(s)| ≤ |V1(s)−V3(s)|+|V2(s)−
V3(s)|. This inequality represents a decomposition of the dis-
tance between V1 and V2 into contributions from differences
in objectives and constraints. Specifically, V1 and V3 differ
only in their objective parameters, while V2 and V3 differ in
their constraints. Now, since V2 and V3 share the same con-
straint parameters (γ2, A′

2), they are maximizing over the
same feasible action set. Thus, bounding |V2 − V3| reduces
to a scenario akin to the unconstrained case, where com-
paring two linear–quadratic forms over the same domain is
straightforward. On the other hand, bounding |V1 − V3| is
more challenging because V1 and V3 have different feasible
decision sets.

Bounding |V1 − V3| in Star-Convex Setting. When Fs is
star-convex, we prove that small perturbations in γ or A′

do not cause large, discontinuous changes in the feasible
action set (see Lemma B.7 in the Appendix). Specifically,
we show that if a1 is feasible for V1, then there exists a
scalar α3 ∈

[
τ

τ+∆ , 1
]

and an action a3 feasible for V3 such
that ϕ(s, a3) = α3 ϕ(s, a1) +

(
1− α3

)
ϕ(s, a0s), where

∆ = ∥γ2 − γ1∥+
√
∥A′

1 −A′
2∥F . As ∆ approaches zero,

ϕ(s, a3) converges to ϕ(s, a1), implying that every feasible
feature of V1 has a close counterpart in V3, and vice versa,
with the difference controlled by ∆. Consequently, |V1 −
V3| can also be controlled by ∆. Hence, constructing a
polynomial-size cover of the parameter space induces a
corresponding cover for the value function class V .
Remark 6.1. When τ is small, a smaller ∆ is required to
ensure that α3 ∈ [ τ

τ+∆ , 1] remains close to 1, which in
turn ensures that ϕ(s, a3) stays sufficiently close to ϕ(s, a1).
As a result, a larger covering net is needed to account for
smaller variations in the parameter space. This additional

complexity is reflected in the
√
log( 1τ ) term in Theorem 5.2.

Non-Star-Convex setting. In non-star-convex settings, our
OCD technique cannot be directly applied without a pure
exploration phase, as small changes in the safety parame-
ters γ or A′ can cause drastic shifts in the feasible action
sets, leading to significant differences in V1 and V3 (see
Lemma 5.2). To understand why this occurs in non-star-
convex settings, note that when Fs is not star-convex, we
cannot guarantee that αϕ(s, a∗1) + (1 − α)ϕ(s, a0s) ∈ Fs

for α ∈ [ τ
τ+∆ , 1]. This is the main reason why our ap-

proach for the star-convex case does not extend directly
to the non-star-convex setting. However, once V1 = V k

h ,
where V k

h is the value function generated by Algorithm 1
after the pure exploration phase, we show that when ∆

8
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is sufficiently small, with high probability, all actions in
Aι

h(s) = {a ∈ A | ⟨ϕ(s, a), γ∗
h⟩ ≤ τ − ι} are feasible for

both V1 and V3. Moreover, under the Local Point Assump-
tion, any feasible action of V1 outside Aι

h(s) has a close
feasible counterpart in V3 within a ∆-neighborhood, and
vice versa (see Lemma B.3 in the Appendix). This closeness
of the feasible sets of V1 and V3 enables us to reapply the
ideas underlying OCD and effectively bound the covering
number in the second phase of Algorithm 1.

Step 3: Final assembly. With these log-polynomial
bound for the covering number in hand—achieved, we can
apply standard self-normalized concentration inequalities.
Thus, we can prove the following Lemmas:

Lemma 6.2. (Optimism) With probability of at least 1− δ
2 ,

we have: T1 ≤ 0.

Lemma 6.3. (Bounding T2) With the probabil-
ity of at least 1 − δ

2 , T2 ≤
∑K

k=K′
∑H

h=1 ζ
k
h +∑K

k=K′
∑H

h=1 2β1∥ϕ(skh, akh)∥(Λk,Q
h )−1 + gkh(s

k
h, a

k
h),

where ζkh+1 ≜ Ph(V
k
h+1 − V πk

h+1)(s
k
h, a

k
h) − δkh+1 and

δkh+1 ≜ V k
h (skh)− V πk

h (skh).

Now, combining the last two steps and upper bounding the
normalized term obtained in step 3, we can apply Lemma 11
from Abbasi-Yadkori et al. (2011) to derive the final result.
Additionally, Theorem 2 from Abbasi-Yadkori et al. (2011)
can be applied to show that our approach ensures high-
probability safety.

7. Experiment
We consider an autonomous-vehicle path-planning task in a
merging scenario (Figure 2) where the goal is to navigate
safely and efficiently (see Section 3 for details). A trained
module (Collav) handles collision avoidance by masking
infeasible actions, so the RL agent focuses on satisfying
lane-keeping constraints. Given an initial safe policy πsafe,
the feature space is non-star-convex due to Collav but still
satisfies the Local Point Assumption. Our objective is to
learn an optimal safe policy with sublinear regret. We imple-
ment NCS-LSVI (Algorithm 1) with different values of K ′

and report the resulting regret in Figure 3. For K ′ = 2000,
regret remains sublinear, indicating successful learning of
the optimal safe policy after sufficient pure exploration.
Moreover, across all K, our algorithm never violates the
safety constraint, ensuring lane-keeping is always satisfied.
See Appendix A for further details and additional baseline
comparisons.

8. Conclusion
In this paper, we studied Safe RL with instantaneous hard
constraints in both star-convex and non-star-convex settings.

Figure 3. Regret vs. episodes for NCS-LSVI in an autonomous
vehicle merging scenario.

A key challenge in these settings is bounding the covering
number of the value-function class, which is critical for
achieving value-aware uniform concentration in model-free
function approximation. For the star-convex setting, we
introduced a novel technique, OCD, to effectively bound the
covering number. This result also resolves an error in previ-
ous work on constrained RL. For non-star-convex scenarios,
we proposed a new two-phase algorithm, NCS-LSVI, which
effectively addresses the challenge of bounding the covering
number in these settings. Our analysis demonstrates that our
methods attain Õ(

√
K) regret with zero safety violations in

both the star-convex and non-star-convex settings. Numeri-
cal simulations on an autonomous driving scenario demon-
strated the practical effectiveness of our method.While our
regret bound for the non-star-convex setting under the Local
Point Assumption includes a dependence of order 1

ϵ2ι2 , it
remains an open question whether this dependence is funda-
mental, and resolving it is an important direction for future
work. Additionally, future research will focus on moving
beyond linear-MDP structures, relaxing assumptions such
as the local-point condition, and designing algorithms capa-
ble of maintaining safety and near-optimal regret in more
complex, nonlinear environments.
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The appendix is organized as follows. Appendix A contains the simulation details presented in the main part of the paper.
Appendix B includes the proofs for bounding the covering number in both star-convex and non-star-convex settings, as
stated in Theorems 5.4 and 5.1. Appendix C contains the detailed proof steps for Theorem 5.4 in the non-star-convex setting.
Finally, Appendix D provides the proof steps for Theorem 5.1 in the star-convex setting.

A. Experiment Details and Star-Convex Simulations
A.1. Detailed Setup for Section 7 Experiments

Problem Statement We consider a merging scenario at an intersection where an autonomous vehicle must navigate safely
and efficiently. The intersection consists of a main road with another vehicle already traveling on it and a merging lane
where our autonomous vehicle starts. The autonomous vehicle needs to decide whether to wait for the car on the main
road to pass or to accelerate and merge into the main road before the other car arrives. Please see Figure 2 for a sketch
of the scenario. The objective of the autonomous vehicle is to maximize the traversed path toward a goal point within a
finite time horizon while adhering to the following constraints: 1. Avoid collisions with the car on the main road. 2. Keep
the vehicle within the lane boundaries. In our experiment we assume that, the car includes a trained collision avoidance
module (referred to as Collav), which identifies infeasible actions that could lead to collisions, threfore the RL agent does
not need to learn collision avoidance constraint. However, lane-keeping is a constraint that the RL agent must learn during
its interaction with the environment. Please see Figure 5 for a brief diagram of our problem.

Accelerating to merge into the main road is the optimal choice in this scenario, as it allows the vehicle to traverse a greater
distance toward the goal point within the finite time horizon. However, due to the unknown dynamics of the car, the RL
agent must adopt a conservative strategy, denoted as πsafe, to avoid losing control when accelerating.

Vehicle Dynamics The vehicle’s dynamics are governed by the following equations:
xt+1

yt+1

vxt+1

vyt+1

 =


xt + vxt+1

yt + vyt+1

f(vxt + α1u
x
t )

f(vyt + α2u
y
t )

 , (8)

where xt, yt represent the vehicle’s position, and vxt , v
y
t are its velocities. The control inputs ux

t , u
y
t affect the velocity

through unknown parameters α1, α2. The function f(·) models nonlinear dynamics, which are linear in most regions but
saturate at the car’s speed limits as illustrated in Figure 4. For simulation purposes, we set (α1, α2) = (0.5, 0.5).

Figure 4. Plot of f(x) showing the dynamics function behavior.
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Lane-Keeping Constraint The lane-keeping constraint ensures that the vehicle remains within the lane boundaries:
Rlanes = {(x, y) ∈ R2 | ymin ≤ y ≤ ymax}, where ymin = −0.3 and ymax = 1

3 . This ensures that the vehicle does not
drift out of the lane.

Collision Avoidance The collision avoidance module Collav restricts unsafe actions at the start of each episode (h = 0).
Specifically, actions that result in a speed within 1

16 ≤ |vxt + vyt | ≤ 1
4 are prohibited. For all other timesteps (h ∈ [H]), the

module does not impose any restrictions. At h = 0, the resulting restricted action space is shown in Figure 2. The time
horizon for the simulation is H = 3.

Initial Safe Policy. The initial safe policy, πsafe, is defined as: πsafe(st) =
[
vref−vx

t

κ1
,
vref−vy

t

κ2

]⊤
, where vref = 0.001 is a

small conservative reference speed, and κ1 = 100000 and κ2 = 0.5 determine the reaction strength to deviations.

Algorithm Implementation We implement Algorithm 1 for this setup using the feature vector: ϕ(s, a) =
[x, y, vx, vy, ux, uy]⊤, and express the lane-keeping constraint as: ymin ≤ ⟨ϕ(s, a), γ∗⟩ ≤ ymax, where γ∗ is an un-
known parameter vector. The total number of episodes is set to K = 1000, with ϵ = 0.1 chosen to satisfy Assumption 3.2.
The pure exploration parameter K ′ is selected from {1, 300, 2000}. We discretize the action space into grids of size 1

8 × 1
8

to address optimization challenges in the non-convex setup. However, our state space is continueous. Moreover, in order to
speed-up our Algorithm, we update the Q-function’s parameter (wk

h) every 2k epochs.

Results Figure 3 demonstrates that after an initial exploration phase, the agent converges to the optimal policy, achieving
sublinear regret. Additionally, Figure 3 shows that the yt values remain within the lane boundaries throughout both
exploration and exploitation phases.
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Figure 5. The diagram of autonomous vehicle example: Agent interacts with the environment and observe feedbacks on its location
and speed. It utilizes the feedback to imporove the estimation of lane keeping. Then, using lane keeping and a trained collav module
it provides the safe set of actions. The decision making module uses the feedback to enhance the estimation on Q function, and then
utilizes the saf set to make the next decision. Note that the Collav block is trained a prioir and we are not learning it, but lane keeping and
Decision Making are the blocks that RL agent needs to learn.
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Figure 6. Regret of our method (NCS-LSVI) over more episodes,
showing sublinear behavior for K′ = 2000.

Figure 7. Regret of a sub-optimal but safe baseline that stays
within an ϵ-neighborhood of the initial safe policy.

Figure 8. Regret of LSVI-UCB (Jin et al., 2020), which
achieves low regret but violates constraints.

Figure 9. Cumulative constraint violations for LSVI-
UCB, showing linear growth. The other two methods
have zero violations, so no violation plots are included.

A.2. Baseline comparisons.

Figure 6 shows the regret of NCS-LSVI over more episodes, demonstrating sublinear growth for K ′ = 2000. Figure 7
shows the regret of a sub-optimal but safe baseline constrained to an ϵ-neighborhood of the initial policy.

Figure 8 shows the regret of LSVI-UCB (Jin et al., 2020), which achieves lower regret but violates constraints, as shown in
Figure 9, where cumulative violations grow linearly. The other two methods have zero violations, so no violation plots are
included. We will add these results in the final version.
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A.3. Experiment in the Star-Convex Setting

Based on Lemma 5.3, we observe that in non-star-convex settings, without a pure exploration phase, the covering number
is lower bounded by the cardinality of the state space. However, Theorem 5.1 establishes that in star-convex settings, the
covering number can be properly bounded without a pure exploration phase, ensuring sublinear regret. To validate this
argument, we conduct numerical experiments in our autonomous vehicle setting, where the state space is continuous and has
infinite cardinality.

