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MixRec: Individual and Collective Mixing Empowers Data
Augmentation for Recommender Systems

Anonymous Author(s)

Abstract
The core of the modern recommender systems lies in learning high-
quality embedding representations of users and items to investigate
their positional relations in the feature space. Unfortunately, data
sparsity caused by difficult-to-access interaction data severely lim-
its the effectiveness of recommender systems. Faced with such a
dilemma, various types of self-supervised learning methods have
been introduced into recommender systems in an attempt to al-
leviate the data sparsity through distribution modeling or data
augmentation. However, most data augmentation relies on elabo-
rate manual design, which is not only not universal, but the bloated
and redundant augmentation process may significantly slow down
model training progress. To tackle these limitations, we propose a
novel Dual Mixing-based Recommendation Framework (MixRec) to
empower data augmentation as we wish. Specifically, we propose
individual mixing and collective mixing, respectively. The former
aims to provide a new positive sample that is unique to the tar-
get (user or item) and to make the pair-wise recommendation loss
benefit from it, while the latter aims to portray a new sample that
contains group properties in a batch. The two mentioned mixing
mechanisms allow for data augmentation with only one parameter
that does not need to be set multiple times and can be done in linear
time complexity. Besides, we propose the dual-mixing contrastive
learning to maximize the utilization of these new-constructed sam-
ples to enhance the consistency between pairs of positive samples.
Experimental results on four real-world datasets demonstrate the
effectiveness of MixRec in terms of recommendation performance,
training efficiency, sparsity resistance, and usability.

CCS Concepts
• Information systems→ Recommender systems.
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recommender system, collaborative filtering, data augmentation,
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1 INTRODUCTION
As an integral part of modern Internet platforms, recommender
systems have garnered significant attention [8, 21]. The wisdom of
the crowd lies at the core of recommender systems, which leverage
group behavior to filter out irrelevant information [8, 20]. With the
rise of representation learning, the development of recommender
systems has kept pace, with various neural networks being em-
ployed to model high-quality embeddings for users and items [13].
As a data-driven scientific application, recommender systems now
rely on interaction data more than ever. However, for various rea-
sons, it is often challenging for individual platforms to obtain com-
prehensive user data, leaving recommender systems frequently
dealing with data sparsity [29, 41].

It is against this backdrop that many researchers have sought
to introduce Self-supervised learning (SSL) [18] into recommender
systems to mitigate the data sparsity problem. This contains two
paradigms, Generative and Contrastive. Specifically, generative
models [15, 41] based on probabilistic modeling can reconstruct his-
torical interactions, while the more easily implemented contrastive
learning [4] (CL) has made significant strides in combating data
sparsity through data augmentation. Through data augmentation,
contrastive learning maximizes mutual information from differ-
ent views of the same sample, providing additional supervision
signals for the recommendation task [23]. Consequently, research
is increasingly focusing on exploring different types of data aug-
mentation [36]. Early explorations concentrated on augmenting
graph [34], where the graph is derived from user-item interactions
[29]. Researcher constructs different views of the original input by
randomly masking nodes or edges [2]. Subsequently, a new line
of thought has emerged, focusing on achieving augmentation in
the feature space. Examples include introducing noise for represen-
tations [32, 35], or finding semantic neighbors through clustering
[16, 32], attention [19, 40], or hierarchical mechanisms [6].

Despite the impressive progress of these novelmethods, we argue
that existing research still faces several limitations. Firstly, much of
CL-based methods tends to rely on manually crafted augmentation.
Examples include the need to precisely control the ratio of censored
raw data [29] or carefully add noise to raw data or representations to
avoid over-corrupting the original semantic information [35]. More
critically, to leverage more sophisticated augmentation strategies
without overly disrupting recommendation, many recent methods
introduce more hyper-parameters to balance multi-tasking [32,
35, 38]. Given the wide variability of data structures, researchers
are often required to test with multiple hyper-parameter sets for
different application scenarios. This not only increases the cost of
trial and error, but also raises concerns about improving subsequent
research. Although some methods adopt an alternative approach
by achieving data augmentation through repeated sampling [9,
37], this strategy significantly increases warm-up and introduces
unquantifiable sampling bias [3, 43].
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Secondly, the data augmentation strategies proposed in many
existing works substantially increase the time costs associated with
model training and inference. In early research, commonly used
data augmentation methods are often accompanied by multiple
encodings and propagations to obtain different perspectives of the
same input [29, 35]. And in more recent research, many studies
introduce the paradigm of learnable (or adaptive) augmentation
[19, 40], as well as unique feature-lookup mechanisms [16, 32] to
identify suitable new views in the semantic space. In practice, these
strategies typically lead to an exponential increase inmodel training
and inference time, as multiple iterations of the base recommen-
dation model’s encoder are needed to construct representations of
various views. As noted in previous pioneering work [29], the time
complexity of the model after introducing graph augmentation-
based CL is 3.7 times greater than that of the base model.

The final and most significant limitation is that many CL-based
methods do not utilize these new samples efficiently. Specifically,
the broad approach aims to enhance the consistency of a pair of
positive samples while maintaining uniformity among the negative
samples [4]. While effective, this approach is insufficient for fully
utilizing each sample, particularly as it neglects to explore the vary-
ing characteristics of individual samples. If we intend to introduce
a larger number of samples, we may encounter some challenges. In
other words, the approach lacks scalability. In a nutshell, although
data augmentation is essential for data-sparse recommendation
scenarios, existing augmentation strategies often struggle with the
dilemma. This prevents us from achieving desired augmentations,
thereby limiting the overall recommendation performance. There-
fore, we further investigate whether the following objectives can
be achieved simultaneously:

• How can we more easily implement data augmentation with
minimal hyper-parameter tuning?

