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Abstract

Recent advances in deep learning have driven rapid progress in time series fore-
casting, yet many state-of-the-art models continue to struggle with robust per-
formance in real-world applications, even when they achieve strong results on
standard benchmark datasets. This persistent gap can be attributed to the black-
box nature of deep learning architectures and the inherent limitations of current
evaluation frameworks, which frequently lack the capacity to provide clear, quan-
titative insights into the specific strengths and weaknesses of different models,
thereby complicating the selection of appropriate models for particular forecast-
ing scenarios. To address these issues, we propose a synthetic data-driven eval-
uation paradigm, SynTSBench, that systematically assesses fundamental mod-
eling capabilities of time series forecasting models through programmable fea-
ture configuration. Our framework isolates confounding factors and establishes
an interpretable evaluation system with three core analytical dimensions: (1)
temporal feature decomposition and capability mapping, which enables system-
atic evaluation of model capacities to learn specific pattern types; (2) robust-
ness analysis under data irregularities, which quantifies noise tolerance thresh-
olds and anomaly recovery capabilities; and (3) theoretical optimum benchmark-
ing, which establishes performance boundaries for each pattern type—enabling
direct comparison between model predictions and mathematical optima. Our ex-
periments show that current deep learning models do not universally approach
optimal baselines across all types of temporal features. The code is available at
https://github.com/TanQitai/SynTSBench.

1 Introduction

In complex decision-support systems such as financial market trend analysis, energy system dis-
patch optimization, and climate pattern forecasting, time series prediction remains a cornerstone
technology due to its exceptional capacity for modeling temporal dependencies and delivering high-
precision trend forecasting. Traditional statistical approaches such as ARIMA [1], ETS [2], VAR [3],
and other classical methods have historically dominated the field, offering interpretable frameworks
based on explicit statistical assumptions and decomposition principles. Recent advancements in
deep learning-driven forecasting models have achieved systematic breakthroughs over these con-
ventional methods in both prediction accuracy and computational efficiency. For example, Aut-
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Figure 1: Overview of SynTSBench, a synthetic data-based evaluation framework for time series
forecasting models. The framework generates controlled time series data from basic univariate
components to complex multivariate patterns with defined relationships. This approach enables
systematic assessment of model capabilities across temporal pattern learning, robustness, and de-
pendency modeling, complex pattern recognition, and so on.

oformer [4] enhances long-term temporal modeling through autocorrelation mechanisms and se-
quence decomposition; DLinear [5] achieves robust predictions in resource-constrained scenarios
via lightweight linear architecture; PatchTST [6] reduces computational complexity for long se-
quences through patch-based processing; SegRNN [7] optimizes long-range dependency modeling
via slice encoding and parallel decoding; TSMixer [8] enables joint modeling of temporal and at-
tribute features using multilayer perceptrons; TimeKAN [9] improves nonlinear mapping through
learnable activation functions; TimeMixer [10] adapts to complex fluctuation patterns via multi-
scale decomposition; TimesNet [11] focuses on deep periodic component modeling; and iTrans-
former [12] enhances parameter efficiency through improved attention mechanisms. The integration
of RevIN dynamic normalization [13] effectively mitigates data distribution shifts in non-stationary
scenarios. These innovations collectively advance prediction accuracy and deployment efficiency
through sequence decomposition, computational optimization, and adaptive modeling, establishing
a robust technical foundation for industrial-grade forecasting systems.

The time series forecasting field has developed several comprehensive evaluation frameworks to
standardize model assessment. ProbTS [14] unifies various forecasting paradigms including point
and probabilistic forecasting, short and long-range prediction, and autoregressive versus non-
autoregressive settings. TFB [15] provides consistent evaluation through diverse domain coverage
and standardized pipelines. Other frameworks such as BasicTS [16], BasicTS+ [17], TSlib [18],
and similar benchmarks have also contributed to the field. These frameworks have significantly ad-
vanced model development, yet they face two critical limitations for industrial applications. First,
current frameworks lack effective feature isolation capabilities. Real-world time series contain in-
tertwined components (trends, seasonal patterns, dependencies of varying lengths) that cannot be
separated for targeted evaluation. For example, urban traffic data simultaneously exhibits daily
commuting patterns (24h), weekend effects (7d), and seasonal variations, with complex interactions
between them (such as morning peak hours being affected by seasonal factors like summer heat).
Without isolating these components, it remains unclear whether a model’s improved performance
comes from genuinely capturing specific patterns or from exploiting coincidental correlations in the
training data. Second, these frameworks provide no theoretical performance boundaries. Evalu-
ations rely on observational data without establishing what optimal performance should be for a
given pattern type. This absence of theoretical baselines creates two challenges: distinguishing
between meaningful generalization improvements versus mere noise overfitting, and lacking clear
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criteria for determining when a sequence is fundamentally predictable. Real-world data frequently
contains outliers (from equipment failures to sensor noise), non-stationarity, and abrupt changes that
further complicate evaluation. Without knowing the theoretical optimal solution for a dataset, model
optimization resembles a “blind-box” parameter tuning process rather than structured improvement
against established boundaries. These limitations reflect a fundamental methodological gap: cur-
rent approaches use data complexity as a primary validation criterion while neglecting systematic
characterization of time series properties and their theoretical solution spaces. A more principled
approach would involve controlled generation of temporal patterns with known optimal predictions,
enabling precise assessment of model capabilities under varying conditions.

To address these challenges, we propose a synthetic data-driven evaluation paradigm, SynTSBench,
that systematically assesses fundamental modeling capabilities of time series forecasting models
through programmable feature configuration. As illustrated in Figure 1, this framework isolates
confounding factors to establish an interpretable evaluation system with three core analytical di-
mensions:

• Temporal Feature Decomposition and Capability Mapping: Constructing synthetic
datasets with four key temporal characteristics (trend, seasonality, short/long-range depen-
dencies, multivariate correlation) and complex datasets based on traditional stochastic time
series and signal processing models that simulate real-world scenarios. This design enables
systematic evaluation of model capacities to learn specific pattern types without interfer-
ence from confounding factors, quantifying how accurately models capture time series pat-
terns while revealing comparative strengths between different architectural approaches.

• Robustness Analysis Under Data Irregularities: Implementing a comprehensive re-
silience assessment through controlled modification of clean synthetic signals with pro-
gressive noise injection and different types of anomalies. This framework facilitates quan-
tification of both noise tolerance thresholds and recovery capabilities.

• Theoretical Optimum Benchmarking: Leveraging synthetic data generation to establish
theoretical performance boundaries (optimal solutions) for each type of pattern - measures
previously unattainable with observational datasets. This innovation enables direct com-
parison between model predictions and mathematical optima, providing reference points to
analyze performance gaps and improvement potential.

2 Problem Statement

Time Series Forecasting A time series X ∈ RT×N is a time-oriented sequence of N -dimensional
time points, where T is the number of time points, and N is the number of variables. When N = 1,
a time series is called univariate. When N > 1, it is called multivariate. Given a historical time
series X ∈ RH×N of H time points, time series forecasting aims to predict the next F future time
points, i.e., Y ∈ RF×N , where F is called the forecasting horizon.

Time Series Decomposition The Wold decomposition theorem [19] states that any stationary time
series can be represented as the sum of a deterministic component and a stochastic component.
Based on this, time series data, consisting of observed values y(t), can be expressed as: y(t) =
x(t)+n(t) , where x(t) represents the latent structure of the data (e.g., trends, periodicity), and n(t)
accounts for the stochastic noise. The goal of time series forecasting is to model the true signal x(t)
using a predictive model M(θ, t).

3 Dataset Construction

Dataset Design Our dataset framework is specifically constructed to serve as a comprehensive
evaluation suite for time series forecasting models. Rather than relying solely on real-world data, we
design synthetic datasets that systematically cover a wide range of temporal characteristics, enabling
targeted assessment of model capabilities. As summarized in Table 1, the dataset includes tests for
trend, seasonality, noise robustness, anomaly resilience, dependency modeling, cross-variable rela-
tionships, and complex real-world pattern simulation. Each component is carefully parameterized
to isolate specific forecasting challenges, ensuring that model performance can be directly attributed
to the ability to capture particular temporal features.
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Table 1: Dataset Design and Targeted Evaluation Capabilities
Dataset Part Construction Details Targeted Modeling Capability

Temporal Pattern
Learning

Implement 11 trend functions and 10 periodic patterns with
varying complexities

Assess capability to learn and extrapolate both
functional trends and cyclical patterns

Robustness Against
Noise & Anomalies

Inject Gaussian noise at multiple SNR levels; test diverse noise
distributions (uniform, Laplace, t-distribution, Lévy stable);
introduce point anomalies, pulse anomalies, mean shifts, and

trend shifts at varying densities

Evaluate signal recovery, denoising capability, resilience
to various noise characteristics, and robustness to

irregular disturbances and distribution shifts

Short/Long-range
Dependencies

Generate ARMA processes with short/long-range
dependencies; random walks; white noise without dependency

Measure ability to capture varying temporal
dependencies from immediate to distant lags

Cross-Variable
Learning

Create lagged relationships with varying time steps; sine-noise
composition for linear additive relationships; conditional

relationships with threshold-dependent interactions; nonlinear
transformations; complex multi-variable systems with feedback

mechanisms

Test ability to detect and leverage diverse dependencies
between multiple variables, including temporal lags,

linear combinations, conditional interactions, and
nonlinear relationships

Dataset Scale
Sensitivity

Construct time series with varying lengths to assess model
performance at different data scales

Analyze how the amount of available data points affects
forecasting accuracy and compare learning efficiency of

different models

Complex Real-World
Pattern Simulation

Develop synthetic datasets mimicking real-world scenarios
(economic indicators, coupled systems, weather-sales

relationships)

Evaluate performance on realistic complexity across
both single and multi-variable scenarios

Figure 2: Visualization of diverse trend func-
tions used in our benchmark to systemati-
cally evaluate model performance across a wide
range of temporal patterns.

Figure 3: Relative prediction difficulty by trend
type. Higher values indicate easier prediction
(log scale)

Experimental Setup All experiments are driven by a single sliding-window protocol with input
length 96 and forecast horizons {10, 24, 48, 96, 192}, using train/validation/test splits of 7:1:2 for
deep learning models and 8:2 for traditional methods. Our comprehensive comparison includes
12 fine-tuning models spanning diverse architectural paradigms: Transformer-based models (Aut-
oformer [4], PatchTST [6], iTransformer [12], CATS [20],TimeLLM [21]), MLP-based architec-
tures (TimeMixer [10], TSMixer [8], PaiFilter [22], TexFilter [22], DLinear [5]), N-BEATS [23]),
N-HiTS [24]), CNN-based approach (TimesNet [11]), RNN variant (SegRNN [7]), KAN-based
model (TimeKAN [9]). Additionally, we evaluate three zero-shot forecasting models (Chronos [25],
TimeMoE [26], and Moirai [27]) to assess their generalization capabilities without task-specific
fine-tuning.

4 Experiments

4.1 Evaluation on Trend Datasets and Period Datasets

In real-world scenarios, time series data typically consist of both trend and periodic components,
so it is crucial to evaluate model performance on each type individually. In our study, we construct
the trend dataset using eleven diverse functions, as illustrated in Figure 2. This design allows for a
comprehensive assessment of model generalization across a broad spectrum of realistic trend pat-
terns. For periodic patterns, we relied on the Fourier series theorem, which states that any periodic
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Table 2: Comprehensive comparison of MSE and MAE for trend signals (All results are averaged
from four different forecasting horizons: H ∈ {24, 48, 96, 192}). Red bold indicates the best result,
blue underlined indicates the second-best, and green bold indicates the theoretical optimum. The
same notation applies in the following tables.