We retain the same setup as in the non-star-convex scenario but remove the collision avoidance module, making the decision
space star-convex. Specifically, we assume that the red car in Figure 2 is no longer present. According to Theorem 5.1, we
expect that skipping the pure exploration phase in Algorithm 1 (i.e., setting K ′ = 0) will still allow the RL agent to achieve
sublinear regret. The regret graph in Figure 10 confirms this expectation, showing that Algorithm 1 successfully attains
sublinear regret. Moreover, the agent consistently satisfies the safety constraint, never deviating from its lane throughout
learning.

Figure 10. Regret vs. episodes for NCS-LSVI in an star-convex autonomous vehicle merging scenario.
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A.4. Effectiveness of Linear MDPs in Practice

Linear MDPs are widely studied and effective in practice. Zhang et al. (2022) demonstrate state-of-the-art performance on
MuJoCo and DeepMind Control benchmarks, and Jin et al. (2020) show that linear MDP solutions offer regret guarantees
even when the true MDP is nonlinear. Also, a safe sub-optimal policy can often be identified offline using domain knowledge
(Amani et al., 2019; Khezeli & Bitar, 2020; Shi et al., 2023).

B. Bounding Covering Number in Theorems 5.4 and 5.1
In Appendix B.1, we present our results for bounding the covering number of the function class of individual value functions
in the non-star-convex setting defined in Theorem 5.4. Similarly, Appendix B.2 contains our results for the star-convex
setting defined in Theorem 5.1. Appendix B.3 provide our proof for Lemma 5.3. Additionally, Appendix B.4 provides
proofs for auxiliary lemmas used in the previous sections.

Before presenting the proof, we define the function class of value functions used in our work below.

Definition B.1. Let V denotes a class of functions, min{V (.), H}, where V (.) is mapping from S to R with the following
parametric form:

V (s) ≜ min{max
a∈A

(⟨ϕ(s, a), w⟩+ β∥ϕ(s, a)∥Λ−1) + gΛ−1(s, a), H}

s.t : ⟨ϕ(s, a)− ϕ(s, a0s), γ⟩+ β′∥ϕ(s, a)− ϕ(s, a0s)∥(Λ′)−1 ≤ τ,
(9)

where the parameters (w, γ, β, β′,Λ) satisfy ∥w∥ ≤ Lw, ∥γ∥ ≤
√
d, λmin(Λ) ≥ λ, β ∈ [0, B], and β′ ∈ [0, B′]. Also,

gΛ−1,β′ is defined as follows:

gΛ−1,β′(s, a) ≜
2

τ
β′∥ϕ(s, a)− ϕ(s, a0s)∥Λ−1 (10)

.

B.1. Covering Number in Linear MDPs with Instantaneous Hard Constraints under Local Point Assumption

Now we state the next Lemma that provide a proper upper bound for Nκ:

Lemma B.2. (Covering number in linear MDPs with instantaneous hard constraints under Local Point Assumption).
Consider the setting of Theorem 5.4, and let κ ≤ ι

2 . Then there exists a finite set of functions Vκ ⊂ V such that for all
k ≥ K ′, there exists a V ∈ Vκ such that dist(V, V k

h ) ≤ κ. Moreover, let Nκ be the cardinality for Vκ, then with probability
of at least 1− δ, we will have the following:

log(Nκ) ≤ d

[
log(1 +

4Lw

κ
) + log(1 +

8(d
1
4 B√
λ

+H)

κτ
)

]

+ d2
[
log(1 +

32
√
dB2

λκ2
) + log(1 +

32
√
d(B′)2(d

1
4 B√
λ

+ 3H)2

λτ2κ2
)

]
.

(11)

Proof: We equivalently define A = β2Λ−1 and A′ = β′2Λ−1 and reparameterize the class function V as follows:

V (.) = min{max
a∈A

⟨ϕ(., a), w⟩+ ∥ϕ(., a)∥A + gA′,1(., a), H}

s.t : ⟨ϕ(., a)− ϕ(., a0. ), γ⟩+ ∥ϕ(., a)− ϕ(., a0s)∥A′) ≤ τ,
(12)

where ∥A∥ ≤ B2

λ and ∥A′∥ ≤ (B′)2

λ .

Now, for k ≥ K ′, let V1 = V k
h be the value function generated by Algorithm 1 during the exploration-exploitation phase

(secon phase), and V2 is an arbitrary function in V . Then, there exist parameters (w1, γ1, A1, A
′
1) and (w2, γ2, A2, A

′
2) such
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that:
V1(s) = min{max

a∈A
⟨ϕ(s, a), w1⟩+ ∥ϕ(s, a)∥A1 + gA′

1,1
(s, a), H}

s.t : ⟨ϕ(s, a)− ϕ(s, a0s), γ1⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′
1
≤ τ

V2(s) = min{max
a∈A

⟨ϕ(s, a), w2⟩+ ∥ϕ(s, a)∥A2
) + gA′

2,1
(s, a), H}

s.t : ⟨ϕ(s, a)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′
2
≤ τ

(13)

Now, define V3 as follows:

V3(s) = min{max
a∈A

⟨ϕ(s, a), w1⟩+ ∥ϕ(s, a)∥A1) + gA′
1,1

(s, a), H}

s.t : ⟨ϕ(s, a)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′
2
) ≤ τ

(14)

Now, using triangle inequlity, for all s ∈ S, we have:

|V1(s)− V2(s)| ≤ |V1(s)− V3(s)|+ |V2(s)− V3(s)| (15)

Now, applying the triangle inequality for all s ∈ S, we have:

|V1(s)− V2(s)| ≤ |V1(s)− V3(s)|+ |V2(s)− V3(s)|.

To bound |V1(s)− V2(s)|, it suffices to separately bound |V1(s)− V3(s)| and |V2(s)− V3(s)|. Notably, V2 and V3 share the
same constraint parameters, resulting in identical feasible sets. Therefore, their difference can be bounded by the difference
in their objective parameters. On the other hand, V1 and V3 have differing constraint parameters, leading to different feasible
decision sets. In the following, we provide bounds for each of these terms.

Bounding |V1(s)− V3(s)| Note that V1(s) = V k
h after pure exploration phase of Algorithm 1, i.e., k ≥ K ′. Thus, we

show that if the differnce between the constraint parameters of V1 and V3 are small enough then their feasible set also does
not change drastically as explained in the following Lemma:

Lemma B.3. (No dramatic changes in the estimated action set). Let ∆ = ∥γ2 − γ1∥ +
√
∥A′

1 −A′
2∥F , where ∥·∥F

denotes the Frobenius norm for matrices, and assume ∆ ≤ ι
2 . For each s ∈ S, let ϕ(s, a∗1) represent the solution of the

constrained optimization problem associated with V1 = V k
h for k ≥ K ′. Then, with probability of at least 1− δ, there exists

α3 ∈ [ τ
τ+∆ , 1] such that α3ϕ(s, a

∗
1) + (1−α3)ϕ(s, a

0
s) is feasible for the constrained optimization problem associated with

V3. Specifically, there exists an action a3 ∈ A such that ϕ(s, a3) = α3ϕ(s, a
∗
1) + (1−α3)ϕ(s, a

0
s), and the following holds:

⟨(ϕ(s, a3)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a3)− ϕ(s, a0s)∥A′
2
≤ τ

The proof of the above Lemma is provided in Section B.4.

Using the above lemma, we can immediately derive the following result:

Lemma B.4. For each s ∈ S, with the probability of at least 1− δ, the following inequality is satisfied:

V1(s)− V3(s) ≤
∆

τ +∆
(H +

√
∥A1∥F ).

The proof of this lemma can be found in Section B.4.

Now, simliar steps can be applied to get V3(s)− V1(s) ≤ ∆
τ+∆ (H +

√
∥A1∥F ). Thus, we will have:

|V1(s)− V3(s)| ≤
∆

τ +∆

(
H +

√
∥A1∥F

)
≤ ∆

τ

(
H +

√
∥A1∥F

)
, (16)

where the last inequality obtained by the fact that ∆
τ+∆ ≤ ∆

τ . Now, substituiting ∆ = ∥γ1 − γ2∥ +
√

∥A′
1 −A′

2∥F in
Eq.(16) we will have:
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|V1(s)− V3(s)| ≤

(
H +

d
1
4B√
λ

)
∥γ1 − γ2∥+

√
∥A′

1 −A′
2∥F

τ
, (17)

where we used the fact that ∥A1∥F ≤
√
dB2
√
λ

.

Bounding |V2(s)− V3(s)| To bound |V2(s)− V3(s)|, we follow a similar approach to Lemma D.6 in (Jin et al., 2020):

|V2(s)− V3(s)|

≤ sup
a∈A

∣∣∣⟨ϕ(s, a), w1⟩+ ∥ϕ(s, a)∥A1
+ gA′

1,1
(s, a)

− ⟨ϕ(s, a), w2⟩ − ∥ϕ(s, a)∥A2 − gA′
2,1

(s, a)
∣∣∣

≤ ∥w1 − w2∥+
√
∥A1 −A2∥F + sup

a∈A
|gA′

1,1
(s, a)− gA′

2,1
(s, a)|,

(18)

where the first inequality follows from the fact that V2 and V3 are maximized over the same action space (see Equations (13)
and (14)), and the optimal solution to the constrained problem is upper bounded by the optimal solution to the unconstrained
problem.

Now, it remained to bound supa∈A |gA′
1,1

(s, a)− gA′
2,1

(s, a)|. Thus, we state the following helpful Lemma:

Lemma B.5. Given PSD matrices A′
1 and A′

2, the following inequlity holds:

sup
s,a

|gA′
1,1

(s, a)− gA′
2,1

(s, a)| ≤ 2H

τ

√
∥A′

1 −A′
2∥F

Proof: The proof of the above Lemma is provided in Section B.4.

Now, by applying Lemma B.5 to Equation (18), we can bound |V2(s)− V3(s)| as follows:

|V2(s)− V3(s)| ≤ ∥w1 − w2∥+
√
∥A1 −A2∥F +

2H

τ

√
∥A′

1 −A′
2∥F (19)

Bounding |V1(s)− V2(s)|: Combining Eq. (17) and Eq. (19), with the proability of at least 1− δ, we have:

|V1(s)− V2(s)| ≤ |V1(s)− V3(s)|+ |V2(s)− V3(s)|

≤

(
H +

d
1
4B√
λ

)
∥γ1 − γ2∥+

√
∥A′

1 −A′
2∥F

τ
+ ∥w1 − w2∥+

√
∥A1 −A2∥F +

2H

τ

√
∥A′

1 −A′
2∥F

(20)

Final step. Let Cw be the κ
4 -cover for {w ∈ Rd| ∥w∥ ≤ Lw}, and Cγ be the κτ

4( d
1
4 B√
λ

+H)

-cover for {γ ∈ Rd| ∥γ∥ ≤
√
d}.

Also, let CA be the κ2

16 -cover for {A ∈ Rd×d| ∥A∥F ≤
√
dB2

λ }, and let CA′ be the κ2τ2

16( d
1
4 B√
λ

+3H)2
-cover for {A′ ∈

Rd×d| ∥A′∥F ≤
√
dB2

λ }. By Lemma D.5 in (Jin et al., 2020), we have:

|Cw| ≤ (1 +
8Lw

κ
)d, |Cγ | ≤ (1 +

8(d
1
4 B√
λ

+H)

κτ
)d

|CA| ≤ (1 +
32
√
dB2

λκ2
)d

2

, |CA′ | ≤ (1 +
32
√
d(B′)2(d

1
4 B√
λ

+ 3H)2

λτ2κ2
)d

2

(21)
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Now, by Eq. (20), for any V1 = V k
h generated by Algorithm 1 and k ≥ K ′, there exist w2 ∈ Cw, γ2 ∈ Cγ , A2 ∈ CA, and

A′
2 ∈ CA′ such that:

dist(V1, V2) = sup
s

|V1(s)− V2(s)| ≤ κ

Hence, it holds that Nκ ≤ |Cw| |Cγ | |CA| |CA′ |, which yields:

log(Nκ) ≤ log(|Cw|) + log(|Cγ |) + log(|CA|) + log(|CA′ |)

≤ d

[
log(1 +

8Lw

κ
) + log(1 +

8(d
1
4 B√
λ

+H)

κτ
)]

+ d2[log(1 +
32
√
dB2

λκ2
) + log(1 +

32
√
d(B′)2(d

1
4 B√
λ

+ 3H)2

λτ2κ2
)

]
. □

B.2. Covering Number in Linear MDPs with Instantaneous Hard Constraints under Star-Convexity Assumtion
(Theorem 5.1)

Here, we bound the covering number for star-convex cases. The main difference from our proof for the Local Point
Assumption lies in Lemma B.3, where we show that in the star-convex case, even when K ′ = 0, the estimated safe set
remains stable under small variations in the safety parameters.
Lemma B.6. (Covering number in linear MDPs with instantaneous hard constraints under Star-Convex Assumption).
Consider the setting of Theorem 5.1. Let κ be a positive number. Then there exists a finite set of functions Vκ ⊂ V such that
for all k ∈ [K], there exists a V ∈ Vκ such that dist(V, V k

h ) ≤ κ. Moreover, let Nκ be the cardinality for Vκ, then we will
have the following:

log(Nκ) ≤ d

[
log(1 +

4Lw

κ
) + log(1 +

8(d
1
4 B√
λ

+H)

κτ
)

]

+ d2
[
log(1 +

32
√
dB2

λκ2
) + log(1 +

32
√
d(B′)2(d

1
4 B√
λ

+ 3H)2

λτ2κ2
)

]
.