• How can we achieve data augmentation without significantly
increasing model complexity?

• How can new samples obtained through data augmentation be
utilized more effectively to enhance recommendation?

To tackle the above limitations, we propose a novel Dual Mixing-
based Recommendation Framework (MixRec) for recommender
system. MixRec does not rely on any external strategies to con-
struct new views of the original sample, instead using the samples
themselves. Specifically, inspired by the mixing mechanism [39],
we intend to create mixes of several samples. Based on this assump-
tion, we propose the Individual Mixing and Collective Mixing,
respectively. Individual mixing aims to create new views that are
more closely aligned with the original sample while also incorporat-
ing information from other samples. Collective mixing, on the other
hand, emphasizes a more holistic perspective, i.e., the wisdom of the
crowd. Such mixing process is a convex combination, which can be
achieved with linear complexity and requires only simple controls
to create new samples. In our experiments, we also find that the
mixing process is hyper-parameter-agnostic and exhibits strong
generalization properties. In addition, we propose the Dual Mix-
ing Contrastive Learning, which, for the first time, maximizes
the consistency of positive samples from dual mixing perspectives.
This approach fully leverages all available new samples to enhance

the supervision signals for the recommendation task. The major
contributions of this paper are summarized as follows:
• We propose a recommendation framework MixRec, which con-

tains two lightweight data augmentation strategies, individual
mixing and collective mixing for recommendation task.

• We further propose dual-mixing contrastive learning, which
maximizes the consistency of positive sample pairs from two
perspectives while utilizing more negative samples to provide
additional supervision signals for the recommendation task.

• We conduct comparison experiments with twenty related base-
line methods across four real datasets to thoroughly validate the
effectiveness of the proposed MixRec.

2 METHODOLOGY
2.1 Problem Formulation
Without loss of generality, a recommendation scenario contains
𝑀 users (U = {𝑢1, 𝑢2, ..., 𝑢𝑀 }) and 𝑁 items (U = {𝑖1, 𝑖2, ..., 𝑖𝑁 }),
and interactions between them [8]. Based on existing work [7, 26],
historical interactions are typically stored as an interaction matrix
R ∈ R𝑀×𝑁 , where if there is an observed interaction between user
𝑢 and item 𝑖 , we then have 𝑅𝑢𝑖 = 1. The task of the recommender
system aims to learn the prediction function 𝑓Θ (𝑢, 𝑗) as a means of
predicting user 𝑢’s preference score 𝑅𝑢 𝑗 for the item 𝑗 that have
not been interacted with, where Θ is the set of trainable model
parameter. For general recommendation scenarios, the only train-
able parameters are the initial embedding representations for users
{e(0)𝑢 } and items {e(0)

𝑖
}. Based on the above definition, we pro-

pose the dual mixing-based recommendation framework MixRec,
as shown in Fig. 1.

2.2 Interaction Graph Encoding
In the context of a recommender system, the user-item interaction
graph [26] is a natural way to represent the complex relationships
between users and items. Specifically, the user-item interaction
graph is denoted as G =< U ∪ I, E >, where U, I, and E are the
set of users, the set of items, and the interactions between users
and items (E𝑢𝑖 = E𝑖𝑢 = 𝑅𝑢𝑖 ). In recent studies, graph convolutional
networks (GCNs) [12] are widely used to model interaction graph,
which aggregate information from a node’s neighbors, allowing
each node to incorporate contextual information and leads to more
informative representations. Given any user node 𝑢 ∈ U, the user
embedding update process for an arbitrary layer is shown below:

e(𝑙 )𝑢 = AGG(e(𝑙−1)𝑢 , {e(𝑙−1)
𝑖

: 𝑖 ∈ N𝑢 }), (1)

where e(𝑙 )𝑢 ∈ R𝑑 is the embedding of user 𝑢 on the 𝑙-th layer, 𝑑 is
the embedding size,N𝑢 is the first-order neighbor set of user 𝑢, and
AGG(·) is a manually defined aggregation function. The item side
has a similar definition. In general, AGG functions have multiple
implementation strategies. Considering that general recommenda-
tion only uses user and item ID as inputs, we adopt the widely used
lightweight graph convolution [7] to encode user 𝑢 ∈ U and item
𝑖 ∈ I on the interaction graph:

e(𝑙 )𝑢 =
∑︁
𝑖∈N𝑢

𝑝𝑢𝑖e
(𝑙−1)
𝑖

; e(𝑙 )
𝑖

=
∑︁
𝑢∈N𝑖

𝑝𝑢𝑖e
(𝑙−1)
𝑢 , (2)
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Figure 1: The complete information flow of the proposed MixRec. MixRec contains several phases of graph encoding, dual-
mixing, dual-mixing contrastive learning, and multi-task learning for recommendation.

where 𝑝𝑢𝑖 = 1/
√︁
|N𝑢 | |N𝑖 | is the graph Laplacian norm [12, 26].

Compared to vanilla GCN [12], Eq. 2 does not rely on feature trans-
formation, and the process of information aggregation is done only
by linear combination of neighbors, which is more in line with the
semantic-free feature of implicit feedback [8, 20]. After 𝐿 layers
of propagation, we construct usable embeddings for downstream
tasks by addition [40]: e𝑢 =

∑𝐿
𝑙=1 e

(𝑙 )
𝑢 and e𝑖 =

∑𝐿
𝑙=1 e

(𝑙 )
𝑖

.