Signal Type Metric Model Optimal
Autoformer CATS DLinear N-BEATS N-HiTS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeLLM TimeMixer TimesNet iTransformer

Exponential-Trend MSE 8.4545 8.18e-02 3.40e-08 3.63e-07 2.32e-03 1.52e-07 5.42e-02 1.9642 1.3157 1.85e-06 8.85e-04 9.79e-02 2.39e-04 6.17e-04 8.72e-04 0
MAE 2.3403 1.44e-01 8.51e-05 4.03e-04 3.21e-02 3.03e-04 1.87e-01 0.8362 0.9468 8.12e-04 1.98e-02 2.64e-01 1.11e-02 8.47e-03 2.31e-02 0

Gaussian-Trend MSE 2.00e-02 2.01e-04 3.09e-04 4.39e-05 3.44e-03 4.09e-06 3.39e-05 5.24e-04 7.61e-03 3.21e-06 2.34e-04 5.45e-05 2.17e-05 1.32e-04 2.93e-04 0
MAE 1.22e-01 8.67e-03 9.56e-03 3.69e-03 3.95e-02 9.42e-04 3.76e-03 1.60e-02 6.49e-02 1.41e-03 9.61e-03 4.00e-03 2.77e-03 7.44e-03 9.32e-03 0

Gompertz-Trend MSE 3.56e-03 1.01e-05 1.51e-04 1.12e-06 2.43e-05 1.40e-06 7.03e-06 1.45e-03 4.21e-04 8.16e-06 1.03e-05 4.42e-06 2.85e-06 1.36e-05 1.98e-05 0
MAE 5.16e-02 2.65e-03 9.25e-03 7.79e-04 2.95e-03 1.06e-03 2.06e-03 2.56e-02 1.67e-02 2.48e-03 2.83e-03 1.53e-03 1.21e-03 3.17e-03 3.71e-03 0

Linear-Trend MSE 2.02e-03 2.13e-04 1.10e-09 6.44e-10 2.13e-05 1.34e-12 6.26e-05 9.43e-07 6.64e-04 2.71e-12 2.71e-06 1.05e-04 2.95e-07 1.96e-07 7.93e-07 0
MAE 3.44e-02 8.71e-03 1.44e-05 1.71e-05 3.42e-03 7.71e-07 6.98e-03 7.72e-04 2.10e-02 1.19e-06 1.14e-03 9.19e-03 4.34e-04 1.46e-04 7.40e-04 0

Logarithmic-Function MSE 4.50e-02 6.32e-05 1.45e-04 5.90e-07 4.93e-06 4.42e-07 5.92e-06 1.56e-04 8.32e-04 1.45e-06 1.08e-05 6.06e-05 1.32e-06 4.67e-06 3.05e-05 0
MAE 1.42e-01 5.16e-03 7.20e-03 5.39e-04 1.70e-03 5.63e-04 1.86e-03 9.85e-03 2.58e-02 1.05e-03 1.78e-03 5.73e-03 7.06e-04 1.23e-03 2.93e-03 0

Logistic-Trend MSE 1.75e-03 6.96e-05 3.85e-03 1.14e-05 2.47e-04 5.57e-06 3.09e-06 5.04e-04 1.01e-03 1.31e-05 2.05e-05 6.16e-06 9.61e-06 1.20e-05 1.95e-05 0
MAE 3.40e-02 6.06e-03 5.63e-02 2.12e-03 1.06e-02 1.53e-03 1.44e-03 1.47e-02 2.13e-02 2.53e-03 3.03e-03 2.26e-03 1.76e-03 2.57e-03 3.19e-03 0

Negative-Exponential-Trend MSE 3.85e-03 1.00e-05 6.65e-11 5.03e-08 1.14e-05 8.10e-07 7.04e-07 1.70e-03 6.49e-05 5.69e-06 5.37e-06 4.14e-07 2.06e-07 5.35e-06 6.98e-06 0
MAE 5.30e-02 2.45e-03 3.98e-06 1.91e-04 2.09e-03 8.54e-04 6.51e-04 2.67e-02 6.43e-03 2.15e-03 1.96e-03 4.97e-04 3.59e-04 2.09e-03 2.38e-03 0

Piecewise-Linear MSE 2.40e-02 3.74e-04 7.16e-05 2.65e-05 8.67e-03 5.53e-06 5.01e-05 1.81e-04 1.17e-03 9.68e-06 1.53e-05 2.33e-04 1.49e-05 8.14e-05 3.14e-05 0
MAE 1.32e-01 1.00e-02 5.07e-03 2.76e-03 6.50e-02 1.47e-03 4.24e-03 1.06e-02 2.83e-02 1.57e-03 1.99e-03 1.09e-02 2.28e-03 3.91e-03 2.98e-03 0

Power-Law-Trend MSE 1.77e-03 2.74e-04 1.72e-04 2.73e-07 1.15e-05 9.01e-08 2.26e-05 3.40e-04 1.86e-03 4.12e-08 1.93e-06 9.68e-05 2.76e-07 1.12e-05 4.70e-06 0
MAE 2.83e-02 8.10e-03 1.05e-02 3.68e-04 2.34e-03 1.79e-04 4.13e-03 1.25e-02 3.89e-02 1.75e-04 7.63e-04 7.94e-03 4.14e-04 1.80e-03 1.29e-03 0

Quadratic-Function MSE 3.81e-02 4.73e-03 2.33e-03 1.26e-05 1.50e-04 2.97e-06 2.88e-04 2.14e-03 2.54e-02 3.19e-06 2.41e-05 5.32e-04 3.80e-06 9.06e-06 2.24e-05 0
MAE 1.61e-01 4.28e-02 4.44e-02 2.14e-03 8.32e-03 1.01e-03 1.53e-02 3.33e-02 1.42e-01 9.21e-04 3.28e-03 2.13e-02 1.33e-03 1.59e-03 3.24e-03 0

Step-Function MSE 1.75e-03 9.59e-06 3.67e-04 2.46e-06 1.45e-06 1.37e-05 8.69e-06 4.31e-04 1.30e-04 5.70e-04 1.24e-05 2.87e-05 6.02e-06 2.79e-05 1.80e-05 0
MAE 3.43e-02 2.83e-03 1.45e-02 1.36e-03 9.84e-04 3.64e-03 2.66e-03 1.56e-02 8.94e-03 1.69e-02 3.36e-03 4.72e-03 2.32e-03 5.14e-03 3.52e-03 0

Table 3: Comprehensive Comparison of MSE and MAE for Periodic Signals (All results are aver-
aged from four different forecasting horizons: H ∈ {24, 48, 96, 192}). Signal types are organized
by category: Double-Sin, Triple-Sin, Five-Sin, and Ten-Sin represent the superposition of 2, 3, 5,
and 10 sine waves with different frequencies, respectively; Exp-Sine-Wave is an exponentially mod-
ulated sine wave.

Signal Type Metric Model Optimal
Autoformer CATS DLinear N-BEATS N-HiTS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeLLM TimeMixer TimesNet iTransformer

Sin(fre=0.005) MSE 6.45e-01 7.89e-02 3.85e-11 9.33e-05 1.20e-05 2.97e-06 1.35e-02 5.33e-04 4.26e-06 3.33e-06 2.72e-04 2.35e-02 1.26e-04 3.98e-04 1.14e-03 0
MAE 5.53e-01 1.95e-01 1.61e-06 7.56e-03 1.67e-03 1.33e-03 1.00e-01 1.67e-02 1.63e-03 1.38e-03 1.30e-02 1.31e-01 8.87e-03 1.14e-02 2.64e-02 0

Sin(fre=0.05) MSE 1.05e-02 1.50e-03 2.51e-09 3.83e-05 6.99e-06 7.70e-07 8.85e-03 3.95e-04 2.72e-06 9.70e-07 4.26e-04 1.10e-02 1.37e-04 1.33e-05 1.79e-04 0
MAE 6.91e-02 2.76e-02 2.27e-05 4.53e-03 1.24e-03 6.48e-04 8.11e-02 1.63e-02 1.22e-03 6.55e-04 1.76e-02 9.23e-02 9.56e-03 2.86e-03 1.15e-02 0

Double-Sin MSE 3.70e-01 1.07e-03 9.22e-11 4.04e-05 6.48e-06 1.01e-07 8.46e-03 1.61e-03 3.70e-06 2.23e-07 3.84e-04 2.18e-02 2.88e-04 6.97e-05 4.05e-04 0
MAE 3.59e-01 2.38e-02 3.13e-06 4.37e-03 1.17e-03 2.02e-04 7.47e-02 3.06e-02 1.47e-03 2.36e-04 1.60e-02 1.11e-01 1.37e-02 6.20e-03 1.62e-02 0

Triple-Sin MSE 3.43e-02 2.15e-03 2.11e-10 3.09e-05 5.97e-06 2.17e-08 8.59e-03 1.75e-02 1.14e-05 9.63e-08 7.72e-04 4.93e-02 1.81e-04 4.01e-05 8.27e-04 0
MAE 1.14e-01 3.18e-02 4.51e-06 3.39e-03 1.10e-03 9.01e-05 8.19e-02 9.85e-02 2.67e-03 1.64e-04 2.36e-02 1.64e-01 1.05e-02 4.83e-03 2.14e-02 0

Five-Sin MSE 6.39e-01 3.38e-03 6.24e-11 3.74e-04 4.30e-05 5.17e-06 8.38e-03 3.23e-01 2.63e-05 5.27e-06 3.07e-04 4.76e-02 2.07e-04 1.38e-04 4.78e-04 0
MAE 6.12e-01 4.52e-02 2.05e-06 1.45e-02 3.19e-03 1.76e-03 7.56e-02 4.56e-01 4.06e-03 1.56e-03 1.34e-02 1.54e-01 1.16e-02 8.96e-03 1.67e-02 0

Ten-Sin MSE 7.72e-01 1.11e-02 2.40e-10 4.27e-04 2.29e-05 4.81e-06 8.00e-03 7.32e-01 9.35e-05 3.53e-06 5.34e-04 1.77e-01 6.62e-04 4.61e-04 4.53e-04 0
MAE 5.27e-01 7.16e-02 5.22e-06 1.58e-02 2.35e-03 1.64e-03 5.09e-02 4.30e-01 7.41e-03 1.24e-03 1.52e-02 2.09e-01 1.87e-02 1.22e-02 1.26e-02 0

Exp-Sine-Wave MSE 1.75e-02 1.99e-03 3.69e-05 4.17e-05 7.51e-06 6.83e-07 8.83e-03 1.62e-03 1.77e-05 6.70e-07 5.28e-04 1.31e-02 2.47e-04 2.69e-05 2.80e-04 0
MAE 9.05e-02 3.21e-02 5.28e-03 4.50e-03 1.28e-03 6.03e-04 7.93e-02 2.89e-02 3.27e-03 4.84e-04 1.94e-02 9.39e-02 1.23e-02 3.91e-03 1.32e-02 0

Triangle-Wave MSE 3.03e-02 8.97e-03 7.89e-07 1.39e-03 4.50e-04 3.86e-07 8.37e-03 9.33e-03 9.36e-05 6.88e-08 1.50e-03 1.69e-02 1.01e-03 4.79e-05 2.64e-04 0
MAE 1.10e-01 6.83e-02 5.37e-04 2.60e-02 7.90e-03 4.55e-04 7.75e-02 6.50e-02 6.51e-03 1.58e-04 2.74e-02 9.08e-02 2.25e-02 5.33e-03 1.30e-02 0

Sawtooth-Wave MSE 8.22e-02 4.15e-02 5.14e-10 9.23e-07 1.70e-06 6.58e-09 7.93e-03 8.55e-02 3.48e-05 6.74e-09 8.46e-04 4.18e-02 2.23e-04 3.22e-05 3.31e-04 0
MAE 1.30e-01 1.16e-01 6.11e-06 5.77e-04 6.70e-04 5.85e-05 7.67e-02 1.73e-01 4.52e-03 6.36e-05 2.44e-02 1.42e-01 1.14e-02 4.26e-03 1.42e-02 0

Square-Wave MSE 2.92e-01 1.48e-01 1.07e-01 1.23e-01 8.53e-02 1.15e-01 1.14e-01 1.57e-01 1.09e-01 1.14e-01 1.17e-01 1.45e-01 1.15e-01 1.05e-01 1.05e-01 0
MAE 3.24e-01 2.44e-01 1.46e-01 1.99e-01 1.19e-01 1.65e-01 1.81e-01 2.56e-01 1.64e-01 1.77e-01 1.79e-01 2.43e-01 1.76e-01 1.48e-01 1.46e-01 0

function can be represented as an infinite sum of sine and cosine functions. This guided our dataset
design to include simple sine waves with varying frequencies, superimposed sine waves.

For trend forecasting, Table 2 shows that patterns with accelerating growth are the most challeng-
ing. The trend radar chart in Figure 3 visualizes the relative difficulty of each trend type, which is
computed based on the MSE of each pattern (with normalization and log transformation applied;
see Appendix B.5 for detailed calculation steps). MLP-based architectures clearly dominate trend
forecasting, with PaiFilter achieving top performance on 5 out of 11 patterns, followed by TexFilter,
N-BEATS and DLinear. Among non-MLP models, only PatchTST (transformer-based) achieved
first place once, confirming the effectiveness of MLP approaches for capturing functional trend re-
lationships.

For periodic patterns (Table 3), DLinear demonstrates exceptional capabilities in modeling pure
sinusoidal signals, achieving best performance on 7 out of 10 functions with remarkably low errors.
All models struggle with Square-Wave patterns characterized by discontinuous jumps.

4.2 Robustness Analysis: Model Performance Under Noise and Anomalies

To evaluate the resilience of time series forecasting models under realistic data conditions, we con-
ducted comprehensive robustness experiments with two types of data irregularities: continuous noise
at varying intensities and discrete anomalies of different patterns and frequencies.