(22)

Proof: We equivalently define A = β2Λ−1 and A′ = β′2Λ−1 and reparameterize the class function V as follows:

V (.) = min{max
a∈A

⟨ϕ(., a), w⟩+ ∥ϕ(., a)∥A + gA′,1(., a), H}

s.t : ⟨ϕ(., a)− ϕ(., a0. ), γ⟩+ ∥ϕ(., a)− ϕ(., a0. )∥A′) ≤ τ,
(23)

where ∥A∥ ≤ B2

λ and ∥A′∥ ≤ (B′)2

λ .

Now, let V1 = V k
h be the value function generated by Algorithm 1 during the exploration-exploitation phase, and V2 is an

arbitrary function in V . Then, there exist parameters (w1, γ1, A1, A
′
1) and (w2, γ2, A2, A

′
2) such that:

V1(s) = min{max
a∈A

⟨ϕ(s, a), w1⟩+ ∥ϕ(s, a)∥A1
+ gA′

1,1
(s, a), H}

s.t : ⟨ϕ(s, a), γ1⟩+ ∥ϕ(s, a)∥A′
1
≤ τ

V2(s) = min{max
a∈A

⟨ϕ(s, a), w2⟩+ ∥ϕ(s, a)∥A2
) + gA′

2,1
(s, a), H}

s.t : ⟨ϕ(s, a), γ2⟩+ ∥ϕ(s, a)∥A′
2
≤ τ

(24)

Now, define V3 as follows:

V3(s) ≜ min{max
a∈A

⟨ϕ(s, a), w1⟩+ ∥ϕ(s, a)∥A1
) + gA′

1,1
(s, a), H}

s.t : ⟨ϕ(s, a), γ2⟩+ ∥ϕ(s, a)∥A′
2
) ≤ τ

(25)

Similar to our Proof for Lemma B.2, we can write |V1(s)− V2(s) ≤ |V1(s)− V3(s)|+ |V2(s)− V3(s)|. Thus, to bound
|V1(s)− V2(s)|, it suffices to separately bound |V1(s)− V3(s)| and |V2(s)− V3(s)|.
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Bounding |V1(s) − V3(s)|. Now, we provide the counter part of the Lemma B.3 for the Star-Convex setting as stated
below:

Lemma B.7. (No dramatic changes in the estimated safe set under Star-Convexity). Let ∆ = ∥γ2−γ1∥+
√

∥A′
1 −A′

2∥F ,
where ∥·∥F denotes the Frobenius norm for matrices. For each s ∈ S , let ϕ(s, a∗1) represent the solution of the constrained
optimization problem associated with V1 = V k

h , for k ∈ [K]. Then, there exists α3 ∈ [ τ
τ+∆ , 1] such that α3ϕ(s, a

∗
1) + (1−

α3)ϕ(s, a
0
s) is feasible for the constrained optimization problem associated with V3. Specifically, there exists an action

a3 ∈ A such that ϕ(s, a3) = α3ϕ(s, a
∗
1) + (1− α3)ϕ(s, a

0
s), and the following holds:

⟨ϕ(s, a3)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a3)− ϕ(s, a0s)∥A′
2
≤ τ (26)

The proof of the above Lemma is provided in Section B.5.
Remark B.8. The key difference between Lemma B.7 and Lemma B.3 lies in their applicability: Lemma B.7 holds for all
k ∈ [K], whereas Lemma B.3 is valid only for k ≥ K ′ with high probability. This distinction is the primary reason why the
Pure Exploration phase in Algorithm 1 is unnecessary in star-convex settings.

The remaining steps are identical to the proof steps outlined in Lemma B.2. In fact, using Lemma B.4 we will have:

|V1(s)− V3(s)| ≤

(
H +

d
1
4B√
λ

)
∥γ1 − γ2∥+

√
∥A′

1 −A′
2∥F

τ
, (27)

Bounding |V2(s)− V3(s)| Now, applying Lemma B.5 on Eq. (18) we get the following:

|V2(s)− V3(s)| ≤ ∥w1 − w2∥+
√

∥A1 −A2∥F +
2H

τ

√
∥A′

1 −A′
2∥F (28)

Bounding |V1(s)− V2(s)|: Combining Eq. (27) and Eq. (28), we have:

|V1(s)− V2(s)| ≤ |V1(s)− V3(s)|+ |V2(s)− V3(s)|

≤

(
H +

d
1
4B√
λ

)
∥γ1 − γ2∥+

√
∥A′

1 −A′
2∥F

τ
+ ∥w1 − w2∥+

√
∥A1 −A2∥F +

2H

τ

√
∥A′

1 −A′
2∥F

(29)

Final step. Let Cw be the κ
4 -cover for {w ∈ Rd| ∥w∥ ≤ Lw}, and Cγ be the κτ

4( d
1
4 B√
λ

+H)

-cover for {γ ∈ Rd| ∥γ∥ ≤
√
d}.

Also, let CA be the κ2

16 -cover for {A ∈ Rd×d| ∥A∥F ≤
√
dB2

λ }, and let CA′ be the κ2τ2

16( d
1
4 B√
λ

+3H)2
-cover for {A′ ∈

Rd×d| ∥A′∥F ≤
√
dB2

λ }. By Lemma D.5 in (Jin et al., 2020), we have:

|Cw| ≤ (1 +
8Lw

κ
)d, |Cγ | ≤ (1 +

8(d
1
4 B√
λ

+H)

κτ
)d

|CA| ≤ (1 +
32
√
dB2

λκ2
)d

2

, |CA′ | ≤ (1 +
32
√
d(B′)2(d

1
4 B√
λ

+ 3H)2

λτ2κ2
)d

2

(30)

Now, by Eq. (29), for any V1 = V k
h generated by Algorithm 1 and k ∈ [K], there exist w2 ∈ Cw, γ2 ∈ Cγ , A2 ∈ CA, and

A′
2 ∈ CA′ such that:

dist(V1, V2) = sup
s

|V1(s)− V2(s)| ≤ κ

Hence, it holds that Nκ ≤ |Cw| |Cγ | |CA| |CA′ |, which yields:
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log(Nκ) ≤ log(|Cw|) + log(|Cγ |) + log(|CA|) + log(|CA′ |)

≤ d

[
log(1 +

8Lw

κ
) + log(1 +

8(d
1
4 B√
λ

+H)

κτ
)]

+ d2[log(1 +
32
√
dB2

λκ2
) + log(1 +

32
√
d(B′)2(d

1
4 B√
λ

+ 3H)2

λτ2κ2
)

]
. □

B.3. Proof of Lemma 5.3

Proof: Let V ′′ ≜ {vγ ∈ V | γ ∈ ∪n
i=1{ 1

i }}. Firsly, we show that for all v′′1 , v
′′
2 ∈ V ′′ with v′′1 ̸= v′′2 , we have

sups∈S |v′′1 (s)− v′′2 (s)| ≥ 1
3 . To prove this, note that there exists i, j ∈ N such that v′′1 = v 1

i
and v′′2 = v 1

j
. Now, without

loss of generality assume that i < j Thus, for s = j we will have: v′′1 (j) =
1
3 but v′′2 (j) =

2
3 . Thus,

∀v′′1 , v′′2 ∈ V ′′ such that v′′1 ̸= v′′2 : sup
s∈S

|v′′1 (s)− v′′2 (s)| ≥ |2
3
− 1

3
| = 1

3
. (31)

Now, to complete our proof, we use a contradiction strategy. Assume that V ′ is a κ-covering for V such that |V ′| ≤ |S| − 1
and κ < 1

6 . Since V ′ is a κ-covering, for all v′′ ∈ V ′′, there exists a v′ ∈ V ′ such that

sup
s∈S

|v′′(s)− v′(s)| < κ ≤ 1

6
.

However, since V ′ has one fewer element than V ′′, there must exist two functions v′′1 , v
′′
2 ∈ V ′′ and one function v′1,2 ∈ V ′

such that
sup
s∈S

|v′′1 (s)− v′1,2(s)| ≤ κ and sup
s∈S

|v′′2 (s)− v′1,2(s)| ≤ κ.

However, this implies:

sup
s∈S

∣∣∣v′′1 (s)− v′′2 (s)
∣∣∣ = sup

s∈S

∣∣∣v′′1 (s)− v′1,2(s) +
(
v′1,2(s)− v′′2 (s)

)∣∣∣
≤ sup

s∈S
|v′′1 (s)− v′1,2(s)|+ sup

s∈S
|v′′2 (s)− v′1,2(s)| ≤ 2κ <

1

3

(32)

Thus, combining Equations 31 and 32 we will have:

1

3
≤ sup

s∈S

∣∣∣v′′1 (s)− v′′2 (s)
∣∣∣ < 1

3
,

which is a contraditction and it completes the proof □

B.4. Proof of Lemmas B.3 -B.5

Before we delve into the proof we state the following helpful lemma:

Lemma B.9. For any δ ∈ (0, 1), let K ′ ≥ 8d
ϵ2 log(Hd

δ ). Then, with probability at least 1− δ, the following inequality holds
for all (s, a), and k ≥ K ′:

(ϕ(s, a)− ϕ(s, a0s))
T (Λk,γ

h )−1(ϕ(s, a)− ϕ(s, a0s)) ≤
1

λ+ λ−k
2

∥ϕ(s, a)− ϕ(s, a0s)∥2.

Using Lemma B.9 we can immdiately prove the following Lemma as well.

Lemma B.10. Let K ′ = max{ 8d
ϵ2 log(dHδ ), 2d

ϵ2 (
16β2

2

ι2 − λ)}, and define A
ι
2

h (s) ≜ {a ∈ A | ⟨ϕ(s, a), γ∗
h⟩ ≤ τ − ι

2}. For all

K ≥ K ′, with probability at least 1− δ, we have A
ι
2

h (s) ⊂ Ak
h(s).
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The proof of Lemma B.10 is provided in Appendix C.4.

Now, we are ready for the main proof:

Proof of Lemma B.3

Bounding difference between safety values First of all, we want to bound the safety values of V1 and V3:

∀(s, a) : |⟨ϕ(s, a)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′
2
− ⟨ϕ(s, a)− ϕ(s, a0s), γ1⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′

1
|

≤ |⟨ϕ(s, a)− ϕ(s, a0s), γ2 − γ1⟩|+ |∥ϕ(s, a)− ϕ(s, a0s)∥A′
2
− ∥ϕ(s, a)− ϕ(s, a0s)∥A′

1
|

≤ ∥ϕ(s, a)− ϕ(s, a0s)∥ (∥γ1 − γ2∥+
√
∥A′

1 −A′
2∥)

≤ 2

(
∥γ1 − γ2∥+

√
∥A′

1 −A′
2∥
)

= 2∆

(33)

where the last inequality obtained by Assumption 3.2 that ∥ϕ∥ ≤ 1.

Existence of the feasible feature for V3: Let Aι
h(s) ≜ {a ∈ A | ⟨ϕ(s, a), γ∗

h⟩ ≤ τ − ι}. Then, we decompose the proof
into two sub-cases:

• Case 1: If a∗1 ∈ Aι
h(s), then we show that a∗1 is feasible for the optimization problem of V3. Using Eq.(33) we will

have:

⟨ϕ(s, a∗1)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′
2
≤ ⟨ϕ(s, a∗1)− ϕ(s, a0s), γ1⟩+ ∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′

1
+∆

(34)
Now, on the event E1, since V1 is the estimated value function computed by Algorithm 1 (recall that V1 = V k

h ), we
have:

⟨ϕ(s, a∗1)− ϕ(s, a0s), γ1⟩+ ∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′
1
+∆ ≤ ⟨ϕ(s, a∗1)− ϕ(s, a0s), γ

∗
h⟩+ 2∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′

1
+ 2∆

(35)
But by Lemma B.9, for all K ≥ K ′ we will have:

⟨ϕ(s, a∗1)− ϕ(s, a0s), γ
∗
h⟩+ 2∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′

1
+∆ ≤ ⟨ϕ(s, a∗1)− ϕ(s, a0s), γ

∗
h⟩+

ι

2
+ ∆ (36)

Now, by the Assumption of Lemma B.3, we have ∆ ≤ ι
2 , using Assumption 2.3, and since a∗1 ∈ Aι

h(s) we will have:

⟨ϕ(s, a∗1)− ϕ(s, a0s), γ
∗
h⟩+ 2∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′

1
+∆ ≤ τ − ι+

ι

2
+

ι

2
= τ (37)

Now, combining Equations (34-37) yields:

a∗1 ∈ Aι
h(s) =⇒ ⟨ϕ(s, a∗1)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′

2
≤ τ (38)

which implies that a3 = a∗1 is feasible for the constrained optimization problem for V3 and completes the proof for
case 1.