2.3 Dual-Mixing for Data Augmentation
Although user and item representations obtained by graph structure
encoding can already be directly used in the downstream recom-
mendation task, a serious problem is the data sparsity issue as
mentioned in the Introduction section [29, 41]. Extremely sparse
implicit feedback may not provide sufficient supervision signals,
leading to suboptimal learned embeddings [20]. Therefore, data aug-
mentation is especially important for recommendation task. Given
that most existing data augmentation strategies for self-supervised
contrastive learning suffer from high complexity and a lack of
flexibility, this dilemma prompts us to reconsider and rediscover a
proven augmentation strategy. Our goal is to generate multiple new
views as we wish, without relying on complex augmentation rules
or time-consuming repetitive sampling. Building on this, we pro-
pose the Dual-Mixing for data augmentation, which incorporates
both individual and collective mixing.

2.3.1 Individual Mixing. We first consider any individual (user
𝑢 or item 𝑖) in a sampled mini-batch. By graph encoding, we have
obtained their corresponding embedding representations: e𝑢 and e𝑖 .
Inspired by [10, 39], we construct new samples by linearly combin-
ing the original embedding pairs. Specifically, individual mixing
creates synthetic training samples by linearly interpolating between
two random samples from a sampled mini-batch:

e𝑖𝑚𝑢 = 𝛽𝑢 · e𝑢 + (1 − 𝛽𝑢 ) · e𝑑𝑖𝑠𝑢 ; e𝑖𝑚𝑖 = 𝛽𝑖 · e𝑖 + (1 − 𝛽𝑖 ) · e𝑑𝑖𝑠𝑖 , (3)

where 𝛽 is a mixing coefficient drawn from a symmetric Beta distri-
bution 𝐵𝑒𝑡𝑎(𝛼, 𝛼) with shape parameter 𝛼 ∈ (0,∞) (For simplicity,
we define 𝛼 = 𝛼𝑢 = 𝛼𝑖 ), and e𝑑𝑖𝑠𝑢 is the embedding at the corre-
sponding position of user 𝑢 after the order of user embeddings in
a batch has been disrupted (i.e., the embedding of any other user
within the same batch).

Unlike traditional data augmentation, which is commonly used
in contrastive learning [34, 36], individual mixing does not require
multiple instances of graph encoding or repeated sampling. More
importantly, we can generate new views on demand by simply
tweaking the shape parameter 𝛼 , while embedding e𝑑𝑖𝑠𝑢 is auto-
matically obtained through a disordered operation. In practice, we
empirically set 𝛼 to 0.1, which eliminates the need for extensive
manual effort in individual mixing. In addition, by controlling for a
smaller 𝛼 , we constrain the sampled beta 𝛽 to yield larger values,
enabling the newly generated sample e𝑖𝑚𝑢 to retain as many prop-
erties of the original sample e𝑢 as possible. This aligns with the
invariance of contrastive learning [14], treating these new sample
as positive of the original view.

u1 u2im

u1

u2u3

u1 u3

u2 u3 u1

(a) disorder (b) individual mixing (c) collective mixing

dis

u2 im = β u1 + (1 - β) u2

cm

cm = ϑ1 u1+ ϑ2 u2 +ϑ3 u3

Figure 2: Example of construction process for three new
views of user node 𝑢1 (batch size |B| = 3).

2.3.2 Collective Mixing. With individual mixing, we can easily
generate new views for user 𝑢 or item 𝑖 . These new views retain
information from most of the original views, allowing us to align
them in feature space by maximizing mutual information. However,
we note that the essence of recommender systems lies in the wisdom
of the crowd [7, 8], highlighting the importance of considering
inter-user relationships. Therefore, we further propose collective
mixing, building upon individual mixing, to create new views that
incorporate group information for each user. Specifically, collective
mixing generates new examples by forming convex combinations
of pairs of examples from the entire batch:

e𝑐𝑚𝑢 = 𝜗1e1 + 𝜗2e2 + · · · + 𝜗 | B |e | B | , s.t.
| B |∑︁
𝑜=1

𝜗𝑜 = 1.0, (4)
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Table 1: Notation and explanation of the original and other
new views of the user 𝑢.

Notation Explanation
e𝑢 The original view of user 𝑢
e𝑖𝑚𝑢 The new view of user 𝑢 by individual mixing
e𝑐𝑚𝑢 The new view of user 𝑢 by collective mixing
e𝑑𝑖𝑠𝑢 The new view of user 𝑢 by disorder in a batch

where e𝑐𝑚𝑢 is the new view for user 𝑢 generated through collective
mixing, with a similar definition for the item side. {𝜗1, 𝜗2, ..., 𝜗 | B | }
is a set of coefficients for convex combination, which is sampled
from a multivariate Dirichlet distribution [1]:

{𝜗1, 𝜗2, ..., 𝜗 | B | } ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼1, 𝛼2, ..., 𝛼 | B | ), (5)

where {𝛼𝑖 : 𝑖 ∈ B} is a set of positive real numbers to parameterize,
and B is a sampled mini batch. The new sample e𝑐𝑚𝑢 contains more
information from other users in the same batch than the individual
mixing. The new samples obtained from collective mixing contain
more information from other users than individual mixing.

We now sort out the proposed dual-mixing, and the process
of constructing new views is presented in Fig. 2. For individual
mixing (Fig. 2(b)), the new sample 𝑖𝑚 is a linear interpolation of
the original inputs 𝑢1 and 𝑢2. For collective mixing (Fig. 2(c)), the
new sample 𝑐𝑚 produced by the convex combination always lies
within the convex hull of the original inputs {𝑢1, 𝑢2, 𝑢3}. Due to the
influence of multiple sets of shape arameters, the 𝑐𝑚 is affected by
the influence from a wider range of users, which makes it extremely
limited although it contains information from the original sample𝑢1.
Therefore, the sample 𝑖𝑚 obtained from individual mixingwe regard
as a positive sample of the original view 𝑢1, while the sample 𝑐𝑚
produced by collective mixing is a hard negative sample of the
original view 𝑢1. And the sample 𝑑𝑖𝑠 (i.e., 𝑢2) obtained by disorder
is naturally a easy negative sample of the original view 𝑢1.