Noise and Anomaly Injection. To mimic measurement errors and irregular disturbances in real-
world time series, we corrupted clean synthetic signals with controlled noise and anomalies. For
Gaussian noise injection, given a clean series xt, we added white Gaussian noise ϵt ∼ N (0, σ2

noise)
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Figure 4: Comparison of MSEObs across noise
levels for twelve forecasting models.

Figure 5: Comparison of MSETrue across noise
levels for twelve forecasting models.

Figure 6: Comparison of model predictions under SNR-10dB noise levels for PaiFilter, PatchTST,
and Autoformer.

Figure 7: Impact of increasing point anomaly
percentage on model performance.

Figure 8: Average relative performance degrada-
tion across anomaly scenarios, combining both
point and pulse anomalies. Values represent
(MSEanomaly −MSEclean)/MSEclean, indi-
cating how much worse a model performs when
anomalies are introduced compared to clean data.

to obtain:

yt = xt + ϵt, SNR = 10 log10

(
Var(xt)

σ2
noise

)
(1)

where the noise variance σ2
noise was set to achieve a target Signal-to-Noise Ratio (SNR).

For noise evaluation, we tested models across multiple SNR levels from clean data to extreme noise
(SNR = -10dB). Beyond Gaussian noise, we also evaluated model robustness under diverse noise
distributions including uniform noise, Laplace noise, t-distributions, and heavy-tailed Lévy stable
distributions to assess model performance under various realistic noise characteristics (detailed re-
sults in Table 12 in Appendix B.5). We measured both the error between predictions and noisy
observations (MSEObs) and between predictions and the underlying clean signal (MSETrue):

MSEObs =
1

n

n∑
t=1

(yt − ŷt)
2, MSETrue =

1

n

n∑
t=1

(xt − ŷt)
2 (2)
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Table 4: Comparison of MSE for Different Noise Levels (Forecasting Horizons: H = 96)
Noise Level(SNR) Metric Model Optimal

Autoformer CATS DLinear N-BEATS N-HiTS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeLLM TimeMixer TimesNet iTransformer

-10dB MSEObs 1.0697 1.0431 1.0629 1.0500 2.1988 1.0383 1.0861 1.0681 1.0537 1.0383 1.0402 1.0407 1.0383 1.0328 1.0509 1.0045
MSETrue 0.0648 0.0533 0.0542 0.0588 1.2221 0.0300 0.0820 0.0640 0.0471 0.0318 0.0314 0.0411 0.0309 0.0254 0.0432 0.0000

0dB MSEObs 0.8610 0.6451 0.6248 0.6683 1.5074 0.6105 0.6396 0.7221 0.6765 0.6138 0.6112 0.6256 0.6102 0.6046 0.6182 0.5886
MSETrue 0.2595 0.0199 0.0352 0.0435 0.8817 0.0213 0.0472 0.1234 0.0801 0.0244 0.0222 0.0349 0.0220 0.0159 0.0293 0.0000

10dB MSEObs 0.3395 0.1651 0.1386 0.1712 0.3535 0.1306 0.1389 0.2131 0.1605 0.1317 0.1314 0.1405 0.1323 0.1306 0.1314 0.1267
MSETrue 0.2149 0.0075 0.0118 0.0141 0.1970 0.0035 0.0127 0.0898 0.0332 0.0048 0.0046 0.0144 0.0052 0.0035 0.0045 0.0000

20dB MSEObs 0.1260 0.0230 0.0256 0.0215 0.0317 0.0142 0.0198 0.0939 0.0173 0.0143 0.0146 0.0258 0.0145 0.0142 0.0149 0.0134
MSETrue 0.1121 0.0048 0.0119 0.0034 0.0140 0.0007 0.0061 0.0804 0.0041 0.0008 0.0011 0.0122 0.0009 0.0006 0.0014 0.0000

30dB MSEObs 0.1328 0.0051 0.0039 0.0024 0.0027 0.0015 0.0069 0.0789 0.0019 0.0015 0.0017 0.0087 0.0016 0.0016 0.0020 0.0013
MSETrue 0.1315 0.0033 0.0026 0.0006 0.0010 0.0001 0.0057 0.0778 0.0005 0.0002 0.0004 0.0075 0.0003 0.0002 0.0006 0.0000

No Noise MSEObs 0.1852 0.0015 0.0008 9.68e-5 4.42e-5 2.41e-6 0.0052 0.0773 0.0003 3.08e-6 0.0002 0.0074 0.0002 4.47e-5 0.0001 0.0000
MSETrue 0.1852 0.0015 0.0008 9.68e-5 4.42e-5 2.41e-6 0.0052 0.0773 0.0003 3.08e-6 0.0002 0.0074 0.0002 4.47e-5 0.0001 0.0000

Table 5: Comparison of MSE, MAE for Different Signal Types (Forecasting Horizons: H = 10)
Signal Type Metric Deep Learning Models Traditional Methods

Autoformer CATS DLinear N-BEATS N-HiTS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeLLM TimeMixer TimesNet iTransformer arima mean naive

ARMA(1,1) MSE 8.6800 7.2728 6.4687 7.6396 9.9578 7.8367 7.5958 6.6061 7.1438 7.5022 6.6782 7.1420 7.1104 7.7908 8.2393 6.0889 8.7105 9.2425
MAE 2.3520 2.1275 1.9787 2.1576 2.4638 2.2158 2.1505 2.0009 2.1045 2.1454 2.0159 2.1025 2.0988 2.1974 2.2521 1.9151 2.3522 2.3342

ARMA(2,2) MSE 4.8409 4.5999 4.4971 4.8195 6.5592 4.7068 4.9648 4.4977 4.5485 4.7868 4.4556 4.6613 4.6155 4.8728 4.8555 4.1972 4.8037 7.9638
MAE 1.7509 1.7050 1.6690 1.7383 2.0147 1.7243 1.7556 1.6697 1.6915 1.7354 1.6590 1.7158 1.7040 1.7533 1.7481 1.6131 1.7544 2.2134

ARMA-Long-Dependency MSE 2.0083 1.9572 1.0402 1.1443 1.8921 1.1692 1.1431 1.9756 1.1343 1.1881 1.0581 1.5247 1.0933 1.1133 1.1950 1.0070 1.9769 3.9410
MAE 1.1375 1.1240 0.8156 0.8553 1.0987 0.8638 0.8533 1.1280 0.8524 0.8708 0.8227 0.9855 0.8357 0.8434 0.8722 0.8020 1.1293 1.5873

Random-Walk MSE 25.9527 9.2639 11.2441 6.7003 21.8189 6.9310 6.6035 5.5085 84.4943 6.7319 5.7561 6.3726 6.1647 7.0258 7.9997 - - 5.3786
MAE 3.9874 2.3754 2.5298 1.9929 3.4250 2.0318 1.9795 1.7980 4.7527 1.9970 1.8419 1.9414 1.9150 2.0552 2.1885 - - 1.7765

White-Noise MSE 1.0078 0.9965 1.0261 1.0561 1.6940 1.0013 1.0845 1.0075 0.9880 1.0067 0.9969 1.0003 1.0015 1.0083 1.0304 - 0.9861 -
MAE 0.7989 0.7953 0.8048 0.8178 1.0378 0.7970 0.8282 0.7997 0.7917 0.7989 0.7955 0.7967 0.7971 0.8003 0.8088 - 0.7910 -

where yt represents the noisy observed value, xt represents the clean signal, and ŷt represents the
model’s prediction.

For anomaly testing, we introduced two types of irregularities: point anomalies (isolated outliers
at random positions with deviations ∆t ∼ N (0, σ2

anomaly)) at rates from 0.5% to 10%, and pulse
anomalies (clustered disturbances spanning multiple consecutive timestamps using deterministic
pulses γt) with varying numbers (1, 3, and 5). Additionally, we evaluated model resilience under
distribution shift scenarios including mean shifts and trend shifts (comprehensive results in Table 11
in Appendix B.5).

4.2.1 Performance Under Noise Conditions

As shown in Figures 4 and 5, when noise intensity increases to extreme levels (SNR = -10dB),
MSEObs values across most of models converge to approximately 1, making this metric ineffective
for distinguishing model performance. In contrast, MSETrue maintains its discriminative power
even under severe noise conditions, revealing substantial performance differences between architec-
tures. Figure 6 illustrates this phenomenon, where under intense noise, PaiFilter predictions closely
align with the true underlying signal, while Autoformer fails to extract meaningful patterns beneath
the noise. N-HiTS performs even worse, with predictions clearly overfitting to the noise, resulting
in significantly degraded forecasting quality. This highlights that despite similar MSEObs values,
different models may be learning fundamentally different patterns from the data.

Table 4 provides quantitative evidence that TimesNet achieves the best performance under extreme
noise conditions, closely followed by FilterNet models (PaiFilter, TexFilter). Notably, transformer-
based architectures show the most significant performance degradation as noise intensifies.

4.2.2 Resilience to Anomalies

Figure 7 illustrates the distinct behavioral patterns of various architectures as point anomaly per-
centages increase. FilterNet models (PaiFilter and TexFilter) and TimeKAN maintain relatively
stable error rates even with 10% anomalies. Figure 8 quantifies these observations through relative
performance degradation metrics across all anomaly types. N-BEATS and TimeKAN demonstrate
exceptional resilience with negligible degradation even under significant anomaly presence, while
TimeMixer follows closely behind with only 5% performance deterioration. Most concerning are
N-HiTS and TSMixer’s vulnerabilities: N-HiTS exhibits the worst robustness with catastrophic
performance collapse under anomalies (its extreme degradation is excluded from visualization for
clarity; detailed results in Table 11 in Appendix B.5), while TSMixer shows an alarming 342% error
increase as anomaly density rises, revealing critical weaknesses in their architectures when handling
corrupted inputs.
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Table 6: Comparison of MSE, MAE for Multivariate Time Series (Forecasting Horizons: H = 96)
Signal Type Metric Model Optimal

Autoformer CATS DLinear N-BEATS N-HiTS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeLLM TimeMixer TimesNet iTransformer

Feature Lag (5 steps) MSE 1.0930 1.0797 1.0925 1.1202 2.3238 1.0777 1.1430 1.0644 1.0450 1.0889 1.0682 1.0634 1.0780 1.0452 1.0793 1.0174
MAE 0.8240 0.8168 0.8215 0.8318 1.2116 0.8141 0.8397 0.8113 0.8088 0.8190 0.8126 0.8105 0.8117 0.7969 0.8175 0.7877

Feature Lag (10 steps) MSE 1.0257 1.0626 1.0533 1.1099 2.2863 1.0346 1.0949 1.0269 0.9993 1.0483 1.0267 1.0256 1.0331 0.9820 1.0180 0.9572
MAE 0.8058 0.8203 0.8159 0.8395 1.2050 0.8096 0.8330 0.8062 0.7894 0.8149 0.8063 0.8059 0.7956 0.7763 0.7953 0.7568

Feature Lag (24 steps) MSE 1.0213 1.0597 1.0409 1.0921 2.2911 1.0266 1.0757 1.0227 0.9004 1.0307 1.0165 1.0162 0.9448 0.9007 0.9281 0.8861
MAE 0.8083 0.8237 0.8153 0.8336 1.2069 0.8108 0.8250 0.8094 0.7301 0.8108 0.8070 0.8070 0.7500 0.7272 0.7410 0.7056

Feature Lag (48 steps) MSE 0.9152 0.9941 1.0033 1.0286 2.1798 0.9874 1.0348 0.9746 0.7527 0.9901 0.9743 0.9727 0.7646 0.7519 0.7740 0.7274
MAE 0.7598 0.7965 0.7948 0.8105 1.1760 0.7946 0.8085 0.7879 0.6328 0.7944 0.7891 0.7882 0.6328 0.6335 0.6480 0.5875

Sine-Noise Composition MSE 0.3302 0.3394 0.3333 0.3427 0.6785 0.3305 0.3402 0.3330 0.3218 0.3330 0.3297 0.3350 0.3300 0.3261 0.3325 0.3208
MAE 0.3875 0.4721 0.3800 0.4634 0.6472 0.3827 0.4005 0.3841 0.3754 0.3904 0.3787 0.4009 0.3804 0.3786 0.3866 0.3684

Conditional Relationship MSE 1.0149 1.0028 0.9972 1.0266 1.9346 1.0030 1.0241 1.0027 0.8332 1.0016 1.0049 1.0021 0.8533 0.8665 0.8955 0.7967
MAE 0.9014 0.9005 0.8921 0.9022 1.1292 0.8997 0.8984 0.9026 0.7410 0.8981 0.9024 0.8985 0.7633 0.7724 0.8031 0.6736

Nonlinear Relationship MSE 0.9331 0.9656 0.9869 1.0010 1.9523 0.9795 1.0205 0.9670 0.7302 0.9788 0.9656 0.9738 0.7481 0.7385 0.7617 0.7136
MAE 0.7726 0.7925 0.8054 0.8058 1.1154 0.7981 0.8139 0.7930 0.6340 0.7973 0.7925 0.7955 0.6354 0.6333 0.6519 0.6090

Multivariable Complex MSE 0.9880 1.0075 1.0279 1.0380 1.6438 1.0272 1.0557 1.0087 0.9374 1.0191 1.0069 1.0117 0.8901 0.9105 1.0066 0.8767
MAE 0.8417 0.8613 0.8670 0.8680 1.0431 0.8674 0.8745 0.8621 0.8104 0.8620 0.8610 0.8619 0.7667 0.7847 0.8416 0.7531

4.3 Capturing Short-range and Long-range Dependencies in Time Series

To evaluate temporal dependency modeling capabilities, we tested models on five stochastic time se-
ries patterns with varying autocorrelation structures, as shown in Table 5. For standard ARMA pro-
cesses, traditional statistical methods (ARIMA) maintain a slight edge, with DLinear and TimeKAN
achieving the closest deep learning performance on ARMA(1,1) and ARMA(2,2) respectively, indi-
cating their strong capability to capture short-range temporal dependencies in structured stochastic
processes. In our specialized ARMA-Long-Dependency test with lag-50 temporal relationships,
DLinear and TimeKAN approached ARIMA’s benchmark, while Autoformer significantly under-
performed despite its Auto-Correlation Mechanism being specifically designed for temporal pattern
extraction. Similarly, SegRNN’s slice encoding approach, which was developed to optimize long-
range dependency modeling, failed to effectively capture these sparse long-range relationships. For
Random-Walk processes, SegRNN and TimeKAN nearly matched the theoretical optimum (naive
forecast), while TSMixer performed poorly with MSE 15 times higher than the best model.