• Case 2: Now, we only need to show the proof for the case that a∗1 ∈ (Aι
h(s))

C ∩ Ak
h(s), where (Aι

h(s))
C is the

complement of the set Aι
h(s), and Ak

h(s) is the feasible set for the optimization problem for V1 (recall that V1 = V k
h ).

Note that a∗1 ∈ (Aι
h(s))

C ∩Ak
h(s) implies that τ − ι ≤ ⟨ϕ(s, a∗1), γ∗

h⟩ ≤ τ , which implies ⟨ τ−ι
⟨ϕ(s,a∗

1),γ
∗
h⟩
ϕ(s, a∗1), γ

∗
h⟩ =

τ − ι. Then, by Assumption 3.2 we have αϕ(s, a∗1) + (1− α)ϕ(s, a0s) ∈ Fs, where α = τ−ι
⟨ϕ(s,a∗

1),γ
∗
h⟩

, i.e., there exists
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an a′ ∈ A such that ϕ(s, a′) = αϕ(s, a∗1) + (1− α)ϕ(s, a0s). Now, since a′ ∈ Aι
h(s), from Case 1 (Eq. (38)) we have

that:
⟨ϕ(s, a′)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a′)− ϕ(s, a0s)∥A′

2
≤ τ, (39)

which implies that a′ is feasible for the constrained optimization problem of V3.

On the other hand, let α′ = τ
τ+∆ , then we will have:〈(

α′ϕ(s, a∗1) + (1− α′)ϕ(s, a∗1)
)
− ϕ(s, a∗1), γ2

〉
+
∥∥∥(α′ϕ(s, a∗1) + (1− α′)ϕ(s, a0s)

)
− ϕ(s, a0s)

∥∥∥
A′

2

= α′
(
⟨ϕ(s, a∗1)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a∗1)− ϕ(s, a0s)

∥∥∥
A′

2

)
≤ α′(⟨ϕ(s, a∗1)− ϕ(s, a0s), γ1⟩+ ∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′

1
+∆) ≤ τ

(40)

where the last ineuqlity obtained by the fact that a∗1 is feasible for the constrained problem of V1, and α′ = τ
τ+∆ .

Now, let α3 = max{α, α′}. Since τ−ι
⟨ϕ(s,a∗

1),γ
∗
h⟩

= α ≤ α3 ≤ 1, we can apply Assumption 3.2 to find that α3ϕ(s, a
∗
1) +

(1− α3)ϕ(s, a
0
s) ∈ Fs, i.e. there exists an a3 ∈ A such that ϕ(s, a3) = α3ϕ(s, a

∗
1) + (1− α3)ϕ(s, a

0
s). From Eq.(39)

and Eq.(40), it follows that ϕ(s, a3) is feasible for the constrained problem of V3, i.e. ⟨ϕ(s, a3) − ϕ(s, a0s), γ2⟩ +
∥ϕ(s, a3)− ϕ(s, a0s)∥A′

2
≤ τ . □

Proof of Lemma B.4 Using Lemma B.3, there exists an action a3 which is feasible for V3(.), and ϕ(s, a3) = α3ϕ(s, a
∗
1)+

(1− α3)ϕ(s, a
0
s) for some α ∈ [ τ

τ+∆ , 1]. Thus, we have:

V3(s) ≥ min{⟨ϕ(s, a3), w1⟩+ ∥ϕ(s, a3)∥A1
+ gA′

1,1
(s, a3), H}

= min
{
⟨α3ϕ(s, a

∗
1) + (1− α3)ϕ(s, a

0
s), w1⟩+ ∥α3ϕ(s, a

∗
1) + (1− α3)ϕ(s, a

0
s)∥A1

+ ∥
(
α3ϕ(s, a

∗
1) + (1− α3)ϕ(s, a

0
s)
)
− ϕ(s, a0s)∥A′

1
, H

}
≥ min

{
α3

(
⟨ϕ(s, a∗1), w1⟩+ ∥ϕ(s, a∗1)∥A1

+ ϕ(s, a∗1)∥A′
1

)
− (1− α3)∥ϕ(s, a∗1)∥A1

, H
}

≥ min
{
α3

(
⟨ϕ(s, a∗1), w1⟩+ ∥ϕ(s, a∗1)∥A1

+ ϕ(s, a∗1)∥A′
1

)
, H

}
− (1− α3)∥ϕ(s, a∗1)∥A1

≥ α3V1(s)− (1− α3)∥ϕ(s, a∗1)∥A1
,

(41)

where the last inequality obtained by the fact that α3 ≤ 1. Thus:

V1(s)− V3(s) ≤ (1− α3)
(
V1(s) + ∥ϕ(s, a∗1)∥A1

)
(42)

Now, since V1 ≤ H we can continue Eq.(42) as follows:

V1(s)− V3(s) ≤
∆

τ +∆

(
H + ∥ϕ(s, a∗1)∥A1

)
≤ ∆

τ +∆

(
H +

√
∥A1∥F

)
, (43)

where ∥A1∥F is the Frobenius norm of the matrix A1. □

Proof of Lemma B.5: Consider an arbitrary pair (s, a), then we have:

|gA′
1,1

(s, a)− gA′
2,1

(s, a)| = 2H

∣∣∣ ∥ϕ(s, a)− ϕ(s, a0s)∥A′
1
− ∥ϕ(s, a)− ϕ(s, a0s)∥A′

2

∣∣∣
τ

≤ 2H

√
∥A′

1 −A′
2∥

τ
(44)

where, the last inequality is obtained by the fact that |
√
x −√

y| ≤
√
|x− y| for any x, y ≥ 0. Now, using the fact that

Frobenius norm is larger than matrix-norm we can continue:

|gA′
1,1

(s, a)− gA′
2,1

(s, a)| ≤ 2H

√
∥A′

1 −A′
2∥

τ
≤ 2H

√
∥A′

1 −A′
2∥F

τ
(45)

The last inequality completes the proof. □
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B.5. Proof of Lemma B.7

Proof:

Bounding difference between safety values First of all, we want to bound the safety values of V1 and V3:

∀(s, a) :
∣∣⟨ϕ(s, a)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′

2
− ⟨ϕ(s, a)− ϕ(s, a0s), γ1⟩+ ∥ϕ(s, a)− ϕ(s, a0s)∥A′

1

∣∣
≤ |⟨ϕ(s, a)− ϕ(s, a0s), γ2 − γ1⟩|+ |∥ϕ(s, a)− ϕ(s, a0s)∥A′

2
− ∥ϕ(s, a)− ϕ(s, a0s)∥A′

1
|

≤ ∥ϕ(s, a)− ϕ(s, a0s)∥ (∥γ1 − γ2∥+
√
∥A′

1 −A′
2∥)

≤ 2∥γ1 − γ2∥+
√

∥A′
1 −A′

2∥ = 2∆

(46)

where the last inequality obtained by Assumption 3.2 that ∥ϕ∥ ≤ 1.

Existence of the feasible feature for V3: By Assumption 3.1 we have αϕ(s, a∗1)+(1−α)ϕ(s, a0s) ∈ Fs, where α = τ
τ+∆ ,

i.e., there exists an a′ ∈ A such that ϕ(s, a′) = αϕ(s, a∗1) + (1 − α)ϕ(s, a0s). Now, we show that a′ is feasible for the
constrained problem V3. In fact, we have:

⟨ϕ(s, a′)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a′)− ϕ(s, a0s)∥A′
2
= α

(
⟨ϕ(s, a∗1)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′

2

)
(47)

Now, using Eq.(46) we can continue Eq.(47) as follows:

⟨ϕ(s, a′), γ2⟩+ ∥ϕ(s, a′)∥A′
2
= α

(
⟨ϕ(s, a∗1)− ϕ(s, a0s), γ2⟩+ ∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′

2

)
≤ α

(
⟨ϕ(s, a∗1)− ϕ(s, a0s), γ1⟩+ ∥ϕ(s, a∗1)− ϕ(s, a0s)∥A′

1
+∆

)
≤ τ

τ +∆
(τ +∆) = τ,

(48)

where the last ineuqlity obtained by the fact that a∗1 is feasible for the constrained problem of V1, and α = τ
τ+∆ . Thus,

⟨ϕ(s, a′), γ2⟩+ ∥ϕ(s, a′)∥A′
2
≤ τ , which implies that a′ is feasible for the constrained problem of V3. Now, setting a3 = a′

and α3 = α′ concludes the proof. □

C. Proof Steps of Theorem 5.4
We start with the following definition:
Definition C.1. For any fixed policy, the event E2 is defined as:

E2 ≜ {|⟨ϕ(s, a), wk
h⟩ −Qπ

h(s, a) + Es′∼Ph(.|s,a)[V
π
h+1(s

′
)− V k

h+1(s
′
)]| ≤ β1∥ϕ(s, a)∥(Λk

h)
−1 ,

∀(a, s, h, k) ∈ A× S × [H]× [K]},
(49)

where β1 = cβ · dH
√
log( 2dTδτ ), and cβ is a constant.

Lemma C.2. Under the setup defined in Theorem 5.4, for all K ≥ K ′, there exists a constant cβ > 0, such that for any
fixed δ ∈ (0, 1), the event E2 holds with probability at least 1− δ.

Proof: Similar to the proof steps of Lemma B.4. in (Jin et al., 2020) we will have:

⟨ϕ(s, a), wk
h⟩ −Qπ

h(s, a) = ⟨ϕ(s, a), wk
h − wπ

h⟩ =

⟨ϕ(s, a),−λ(Λk
h)

−1wπ
h⟩︸ ︷︷ ︸

q1

+ ⟨ϕ(s, a), (Λk
h)

−1
k−1∑
τ=1

ϕτ
h

[
V k
h+1(s

τ
h+1)− PhV

k
h+1(s

τ
h, a

τ
h)
]
⟩︸ ︷︷ ︸

q2

⟨ϕ(s, a), (Λk
h)

−1
k−1∑
τ=1

ϕτ
hPh

(
V k
h+1 − V π

h+1

)
(sτh, a

τ
h)⟩︸ ︷︷ ︸

q3

.

(50)
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We start with bound ing |q2|, which is the term related to the covering number.

Bounding |q2| For our problem,we cannot directly utilize Lemma B.2 from (Jin et al., 2020) to bound |q2|, since in our
case Value function is obtained by optimization over Ak

h(s) instead of A, and Ak
h(s) varies over the time. This makes

bounding the covering number challenging. Thus, we first utilize Theorem D.4 from (Jin et al., 2020) to bound |q2| in terms
of the covering number of Value function in our problem, then, we apply Lemma B.2 to get the counterpart result of Lemma
B.2 from (Jin et al., 2020).

We start by applying Lemma D.4 from (Jin et al., 2020) on |q2|, to get that with the probability at least 1− δ
2 we will have:

|q2| ≤ ∥ϕ(s, a)(Λk
h)

−1∥ ∥
k−1∑
τ=1

ϕτ
h

[
V k
h+1(s

τ
h+1)− PhV

k
h+1(s

τ
h, a

τ
h)
]
∥

≤
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a) (4H2

[
d

2
log

(
k + λ

λ

)
+ log

2Nκ

δ

]
+

8k2κ2

λ
),

(51)

where, Nκ is the cardinality of the set of pre-fixed functions Vκ ⊂ V defined in Lemma B.2. Now, considering the fact

that Lemma B.2 from (Jin et al., 2020) implies that ∥wk
h∥ ≤ 2H

√
dk
λ . Thus, using Lemma B.2 we can continue Eq.(51) as

follows:

|q2| ≤
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a)

(
4H2

(
d

2
log(

k + λ

λ
) + d

[
log(1 +

8H

κ

√
dk

λ
) + log(1 +

8((2
√

dk
λ + 1)H + B√

λ
)

κτ
)
]

+ d2
[
log(1 +

32
√
dB2

λκ2
) + log(1 +

32
√
dB2(2H

√
dk
λ + B√

λ
+ 3H)2

λτ2κ2
)
]
+ log(

2

δ
)

)
+

8k2κ2

λ

) 1
2

,

(52)

where k ≥ K ′ ≥ 2dH
ι . Thus, by choosing κ = dH

k ≤ ι
2 , and taking B = β1 = cβdH

√
log( 2dTδτ ), and B′ = β2 =

O(log(1 + kH) we will have:

|q2| ≤ CdH log

[
2(cβ + 1)

dKH

δτ

]√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a), (53)

where C is a constant.