2.4 Dual-Mixing Contrastive Learning
Taking the user side as an example, through the proposed dual-
mixing, we obtain two new views of user 𝑢 (i.e., e𝑖𝑚𝑢 and e𝑐𝑚𝑢 ), ,
along with one additional view e𝑑𝑖𝑠𝑢 of the other users derived from
disorder. For user 𝑢, we have a total of four different views, as
outlined in Table 1. It is now time to consider how to utilize these
new views to provide additional supervision signals for the main
recommendation task. A reasonable approach is to apply widely-
used infoNCE [4, 36] to maximize the mutual information between
positive samples:

Lcl
𝑢 =

exp(𝑠 (e′𝑢 , e′′𝑢 )/𝜏)∑
𝑣∈Uexp(𝑠 (e′𝑢 , e′′𝑣 )/𝜏)

, (6)

where e′𝑢 and e′′𝑢 are additional views of user 𝑢 via data augmenta-
tion, 𝑠 (·, ·) is the cosine similarity function, and 𝜏 is a temperature
parameter. The contrastive loss essentially encourages the align-
ment of positive views while pushing the positive view e′𝑢 away
from the negative sample view e′′𝑣 , therebymaking the feature space
more uniform [23, 24]. However, we argue that the supervision sig-
nals provided by vanilla contrastive learning are insufficient, as it
fails to account for the uniformity across a wider range of sample

pairs. In addition, the standard infoNCE loss overlooks the origi-
nal view, leading to inconsistency between the auxiliary task and
the main recommendation task. Therefore, we shift our focus and
leverage the multiple views constructed earlier to propose the dual-
mixing contrastive learning. Given user 𝑢, we first define the
positive mixing contrastive loss:

Lpos
𝑢 = −log exp(𝑠 (e𝑢 , e𝑖𝑚𝑢 )/𝜏)∑

𝑣∈U [exp(𝑠 (e𝑢 , e𝑑𝑖𝑠𝑣 )/𝜏) + exp(𝑠 (e𝑢 , e𝑐𝑚𝑣 )/𝜏)]
. (7)

In contrast to the original infoNCE, the above equation directly
utilizes the original view as an anchor node to align the main
task with the auxiliary task. In addition, we expand the number of
negative sample pairs by contrasting the original viewwithmultiple
negative samples, further optimizing the uniformity of the entire
feature space. To fully leverage the efficacy of these views, we next
present the negative mixing contrastive loss as a counterpart:

Lneg
𝑢 = −log exp(𝑠 (e𝑑𝑖𝑠𝑢 , e𝑖𝑚𝑢 )/𝜏)∑

𝑣∈U [exp(𝑠 (e𝑑𝑖𝑠𝑢 , e𝑣)/𝜏) + exp(𝑠 (e𝑑𝑖𝑠𝑢 , e𝑐𝑚𝑣 )/𝜏)]
.

(8)
In this step, we boldly employ the negative view e𝑐𝑚𝑢 at the cor-
responding position, obtained through order perturbation, as the
anchor node while maintaining the roles of the other views. This
design aims to effectively measure the correlation between these
views, thereby providing additional supervision signals for the rec-
ommendation task. Note that the positive sample e𝑖𝑚𝑢 is derived
from mixing the two anchor nodes e𝑢 and e𝑑𝑖𝑠𝑢 . Consequently, both
contrastive losses include a measure of the alignment between e𝑖𝑚𝑢
with the two anchor nodes. The similarity of the positive sample
e𝑖𝑚𝑢 to the two anchor nodes is governed by the mixing coefficient
𝛽𝑢 . Therefore, we similarly utilize 𝛽𝑢 to determine the weight of
the two contrastive losses described above:

Luser =
∑︁
𝑢∈U

𝛽𝑢 · Lpos
𝑢 + (1 − 𝛽𝑢 ) · Lneg

𝑢 , (9)

where 𝛽𝑢 is the mixing coefficient used for individual mixing in Eq.
3. For the item side, we have a similar definition:

Litem =
∑︁
𝑖∈I

𝛽𝑖 · Lpos
𝑖

+ (1 − 𝛽𝑖 ) · Lneg
𝑖

. (10)

2.5 Multi-task Learning
The optimization of MixRec involves two components: the recom-
mendation task and the auxiliary task. For the main recommenda-
tion task, we take the widely applied BPR loss [20] to make more
variability between positive and negative samples:

Lpos
BPR =

∑︁
<𝑢,𝑖>∈O+,<𝑢,𝑗>∈O−

−ln𝜎 (e⊤𝑢 e𝑖 − e⊤𝑢 e𝑗 ), (11)

where 𝜎 is the sigmoid function. 𝑖 ∈ I is an item that user 𝑢 ∈ U
has interacted with, and 𝑗 ∈ I is any uninteracted one, and both of
them are sampled from a uniform distribution [9]. O+ and O− are
the observed and unobserved interaction sets, respectively.