4.4 Evaluation on Cross-Variable Learning
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Figure 9: MSE comparison for lag relationship
detection with lag value of 48.

To evaluate models’ ability to capture relation-
ships between time series variables, we de-
signed controlled experiments isolating specific
types of variable dependencies, as shown in Ta-
ble 6. Our evaluation framework encompasses
five key scenarios with progressively increasing
complexity: Feature Lag Relationships test-
ing temporal dependencies where one variable
is a lagged version of another (lag values: 5,
10, 24, and 48 steps), simulating delayed ef-
fects commonly observed in economic indica-
tors and sensor networks; Sine-Noise Compo-
sition evaluating models’ ability to decompose
linear additive relationships where one variable
represents the sum of a periodic signal and ran-
dom noise; Conditional Relationships assess-
ing capability to capture variable interactions
that depend on specific conditions or thresholds, mimicking decision-driven processes in real-world
systems; Nonlinear Relationships testing models on variables connected through nonlinear trans-
formations, representing complex physical or economic relationships; and Multivariable Com-
plex examining performance on five-variable systems with intricate interdependencies and feedback
mechanisms.

For the lag relationship experiments, we generated two variables: var1 as white noise and var2 as
var1 lagged by varying steps. A model that successfully learns the temporal dependency should
perform significantly better on var2 prediction despite both signals having similar statistical prop-
erties. As illustrated in Figure 9, channel-dependent architectures such as TimesNet, TSMixer,
and TimeMixer demonstrate substantially lower MSE when predicting var2 compared to var1, with
reductions of approximately 50%, indicating successful recognition and leverage of temporal rela-
tionships between variables. In contrast, channel-independent models like PaiFilter, TexFilter, and
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PatchTST show similar performance on both variables, confirming their inherent design limitation
in utilizing cross-variable information.

Across all multivariate scenarios, TSMixer and TimesNet consistently outperform other architec-
tures, demonstrating superior capability in capturing diverse cross-variable dependencies. Channel-
dependent models show clear advantages on lag relationships, additive compositions, conditional
interactions, and nonlinear transformations. The performance advantage becomes particularly pro-
nounced in the complex five-variable scenario, where TimeMixer and TimesNet achieve near-
optimal performance, highlighting the effectiveness of channel-mixing mechanisms for modeling
intricate multivariate interactions.

4.5 Other experiments and brief analysis

We conducted several additional experiments to evaluate model performance across diverse as-
pects. We tested how varying dataset lengths impact learning efficiency and convergence
rates(Appendix B.1), evaluated model performance on synthetic datasets that mimic real-world sce-
narios including economic indicators, coupled dynamic systems, and weather-sales relationships
across both single and multi-variable settings(Appendix B.2). We also assessed the forecasting ca-
pabilities of contemporary zero-shot models, examining their ability to generalize to unseen time
series patterns without task-specific fine-tuning(Appendix B.3). Additionally, we also investigated
the limitations of batch normalization which is a widely adopted technique in time series forecast-
ing(Appendix B.4). As illustrated in Figures 10 and 11, these experiments provide a comprehensive
visualization of each model’s strengths and weaknesses across multiple forecasting dimensions. De-
tailed experimental results, methodologies, and in-depth analyses for all these experiments can be
found in the appendix.

As visualized in Figure 10, model performance varies considerably across different forecasting di-
mensions. TimeKAN, TimeMixer, PaiFilter, TexFilter and TimesNet demonstrate strong overall per-
formance across most capabilities, though each exhibits specific weaknesses: TimeKAN, PaiFilter,
TexFilter struggle with capturing variable relationships between time series, and TimesNet performs
poorly in short distance dependency modeling. The radar chart in Figure 11 further illustrates these
competence variations, with these three models covering relatively large areas despite their individ-
ual shortcomings. Models like N-HiTS, Autoformer and SegRNN show significant weaknesses in
lots of areas. Notably, no single model achieves optimal performance across all dimensions, empha-
sizing the importance of task-specific model selection based on the dominant characteristics of the
target time series. For a more comprehensive analysis of each model’s strengths and weaknesses,
please refer to Appendix B.7.
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5 Conclusion and Future Work

We introduce a systematic evaluation framework for time series forecasting models, leveraging
synthetic datasets based on traditional stochastic time series and signal processing models, with
programmable feature configurations to rigorously isolate and quantify distinct modeling capabil-
ities. By decoupling core temporal features and establishing theoretical performance boundaries,
this framework overcomes key limitations of traditional evaluation protocols, enabling more precise
attribution of model strengths and weaknesses than is possible with real-world benchmarks alone.

Through extensive experimentation, we demonstrate that, despite significant progress in the field,
state-of-the-art forecasting models continue to struggle with extreme noise, complex multivariate
dependencies, and zero-shot generalization. Our results highlight that no single architecture achieves
optimal performance across all temporal patterns, underscoring inherent trade-offs in model design.
The quantifiable performance boundaries established in this work lay the groundwork for future
research aimed at targeted architectural improvements and more principled model selection tailored
to the specific characteristics of time series forecasting tasks. Future work could explore methods
to enhance model generalization across diverse temporal patterns, such as developing architectures
with improved universality and adaptability to better address the complexity and variability inherent
in real-world forecasting tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Sec. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The calculations of optimal values for the dataset are in the Appendix D.2.2
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide sufficient details in the paper to enable reproduction of the main
experimental results.The details of model training are shown in the appendix and in our
open source code repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the data and code required to reproduce
the main experimental results. The source code is available at https://github.
com/TanQitai/SynTSBench. The dataset is available at https://huggingface.co/
datasets/TanQT24/SynTSBench.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: Our study focuses on controlled synthetic data experiments with deterministic
patterns, where we evaluate model capabilities through exact mathematical formulations
with known optimal solutions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our reasearch conform with the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper does not discuss potential societal impacts because it presents a
methodological evaluation framework for time series forecasting models rather than an
application-specific technology. Our work focuses on creating synthetic benchmarks to
systematically assess model capabilities across different temporal patterns and establish
theoretical performance boundaries. This foundational research aims to provide a more
precise understanding of model strengths and weaknesses, without directly enabling spe-
cific applications with immediate societal risks.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper presents a synthetic data-driven evaluation framework for time
series forecasting models. We do not release any models with high risk for misuse such as
language models or image generators. The framework generates controlled synthetic time
series data for evaluation purposes only.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All forecasting models evaluated in our paper are properly cited with refer-
ences to their original papers. We used publicly available implementations of these models
from their respective official repositories. The specific citations are provided in the bibliog-
raphy section, and we respected usage terms by solely using these models for comparative
evaluation purposes.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: Our paper introduces SynTSBench, a new evaluation framework. We re-
lease the complete codebase including data generation utilities, evaluation protocols, and
implementation details with MIT license upon publication. The framework is thoroughly
documented with details on synthetic data generation principles, parameter configurations,
and evaluation methodologies in both the paper and the repository README.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our research is purely computational and algorithmic in nature, focusing on
the evaluation of time series forecasting models using synthetic data. No crowdsourcing or
human subjects were involved in our study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study does not involve any human subjects or data collected from individ-
uals. The research is entirely based on synthetic data generation and algorithmic evaluation,
so no IRB approval was required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not use LLMs as a component of the core methodology.
LLMs were only used for writing assistance and text formatting, which do not impact the
scientific rigor or originality of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Time Series Forecasting Models Time series forecasting has evolved through several paradigms,
from classical statistical methods to advanced deep learning approaches. Traditional statistical meth-
ods like ARIMA [1], ETS [2], and VAR [3] provided interpretable frameworks based on explicit sta-
tistical assumptions but struggled with complex non-linear patterns. Machine learning approaches,
including XGBoost [28, 29], Random Forests [30], and LightGBM [31], offered improved flexibility
but often required manual feature engineering. The deep learning revolution brought a diverse ar-
ray of architectures for time series modeling, progressing from MLP-based models (N-BEATS [32],
DLinear [5], N-HiTS [24], NLinear [5]) to RNN architectures [33, 34, 35, 36] (LSTM [37, 38],
GRU [39, 40, 41], DeepAR [42], SegRNN [7]) and CNN architectures (TCN [43], WaveNet [44],
SCINet [45], TimesNet [11]), and then to transformer-based models (Informer [46], Autoformer [4],
PatchTST [6], FEDformer [47], Pyraformer [48], iTransformer [12]). Recent advances include
specialized architectures like TimesNet [11] for periodic pattern modeling, TSMixer [8] and
TimeMixer [10] for efficient temporal mixing, and filter-based approaches (PaiFilter [22], TexFil-
ter [22]). Meanwhile, foundation models for time series have emerged, including Chronos [25],
Lag-Llama [49], TimesFM [50], Timer [51], MOIRAI [27], UniTS [52],and TimeMoE [26], offer-
ing promising zero-shot forecasting capabilities across diverse domains.

Time Series Benchmarks and Evaluation A variety of benchmarks have been proposed for time
series forecasting, such as M3 [53], M4 [54], Monash [55], LTSF-Linear [5], BasicTS [16], and
BasicTS+ [17]. However, these benchmarks are not comprehensive: some focus only on univariate
or multivariate forecasting, and many either omit statistical methods or deep learning methods, re-
sulting in limited coverage of different modeling paradigms. Recently, more comprehensive bench-
marks have emerged to carry out more detailed evaluations. ProbTS [14] advances probabilistic
forecasting evaluation with improved uncertainty quantification, TSlib [18] covers multiple time se-
ries tasks including forecasting, anomaly detection, and missing value imputation within a unified
pipeline, and TFB [15] provides fine-grained dataset categorization with scalable integration of di-
verse methods. Despite these improvements, existing benchmarks still struggle to systematically
isolate specific temporal patterns, establish theoretical performance boundaries, or provide inter-
pretable capability mapping. Our SynTSBench framework is designed to fill these gaps by enabling
controllable synthetic data generation, systematic decomposition of temporal features, and rigor-
ous, interpretable evaluation of model capabilities across a wide range of forecasting scenarios. As
shown in Table 7, this table presents a comparison between SynTSBench and other benchmarks.

Table 7: Time series forecasting benchmark comparison. ✓ indicates present, ✗ indicates absent,
– indicates incomplete.