Bounding q1 and q3: Similar to Lemma B.4 from (Jin et al., 2020) we can bound terms q1 and q3 as follows:

|⟨ϕ(s, a), wk
h⟩ −Qπ

h(s, a)− Ph

(
V k
h+1 − V π

h+1

)
(s, a)|

≤ (2H
√
dλ+

√
λ∥wπ

h∥)
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a) + |q2|.

(54)

Final step Combining Equations 53 and 54 yields the following:

|⟨ϕ(s, a), wk
h⟩ −Qπ

h(s, a)− Ph

(
V k
h+1 − V π

h+1

)
(s, a)|

≤
(
2H

√
dλ+

√
λ∥wπ

h∥+ CdH

√
log
(
2(cβ + 1)

dKH

δτ

))√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a)

(55)

Now, by Lemma B.1 from (Jin et al., 2020), we have ∥wπ
h∥ ≤ 2H

√
d. Therefore, there exists an absolute constant cβ such

that the following holds:

|⟨ϕ(s, a), wk
h⟩ −Qπ

h(s, a)− Ph

(
V k
h+1 − V π

h+1

)
(s, a)| ≤ cβ · dH

√
log(

2dT

δτ
)
√

ϕ(s, a)⊤(Λk
h)

−1ϕ(s, a) □ (56)

Now, we define another important event that ensures safety, i.e., it guarantees with high probability that the estimated safe
set by the agent lies within the actual safe set:
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Definition C.3. The event E1 is defined as: E1 := {Ak
h(s) ⊂ Asafe

h (s) ∀(h, k) ∈ [H]× [K]}.

Our intersts lies in the events that both event E1 and E2 holds, i.e., the actual safe set and value function are approximed
properly. Therefore, we provide the following important Lemma:

Lemma C.4. Under Assumption 2.1, for all K ≥ K ′, there exists a constant cβ > 0, such that for any fixed δ ∈ (0, 1
3 ), the

event E := E1 ∩ E2 holds with probability at least 1− 2δ.

Proof: Theorem 2 from (Abbasi-Yadkori et al., 2011) can be directly applied to our case to show that the event E1 holds
with a probability of at least 1− δ. Similarly, Lemma C.2 establishes that the event E2 holds with a probability of at least
1− δ. By applying the union bound, the final result follows. □

C.1. Proof of Lemma 6.2 (Optimism)

Having Lemma C.4 in hand, we are ready to prove that Algorithm 1 satisfies the optimism property stated in Lemma 6.2,
which is an essential step in the final proof of regret’s upper upper bound. We first provide a helpful lemma in C.1.1, then in
C.1.2 we provide the main proof.

C.1.1. HELPFUL LEMMAS

Lemma C.5. Let k ≥ K ′, where K ′ is specified in Theorem 5.4. Then, there exists an action a′ ∈ Ak
h(s) such that

ϕ(s, a′) = αϕ(s, a∗s) + (1− α)ϕ(s, a0s), for some α ∈ [ τ
τ+2β2∥ϕ(s,a∗

s)−ϕ(s,a0
s)∥ (Λk,γ

h )−1
, 1].

Proof: Condionted on the event E , when a∗s ∈ A
ι
2

h (s), then by Lemma B.10 we find that a∗ ∈ A
ι
2

h (s) ⊂ Ak
h(s), which

completes the proof. Thus, it remains to only prove the case that a∗ ∈ (A
ι
2

h (s))
c ∩ Asafe

h (s). Let us assume that a∗ ∈
(A

ι
2

h (s))
c ∩ Asafe

h (s). Then, one can verify that α = max{ τ− ι
2

⟨ϕ(s,a∗
s),γ

∗
h⟩
, τ
τ+2β2∥ϕ(s,a∗

s)−ϕ(s,a0
s)∥(Λ

k,γ
h

)−1
} ∈ [ τ−ι

⟨ϕ(s,a∗
s),γ

∗
h⟩
, 1].

Thus, by Assumption 3.2 we can argue that there exists an action a′ ∈ A such that ϕ(s, a′) = αϕ(s, a∗s) + (1− α)ϕ(s, a0s).
Now, we need to show that a′ ∈ Ak

h(s) as well. Note that, when α =
τ− ι

2

⟨ϕ(s,a∗
s),γ

∗
h⟩

, then:

⟨ϕ(s, a′), γ∗
h⟩ = α⟨ϕ(s, a∗s), γ∗

h⟩+ (1− α)⟨ϕ(s, a0s), γ∗
h⟩

= α⟨ϕ(s, a∗s), γ∗
h⟩+ 0 = τ − ι

2

(57)

where in the second equality we used Assumption 2.3, and the last equality is obtained by substituting α =
τ− ι

2

⟨ϕ(s,a∗
s),γ

∗
h⟩

.

Now, Equation (57) implies that a′ ∈ A
ι
2

h (s), and by Lemma B.10 we have a′ ∈ Ak
h(s). Now, for the other case that

α = τ
τ+2β2∥ϕ(s,a∗

s)−ϕ(s,a0
s)∥(Λ

k,γ
h

)−1
, conditioned on the event E = E1 ∩ E2, we can follow the below steps:

0 ≤ ⟨ϕ(s, a′)− ϕ(s, a0s), γ
k
h⟩+ β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ

h )−1

= α
(
⟨ϕ(s, a∗s)− ϕ(s, a0s), γ

k
h⟩+ β2∥ϕ(s, a∗s)− ϕ(s, a0s)∥(Λk,γ

h )−1

)
≤ α

(
⟨ϕ(s, a∗s)− ϕ(s, a0s), γ

∗
h⟩+ 2β2∥ϕ(s, a∗s)− ϕ(s, a0s)∥(Λk,γ

h )−1

) (58)

where the last inequality is obtained by conditioning on the event E1 ⊂ E . Now, substituting α with
τ

τ+2β2∥ϕ(s,a∗
s)−ϕ(s,a0

s)∥(Λ
k,γ
h

)−1
in Eq.(58) yields:

0 ≤ ⟨ϕ(s, a′)− ϕ(s, a0s), γ
k
h⟩+ β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ

h )−1

≤ τ

τ + 2β2∥ϕ(s, a∗s,h)− ϕ(s, a0s)∥(Λk,γ
h )−1

(⟨ϕ(s, a∗s,h), γ∗
h⟩+ 2β2∥ϕ(s, a∗s,h)∥(Λk,γ

h )−1)
(59)

Now, since a∗s,h is the optimal safe solution, it should be feasible as well, i.e., ⟨ϕ(s, a∗s,h), γ∗
h⟩ ≤ τ . Thus, we can continue
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Eq. (58) as follows:

0 ≤ ⟨ϕ(s, a′)− ϕ(s, a0s), γ
k
h⟩+ β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ

h )−1

≤ τ

τ + 2β2∥ϕ(s, a∗s,h)− ϕ(s, a0s)∥(Λk,γ
h )−1

(τ + 2β2∥ϕ(s, a∗s,h)− ϕ(s, a0s)∥(Λk,γ
h )−1) ≤ τ

(60)

The last inequality implies that a′ ∈ Ak
h(s). This, completes the proof of this Lemma. □

C.1.2. MAIN PROOF OF LEMMA 6.2

Proof: We employ an induction strategy to establish this lemma. Initially, we define the value functions at time H + 1 as
V k
H+1(s) = V π∗

H+1(s) = 0 for any state s ∈ S , confirming the optimism for step H + 1. Then, by the induction hypothesis,
we assume that for an arbitrary h ∈ [H], V π∗

h+1(s) ≤ V k
h+1(s) holds for all states s ∈ S. We now need to prove that

V π∗

h (s) ≤ V k
h (s) also holds for all states s ∈ S.

Consider the case where H ≤ maxa∈Ak
h(s)

⟨ϕ(s, a), wk
h⟩ + bkh(s, a). Then, V π∗

h (s) ≤ H = min{⟨ϕ(s, a), wk
h⟩ +

bkh(s, a), H} = V k
h (s) holds, which completes the proof for this case.

It remains to prove the result for the case where maxa∈Ak
h(s)

⟨ϕ(s, a), wk
h⟩ + bkh(s, a) ≤ H , which implies V k

h (s) =

maxa∈Ak
h(s)

Qk
h(s, a) = maxa∈Ak

h(s)
⟨ϕ(s, a), wk

h⟩+ bkh(s, a).

This brings us to analyze two sub-cases. First of all recall the definition of Aι
h(s) ≜ {a ∈ A | ⟨ϕ(s, a), γ∗

h⟩ ≤ τ − ι}, then
we will have the following sub-cases:

Sub-case one: a∗s,h ∈ A
ι
2

h (s)

For this case, by Lemma B.10, we will have: a∗s,h ∈ A ι
2 (s) ⊂ Ak

h(s), which implies that a∗s,h ∈ Ak
h(s) for all k ≥ K ′. Now,

we have:

V k
h (s) = max

a∈Ak
h(s)

Qk
h(s, a) ≥ Qk

h(s, a
∗
s,h) = ⟨ϕ(s, a∗s,h), wk

h⟩+ bkh(s, a
∗
s,h). (61)

Then, conditioned on the event E2 we have:

⟨ϕ(s, a∗s,h), wk
h⟩+ bkh(s, a

∗
s,h)

≥ Qπ∗

h (s, a∗s,h) + Es′∼Ph(.|s,as,h)[V
k
h+1(s

′
)− V π∗

h+1(s
′
)]− β1∥ϕ(s, a∗s,h)∥(Λk,Q

h )−1 + bkh(s, a
∗
s,h).

≥ Qπ∗

h (s, a∗s,h) + Es′∼Ph(.|s,as,h)[V
k
h+1(s

′
)− V π∗

h+1(s
′
)]

(62)

where the last inequality obtained by the fact that bkh(s, a
∗
s,h) = β1∥ϕ(s, a∗s,h)∥(Λk,Q

h )−1 + gkh(s, a
∗
s,h) and g ≥ 0. Now, by

induction hypothesis, for all s, we have: V k
h+1(s) ≥ V π∗

h+1(s). Thus, we can continue Equation(62) as follows:

⟨ϕ(s, a∗s,h), wk
h⟩+ bkh(s, a

∗
s,h)

≥ Qπ∗

h (s, a∗s,h) + Es′∼Ph(.|s,as,h)[V
k
h+1(s

′
)− V π∗

h+1(s
′
)] ≥ Qπ∗

h (s, a∗s,h) = V π∗

h (s)
(63)

. Equations 61 and 63 together complete the proof for sub-case one.

Sub-case two: a∗s,h ∈ (A
ι
2

h (s))
c ∩ Asafe

h (s): In this case by Lemma C.5, there exists an action a′ ∈ Ak
h(s) such that

ϕ(s, a′) = αϕ(s, a∗s) for some α ∈ [ τ
τ+2β2∥ϕ(s,a∗

s)−ϕ(s,a0
s)∥(Λ

k,γ
h

)−1
, 1]. Thus we will have:

V k
h (s) = max

a∈Ak
h(s)

Qk
h(s, a) ≥ Qk

h(s, a
′) = ⟨ϕ(s, a′), wk

h⟩+ bkh(s, a
′). (64)

28



Provably Efficient RL for Linear MDPs under Instantaneous Safety Constraints in Non-Convex Feature Spaces

Then, conditioned on the event E2 we have:

⟨ϕ(s, a′), wk
h⟩+ bkh(s, a

′)

≥ Qπ∗

h (s, a′) + Es′∼Ph(.|s,a′)[V
k
h+1(s

′
)− V π∗

h+1(s
′
)]− β1∥ϕ(s, a′)∥(Λk,Q

h )−1 + bkh(s, a
′).