As mentioned earlier, the original interaction data is highly
sparse, making it infeasible to achieve satisfactory results by relying
solely on the BPR loss described above. Therefore, we further utilize
the previously mentioned individual mixing to construct additional
negative samples for each user: e𝑖𝑚

𝑗
= 𝛽𝑖 · e𝑗 + (1− 𝛽𝑖 ) · e𝑑𝑖𝑠𝑗

, where
4
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item 𝑗 is the original negative sample for user 𝑢, and e𝑑𝑖𝑠
𝑗

is con-
structed by disorder. Thus, within a mini-batch, we can construct
multiple new negative samples for user 𝑢, resulting in the set O−

𝑢 .
Subsequently, we compute the pairwise ranking loss for user 𝑢
based on these new negative samples:

Lneg
BPR =

∑︁
<𝑢,𝑖>∈O+

−ln𝜎 (e⊤𝑢 e𝑖 −
∑︁
𝑗∈O−

𝑢

e⊤𝑢 e
𝑖𝑚
𝑗 ) . (12)

Compared to the original BPR loss, the equation above further
considers the distance relationship between positive sample 𝑖 and
multiple constructed negative samplesO−

𝑢 , which encourages item 𝑖

to remain closer to user𝑢 in the feature space. Similarly, we balance
the two BPR losses through a linear combination:

Lmain = 𝛽𝑖 · Lpos
BPR + (1 − 𝛽𝑖 ) · Lneg

BPR . (13)

Finally, to integrate the recommendation task with the auxiliary
task, we employ amulti-task joint training strategy for optimization.
The complete optimization objective of MixRec is defined as follows:

LMixRec = Lmain + 𝜆1 · (Luser + Litem) + 𝜆2 · ∥Θ∥22 , (14)

where 𝜆1 and 𝜆2 are hyper-parameters to trade off the magnitude
of losses, and Θ = E(0) is the set of trainable model parameter.

2.6 Time Complexity
In this section, we analyze the time complexity of MixRec. Specifi-
cally, we set the number of nodes and edges of the interaction graph
G to be |V| and |E |, respectively. 𝐿 is the number of GCN layers, 𝑑
is the embedding size, and |B| is the batch size. Next, we present
the key components that contribute to the time complexity:
• Interaction Graph Encoding: The time complexity of this

component is in line with mainstream methods since we adopt
the design of the classical LightGCN [7]. Therefore, the time
complexity of this component is 𝑂 (2|E |𝐿𝑑).

• Dual-Mixing: We introduce individual and collective mixing
for data augmentation. Recalling Eqs. 3 and 4, this component
does not significantly increase the time complexity, as the mixing
operation involves only an addition of embeddings rather than
matrix multiplication

• Dual-Mixing Contrastive Learning: In this component, we
need to compute the contrastive loss on the user and item side,
respectively. Therefore, the time complexity of this component
is 𝑂 (4( |B|𝑑 + 2|B|2𝑑)).

• Recommendation Losses: We adopt the widely used BPR loss
[20] to optimize the recommendation task. In addition, we addi-
tionally introduced mixed negative samples. Therefore, the time
complexity of this component is 𝑂 (2|B|𝑑 + |B|2𝑑).

In practice, the time complexity of MixRec comes mainly from in-
teraction graph encoding since the batch size |B| is much smaller
than the interaction scale |E |. As a result, the actual complexity
of MixRec is slightly higher than that of LightGCN due to the ad-
ditional computation of losses; however, it remains significantly
lower than other methods based on self-supervised contrastive
learning or multiple sampling. This is primarily because MixRec re-
quires only linear time complexity for data augmentation, avoiding
the need to perform graph encoding multiple times. Additionally,
MixRec does not require extra time for sampling multiple negative
samples.

Table 2: Statistics of the datasets.
Dataset #Users #Items #Interactions Sparsity
Douban-Book 13,024 22,347 792,062 99.72%
Yelp 31,668 38,048 1,561,406 99.87%
Tmall 47,939 41,390 2,357,450 99.88%
Amazon-Book 52,643 91,599 2,984,108 99.94%

3 Experiments
In this section, we perform experiments on four real-world datasets
to validate our proposed MixRec compared with state-of-the-art
recommendation methods.

3.1 Experimental Settings
3.1.1 Datasets. To validate the effectiveness of MixRec, we adopt
four widely used recommendation datasets: Douban-Book [32, 35],
Yelp [7, 35], Amazon-Book [7, 35], and Tmall [19, 40], which are
varied in field, scale, and sparsity level. Detailed statistics for the
four datasets are presented in Table 2. For fair comparison, pre-
processing of all datasets remains consistent with previous studies
[7, 29]. Specifically, all explicit feedback is forced to be converted
to implicit feedback (binary values). Items that a user has inter-
acted with are considered positive samples, while all other items
are considered negative samples that can be sampled for that user.

3.1.2 Baselines. To validate the effectiveness ofMixRec, we choose
the following state-of-the-art recommendation methods for com-
parison experiment:
• Factorization-based method: MF [20].
• Generative methods: Mult-VAE [15], CVGA [41], and DiffRec

[25].
• GCN-based methods: NGCF [26], LightGCN [7], IMP-GCN

[17], MixGCF [9], and CAGCN* [28].
• SSL-based methods: SGL-ED [29], NCL [16], DirectAU [22],

SimGCL [35], GraphAU [31], CGCL [6], VGCL [32], LightGCL
[2], SCCF [30], RecDCL [38], and BIGCF [40].

3.1.3 Hyperparameter Settings. We implement MixRec in Py-
Torch1. For a fair comparison, we adopt an experimental setup
consistent with previous works [7, 35]. Specifically, the embedding
size and batch size of all models are set to 64 (excluding Mult-VAE
[15], DiffRec [25], and RecDCL [38]) and 2048, respectively. For all
graph-based methods, the number of network layers was set to 3
[7] (excluding IMP-GCN [17]). The default optimizer is Adam [11],
and initialization is done via the Xavier method [5]. We follow the
suggested settings in the authors’ original papers and use a grid
search to choose the optimum hyperparameters for all baselines.
For MixRec, we empirically set the temperature coefficient 𝜏 to be
0.2. The weight of contrastive learning 𝜆1 is set in the range of {0.01,
0.5, 0.1, 0.2, ..., 2.0}, and the weight of 𝐿2 regularization 𝜆2 is set in
1e−4 by default. The default setting for the shape parameter 𝛼 is 0.1.
To assess the performance of Top-N recommendation, we employ
two commonly used evaluation metrics: Recall@N and NDCG@N
(N=20 by default), which are computed by the all-ranking [7, 26, 35].