Benchmark Univariate Multivariate Patterns-learning Theoretical Cross-variable Robustness Foundation Models
Forecasting Forecasting Assessment Performance Boundaries Relationship Assessment Testing Zero-shot Testing

M3 [53] ✓ ✗ ✗ ✗ ✗ ✗ ✗
M4 [54] ✓ ✗ ✗ ✗ ✗ ✗ ✗
TSlib [18] ✓ ✓ ✗ ✗ ✗ – ✗
BasicTS [16] ✗ ✓ ✗ ✗ ✗ ✗ ✗
BasicTS+ [17] ✗ ✓ – ✗ ✗ ✗ ✗
Monash [55] ✓ ✗ – ✗ ✗ ✗ ✗
ProbTS [14] ✓ ✓ – ✗ ✗ ✗ ✓
TFB [15] ✓ ✓ – ✗ ✗ ✗ ✗
SynTSBench (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

B Additional Experiments and Supplementary Results

We provide additional experiments and results to further validate SynTSBench. Appendix B.1 eval-
uates the effect of dataset length on model performance. Appendix B.2 presents results on com-
plex real-world pattern simulations. Appendix B.3 examines zero-shot forecasting capabilities of
foundation models. Appendix B.4 investigates the impact of normalization layers on model per-
formance. Appendix B.5 provides supplementary visualizations and detailed experimental results.
Appendix B.6 validates the benchmark through extensive experiments on real-world datasets. Ap-
pendix B.7 presents comprehensive model capability analysis and architectural trade-offs.
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Figure 12: Average MSE by Dataset Length for
Different Models

Figure 13: Model Efficiency Ranking (Lower
AUC means better performance)

B.1 Length of dataset

In this experiment, we evaluated the performance of various models on datasets of different lengths:
1000, 5000, 10000, and 20000. Figure 12 shows the average MSE for each model as the dataset
length increases. It is evident that most models benefit from longer datasets, with their MSE values
decreasing as more data becomes available.

To further quantify the efficiency of each model in learning from datasets of varying lengths, we
calculated the area under the curve (AUC) formed by each model’s MSE curve and the x-axis. A
smaller AUC indicates better efficiency in learning from the data. Figure 13 ranks the models based
on their AUC values, where lower values correspond to higher efficiency.

The results demonstrate that models based on FilterNet, specifically PaiFilter and TexFilter, achieved
the best performance, as they consistently exhibited lower MSE values and smaller AUCs compared
to other models. This highlights their superior ability to learn effectively from datasets of varying
lengths.

B.2 Performance on Complex Real-world Pattern Simulations

Table 8: MSE and MAE Results for Univariate Datasets. Red bold indicates best performance,
blue underlined indicates second-best performance. (Forecasting Horizons: H = 96) The following
tables use the same notation.

Dataset Metric Model Optimal
Autoformer CATS DLinear N-BEATS N-HiTS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeLLM TimeMixer TimesNet iTransformer

Economic-Indicator MSE 0.1017 0.0852 0.1017 0.0624 0.8073 0.0721 0.0603 0.0617 0.8370 0.0548 0.0534 0.0547 0.0545 0.0534 0.0607 0.0424
MAE 0.2564 0.2310 0.2453 0.2003 0.7568 0.2095 0.1989 0.1984 0.7999 0.1885 0.1836 0.1876 0.1878 0.1872 0.1992 0.1609

Electricity-Consumption MSE 0.3593 0.1755 0.1921 0.1295 0.1309 0.1201 0.1269 0.1719 0.1298 0.1183 0.1523 0.1605 0.1324 0.1243 0.1189 0.0833
MAE 0.4494 0.3259 0.3358 0.2585 0.2687 0.2426 0.2571 0.3203 0.2630 0.2427 0.2897 0.3036 0.2592 0.2450 0.2414 0.1851

Industrial-Sensor MSE 0.1027 0.0240 0.0227 0.0197 0.0464 0.0188 0.0289 0.2849 0.0270 0.0187 0.0191 0.0350 0.0189 0.0177 0.0172 0.0151
MAE 0.2533 0.1229 0.1199 0.1115 0.1735 0.1085 0.1353 0.4099 0.1307 0.1083 0.1098 0.1487 0.1090 0.1049 0.1037 0.0974

Industrial-Sensor-Normal MSE 0.2441 0.0726 0.0608 0.0630 0.0638 0.0533 0.0590 0.1643 0.0594 0.0542 0.0556 0.0694 0.0547 0.0552 0.0544 0.0495
MAE 0.3165 0.2153 0.1963 0.1989 0.1995 0.1831 0.1921 0.3257 0.1931 0.1847 0.1870 0.2092 0.1854 0.1864 0.1847 0.1772

Network-Traffic MSE 1.3672 0.9323 1.1490 0.9158 1.0625 0.8882 0.9019 1.2382 1.1145 0.8804 0.8855 0.8644 0.9037 0.8904 0.9277 0.8120
MAE 0.7985 0.5710 0.6810 0.5601 0.6223 0.5594 0.5416 0.7490 0.6427 0.5493 0.5083 0.5288 0.5368 0.5555 0.5326 0.3413

Retail-Sales MSE 0.7671 0.5642 0.4314 0.4630 0.4645 0.4715 0.4549 0.6358 0.4423 0.4765 0.4005 0.5329 0.4379 0.4919 0.5001 0.2708
MAE 0.7087 0.5877 0.4539 0.5050 0.4734 0.5083 0.4861 0.6312 0.4434 0.5096 0.4454 0.5599 0.4562 0.5145 0.5147 0.2535

Stock-Price MSE 0.1933 0.1853 0.1898 0.1802 0.1833 0.1812 0.1794 0.1774 0.1815 0.1779 0.1660 0.1742 0.1663 0.1825 0.1797 0.1199
MAE 0.3460 0.3380 0.3424 0.3335 0.3360 0.3336 0.3327 0.3308 0.3330 0.3301 0.3213 0.3271 0.3182 0.3347 0.3317 0.2708

Temperature-Sensor MSE 0.1750 0.1079 0.1547 0.0675 0.1672 0.0628 0.0703 0.0772 0.1549 0.0653 0.0673 0.1101 0.0653 0.0641 0.0639 0.0508
MAE 0.3357 0.2705 0.3186 0.2051 0.3404 0.1974 0.2110 0.2211 0.3245 0.2018 0.2056 0.2718 0.2020 0.2001 0.1996 0.1768

Website-Traffic MSE 0.4310 0.2840 0.0799 0.0688 0.0654 0.0531 0.0592 0.1344 0.0677 0.0509 0.0782 0.0913 0.0682 0.0595 0.0445 0.0296
MAE 0.5519 0.4420 0.2255 0.2089 0.2048 0.1846 0.1959 0.2931 0.2073 0.1805 0.2252 0.2451 0.2088 0.1951 0.1686 0.1402

Table 9: MSE and MAE results for multivariate datasets (Forecasting Horizons: H = 96)
Dataset Metric Model

Autoformer CATS DLinear N-BEATS N-HiTS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeLLM TimeMixer TimesNet iTransformer

Ad-Sales MSE 1.4331 1.4469 1.2836 1.2894 1.2640 1.2681 1.2638 1.3543 1.2483 1.2834 1.3236 1.4684 1.2509 1.3167 1.3274
MAE 0.8169 0.8146 0.7306 0.7271 0.7177 0.7194 0.7191 0.7681 0.7069 0.7278 0.7486 0.8264 0.7050 0.7400 0.7395

Intervention-Effect MSE 0.5306 0.1444 0.1174 0.1142 0.1017 0.1026 0.1072 0.0994 0.1208 0.1064 0.1008 0.1126 0.1012 0.0980 0.1010
MAE 0.4202 0.2652 0.2509 0.2398 0.2339 0.2238 0.2286 0.2214 0.2553 0.2287 0.2242 0.2368 0.2227 0.2198 0.2254

Lotka-Volterra MSE 1.8547 0.2453 0.1660 0.0250 0.0101 0.0929 0.1073 0.0233 0.0068 0.0198 0.0978 0.2453 0.0158 0.0404 0.0193
MAE 1.0714 0.3474 0.2982 0.1083 0.0778 0.1653 0.2138 0.1100 0.0652 0.0941 0.2107 0.3288 0.0927 0.1105 0.0994

Macro-Economy MSE 0.7312 0.7224 0.7519 0.7300 0.7479 0.7086 0.7142 0.7104 0.7845 0.7092 0.7123 0.7224 0.7109 0.7022 0.7136
MAE 0.6537 0.6479 0.6728 0.6391 0.6699 0.6286 0.6307 0.6291 0.7106 0.6317 0.6337 0.6481 0.6321 0.6260 0.6308

SIR-Model MSE 0.0198 0.0030 0.0030 0.0024 0.0074 0.0019 0.0019 0.0026 0.5375 0.0020 0.0019 0.0019 0.0019 0.0034 0.0022
MAE 0.1156 0.0421 0.0407 0.0377 0.0678 0.0328 0.0328 0.0408 0.6662 0.0342 0.0333 0.0330 0.0334 0.0464 0.0361

Supply-Demand-Price MSE 5.1740 0.2656 0.1594 0.1145 8.3423 0.0601 0.1346 5.3351 1.6242 0.1181 0.1364 0.5075 0.2176 0.2048 0.3853
MAE 1.6923 0.3856 0.2762 0.2497 1.5176 0.1573 0.2607 1.5233 0.9403 0.2554 0.2567 0.4820 0.3137 0.3288 0.3986

Weather-Sales MSE 0.8457 0.7810 0.5425 0.7739 0.5326 0.6510 0.7205 0.6514 0.5084 0.5678 0.6791 0.7643 0.5285 0.5203 0.5476
MAE 0.7195 0.6561 0.5301 0.6450 0.5224 0.5802 0.6260 0.5805 0.5094 0.5547 0.5998 0.6514 0.5243 0.5211 0.5294
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To evaluate the capacity of time series models to handle complex temporal patterns found in real-
world applications, we generated synthetic datasets that simulate various real-world phenomena
while maintaining controlled generation processes. These datasets include simulations of economic
indicators, electricity consumption patterns, industrial sensor measurements, network traffic, stock
prices, temperature readings, and website traffic for univariate testing, as well as advertising-sales
relationships, intervention effects, Lotka-Volterra dynamics, macroeconomic variables, epidemio-
logical models, supply-demand-price relationships, and weather-sales correlations for multivariate
scenarios.

As shown in Table 8, filter-based models excel with sensor-related data, with PaiFilter achiev-
ing best performance on Industrial-Sensor-Normal and Temperature-Sensor datasets. TimeKAN
demonstrates superior performance with economic and financial time series, leading in Stock-Price
and Retail-Sales forecasting. The results in Table 9 reveal that channel-dependent models (such
as TSMixer, TimesNet, and TimeMixer) generally perform well on complex multivariate datasets,
which aligns with our previous findings from the cross-variable learning experiments. This sug-
gests that models designed to leverage relationships between variables have an inherent advantage
when handling multivariate time series with complex interdependencies and feedback mechanisms.
A particularly notable observation is that channel-dependent models do not consistently outperform
channel-independent models across all multivariate datasets. For instance, while TSMixer (channel-
dependent) excels on Weather-Sales and Lotka-Volterra datasets, PaiFilter (channel-independent)
achieves the best performance on Supply-Demand-Price and SIR-Model datasets. This suggests
that when variable relationships become more complex and nuanced, channel-dependent models
may sometimes struggle to effectively learn these patterns, occasionally performing worse than
channel-independent models that treat each variable separately. These results also highlight that
no single architecture dominates across all patterns, with performance advantages highly dependent
on the specific temporal characteristics of the target domain.

B.3 Evaluating Zero-Shot Capabilities of Time Series Foundation Models

Table 10: Zero-Shot Forecasting Results by Pattern Type.

Pattern Type Metric Model
Chronos Moirai TimeMoE

Trend Patterns MSE 0.0002 0.9332 30.9859
MAE 0.0047 0.3306 1.5138

Periodic Patterns MSE 0.5293 1.3476 0.0594
MAE 0.4885 0.9125 0.1353

Complex Univariate MSE 0.4137 0.6437 0.5269
MAE 0.3925 0.5707 0.4716

Complex Multivariate MSE 0.7800 1.8564 2.0845
MAE 0.5066 0.7266 0.7574

Our evaluation of zero-shot forecasting capabilities reveals distinct pattern specialization among
time series foundation models. As shown in Figure 14 and Table 10, each model demonstrates
unique strengths aligned with specific temporal patterns.

Chronos excels at trend forecasting with near-perfect accuracy (MSE: 0.0002), capturing growth
patterns without fine-tuning. Conversely, TimeMoE demonstrates exceptional capabilities in mod-
eling periodic patterns (MSE: 0.0594), precisely predicting oscillatory behaviors while struggling
significantly with trends. Moirai shows moderate but consistent performance across pattern types
without particular specialization.

For complex datasets containing mixed patterns, Chronos maintains the best overall performance on
both univariate and multivariate data, showing that Chronos’ approach of using Gaussian processes
to generate synthetic data effectively enhances its generalization capabilities.
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Figure 14: Zero-shot forecasting comparison between Chronos, TimeMoE, and Moirai models on
different data types. The top row shows trend forecasting performance, while the bottom row dis-
plays periodic pattern forecasting capabilities.