≥ Qπ∗

h (s, a′) + Es′∼Ph(.|s,a′)[V
k
h+1(s

′
)− V π∗

h+1(s
′
)] + gkh(s, a

′) ≥ Qπ∗

h (s, a′) + gkh(s, a
′)

(65)

, where in the last inequality we utilized the induction hypothesis that V k
h+1(.) ≥ V π∗

h+1(.). By considering the fact that
ϕ(s, a′) = αϕ(s, a∗s) we can continue Equation (65) as follows:

V k
h (s) ≥ ⟨ϕ(s, a′), wk

h⟩+ bkh(s, a
′) ≥ α⟨ϕ(s, a∗s), wπ∗

h ⟩+ gkh(s, a
′), (66)

Now, according to the Equation (4) we will have:

gkh(s, a
′) = ν ×

(
β2∥ϕ(s, a′)− ϕ(s, a0s)∥(Λk,γ

h )−1

)
H = (αν)×

(
β2∥ϕ(s, a∗s)− ϕ(s, a0s)∥(Λk,γ

h )−1

)
H (67)

Now, by setting ν = 2
τ , we can continue Eq. (67) as follows:

gkh(s, a
′) = ν ×

(
1− τ

τ + 2β2∥ϕ(s, a∗s)− ϕ(s, a0s)∥(Λk,γ
h )−1

)
H ≥ (1− α)H (68)

Now, combining Equations (68) and (66), and considering the fact that V π∗ ≤ H , we obtain the following:

V k
h (s) ≥ ⟨ϕ(s, a′), wk

h⟩+ bkh(s, a
′) ≥ α⟨ϕ(s, a∗s), wπ∗

h ⟩+ (1− α)H ≥ V π∗

h (s), (69)

where in the second inequality we used the fact that when rewards are non-negative, then according to Proposition 2.3 from
(Jin et al., 2020) we will have: 0 ≤ Qπ∗

h (s, a0s) = ⟨ϕ(s, a0s), wπ∗

h ⟩. The Equation (69) completes the proof. □

Final Step: Now, according to the sub-case 1 and sub-case 2, we have V π∗

h ≤ V k
h with the probability of at least 1− δ.

Therefore, we can say with the probability of at least 1− δ the following holds:

T1 =

K∑
k=K′

V π∗

0 (s0)− V k
0 (s0) ≤ 0. □

C.2. Proof of Lemma 6.3 (Bounding T2):

Lemma C.6. Conditioned on the event E , the following inequality holds:

T2 ≤
K∑

k=K′

H∑
h=1

ζkh︸ ︷︷ ︸
T2,1

+2β1

K∑
k=K′

H∑
h=1

∥ϕ(skh, akh)∥(Λk
h)

−1︸ ︷︷ ︸
T2,2

+

K∑
k=K′

H∑
h=1

(gkh(s
k
h, a

k
h))︸ ︷︷ ︸

T2,3

,
(70)

where ζkh+1 := Es′∼Ph(.|skh,a
k
h)
[V k

h+1(s
′
)− V πk

h+1(s
′
)]− δkh+1 and δkh+1 := V k

h (skh)− V πk

h (skh).

Proof: First, by the definition of V k
h and Qk

h we have:

δkh+1 = V k
h (skh)− V πk

h (skh) = min{Qk
h(s

k
h, a

k
h), H} −Qπk

h (skh, a
k
h)

≤ Qk
h(s

k
h, a

k
h)−Qπk

h (skh, a
k
h)

= ⟨ϕ(skh, akh), wk
h⟩+ β1∥ϕ(skh, akh)∥(Λk

h)
−1 + gkh(s

k
h, a

k
h)−Qπk

h (skh, a
k
h).

(71)
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Then, on the event E , we have:

⟨ϕ(skh, akh), wk
h⟩+ β1∥ϕ(skh, akh)∥(Λk

h)
−1 + gkh(s

k
h, a

k
h)−Qπk

h (skh, a
k
h)

≤ Es′∼Ph(.|skh,a
k
h)
[V k

h+1(s
′
)− V πk

h+1(s
′
)]

= δkh+1 + ζkh+1 + 2β1∥ϕ(skh, akh)∥(Λk
h)

−1 + gkh(s
k
h, a

k
h).

(72)

Now, note that we have:

T2 =

K∑
k=K′

V k
1 (sk1)− V πk

1 (sk1) =

K∑
k=K′

δk1 . (73)

Note that Lemma 6.2 ensures that on the event E , 0 ≤ δkh holds. Consequently, by applying Equations (72) and (73), we can
conclude:

T2 ≤
K∑

k=K′

H∑
h=1

ζkh + 2β1

K∑
k=K′

H∑
h=1

∥ϕ(skh, akh)∥(Λk
h)

−1 +

K∑
k=K′

H∑
h=1

gkh(s
k
h, a

k
h). □ (74)

C.3. Proof of Theorem 5.4

Proof of Theorem 5.4 We start by bounding the term T2:

Bounding T2 To bound the term T2. Applying Lemma 6.3 we will have:

T2 ≤
K∑

k=K′

H∑
h=1

ζkh + 2β1

K∑
k=K′

H∑
h=1

∥ϕ(skh, akh)∥(Λk,Q
h )−1 + (

2β2H

τ

) K∑
k=K′

H∑
h=1

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1 (75)

In order to bound the first term on the right hand side of Equation (75) note that ζkh forms a martingale difference sequence
with a bounded norm, |ζkh | ≤ H . Thus, we can apply Azuma-Hoeffding’s inequality:

P
( K∑

k=K′

H∑
h=1

ζkh ≤ 2H

√
(K −K ′)H log(

d(K −K ′)H

δ
)
)
≥ 1− δ (76)

Therefore, with a probability of at least 1− δ we have:

K∑
k=K′

H∑
h=1

ζkh ≤ 2H

√
(K −K ′)H log(

d(K −K ′)H

δ
) (77)

Now, to bound the rest of the right hand side of Equation(75) we can Follow the steps outlined in the proof of Theorem 3 in
(Abbasi-Yadkori et al., 2011), as follows:

2β1

K∑
k=K′

H∑
h=1

∥ϕ(skh, akh)∥(Λk,Q
h )−1 + (

2β2H

τ

) K∑
k=K′

H∑
h=1

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

= 2β1

H∑
h=1

K∑
k=K′

∥ϕ(skh, akh)∥(Λk,Q
h )−1 + (

2β2H

τ

) H∑
h=1

K∑
k=K′

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

≤ 2β1

H∑
h=1

√√√√(K −K ′)

K∑
k=K′

∥ϕ(skh, akh)∥(Λk,Q
h )−1 +

2β2H

τ

H∑
h=1

√√√√(K −K ′)

K∑
k=K′

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

(78)
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By Assumption 2.1, given that L ≤ 1 and λ = 1 in Algorithm 1, it can be shown that ∥ϕ(skh, akh)∥(Λk,Q
h )−1≤ 1, and

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1≤ 2. Consequently, the following inequality holds:

∥ϕ(skh, akh)∥2(Λk,Q
h )−1≤ 2 log(1+∥ϕ(skh, akh)∥2(Λk

h)
−1),

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥2

(Λk,γ
h )−1≤ 2 log

(
1+∥ϕ(skh, akh)− ϕ(skh, a

0
skh
)∥2

(Λk,γ
h )−1

) (79)

Thus, by Equations(78) and (79) we have:

2β1

H∑
h=1

√√√√(K −K ′)

K∑
k=K′

∥ϕ(skh, akh)∥2(Λk,Q
h )−1

+
2β2H

τ

H∑
h=1

√√√√(K −K ′)

K∑
k=K′

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

≤ 2β1

H∑
h=1

√√√√2(K −K ′)

K∑
k=K′

log(1+∥ϕ(skh, akh)∥2(Λk
h)

−1)

+
2β2H

τ

H∑
h=1

√√√√(K −K ′)

K∑
k=K′

log
(
1+∥ϕ(skh, akh)− ϕ(skh, a

0
skh
)∥2

(Λk,γ
h )−1

)

= 2β1

H∑
h=1

√
2(K −K ′)(log(det(ΛK,Q

h ))− log(λd)) +
2β2H

τ

H∑
h=1

√
2(K −K ′)(log(det(ΛK,γ

h ))− log(λd))

(80)

where the last inequality is obtained by Lemma 11 from (Abbasi-Yadkori et al., 2011). Now, considering that ∥ϕ(skh, akh)∥ ≤
L, it follows that the trace of ΛK,Q

h is upper bounded by dλ+KL2, and the trace of ΛK,γ
h is upper bounded by dλ+ 2KL2 .

Since ΛK,Q
h and ΛK,λ

h are positive definite matrices, the determinant of them can be bounded as follows:

det(ΛK,Q
h ) ≤ (

trace(ΛK,Q
h )

d
)d ≤ (

dλ+ (K)L2

d
)d,

det(ΛK,γ
h ) ≤ (

trace(ΛK,γ
h )

d
)d ≤ (

dλ+ 2(K)L2

d
)d.

Combining all together yields:

2β1

H∑
h=1

√
2(K −K ′)(log(det(ΛK,Q

h ))− log(λd)) +
2β2H

τ

H∑
h=1

√
2(K −K ′)(log(det(ΛK,γ

h ))− log(λd))

≤ 2β1

H∑
h=1

√
2(K −K ′)(log((

dλ+KL2

d
)d)− log(λd)) +

2β2H

τ

H∑
h=1

√
2(K −K ′)(log((

dλ+ 2KL2

d
)d)− log(λd))

≤ 2(β1 +
β2H

τ
)

H∑
h=1

√
2(K −K ′)d log((

dλ+ 2KL2

λd
)) = 2(β1 +

β2H

τ
)H

√
2(K −K ′)d log((

dλ+ 2KL2

λd
))

(81)

Given that λ = 1 and utilizing the Equations (78) through (81), we conclude that:

2β1

K∑
k=K′

H∑
h=1

∥ϕ(skh, akh)∥(Λk,Q
h )−1 + (

2β2H

τ

) K∑
k=K′

H∑
h=1

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

≤ 2(β1 +
β2H

τ
)H

√
2(K −K ′)d log((

dλ+ 2KL2

λd
))

(82)
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Now, by integrating the bounds from Eq.(77) and Eq. (82), we establish the desired upper bound on T2:

T2 ≤ 2H

√
(K −K ′)H log(

d(K −K ′)H

δ
) + 2(β1 +

β2H

τ
)H

√
2(K −K ′)d log((

dλ+ 2KL2

λd
)) (83)

Final step Note that by Lemma 6.2, we have T1 ≤ 0. Thus, by applying union bound we will have the desired result as
follows:

Regret(K) ≤ K ′H + T1 + T2 ≤ K ′H + T2 ≤

K ′H + 2H

√
(K −K ′)H log(

d(K −K ′)H

δ
) + 2(β1H +

β2H
2

τ
)

√
2(K −K ′)d log((

dλ+ 2KL2

λd
)).

Safety The safety of our method is guaranteed by Theorem 2 from Abbasi-Yadkori et al. (2011), as stated below:

Lemma C.7. (Theorem 2 in (Abbasi-Yadkori et al., 2011)) Let δ ∈ (0, 1
H ). Then, with probability at least 1 −Hδ, the

chosen actions by Algorithm 1 satisfy the safety constraints for all episodes. In other words, for all (h, k) ∈ [H] × [K],
Ak

h(s) ⊆ Asafe
h (s).

□

C.4. Proof of Lemmas B.9 and B.10

Definition C.8. Let λ− ≜ d
ϵ2 .

Proof of Lemma B.9: Our main strategy is to project the problem into Rd−1 (Recall that F ) is a d− 1 dimensional hyper
plane and then we apply Lemma 1 from (Amani et al., 2019) to achieve the final result.

Reltation of the higher dimensional problem to the lower dimensional space, i.e., Rd−1 Recall that in Algortihm 1 the
agent samples uniformly from the set of safe actions Dϵ(s) that we rewrite its definition here for the convenience of the
reader:

Dϵ(s) ≜ {a ∈ A | ∥ϕ(s, a)− ϕ(s, a0s)∥ = ϵ}. (84)

According to Proposition 2.2, by Assumption 3.2, we can define the image of the set Dϵ(s) under the feature transformation
ϕ(s, .)as follows:

ϕ
(
s,Dϵ(s)

)
≜ {ϕ(s, a0s) + ϵ×

d−1∑
i=1

αivi |
d−1∑
i=1

α2
i , αi ∈ R}, (85)

where {vi}d−1
i=1 are orthonormal vectors such that Fs = ϕ(s, a0s)+Span({vi}d−1

i=1 ) (Note that {vi}d−1
i=1 are naturaly orthogonal

to the vector µ∗ defined in Proposition 2.2). Thus, random sampling from Dϵ(s) is equivalent to random sampling from the
following set:

W ≜ {w ∈ Rd−1 | ∥w∥2 = ϵ} (86)

Equivalency of the result in lower dimensional space Considering the Eq.(85), we have: ϕ(skh, a
k
h) = ϕ(skh, a

0
skh
) +

ϵ×
∑d−1

i=1 αk,h
i vi, and ϕ(s, a) = ϕ(s, a0s) + ϵ×

∑d−1
i=1 αs,a

i vi. Now, considering the fact that Λk,γ
h ≜

∑k−1
τ=1(ϕ(s

τ
h, a

τ
h)−

ϕ(sτh, a
0
sh
))(ϕ(sτh, a

τ
h)− ϕ(sτh, a

0
sh
))⊤ + λI , we will have:
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(ϕ(s, a)− ϕ(s, a0s))
⊤Λk,γ

h (ϕ(s, a)− ϕ(s, a0s)) =

ϵ2 × (

d−1∑
i=1

αs,a
i vi)

⊤

(
λI + ϵ2 ×

k∑
n=1

(

d−1∑
i=1

αn,h
i vi) (

d−1∑
i=1

αn,h
i vi)

⊤

)
(

d−1∑
i=1

αs,a
i vi).