1https://anonymous.4open.science/r/MixRec-2207

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: Overall performance comparisons on Yelp, Amazon-Book, Tmall, and Douban-Book datasets. The results of MixRec
are bolded, whereas the best baseline is underlined. * denotes that the improvement is significant with a 𝑝-value < 0.001 based
on a two-tailed paired t-test. Part of the results are duplicated from original papers for consistency.

Model Name Year Yelp Amazon-Book Tmall Douban-Book
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

MF [20] UAI’09 0.0539 0.0439 0.0308 0.0239 0.0547 0.0400 0.1292 0.1147
Mult-VAE [15] WWW’18 0.0584 0.0450 0.0407 0.0315 0.0740 0.0552 0.1670 0.1604
CVGA [41] TOIS’23 0.0694 0.0571 0.0492 0.0379 0.0854 0.0648 0.1736 0.1650
DiffRec [25] SIGIR’23 0.0665 0.0556 0.0514 0.0418 0.0792 0.0612 0.1619 0.1661
NGCF [26] SIGIR’19 0.0560 0.0456 0.0342 0.0261 0.0629 0.0465 0.1376 0.1215
LightGCN [7] SIGIR’20 0.0639 0.0525 0.0411 0.0315 0.0711 0.0530 0.1504 0.1404
MixGCF [9] KDD’21 0.0713 0.0589 0.0485 0.0378 0.0813 0.0611 0.1731 0.1685
IMP-GCN [17] WWW’21 0.0653 0.0531 0.0460 0.0357 0.0729 0.0539 0.1725 0.1604
CAGCN* [17] WWW’23 0.0711 0.0590 0.0506 0.0400 0.0783 0.0581 0.1704 0.1667
SGL-ED [29] SIGIR’21 0.0675 0.0555 0.0478 0.0379 0.0738 0.0556 0.1633 0.1585
NCL [16] WWW’22 0.0685 0.0577 0.0481 0.0373 0.0750 0.0553 0.1647 0.1539
DirectAU [22] KDD’22 0.0703 0.0583 0.0506 0.0406 0.0752 0.0576 0.1660 0.1568
SimGCL [35] SIGIR’22 0.0721 0.0601 0.0515 0.0414 0.0884 0.0674 0.1728 0.1671
GraphAU [31] CIKM’23 0.0691 0.0574 0.0508 0.0403 0.0840 0.0625 0.1699 0.1633
CGCL [6] SIGIR’23 0.0694 0.0561 0.0482 0.0375 0.0861 0.0650 0.1741 0.1667
VGCL [32] SIGIR’23 0.0715 0.0587 0.0506 0.0401 0.0880 0.0670 0.1733 0.1689
LightGCL [32] ICLR’23 0.0692 0.0571 0.0506 0.0397 0.0833 0.0637 0.1570 0.1455
SCCF [30] KDD’24 0.0701 0.0580 0.0491 0.0399 0.0772 0.0580 0.1711 0.1639
RecDCL [38] WWW’24 0.0690 0.0560 0.0510 0.0405 0.0853 0.0632 0.1664 0.1526
BIGCF [40] SIGIR’24 0.0729 0.0602 0.0500 0.0398 0.0876 0.0664 0.1741 0.1682
MixRec (Ours) 0.0740* 0.0612* 0.0541* 0.0433* 0.0900* 0.0686* 0.1778* 0.1712*
p-values 5.21e-6 3.97e-5 2.07e-7 9.14e-6 4.75e-5 1.25e-5 9.82e-6 4.44e-5

3.2 Performance Comparisons
3.2.1 Overall Comparisons. Table 3 shows the performance of
MixRec and all baseline methods on four datasets. MixRec achieves
the best recommendation performance over all baselines on all
datasets. Quantitatively, MixRec improves over the best baselines
w.r.t. Recall@20 by 1.78%, 5.05%, 1.81%, and 2.13% on Yelp, Amazon-
Book, Tmall, and Douban-Book datasets, respectively. The exper-
imental results demonstrate the effectiveness and generalization
of MixRec. We attribute the performance improvement to the pro-
posed individual and collective mixing, which effectively achieves
data augmentation and alleviates the data sparsity problem faced
by recommender systems.

MixGCF [9], another recommendationmodel utilizing themixing
mechanism, achieves better recommendation performance than MF
and LightGCN, further demonstrating the superiority of the mixing
mechanism. However, MixGCF merely samples multiple negative
instances for calculating the BPR loss, which not only introduces
sampling bias but also fails to provide additional supervision signals
for the recommendation task. Compared to all contrastive learning-
based methods, MixRec consistently outperforms them. This can be
attributed to the fact that traditional contrastive learning methods
do not fully leverage both positive and negative samples. In con-
trast, MixRec introduces dual-mixing contrastive learning, which
effectively evaluates the role of various negative samples. Moreover,
MixRec avoids the need for multiple graph encodings, ensuring its
time complexity remains relatively low.

Table 4: Efficiency comparison on Tmall and Amazon-Book
datasets w.r.t. time/epoch (T/E), number of epochs, and total
runtime (measured in seconds (s), minutes (m), hours (h)).