B.4 Limitations of Normalization Layer

To investigate how different architectures handle long-range dependencies and trend transitions,
particularly the impact of normalization layers, we designed two challenging synthetic time series
patterns, as shown in Figure 15. These patterns were specifically chosen because their numerical
values carry critical predictive information—a characteristic that could expose potential limitations
of normalization techniques. The first is a triangle wave with an extended period of 400 time steps,
where reaching values of 1 or -1 indicates an imminent trend reversal. The second is a pulse pattern
with spikes appearing at regular intervals of 96 time steps, requiring models to accurately predict
both the timing and amplitude of subsequent pulses.

Figure 15: Synthetic time series patterns designed to test long-range dependencies: a triangle wave
with period 400 (green) and a sequence with alternating pulses at regular intervals of 96 time steps
(blue).

For both patterns, we used an input window of 96 time steps and asked models to predict the next
96 time steps. This experimental setup poses two specific challenges:
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1. Long-range dependency recognition: For the pulse pattern, models must recognize that
after observing one pulse, another will appear exactly 96 steps later, potentially with a
different amplitude.

2. Trend reversal prediction: For the triangle wave, models must predict when the upward
or downward trend will reverse, despite having seen only a fraction of the full 400-step
cycle. This reversal is signaled by the series approaching its extreme values of 1 or -1.

Figure 16: Model predictions on the pulse pat-
tern. Each subplot shows a model’s predic-
tion (red dashed line) compared to ground truth
(blue solid line) and input window (green solid
line). TSMixer accurately predicts the correct
pulse height, while most batch-normalized mod-
els struggle to preserve magnitude information.

Figure 17: Model predictions on the triangle
wave pattern. Each subplot shows a model’s
prediction (red dashed line) compared to ground
truth (blue solid line) and input window (green
solid line). Models with batch normalization
struggle to predict the correct trend reversal
point.

Figure 18: Left: iTransformer with normalization layers. Right: iTransformer-noNorm without
normalization layers.

Our experimental results, visualized in Figures 16 and 17, reveal a striking pattern: among all tested
models, only TSMixer demonstrates superior performance. Notably, of all models tested, only Seg-
RNN, DLinear, and TSMixer do not employ normalization layers, with TSMixer showing the most
consistent accuracy.

In the pulse pattern forecasts (Figure 16), TSMixer correctly predicts both the timing and magni-
tude of the upcoming pulse. In contrast, models with normalization layers like Autoformer show
erratic behavior, while others like PaiFilter, TexFilter, and TimeMixer predict pulses with signif-
icantly reduced amplitudes. This suggests that normalization is stripping away critical amplitude
information.

For the triangle wave pattern (Figure 17), the impact of normalization is even more evident. TSMixer
accurately follows the downward trend and correctly predicts the exact point where the trend re-
verses, perfectly aligning with the ground truth throughout the entire prediction window. Models

25



using normalization layers largely fail to identify the correct trend reversal point, with most predict-
ing either a continued downward trajectory or an incorrect reversal pattern.

To further validate our hypothesis about normalization layers, we conducted a comparative exper-
iment with iTransformer, creating a variant (iTransformer-noNorm) with all normalization layers
removed. As shown in Figure 18, the normalization-free variant dramatically outperforms the origi-
nal model on these patterns, confirming that normalization layers are indeed the limiting factor.

These findings highlight a fundamental limitation of normalization in time series forecasting: the
normalization process inherently discards critical magnitude information. When normalization stan-
dardizes features to have zero mean and unit variance, it effectively removes the absolute scale in-
formation that is often crucial for time series patterns. While this standardization is beneficial for
stable training and handling distribution shifts in many deep learning applications, it proves detri-
mental when absolute magnitude carries important predictive information.

B.5 Experimental Supplementary Content

This section provides additional experimental results and visualizations that complement the main
findings presented in the paper. We include detailed model performance comparisons across differ-
ent pattern types, cross-variable relationship analysis, and comprehensive anomaly impact assess-
ment.

Figure 19: Average MSE comparison for different
models on trend data.

Figure 20: Radar chart visualizing the pre-
diction difficulty of different trend patterns.
Lower values indicate more challenging pat-
terns to predict.

Figure 19 illustrates model performance on trend data, where PaiFilter consistently achieves the
lowest error rates, demonstrating superior capability in capturing trend relationships compared to
other architectures. Figure 20 presents a radar chart of trend pattern difficulty. To construct this
visualization, we first calculated the average MSE for each signal type across all models, then ap-
plied logarithmic transformation (log10) to compress the range of values. The transformed val-
ues were then normalized to a 0-1 scale using the formula: normalized value = 1 − (val −
min val)/(max val − min val), where lower values in the radar chart indicate more challeng-
ing patterns. This inverse mapping ensures that patterns with higher average prediction error (more
difficult) appear closer to the center of the radar chart. The visualization reveals that patterns with
accelerating growth rates, specifically Quadratic-Function and Exponential-Trend, pose the greatest
challenge for forecasting models, as their rapid rate changes become increasingly difficult to predict
accurately over longer horizons.

Figure 21 presents model performance on periodic data, where N-HiTS, TimesNet and DLinear
demonstrate exceptional capabilities in modeling oscillatory patterns. The difficulty radar chart in
Figure 22 was calculated using the same methodology as for trend patterns: first computing average
MSE across all models for each pattern type, applying logarithmic transformation to compress the
range, and finally normalizing and inverting the values to create the 0-1 scale where lower values
indicate more challenging patterns. The radar chart clearly indicates that complex multi-frequency
patterns (Ten-Sin) and discontinuous patterns (Square-Wave) present the greatest challenges. Square
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Figure 21: Average MSE comparison for different
models on periodic data.

Figure 22: Radar chart visualizing the pre-
diction difficulty of different periodic pat-
terns. Lower values indicate more challeng-
ing patterns to predict.
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Figure 23: MSE comparison for lag relationship detection with different lag values (5, 10, 24, and
48). Blue bars represent MSE for white noise prediction (var1), while red bars represent MSE for
the lagged variable prediction (var2). Lower MSE for the lagged variable indicates better ability to
detect temporal relationships.

waves, with their abrupt value transitions, are particularly difficult for models to predict accurately,
as most architectures struggle to capture these discontinuities without introducing smoothing effects
or oscillatory artifacts.

Figure 23 illustrates model performance in detecting temporal lag relationships, with both input
window and forecasting horizon set to 96 time steps. The experiment involved predicting two vari-
ables: var1 (random noise) and var2 (var1 lagged by different time steps). As the lag value increases
from 5 to 48, channel-dependent architectures (TimesNet, TSMixer, TimeMixer, and iTransformer)
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Figure 24: Test results on the Sine-Noise dataset for evaluating models’ ability to capture relation-
ships between variables. This dataset consists of var1 (sine wave), var2 (white noise), and var3 (sum
of var1 and var2). Left: Scatter plot showing prediction performance for understanding linear rela-
tionships, where x-axis represents MSE between var1 and var3 predictions, while y-axis shows MSE
of var3 predictions vs ground truth. Models in the bottom-left corner better understand the additive
relationship between variables. Right: Per-model MSE values for the three variables, where lower
values for var1 and var3 compared to var2 indicate the model effectively captures the relationship
between the sine component and the composite signal.

show progressively decreasing MSE values for var2, indicating these models successfully capture
the temporal relationships despite increasing lag distances. This capability reveals their effective-
ness in leveraging cross-channel information to identify and model temporal dependencies between
variables.

Figure 24 evaluates models on the Sine-Noise dataset, which comprises three variables: var1 (sine
wave), var2 (white noise), and var3 (sum of var1 and var2). This dataset is specifically designed to
test models’ ability to learn relationships between variables. If models predict var3 independently
(treating each channel separately), they will be affected by the noise component from var2, resulting
in higher prediction errors. However, if models successfully learn the additive relationship var3
= var1 + var2, they can recognize that the true signal component of var3 is simply var1, since
var2 is unpredictable noise. In this case, models should achieve low MSE for var3 predictions by
effectively filtering out the noise. Since var2 is white noise, models typically predict its value as
0, and consequently, if the relationship is properly learned, the predicted values for var3 should
closely match those for var1. The left scatter plot reveals a positive correlation between MSE of
var3 predictions and MSE between predicted var1 and var3. Notably, TSMixer achieves near-zero
MSE between its var1 and var3 predictions, resulting in the lowest overall var3 prediction error. The
right bar chart confirms TSMixer’s superior performance across all three variables, demonstrating
its exceptional ability to capture and leverage the additive relationship between variables.

Table 11 presents model performance under various anomaly conditions, including point anomalies
(isolated outliers) at different densities (0.5% to 10%), pulse anomalies (sustained deviations) with
varying frequencies (1, 3, or 5 pulses), mean shifts (abrupt changes in the baseline level at different
magnitudes), and trend shifts (sudden changes in the growth rate or direction). The results demon-
strate significant variance in model robustness against data irregularities. TimeKAN and TimeMixer
exhibit strong resilience against point anomalies, maintaining consistent performance as anomaly
density increases. For pulse anomalies, TimesNet and TexFilter perform best with fewer pulses,
while PaiFilter and TimeKAN demonstrate superior handling of cases with multiple pulses. Notably,
TSMixer shows considerable performance degradation as anomaly density increases, highlighting a
vulnerability that could be critical in real-world applications where data quality is variable.

Table 12 presents a systematic evaluation of model robustness under various noise distributions be-
yond the standard Gaussian assumption. The results reveal distinct performance patterns across
different noise characteristics. For heavy-tailed noise distributions (t-distribution with df=3 and
Lévy with α=1.2, 1.8), PaiFilter consistently achieves the best performance, demonstrating superior
robustness to extreme outliers. Under more moderate noise conditions (uniform and Laplace distri-
butions), FilterNet-based models (PaiFilter and TexFilter) maintain their advantage alongside Times-
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Table 11: Comprehensive Comparison of MSE and MAE for Different Anomaly Types and Scenar-
ios (Forecasting Horizons: H = 96)

Anomaly Type Metric Model
Autoformer CATS DLinear N-BEATS N-HiTS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeLLM TimeMixer TimesNet iTransformer

No Anomaly MSE 0.0935 0.0231 0.0390 0.0225 0.0410 0.0205 0.0257 0.0863 0.0277 0.0207 0.0207 0.0447 0.0206 0.0203 0.0209
MAE 0.1871 0.1169 0.1392 0.1159 0.1400 0.1086 0.1260 0.1866 0.1227 0.1091 0.1097 0.1596 0.1094 0.1087 0.1098

point-anomaly-0.5pct MSE 0.1619 0.0297 0.0280 0.0216 0.1908 0.0246 0.0300 0.0914 0.1344 0.0238 0.0204 0.0416 0.0204 0.0238 0.0254
MAE 0.2544 0.1354 0.1254 0.1108 0.2498 0.1197 0.1361 0.1919 0.2700 0.1157 0.1079 0.1585 0.1078 0.1174 0.1216

point-anomaly-1pct MSE 0.1795 0.0344 0.0209 0.0207 0.2174 0.0210 0.0233 0.0841 0.0663 0.0222 0.0186 0.0383 0.0175 0.0220 0.0223
MAE 0.2681 0.1466 0.1073 0.1061 0.2969 0.1092 0.1185 0.1810 0.1873 0.1142 0.1041 0.1470 0.1007 0.1136 0.1150

point-anomaly-5pct MSE 0.1090 0.0710 0.0198 0.0195 0.3430 0.0214 0.0304 0.0766 0.1519 0.0309 0.0143 0.0692 0.0193 0.0322 0.0293
MAE 0.2221 0.1946 0.1053 0.1024 0.4281 0.1078 0.1329 0.1803 0.2805 0.1345 0.0846 0.1927 0.1024 0.1390 0.1301

point-anomaly-10pct MSE 0.0726 0.0672 0.0579 0.0191 0.4161 0.0209 0.0280 0.0669 0.2046 0.0314 0.0163 0.0793 0.0206 0.0542 0.0361
MAE 0.1897 0.1879 0.1419 0.0998 0.4963 0.1064 0.1265 0.1787 0.2833 0.1351 0.0950 0.1964 0.1060 0.1686 0.1436

pulse-anomaly-1 MSE 0.2019 0.0210 0.0625 0.0201 0.0366 0.0240 0.0303 0.0991 0.0540 0.0212 0.0211 0.0834 0.0260 0.0198 0.0219
MAE 0.2775 0.1125 0.1872 0.1099 0.1294 0.1109 0.1306 0.1986 0.1673 0.1093 0.1107 0.1916 0.1143 0.1067 0.1125

pulse-anomaly-3 MSE 0.1271 0.0344 0.1513 0.0208 42.4089 0.0226 0.0381 0.1078 0.2714 0.0213 0.0358 0.0489 0.0255 0.0285 0.0387
MAE 0.2371 0.1364 0.2501 0.1147 2.9509 0.0926 0.1139 0.2062 0.3640 0.0931 0.0945 0.1470 0.0959 0.0966 0.1068