(87)

Now, since {vi}d−1
i=1 are orthonormal, we can continue Eq.(87) as follows:

(ϕ(s, a)− ϕ(s, a0s))
⊤Λk,γ

h (ϕ(s, a)− ϕ(s, a0s))α
s,a
i αn,h

i )2) = (ws,a)⊤

(
λId−1 +

k∑
n=1

(wn
h) (w

n
h)

⊤

)
(ws,a), (88)

where in the last inequality, Id−1 is the identitiy matrix in Rd−1×d−1, and wa,s ∈ Rd−1, and the i-th element of it is
ws,a

i = ϵαs,a
i , and simularly wn

h ∈ W , and its i-th element is wn,h
i = ϵαn,h

i .

Applying Lemma 1 from (Amani et al., 2019). Let Λk
h,d−1 ≜ λId−1+

∑k
n=1(w

n
h) (w

n
h)

⊤, where wn
h is picked randomly

from W . Therefore, using Lemma 1 from (Amani et al., 2019) we have:

(ws,a)⊤Λk
h,d−1(w

s,a) ≥
(
λ+

λ−k

2

)
∥ws,a∥22

Thus, using Eq.(88) we have:

(ϕ(s, a)− ϕ(s, a0s))
⊤Λk,γ

h (ϕ(s, a)− ϕ(s, a0s)) ≥
(
λ+

λ−k

2

)
∥ws,a∥22

=

(
λ+

λ−k

2

)
∥ϕ(s, a)− ϕ(s, a0s)∥22

(89)

Final Step. Now, note that Λk
h is Positive Definite matrix. Also, µ∗ (defined in Proposition 2.2) is an an eigen vector of

Λk
h, and the rest of the eigen vector of Λk

h lies on the hyper-plane H. Thus, using Eq.(89) we will have the following:

(ϕ(s, a)− ϕ(s, a0s))
⊤
(
Λk,γ
h

)−1

(ϕ(s, a)− ϕ(s, a0s)) ≤

(
1

λ+ λ−k
2

)
∥ϕ(s, a)− ϕ(s, a0s)∥22 (90)

Proof of Lemma B.10 : Setting K ′ ≥ max{ 8d
ϵ2 log(dHδ ), 2d

ϵ2 (
16β2

2

ι2 − λ)}, then by applying Lemma B.9 we will have:

β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ
h )−1 ≤ ι

4
(91)

Therefore, conditioned on the event E we have:

⟨ϕ(s, a)− ϕ(s, a0s), γ
k
h⟩+ β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ

h )−1 ≤ ⟨ϕ(s, a)− ϕ(s, a0s), γ
∗
h⟩+ 2β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ

h )−1

≤ ⟨ϕ(s, a)− ϕ(s, a0s), γ
∗
h⟩+

ι

2
,

(92)
where the last ineuqality implies that for all a ∈ A

ι
2

h (s), we will have: ⟨ϕ(s, a) − ϕ(s, a0s), γ
k
h⟩ + β2∥ϕ(s, a) −

ϕ(s, a0s)∥(Λk,γ
h )−1 ≤ τ , which implies that a ∈ Ak

h(s). □

D. Proof of Theorem 5.1
Note that our main contribution in Star-Convex cases is bounding the covering number as provided in Lemma B.6. Once we
have the result of Lemma B.6, we can apply the proof steps of Theorem 1 in (Amani et al., 2021) to obtain the desired result.
However, for sake of completeness we provide the proof steps here as well.
Lemma D.1. Under the setup defined in Theorem 5.4, for all K ∈ [K], there exists a constant cβ > 0, such that for any
fixed δ ∈ (0, 1), the event E2 holds with probability at least 1− δ.
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Proof: Similar to the proof steps of Lemma B.4. in (Jin et al., 2020) we will have:

⟨ϕ(s, a), wk
h⟩ −Qπ

h(s, a) = ⟨ϕ(s, a), wk
h − wπ

h⟩ =

⟨ϕ(s, a),−λ(Λk
h)

−1wπ
h⟩︸ ︷︷ ︸

q1

+ ⟨ϕ(s, a), (Λk
h)

−1
k−1∑
τ=1

ϕτ
h

[
V k
h+1(s

τ
h+1)− PhV

k
h+1(s

τ
h, a

τ
h)
]
⟩︸ ︷︷ ︸

q2

⟨ϕ(s, a), (Λk
h)

−1
k−1∑
τ=1

ϕτ
hPh

(
V k
h+1 − V π

h+1

)
(sτh, a

τ
h)⟩︸ ︷︷ ︸

q3

.

(93)

We start with bound ing |q2|, which is the term related to the covering number.

Bounding |q2| For our problem,we cannot directly utilize Lemma B.2 from (Jin et al., 2020) to bound |q2|, since in our
case Value function is obtained by optimization over Ak

h(s) instead of A, and Ak
h(s) varies over the time. This makes

bounding the covering number challenging. Thus, we first utilize Theorem D.4 from (Jin et al., 2020) to bound |q2| in terms
of the covering number of Value function in our problem, then, we apply Lemma B.6 to get the counterpart result of Lemma
B.2 from (Jin et al., 2020).

We start by applying Lemma D.4 from (Jin et al., 2020) on |q2|, to get that with the probability at least 1− δ
2 we will have:

|q2| ≤ ∥ϕ(s, a)(Λk
h)

−1∥ ∥
k−1∑
τ=1

ϕτ
h

[
V k
h+1(s

τ
h+1)− PhV

k
h+1(s

τ
h, a

τ
h)
]
∥

≤
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a) (4H2

[
d

2
log

(
k + λ

λ

)
+ log

2Nκ

δ

]
+

8k2κ2

λ
),

(94)

where, Nκ is the cardinality of the set of pre-fixed functions Vκ ⊂ V defined in Lemma B.6. Now, considering the fact

that Lemma B.2 from (Jin et al., 2020) implies that ∥wk
h∥ ≤ 2H

√
dk
λ . Thus, using Lemma B.6 we can continue Eq.(94) as

follows:

|q2| ≤
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a)

(
4H2

(
d

2
log(

k + λ

λ
) + d

[
log(1 +

8H

κ

√
dk

λ
) + log(1 +

8((2
√

dk
λ + 1)H + B√

λ
)

κτ
)
]

+ d2
[
log(1 +

32
√
dB2

λκ2
) + log(1 +

32
√
dB2(2H

√
dk
λ + B√

λ
+ 3H)2

λτ2κ2
)
]
+ log(

2

δ
)

)
+

8k2κ2

λ

) 1
2

.

(95)

Thus, by choosing κ = dH
k , and setting B = β1 = cβdH

√
log( 2dTδτ ), and B′ = β2 = O(log(1 + kH)) we will have:

|q2| ≤ CdH log

[
2(cβ + 1)

dKH

δτ

]√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a), (96)

where C is a constant.

Bounding q1 and q3: Similar to Lemma B.4 from (Jin et al., 2020) we can bound terms q1 and q3 as follows:

|⟨ϕ(s, a), wk
h⟩ −Qπ

h(s, a)− Ph

(
V k
h+1 − V π

h+1

)
(s, a)|

≤ (2H
√
dλ+

√
λ∥wπ

h∥)
√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a) + |q2|.

(97)
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Final step Combining Equations 96 and 97 yields the following:

|⟨ϕ(s, a), wk
h⟩ −Qπ

h(s, a)− Ph

(
V k
h+1 − V π

h+1

)
(s, a)|

≤
(
2H

√
dλ+

√
λ∥wπ

h∥+ CdH

√
log
(
2(cβ + 1)

dKH

δτ

))√
ϕ(s, a)⊤(Λk

h)
−1ϕ(s, a)

(98)

Now, by Lemma B.1 from (Jin et al., 2020), we have ∥wπ
h∥ ≤ 2H

√
d. Therefore, there exists an absolute constant cβ such

that the following holds:

|⟨ϕ(s, a), wk
h⟩ −Qπ

h(s, a)− Ph

(
V k
h+1 − V π

h+1

)
(s, a)| ≤ cβ · dH

√
log(

2dT

δτ
)
√

ϕ(s, a)⊤(Λk
h)

−1ϕ(s, a) □ (99)

Our intersts lies in the events that both event E1 and E2 holds, i.e., the actual safe set and value function are approximed
properly. Therefore, we provide the following important Lemma:
Lemma D.2. Under Assumption 2.1, there exists a constant cβ > 0, such that for any fixed δ ∈ (0, 1

3 ), the event E := E1∩E2
holds with probability at least 1− 2δ.

Proof: Theorem 2 from (Abbasi-Yadkori et al., 2011) can be directly applied to our case to show that the event E1 holds
with a probability of at least 1− δ. Similarly, Lemma D.1 establishes that the event E2 holds with a probability of at least
1− δ. By applying the union bound, the final result follows. □

D.1. Optimism in Star-Convex cases

Here we prove that Algorithm 1 satisfies the optimism property for the setting of Theorem 5.1, which is an essential step in
the final proof of regret’s upper upper bound. We first provide a helpful lemma in D.1.1, then in D.1.2 we provide the main
proof.

D.1.1. HELPFUL LEMMAS (STAR-CONVEX)

Lemma D.3. Consider the setting stated in Theorem 5.1. Then, there exists an action a′ ∈ Ak
h(s) such that ϕ(s, a′) =

αϕ(s, a∗s) + (1− α)ϕ(s, a0s), for some α ∈ [ τ
τ+2β2∥ϕ(s,a∗

s)−ϕ(s,a0
s)∥(Λ

k,γ
h

)−1
, 1].

Proof: Let α = τ
τ+2β2∥ϕ(s,a∗

s)−ϕ(s,a0
s)∥(Λ

k,γ
h

)−1
. Then, conditioned on the event E , we can follow the below steps:

0 ≤ ⟨ϕ(s, a′)− ϕ(s, a0s), γ
k
h⟩+ β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ

h )−1

= α
(
⟨ϕ(s, a∗s)− ϕ(s, a0s), γ

k
h⟩+ β2∥ϕ(s, a∗s)− ϕ(s, a0s)∥(Λk,γ

h )−1

)
≤ α

(
⟨ϕ(s, a∗s)− ϕ(s, a0s), γ

∗
h⟩+ 2β2∥ϕ(s, a∗s)− ϕ(s, a0s)∥(Λk,γ

h )−1

) (100)

where the last inequality is obtained by conditioning on the event E1 ⊂ E . Now, substituting α with
τ

τ+2β2∥ϕ(s,a∗
s)−ϕ(s,a0

s)∥(Λ
k,γ
h

)−1
in Eq.(100) yields:

0 ≤ ⟨ϕ(s, a′)− ϕ(s, a0s), γ
k
h⟩+ β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ

h )−1

≤ τ

τ + 2β2∥ϕ(s, a∗s,h)− ϕ(s, a0s)∥(Λk,γ
h )−1

(⟨ϕ(s, a∗s,h)− ϕ(s, a0s), γ
∗
h⟩+ 2β2∥ϕ(s, a∗s,h)− ϕ(s, a0s)∥(Λk,γ

h )−1)
(101)

Now, since a∗s,h is the optimal safe solution, it should be feasible as well, i.e., ⟨ϕ(s, a∗s,h), γ∗
h⟩ ≤ τ . Thus, using Assump-

tion 2.3, we can continue Eq. (101) as follows:

0 ≤ ⟨ϕ(s, a′)− ϕ(s, a0s), γ
k
h⟩+ β2∥ϕ(s, a)− ϕ(s, a0s)∥(Λk,γ

h )−1

≤ τ

τ + 2β2∥ϕ(s, a∗s,h)− ϕ(s, a0s)∥(Λk,γ
h )−1

(τ + 2β2∥ϕ(s, a∗s,h)− ϕ(s, a0s)∥(Λk
h)

−1) ≤ τ

The last inequality implies that a′ ∈ Ak
h(s). This, completes the proof of this Lemma. □
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D.1.2. MAIN PROOF OF OPTIMISM IN STAR-CONVEX CASES

Lemma D.4. (Optimism): Under the setting of Theorem 5.1, conditioned on the event E , the inequality V π∗

h (s) ≤
V k
h (s), ∀(s, h) ∈ S × [H], and k ∈ [K] holds.