Tmall Amazon-Book
T/E epochs runtime T/E epochs runtime

LightGCN 49.1s 286 3h50m 54.7s 423 6h26m
IMP-GCN 224.5s 220 13h43m 357.2s 260 25h48m
MixGCF 180.3s 114 5h43m 202.5s 89 5h
SimGCL 132.4s 24 53m 167.5s 21 58m
CGCL 105.5s 76 2h14m 147.3s 59 2h25m
BIGCF 56.7s 40 38m 71.1s 42 50m
MixRec-1 32.4s 34 18m 35.3s 26 15m
MixRec-3 56.1s 26 24m 61.5s 19 19m

1 5 9 13 17 21 25
Epoch
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(a) Tmall
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Figure 3: Training curves of LightGCN (best), SimGCL and
MixRec on (a) Tmall and (b) Amazon-Book datasets.
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Figure 4: Sparsity tests on (a) Tmall and (b) Amazon-Book
datasets. The 𝑥-axis shows user groups and proportions.

3.2.2 Comparisons w.r.t. Efficiency. In this section, we present
a comparison of the training time of MixRec (𝐿 = 1 and 𝐿 = 3) with
baseline methods on the two largest datasets, Tmall and Amazon-
Book, as shown in Table 4. As can be seen, while MixRec-3’s single
training time is only slightly higher than LightGCN [7] due to
the additional loss computations, it is still significantly lower than
other methods. MixRec-1, on the other hand, takes even less time
than LightGCN. Besides, methods like LightGCN are constrained by
sparse interaction data, requiring hundreds of iterations to achieve
convergence. In contrast, MixRec converges in far fewer iterations,
resulting in a significantly reduced overall training time.

We further compare the training process of MixRec with the best-
performing baseline method SimGCL [35] on Tmall and Amazon-
Book datasets, as shown in Fig. 3. Compared to SimGCL, MixRec’s
training process is more stable, as evidenced by the absence of the
performance drop seen in the early stages. We attribute this stability
to MixRec’s ability to strike a better balance between alignment and
uniformity, preventing early excessive uniformity from disrupting
the effective distribution of the feature space [24].

3.2.3 Comparisons w.r.t. Data Sparsity. In this section, we
study the sparsity resistance of MixRec with the classical method
LightGCN and the two well-performing baseline methods SimGCL
and BIGCF on the two sparsest datasets, Tmall and Amazon-Book
datasets. We take a generalized approach by dividing the inter-
action data from the training set evenly into four user groups
{𝑈1,𝑈2,𝑈3,𝑈4} based on the scale of the interactions. Specifically,
𝑈 1 has the fewest interactions per user, indicating that it is the
sparsest user group. And so on,𝑈 4 is the most active engaging user
group. We train on the full training set and test each user group
individually, and the experimental results are shown in Fig. 4.

MixRec achieves noticeable performance gains across all sparse
groups, further demonstrating its effectiveness. Focusing on the
sparsest group𝑈 1, the improvement rates on the two datasets are
12% and 10%, respectively. We attribute this performance improve-
ment primarily to the proposed individual and collective mixing
strategies. These not only significantly increase the number of
samples but also provide additional supervision signals for main
recommendation task through dual-mixing contrastive learning.

3.2.4 Comparisons w.r.t. GCN Layers. Table 5 provides com-
parisons of the effectiveness of MixRec and other methods with
various GCN layer settings. It should be noted that MixRec with
only one layer outperforms even SimGCL [35] and BIGCF [40] with

Table 5: Performance comparisons between MixRec and
other baseline methods w.r.t. number of GCN layer 𝐿.

# Layers Method Tmall Amazon-Book
Recall NDCG Recall NDCG

𝐿 = 1
SimGCL [35] 0.0834 0.0635 0.0453 0.0358
BIGCF [40] 0.0851 0.0648 0.0466 0.0360
MixRec 0.0890 0.0681 0.0533 0.0429

𝐿 = 2
SimGCL [35] 0.0867 0.0665 0.0507 0.0405
BIGCF [40] 0.0865 0.0660 0.0493 0.0401
MixRec 0.0896 0.0684 0.0535 0.0431

𝐿 = 3
SimGCL [35] 0.0884 0.0674 0.0515 0.0414
BIGCF [40] 0.0876 0.0664 0.0500 0.0398
MixRec 0.0900 0.0686 0.0541 0.0433

three layers, which shows MixRec can effectively mine user-item
relationships without over-reliance on high-order graph structures,
making it effective in reducing training costs (MixRec-1 in Table 4).

3.3 In-depth Studies of MixRec
3.3.1 Ablation Studies. We construct a series of variants to verify
the validity of each module in MixRec:
• MixRecw/o DMCL (user): remove theDual-Mixing Contrastive Learn-

ing on the user side (Eq. 9);
• MixRecw/o DMCL (item): remove theDual-Mixing Contrastive Learn-

ing on the item side (Eq. 10);
• MixRecw/o IM: remove individual mixing (Eq. 3), and modify the

positive sample to be the anchor node itself;
• MixRecw/o DM: remove collective mixing (Eq. 4).

The experimental results for all variants with MixRec on four
datasets are shown in Table 6. It is obvious that removing any of the
modules resulted in varying degrees of performance degradation
for MixRec, demonstrating the effectiveness of the various modules.
Regarding the DMCL modules on both the user and item sides,
the most significant performance degradation occurs when these
modules are removed, indicating that relying solely on the main
recommendation task is insufficient for modeling high-quality user
and item embeddings. Focusing on the other three modules that
utilize data augmentation, the observed performance decline further
underscores the importance of data augmentation in mitigating the
data sparsity problem.

3.3.2 Hyperparameter Sensitivities. Most of MixRec’s param-
eters are kept at the default settings (see Section 3.1.3 for details).
Here we focus on two parameters 𝜆1 and 𝛼 . Their performance
variations on four datasets are shown in Fig. 5.