pulse-anomaly-5 MSE 0.1271 0.0692 0.1169 0.0195 3.8999 0.0145 0.0218 0.0994 0.1764 0.0221 0.0137 0.0368 0.0160 0.0180 0.0189
MAE 0.2266 0.1772 0.2655 0.1024 0.8587 0.0950 0.1158 0.2066 0.2968 0.1085 0.0921 0.1380 0.0989 0.1065 0.1071

mean-shift-1 MSE 0.1817 0.0205 0.0414 0.0208 0.0215 0.0190 0.0247 0.0904 0.0304 0.0197 0.0202 0.0268 0.0205 0.0187 0.0186
MAE 0.2390 0.1118 0.1491 0.1122 0.1115 0.1064 0.1250 0.1877 0.1299 0.1082 0.1099 0.1294 0.1102 0.1061 0.1057

mean-shift-3 MSE 0.1125 0.0227 0.0469 0.0212 0.0227 0.0194 0.0260 0.0891 0.0484 0.0200 0.0209 0.0295 0.0194 0.0206 0.0206
MAE 0.1993 0.1145 0.1599 0.1119 0.1141 0.1066 0.1273 0.1880 0.1579 0.1080 0.1102 0.1338 0.1076 0.1094 0.1106

trend-shift-1 MSE 0.1823 0.0233 0.0500 0.0221 0.0642 0.0210 0.0261 0.0878 0.0378 0.0212 0.0212 0.0306 0.0212 0.0207 0.0214
MAE 0.2432 0.1167 0.1607 0.1145 0.1876 0.1107 0.1270 0.1883 0.1488 0.1113 0.1118 0.1391 0.1117 0.1105 0.1119

trend-shift-2 MSE 0.1578 0.0382 0.0413 0.0363 0.0622 0.0349 0.0400 0.0998 0.0485 0.0353 0.0351 0.0388 0.0356 0.0339 0.0350
MAE 0.2443 0.1385 0.1454 0.1359 0.1584 0.1314 0.1475 0.2066 0.1535 0.1320 0.1328 0.1461 0.1333 0.1304 0.1321

Table 12: Comparison of MSE and MAE for Different Noise Types (Forecasting Horizons: H = 96)
Noise Type Metric Model

Autoformer CATS DLinear N-BEATS N-HiTS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeLLM TimeMixer TimesNet iTransformer

Uniform Noise MSE 0.1352 0.0227 0.0401 0.0216 0.0327 0.0198 0.0261 0.0864 0.0509 0.0202 0.0205 0.0267 0.0202 0.0199 0.0202
MAE 0.2136 0.1207 0.1486 0.1189 0.1349 0.1147 0.1311 0.1915 0.1566 0.1155 0.1162 0.1323 0.1159 0.1150 0.1155

Laplace Noise MSE 0.1107 0.0223 0.0276 0.0233 0.0355 0.0204 0.0253 0.0870 0.0276 0.0201 0.0205 0.0267 0.0208 0.0204 0.0208
MAE 0.2011 0.1067 0.1207 0.1097 0.1316 0.0999 0.1191 0.1801 0.1145 0.0996 0.1015 0.1230 0.1015 0.1004 0.1017

t-distribution (df=3) MSE 0.2257 0.0206 0.0385 0.0199 0.0284 0.0178 0.0227 0.0841 0.0275 0.0184 0.0179 0.0275 0.0183 0.0179 0.0183
MAE 0.2669 0.1002 0.1350 0.0975 0.1119 0.0902 0.1105 0.1702 0.1170 0.0921 0.0912 0.1236 0.0925 0.0906 0.0920

t-distribution (df=10) MSE 0.2072 0.0223 0.0274 0.0211 0.0432 0.0199 0.0251 0.0864 0.0282 0.0202 0.0200 0.0282 0.0200 0.0198 0.0199
MAE 0.2578 0.1121 0.1249 0.1095 0.1397 0.1048 0.1219 0.1832 0.1207 0.1055 0.1059 0.1301 0.1055 0.1046 0.1051

Lévy (α=1.2) MSE 0.0942 0.0108 0.0181 0.0101 0.0123 0.0099 0.0145 0.0754 0.0293 0.0100 0.0099 0.0154 0.0099 0.0099 0.0100
MAE 0.1346 0.0365 0.0688 0.0266 0.0411 0.0235 0.0586 0.1144 0.0822 0.0243 0.0270 0.0659 0.0266 0.0250 0.0264

Lévy (α=1.8) MSE 0.1911 0.0036 0.0069 0.0018 0.0058 0.0016 0.0062 0.0673 0.0041 0.0017 0.0017 0.0084 0.0017 0.0018 0.0019
MAE 0.2293 0.0408 0.0488 0.0233 0.0400 0.0206 0.0556 0.1164 0.0352 0.0213 0.0239 0.0637 0.0233 0.0225 0.0240

Table 13: MSE Results on Real-World Datasets. All results are averaged from four different fore-
casting horizons: H ∈ {24, 48, 96, 192}. Avg (Synthetic) is calculated as the average MSE across
all Complex Real-world Pattern Simulations datasets (Tables 8 and 9) to provide a comprehensive
comparison between synthetic and real-world performance.

Dataset Autoformer CATS DLinear N-BEATS PaiFilter PatchTST SegRNN TSMixer TexFilter TimeKAN TimeMixer TimesNet iTransformer
ETTh1 0.5792 0.4945 0.5122 0.4845 0.4916 0.4952 0.5270 0.5656 0.4997 0.4795 0.4858 0.5425 0.5050
ETTh2 0.4569 0.4030 0.4228 0.3978 0.3991 0.3929 0.3939 1.7774 0.4032 0.3884 0.3904 0.4112 0.4061
ETTm1 0.5971 0.4393 0.4545 0.4217 0.4178 0.4310 0.4583 0.5303 0.4396 0.4228 0.4216 0.4771 0.4404
ETTm2 0.3229 0.3018 0.3277 0.2866 0.2828 0.2894 0.2834 0.4727 0.2881 0.2810 0.2799 0.2933 0.3026
Electricity 0.3555 0.3311 0.3141 0.2866 0.2771 0.2949 0.3471 0.3023 0.2572 0.3024 0.2701 0.2983 0.2607
Exchange-Rate 0.3040 0.1869 0.1765 0.1830 0.1868 0.1774 0.1817 0.4876 0.1816 0.1755 0.1805 0.2192 0.1903
Traffic 0.7140 0.6277 0.7335 0.5862 0.5779 0.5744 0.8679 0.6276 0.5201 0.6903 0.5780 0.6928 0.5155
Weather 0.4565 0.2885 0.3060 0.2705 0.2691 0.2761 0.2654 0.2805 0.2700 0.2688 0.2679 0.2862 0.3107

Avg (Real-World) 0.4733 0.3841 0.4059 0.3646 0.3628 0.3664 0.4156 0.6305 0.3575 0.3761 0.3593 0.4026 0.3664
Rank (Real-World) 12 8 10 4 3 5 11 13 1 7 2 9 6

Avg (Synthetic) 0.8956 0.3775 0.3379 0.3137 0.3004 0.3119 0.6951 0.4903 0.2940 0.3081 0.2956 0.3016 0.3165
Rank (Synthetic) 13 10 9 7 3 6 12 11 1 5 2 4 8

Net. Notably, filter-based architectures show remarkable stability across all noise types, suggesting
their frequency-domain processing provides inherent resilience to diverse noise characteristics.

B.6 Real World Dataset

To empirically validate the effectiveness of our synthetic benchmark framework, we conducted ex-
tensive experiments on eight widely-used real-world time series datasets: ETTh1, ETTh2, ETTm1,
ETTm2, Electricity, Exchange-Rate, Traffic, and Weather. These datasets represent diverse domains
including energy, finance, transportation, and meteorology, providing a comprehensive testbed for
evaluating whether insights gained from our synthetic benchmark translate to practical forecasting
scenarios.

Table 13 presents the comprehensive comparison results, where all MSE values are averaged across
four different forecasting horizons (H ∈ {24, 48, 96, 192}) with a fixed input window of 96 time
steps. The results reveal a remarkably strong correlation between model performance on our syn-
thetic datasets and real-world data. Most notably, the top three performing models in our synthetic
benchmark—TexFilter (rank 1), TimeMixer (rank 2), and PaiFilter (rank 3)—maintain identical
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rankings when evaluated on real-world datasets, with average MSE values of 0.3575, 0.3593, and
0.3628 respectively.

Furthermore, the results expose consistent weaknesses across both evaluation paradigms. TSMixer,
which showed vulnerability to anomalies in our synthetic robustness tests, exhibits the poorest av-
erage performance (0.6305 MSE, rank 13) on real-world datasets, with particularly catastrophic
failure on ETTh2 (1.7774 MSE). Similarly, Autoformer and SegRNN, which struggled with certain
synthetic patterns, maintain lower rankings on real-world data.

These findings provide compelling evidence that our synthetic benchmark is not an isolated aca-
demic exercise, but rather a reliable and effective tool for predicting real-world model performance.
The framework successfully identifies robust, high-performing architectures while exposing fun-
damental limitations—capabilities that are essential for advancing time series forecasting research.
The strong empirical validation demonstrates that insights derived from our controlled synthetic
experiments generalize effectively to the complexities of real-world forecasting tasks, thereby es-
tablishing the practical value and significance of SynTSBench as a unified benchmark for the time
series community.

B.7 Model Capability Analysis and Architectural Trade-offs

Table 14 summarizes the diverse set of forecasting models evaluated in our benchmark, spanning
multiple architectural paradigms from transformers to linear models.

Table 14: Model Overview Table
Model Name Framework Type Key Features
PatchTST [6] Transformer Long sequence forecasting, sub-sequence input
TimeLLM [21] Transformer Based on LLM, textual original input
Autoformer [4] Transformer Decomposes Transformer, self-adaptive mechanism
iTransformer [12] Transformer Inverted Transformer, improved forecasting
CATS [20] Transformer Cross-attention only
TimeMixer [10] MLP Multi-dimensional fusion, high efficiency
TSMixer [8] MLP Fully MLP-based, scalable forecasting
N-BEATS [32] MLP Neural basis expansion, interpretable decomposition
N-HiTS [24] MLP Neural hierarchical interpolation, multi-rate sampling
TimesNet [11] CNN 2D convolution kernel, periodic/trend learning
SegRNN [7] RNN Segment-based RNN, long sequence forecasting
DLinear [5] Linear Model Simple linear baseline
TimeKAN [9] KAN Interpretable, parameterized KAN
Paifilter [22] FilterNet+MLP Frequency-domain filtering
Texfilter [22] FilterNet+MLP Frequency-domain transformation

Chronos [25] Transformer Tokenizes series, probabilistic sampling
TimeMoE [26] Transformer (MoE) Sparse mixture-of-experts, billion-scale
Moirai [27] Masked Encoder Transformer Masked-encoder pretraining, multi-patch

To provide a comprehensive understanding of model capabilities and their practical implications,
we synthesize the extensive experimental results from our benchmark into a structured capability
analysis. Table 15 summarizes the key strengths and weaknesses of each evaluated model, revealing
fundamental trade-offs inherent in different architectural designs.

C Detailed Introduction of the Generated Dataset

This section provides a comprehensive overview of the synthetic time series datasets generated
within our SynTSBench framework. We systematically introduce the building blocks and method-
ology behind our dataset generation process, which forms the foundation for rigorous time series
forecasting evaluation. The section is organized into five key components: Appendix C.1 presents
the fundamental signal types that serve as building blocks for more complex patterns; Appendix C.2
describes how we systematically introduce controlled noise and anomalies to test model robust-
ness; Appendix C.3 explains our approach to evaluating models across varying temporal scales;
Appendix C.4 details the generation of complex univariate time series that simulate real-world phe-
nomena; and Appendix C.5 introduces our multivariate datasets with explicit causal relationships
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Table 15: Comprehensive Model Capability Analysis
Model Name Key Strengths Main Weaknesses
DLinear Strong modeling capability for simple trend and

periodic signals.
Performance drops significantly when patterns be-
come complex.

PaiFilter &
TexFilter Extremely strong fitting capability for trend and

periodic signals; stable performance under noise
and anomalies; strong modeling capability on
complex datasets.

Limited capability for modeling cross-variable de-
pendencies.

TimeMixer Comprehensive performance with good results in
modeling trend/periodic signals, learning multi-
variate relationships, and complex patterns.

Mediocre performance in modeling short-term de-
pendencies.

TimeKAN Extremely strong robustness to noise and anoma-
lies; outstanding capability in modeling complex
signals.

Limited capability for modeling cross-variable de-
pendencies.

TSMixer Strong capability for modeling multivariate rela-
tionships.

Poor robustness to anomalies with errors increas-
ing exponentially at high anomaly rates; weak fit-
ting capability for complex patterns.