Proof: We employ an induction strategy to establish this lemma. Initially, we define the value functions at time H + 1 as
V k
H+1(s) = V π∗

H+1(s) = 0 for any state s ∈ S , confirming the optimism for step H + 1. Then, by the induction hypothesis,
we assume that for an arbitrary h ∈ [H], V π∗

h+1(s) ≤ V k
h+1(s) holds for all states s ∈ S. We now need to prove that

V π∗

h (s) ≤ V k
h (s) also holds for all states s ∈ S.

Consider the case where H ≤ maxa∈Ak
h(s)

⟨ϕ(s, a), wk
h⟩ + bkh(s, a). Then, V π∗

h (s) ≤ H = min{⟨ϕ(s, a), wk
h⟩ +

bkh(s, a), H} = V k
h (s) holds, which completes the proof for this case.

It remains to prove the result for the case where maxa∈Ak
h(s)

⟨ϕ(s, a), wk
h⟩ + bkh(s, a) ≤ H , which implies V k

h (s) =

maxa∈Ak
h(s)

Qk
h(s, a) = maxa∈Ak

h(s)
⟨ϕ(s, a), wk

h⟩+ bkh(s, a).

By LemmaD.3, there exists an action a′ ∈ Ak
h(s) such that ϕ(s, a′) = αϕ(s, a∗s) + (1 − α)ϕ(s, a0s) for some α ∈

[ τ
τ+2β2∥ϕ(s,a∗

s)−ϕ(s,a0
s)∥(Λ

k,γ
h

)−1
, 1]. Thus we will have:

V k
h (s) = max

a∈Ak
h(s)

Qk
h(s, a) ≥ Qk

h(s, a
′) = ⟨ϕ(s, a′), wk

h⟩+ bkh(s, a
′). (102)

Then, conditioned on the event E2 we have:

⟨ϕ(s, a′), wk
h⟩+ bkh(s, a

′)

≥ Qπ∗

h (s, a′) + Es′∼Ph(.|s,a′)[V
k
h+1(s

′
)− V π∗

h+1(s
′
)]− β1∥ϕ(s, a′)∥(Λk,Q

h )−1 + bkh(s, a
′).

≥ Qπ∗

h (s, a′) + Es′∼Ph(.|s,a′)[V
k
h+1(s

′
)− V π∗

h+1(s
′
)] + gkh(s, a

′) ≥ Qπ∗

h (s, a′) + gkh(s, a
′)

(103)

, where in the last inequality we utilized the induction hypothesis that V k
h+1(.) ≥ V π∗

h+1(.). By considering the fact that
ϕ(s, a′) = αϕ(s, a∗s) + (1− α)ϕ(s, a0s), we can continue Equation 103 as follows:

V k
h (s) ≥ ⟨ϕ(s, a′), wk

h⟩+ bkh(s, a
′) ≥ α⟨ϕ(s, a∗s), wπ∗

h ⟩+ (1− α)⟨ϕ(s, a0s), wπ∗

h ⟩+ gkh(s, a
′), (104)

Now, according to the Equation (4) we will have:

gkh(s, a
′) = ν ×

(
β2∥ϕ(s, a′)− ϕ(s, a0s)∥(Λk,γ

h )−1

)
H = (αν)×

(
β2∥ϕ(s, a∗s)− ϕ(s, a0s)∥(Λk,γ

h )−1

)
H (105)

Now, by setting ν = 2
τ , we can continue Eq. (105) as follows:

gkh(s, a
′) = ν ×

(
1− τ

τ + 2β2∥ϕ(s, a∗s)− ϕ(s, a0s)∥(Λk,γ
h )−1

)
H ≥ (1− α)H (106)

Now, combining Equations (106) and (104), and considering the fact that 0 ≤ V π∗ ≤ H , we obtain the following:

V k
h (s) ≥ ⟨ϕ(s, a′), wk

h⟩+ bkh(s, a
′) ≥ α⟨ϕ(s, a∗s), wπ∗

h ⟩+ (1− α)H ≥ V π∗

h (s), (107)

where in the second inequality we used the fact that when rewards are non-negative, then according to Proposition 2.3 from
(Jin et al., 2020) we will have: 0 ≤ Qπ∗

h (s, a0s) = ⟨ϕ(s, a0s), wπ∗

h ⟩. The Equation (107) completes the proof. □

D.2. Regret decomposition in Star-Convex cases

Lemma D.5. Conditioned on the event E , the following inequality holds:
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Regret(K) ≤
K∑

k=1

H∑
h=1

ζkh + 2β1

K∑
k=K′

H∑
h=1

∥ϕ(skh, akh)∥(Λk
h)

−1 +

K∑
k=1

H∑
h=1

(gkh(s
k
h, a

k
h)), (108)

where ζkh+1 := Es′∼Ph(.|skh,a
k
h)
[V k

h+1(s
′
)− V πk

h+1(s
′
)]− δkh+1 and δkh+1 := V k

h (skh)− V πk

h (skh).

Proof: First, we can decompose the regret as follows:

Regret(K) =

K∑
k=1

(
V π∗

0 (s0)− V πk

0 (s0)
)
=

K∑
k=1

(
V π∗

0 (s0)− V k
0 (s0)

)
+

K∑
k=1

(
V k
0 (s0)− V πk

0 (s0)
)

≤
K∑

k=1

(
V k
0 (s0)− V πk

0 (s0)
) (109)

where, the last inequlity obtained by Lemma D.4. Now, by the definition of V k
h and Qk

h we have:

δkh+1 = V k
h (skh)− V πk

h (skh) = min{Qk
h(s

k
h, a

k
h), H} −Qπk

h (skh, a
k
h)

≤ Qk
h(s

k
h, a

k
h)−Qπk

h (skh, a
k
h)

= ⟨ϕ(skh, akh), wk
h⟩+ β1∥ϕ(skh, akh)∥(Λk

h)
−1 + gkh(s

k
h, a

k
h)−Qπk

h (skh, a
k
h).

(110)

Then, on the event E , we have:

⟨ϕ(skh, akh), wk
h⟩+ β1∥ϕ(skh, akh)∥(Λk

h)
−1 + gkh(s

k
h, a

k
h)−Qπk

h (skh, a
k
h)

≤ Es′∼Ph(.|skh,a
k
h)
[V k

h+1(s
′
)− V πk

h+1(s
′
)]

= δkh+1 + ζkh+1 + 2β1∥ϕ(skh, akh)∥(Λk
h)

−1 + gkh(s
k
h, a

k
h).

(111)

Also, one can find that the following holds:
K∑

k=1

V k
1 (sk1)− V πk

1 (sk1) =

K∑
k=1

δk1 . (112)

Note that Lemma D.4 ensures that on the event E , 0 ≤ δkh holds. Consequently, by applying Equations (109), (111) and
(112), we can conclude:

Regret(K) ≤
K∑

k=1

H∑
h=1

ζkh + 2β1

K∑
k=1

H∑
h=1

∥ϕ(skh, akh)∥(Λk
h)

−1 +

K∑
k=1

H∑
h=1

gkh(s
k
h, a

k
h). □ (113)

D.3. Main Proof of Theorem 5.1

Proof: Applying Lemma D.5 we will have:

Regret(K) ≤
K∑

k=1

H∑
h=1

ζkh + 2β1

K∑
k=1

H∑
h=1

∥ϕ(skh, akh)∥(Λk,Q
h )−1 + (

2β2H

τ

) K∑
k=1

H∑
h=1

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

(114)

In order to bound the first term on the right hand side of Equation (114) note that ζkh forms a martingale difference sequence
with a bounded norm, |ζkh | ≤ H . Thus, we can apply Azuma-Hoeffding’s inequality:

P
( K∑

k=1

H∑
h=1

ζkh ≤ 2H

√
(K)H log(

d(K)H

δ
)
)
≥ 1− δ (115)
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Therefore, with a probability of at least 1− δ we have:

K∑
k=1

H∑
h=1

ζkh ≤ 2H

√
(K)H log(

d(K)H

δ
) (116)

Now, to bound the rest of the right hand side of Equation(114) we can Follow the steps outlined in the proof of Theorem 3 in
(Abbasi-Yadkori et al., 2011), as follows:

2β1

K∑
k=1

H∑
h=1

∥ϕ(skh, akh)∥(Λk,Q
h )−1 + (

2β2H

τ

) K∑
k=1

H∑
h=1

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

= 2β1

H∑
h=1

K∑
k=1

∥ϕ(skh, akh)∥(Λk,Q
h )−1 + (

2β2H

τ

) H∑
h=1

K∑
k=1

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

≤ 2β1

H∑
h=1

√√√√K

K∑
k=1

∥ϕ(skh, akh)∥(Λk,Q
h )−1 +

2β2H

τ

H∑
h=1

√√√√K

K∑
k=1

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

(117)

By Assumption 2.1, given that L ≤ 1 and λ = 1 in Algorithm 1, it can be shown that ∥ϕ(skh, akh)∥(Λk,Q
h )−1≤ 1, and

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1≤ 2. Consequently, the following inequality holds:

∥ϕ(skh, akh)∥2(Λk,Q
h )−1≤ 2 log(1+∥ϕ(skh, akh)∥2(Λk

h)
−1),

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥2

(Λk,γ
h )−1≤ 2 log

(
1+∥ϕ(skh, akh)− ϕ(skh, a

0
skh
)∥2

(Λk,γ
h )−1

) (118)

Thus, by Equations (117) and (118) we have:

2β1

H∑
h=1

√√√√K

K∑
k=1

∥ϕ(skh, akh)∥2(Λk,Q
h )−1

+
2β2H

τ

H∑
h=1

√√√√K

K∑
k=1

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

≤ 2β1

H∑
h=1

√√√√2K

K∑
k=1

log(1+∥ϕ(skh, akh)∥2(Λk
h)

−1)

+
2β2H

τ

H∑
h=1

√√√√K

K∑
k=1

log
(
1+∥ϕ(skh, akh)− ϕ(skh, a

0
skh
)∥2

(Λk,γ
h )−1

)

= 2β1

H∑
h=1

√
2K(log(det(ΛK,Q

h ))− log(λd)) +
2β2H

τ

H∑
h=1

√
2K(log(det(ΛK,γ

h ))− log(λd))

(119)

where the last inequality is obtained by Lemma 11 from (Abbasi-Yadkori et al., 2011). Now, considering that ∥ϕ(skh, akh)∥ ≤
L, it follows that the trace of ΛK,Q

h is upper bounded by dλ+KL2, and the trace of λk,γ
h is upper bounded by dλ+ 2KL2 .

Since ΛK,Q
h and ΛK,γ are positive definite matrices, the determinant of Λk,Q

h and Λk,γ
h can be bounded by:

det(ΛK,Q
h ) ≤ (

trace(ΛK,Q
h )

d
)d ≤ (

dλ+ (K)L2

d
)d,

det(ΛK,γ
h ) ≤ (

trace(ΛK,γ
h )

d
)d ≤ (

dλ+ 2(K)L2

d
)d,

Combining all together yields:
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2β1

H∑
h=1

√
2K(log(det(ΛK,Q

h ))− log(λd)) +
2β2H

τ

H∑
h=1

√
2K(log(det(ΛK,γ

h ))− log(λd))

≤ 2β1

H∑
h=1

√
2K(log((

dλ+KL2

d
)d)− log(λd)) +

2β2H

τ

H∑
h=1

√
2K(log((

dλ+ 2KL2

d
)d)− log(λd))

≤ 2(β1 +
β2H

τ
)

H∑
h=1

√
2Kd log((

dλ+ 2KL2

λd
)) = 2(β1 +

β2H

τ
)H

√
2Kd log((

dλ+ 2KL2

λd
))

(120)

Given that λ = 1 and utilizing the Equations (117) through (120), we conclude that:

2β1

K∑
k=1

H∑
h=1

∥ϕ(skh, akh)∥(Λk,Q
h )−1 + (

2β2H

τ

) K∑
k=1

H∑
h=1

∥ϕ(skh, akh)− ϕ(skh, a
0
skh
)∥(Λk,γ

h )−1

≤ 2(β1 +
β2H

τ
)H

√
2Kd log((

dλ+ 2KL2

λd
))

(121)

Now, by integrating the bounds from Eq.(116) and Eq. (121), we establish the desired upper bound on T2:

Regret(K) ≤ 2H

√
(K)H log(

d(K)H

δ
) + (2β1 +

2β2H

τ
)H

√
2Kd log

(
(
dλ+ 2KL2

λd
)
)

Safety The safety of our method is guaranteed by Theorem 2 from Abbasi-Yadkori et al. (2011), as stated below:

Lemma D.6. (Theorem 2 in (Abbasi-Yadkori et al., 2011)) Let δ ∈ (0, 1
H ). Then, with probability at least 1 −Hδ, the

chosen actions by Algorithm 1 satisfy the safety constraints for all episodes. In other words, for all (h, k) ∈ [H] × [K],
Ak

h(s) ⊆ Asafe
h (s).

□
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