For the weight of contrastive losses, 𝜆1 shows different trends
on four datasets, which is mainly due to the characteristics of the
datasets themselves. For dense datasets, 𝜆1 usually takes smaller val-
ues (e.g., Douban-Book); for sparse datasets, 𝜆1 takes larger values
(e.g., Tmall and Amazon-Book). The optimal values on Amazon-
Book, Douban-book, Tmall, and Yelp datasets are 1.0, 0.1, 0.6 and
0.3 respectively.

For the shape parameter 𝛼 , all datasets then show consistency.
Specifically, in all cases, 𝛼 = 0.1 fetches the best recommendation
performance. In other cases, too large a 𝛼 will significantly de-
grade performance, indicating that the newly constructed sample
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Table 6: Ablation studies of MixRec on Yelp, Amazon-Book, Tmall, and Douban-Book datasets.

Yelp Amazon-Book Tmall Douban-Book
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

w/o DMCL (user) (Eq. 9) 0.0676 0.0556 0.0484 0.0385 0.0826 0.0630 0.1566 0.1451
w/o DMCL (item) (Eq. 10) 0.0652 0.0540 0.0436 0.0342 0.0815 0.0608 0.1593 0.1473
w/o IM (Eq. 3) 0.0731 0.0605 0.0504 0.0403 0.0872 0.0665 0.1716 0.1628
w/o DM (Eq. 4) 0.0721 0.0597 0.0511 0.0409 0.0868 0.0664 0.1720 0.1639
MixRec 0.0740 0.0612 0.0541 0.0433 0.0900 0.0686 0.1778 0.1712
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Figure 5: Hyper-parameter Sensitivities for (a) the weight of
loss 𝜆1 and (b) shape parameter 𝛼 on four datasets.

is too corrupted to be considered a positive sample of the original
view. Since 𝛼 shows consistency across multiple datasets, we can
set it to 0.1 by default without additional adjustment. Given that
the shape parameter 𝛼 = 0.1, the number of GCN layers 𝐿 = 3,
the temperature coefficient 𝜏 = 0.2, and the regularization coef-
ficient 𝜆 = 1e−4 are kept at their default values regardless of the
datasets, the only hyper-parameter MixRec can adjust is the
contrastive coefficient 𝜆1.

4 RELATEDWORK
General Recommendation General recommendation is a branch
of recommender systems that focuses solely on user-item inter-
actions [21]. In this context, implicit feedback is widely used due
to its easy accessibility [8]. However, improving the accuracy of
greneral recommender system is challenging because of the spar-
sity of implicit feedback and the lack of semantic richness without
auxiliary feature information [13, 41]. Early work focuses on ma-
trix factorization [20], which eventually led to the introduction
of neural networks to significantly enhance the model’s learning
capacity and generalization [8]. With the rise of graph neural net-
works, researchers have begun abstracting historical interactions
into bipartite graph to model high-order relationships between
users and items [26, 33]. From the graph perspective, traditional
vector-based and neural network-based approaches can only cap-
ture first-order interactions, which limits their recommendation
performance. Among these novel efforts, LightGCN [7] has been
widely adopted in subsequent research due to its ease of deploy-
ment and has replaced matrix factorization as a foundational model.
The success of graph-based methods is evident not only in gen-
eral recommendation scenario but also in other recommendation
branches, including social recommendation [42], knowledge graph
recommendation [27], and multimodal recommendation [1], etc.

Self-supervised Learning for Recommendation Despite its
considerable growth and a series of achievements, general rec-
ommendation still suffers from the sparsity of interaction data.
Therefore, self-supervised learning is introduced into recommender
systems to alleviate the data sparsity problem by constructing aux-
iliary tasks to provide additional supervision signals for the main
recommendation task. In general, self-supervised learning can be
broadly categorized into generative and contrastive models [18].
The former aims to model the distribution of the user community
and reconstruct the complete interaction at a probabilistic level,
as seen in models like Mult-VAE [15] and DiffRec [25]. The latter
leverages data augmentation techniques to maximize mutual infor-
mation between different views of the same sample. Earlier work
focuses onmodifying the original input data [2], such as in SGL [29],
which randomly masks edges or nodes on the interaction graph.
More recent work has shifted its focus toward finding new views
within the feature space [36]. Examples include introducing noise
for representations [32, 35], or finding semantic neighbors through
clustering [16, 32], attention [19, 40], or hierarchical mechanisms
[6]. Studies like DirectAU [22, 31, 38] revisit contrastive learning
from the perspectives of alignment and uniformity [24]. SCCF [30],
on the other hand, seeks to integrate graph convolution and con-
trastive learning into a unified framework. However, existing data
augmentation strategies often suffer from high complexity and lack
flexibility. More importantly, they typically measure the mutual
information of a sample pair from only one perspective, failing to
fully utilize the newly generated samples. MixRec is contrary to
the design philosophy of pioneering works. Specifically, MixRec
not only constructs richer new views with linear complexity but
also maximizes the use of these samples through dual-mixing, en-
hancing its ability to support recommendation.

5 CONCLUSION
In this paper, we revisited the data sparsity problem entrenched
in general recommendation and presented MixRec, an end-to-end
dual mixing recommendation framework, which contains individ-
ual mixing and collective mixing for data augmentation. Specifically,
individual mixing aims to construct new samples that are unique
to the original inputs, while collective mixing considers the overall
group perspective, creating new samples that represent the collec-
tive behavior of all users. Furthermore, we proposed dual-mixing
contrastive learning to fully leverage all available sample pairs,
maximizing the supervision signals provided for the recommenda-
tion task. we conducted extensive experiments on four real-world
datasets and verified the effectiveness of MixRec.
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