TimesNet Strong capability for modeling multivariate rela-
tionships; outstanding in modeling complex inter-
variable dependencies; performs well in noisy sce-
narios.

Weak in modeling short-range dependencies; per-
forms moderately on some trend signals.

SegRNN Good at modeling short-range dependencies. Poor performance in modeling long-range depen-
dencies; mediocre performance on trend/periodic
signals; limited capability for modeling variable
relationships.

PatchTST Good modeling capability for periodic and trend
signals; strong performance on complex patterns.

Limited capability for modeling cross-variable re-
lationships; poor capability for modeling short-
term dependencies.

iTransformer Comprehensive performance with good results in
modeling some trend/periodic signals, learning
multivariate relationships, and complex patterns.

Poor performance in modeling short-term depen-
dencies.

N-BEATS Strong baseline performance across various pat-
tern types; interpretable decomposition into trend
and seasonality components;stable performance
under noise and anomalies.

Limited capability for multivariate modeling.

N-HiTS Hierarchical architecture enables multi-rate tem-
poral modeling; efficient for long-horizon fore-
casting.

Catastrophic performance under anomalies (worst
among all models); prone to overfitting noise;
struggles with complex multivariate relationships.

CATS Cross-attention mechanism provides good bal-
ance between computational efficiency and per-
formance;

Poor performance in modeling long-range depen-
dencies; relatively mediocre performance in all as-
pects.

Autoformer Decomposition mechanism provides interpretabil-
ity.

Poor performance across most evaluation metrics;
struggles with both simple and complex patterns;
high sensitivity to noise and anomalies.

TimeLLM Potential for leveraging pre-trained language
model knowledge.

Mediocre performance in all aspects; poor at mod-
eling cross-variable dependencies; extremely high
training costs.

and interdependencies. Together, these components enable comprehensive evaluation of time series
forecasting models across diverse temporal patterns, noise conditions, and complexity levels.

C.1 Basic Signals

To establish a foundation for systematically evaluating time series forecasting models, we gener-
ate a comprehensive set of synthetic signals that simulate real-world temporal patterns. Table 16
presents the basic building blocks used in our framework SynTSBench,ategorized into three funda-
mental classes: trend functions, periodic functions, and other signal types. Trend functions simulate
directional movements commonly observed in economic growth, population changes, and technol-
ogy adoption curves. Periodic functions represent cyclical behaviors found in seasonal fluctuations,
biological rhythms, and industrial processes. The third category encompasses stochastic processes

31



and composite signals that capture the complexity of financial markets, sensor readings, and natural
phenomena. By generating controlled combinations of these signals with programmable parame-
ters, we create synthetic datasets that isolate specific temporal features, enabling us to precisely map
model capabilities to pattern types and establish theoretical performance boundaries for rigorous
evaluation.

C.2 Signals with Noise and Anomalies

To systematically evaluate model robustness against common data irregularities, we generated syn-
thetic datasets incorporating controlled noise and anomalies. We selected representative signals from
both trend patterns (linear trend, logistic trend) and periodic patterns (sin0.05, Double-Sin, five-Sin)
as base signals, and applied varying levels of Gaussian noise (30dB, 20dB, 10dB, 0dB, -10dB, and
no noise). This approach enables quantitative assessment of model performance degradation across
the noise spectrum.

Beyond Gaussian noise, we also evaluated model robustness under diverse noise distributions to
comprehensively assess their resilience to different types of disturbances commonly encountered
in real-world scenarios. These include: (1) Uniform noise, representing measurement errors with
bounded uncertainty; (2) Laplace noise, modeling disturbances with heavier tails than Gaussian
noise; (3) t-distribution noise with different degrees of freedom (df=3 for heavy-tailed, df=10 for
moderate-tailed), simulating outlier-prone environments; and (4) Lévy stable distributions with
stability parameters α=1.2 and α=1.8, representing extreme heavy-tailed noise characteristic of fi-
nancial markets and network traffic. These diverse noise types enable evaluation of model perfor-
mance under various realistic noise characteristics beyond the idealized Gaussian assumption.

For anomaly testing, we injected multiple types of irregularities to simulate different real-world
data quality issues. The anomaly types include: (1) Point anomalies (random spikes) at varying
densities (0.5%, 1%, 5%, 10%), representing isolated outliers from sensor malfunctions or data
entry errors; (2) Pulse anomalies (sustained deviations with 1, 3, or 5 pulses), simulating temporary
system disruptions or external interventions; (3) Mean shifts at different magnitudes (shift-1, shift-
3), modeling abrupt changes in baseline levels due to policy changes or market regime shifts; and
(4) Trend shifts at different severities (shift-1, shift-2), representing sudden changes in growth rates
or directional patterns. All anomalies were injected on top of signals with 20dB noise and were
only introduced in the first 80% of each time series, keeping the test portion (last 20%) anomaly-
free. This design enables direct comparison of forecasting performance across different anomaly
severities, revealing each model’s sensitivity to historical anomalies and recovery capabilities. For
visualization examples of these synthetic datasets, refer to Figure 25 for noise levels and Figure 26
for anomaly types. Comprehensive evaluation results across all noise types and anomaly scenarios
are presented in Table 12 and Table 11.

C.3 Datasets with Different Length

For evaluating model performance across varying time series lengths, we generated synthetic
datasets with lengths of 1000, 5000, 10000, and 20000 time steps. We selected six representative
signal patterns: three trend functions (“Linear-Trend”, “Quadratic-Function”, “Exponential-Trend”)
and three periodic functions (“Sin0.005”, “Double-Sin”, “Five-Sin”). Each signal type was gener-
ated with four distinct noise levels (SNR of 20dB, 0dB, -10dB, and no noise) to provide a com-
prehensive evaluation framework. This dataset design enables quantitative analysis of each model’s
ability to handle increasing historical context and their performance scaling properties across differ-
ent temporal patterns and data volumes.
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Table 16: Trend, Periodic, and Other Signals for Time Series Analysis
Function Name Mathematical Formula Time-oriented Scenario & Domain Justifica-

tion
Trend Functions
Linear y = at+ b Constant velocity motion; cumulative costs with

fixed unit price.
Quadratic y = at2 + bt+ c Position under constant acceleration (s = v0t +

1
2at

2); cumulative production cost with accelerat-
ing learning.

Exponential y = aebt Compound interest, inflation, early epidemic
spread (SIR : I(t) ≈ ebt); capacitor discharge
i(t) = I0e

−t/RC .
Logarithmic y = a ln(t) + b Wright learning curve; software bug-discovery

rate decay; Weber-Fechner perception law.

Logistic y =
L

1 + e−k(t−t0)
Resource-limited growth: new-product adoption,
biological populations, rumor spreading.

Gompertz y = ae−be−kt

Longitudinal tumor volume growth; actuarial
mortality curves; technology-substitution satura-
tion.

Power Law y = atb DLA cluster radius r(t) ∝ t1/d; Heaps law in
evolving networks nu ∝ tb; Omori-Utsu after-
shock decay n(t) ∝ t−p.

Step Function y =

{
c t < t0
d t ≥ t0

Tick-level price jumps; control-system set-point
changes; AWS Step Functions state transitions.

Piecewise Linear y =


a1t+ b1 t < t1
a2t+ b2 t1 ≤ t < t2
. . . . . .

Net-load ”duck curve” in daily power systems;
macroeconomic regime shifts; CPU utilization un-
der load.

Gaussian y = ae−
(t−t0)2

2σ2 Product life-cycle peak (Bass diffusion density);
one-off promotional shocks.

Periodic Functions
Sine Wave y = A sin(2πft+ ϕ) Models smooth cyclic phenomena like ocean

tides, seasonal temperature variations, or sound
wave pressure.

Triangle Wave y = 2A
π arcsin(sin(2πft)) Models linear charging/discharging cycles in elec-

tronics, or simplified vibrations in mechanical sys-
tems.

Square Wave y = A · sgn(sin(2πft)) Models on-off switching patterns like digital sig-
nals, heartbeats, machinery with two distinct
states, or control systems with binary outputs.

Sawtooth Wave y = 2A(t/T − ⌊t/T + 1/2⌋) Models rapid return phenomena such as voltage
in electrical circuits with capacitors, ramp genera-
tors, or instrument sounds like brass.

Composite Sine y =
∑n

i=1 Ai sin(2πfit+ ϕi) Models complex periodic phenomena like musical
tones with harmonics, combined seasonal effects,
or multiple overlapping business cycles.

Exponential Sine y = esin(t) Models amplitude-modulated oscillations in sig-
nals, or periodic systems with exponentially vary-
ing intensity.

Other Signals
ARMA Signal xt = µ +

∑p
i=1 ϕixt−i +∑q

j=1 θjϵt−j + ϵt

Models systems with memory and feedback, such
as financial returns, temperature fluctuations, or
industrial production.

Random Walk xt = xt−1 + ϵt Models unpredictable accumulating processes like
stock prices, exchange rates, or particle move-
ments.

White Noise xt = ϵt, ϵt ∼ N(0, σ2) Models purely random fluctuations like measure-
ment errors, static in communication, or thermal
noise in electronics.

Composite Signal xt =
∑n

i=1 αixi(t) Models real-world complex systems combining
multiple patterns, such as economic indicators
with trends, seasonality and noise.
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Figure 25: Sine wave signal with progressive noise levels. From top to bottom: clean signal, 30dB,
20dB, 10dB, 0dB, and -10dB SNR. Higher SNR values indicate less noise, while negative SNR
values represent cases where noise dominates the signal.
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Figure 26: Logistic trend signals with various anomaly types. Top row shows point anomalies at 1%
and 5% densities, middle row shows point anomalies at 10% and a single pulse anomaly, bottom
row shows multiple pulse anomalies (3 and 5 pulses).
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C.4 Complex Univariate Datasets

To comprehensively evaluate model performance on complex time series patterns, we generated syn-
thetic datasets that combine multiple basic signals to simulate complex temporal behaviors found
in various domains. These composite signals capture key characteristics of real-world time series
while maintaining fully controlled generation processes, enabling precise evaluation of model per-
formance across diverse pattern types.

For example, our stock price simulator combines five essential components: (1) a slow exponential
trend representing long-term market growth, (2) overlapping sine waves with different frequencies
simulating market cycles, (3) higher-frequency seasonal patterns, (4) a random walk component
capturing market noise according to the efficient market hypothesis, and (5) volatility clusters us-
ing GARCH-like behavior to model periods of market stress. Similarly, our temperature sensor
simulation combines annual and daily periodic patterns with varying amplitudes, a gradual trend
component, and realistic noise.

Other simulated patterns include electricity consumption with daily, weekly, and seasonal compo-
nents; industrial sensor readings with degradation patterns; network traffic with diurnal and weekly
patterns plus random bursts; retail sales with multiple seasonal effects; and economic indicators
with trend-cycle-noise components. Each pattern type incorporates domain-specific characteristics
essential for realistic forecasting challenges. Figure 27 provides visualization examples of these syn-
thesized time series, demonstrating their diversity and complexity. The complete generation details
are available in our open-source codebase.

C.5 Complex Multivariate Datasets

We generated a diverse set of multivariate time series datasets to evaluate model performance on
realistic and interdependent temporal patterns. These datasets include both classical dynamic sys-
tems and synthetic scenarios with explicit causal relationships. For example, we used differential
equation models such as the Lotka-Volterra equations (predator-prey dynamics) and the SIR epi-
demic model to create time series where variables interact according to well-defined mathematical
laws. Additionally, we constructed datasets with clear causal structures, such as the Weather-Sales
dataset (where temperature and rainfall influence ice cream, umbrella, and beverage sales), as well as
scenarios modeling advertising-sales effects, macroeconomic indicators, supply-demand-price inter-
actions, and intervention effects. The relationships among variables in these datasets are designed to
reflect real-world dependencies, such as weather driving consumer behavior or supply and demand
jointly determining prices. Figures 28 to 30 illustrate some representative examples, while many
more multivariate datasets and their generation details can be found in our open-source codebase.
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Figure 27: Examples of complex univariate time series generated by combining multiple basic signal
patterns.

Figure 28: Weather-Sales dataset showing relationships between weather variables (temperature,
rainfall) and consumer purchases (ice cream sales, umbrella sales, beverage sales).
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Figure 29: SIR epidemic model simulation showing the progression of an outbreak through Suscep-
tible (blue), Infected (orange), and Recovered (green) populations over time.

Figure 30: Lotka-Volterra predator-prey model demonstrating the cyclical relationship between prey
(blue) and predator (orange) populations, where changes in one population affect the other with a
time delay.
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D Experiment Details

D.1 Experiment Parameters

Our experiments were conducted on high-performance computing infrastructure consisting of four
NVIDIA A800-SXM GPUs, each with approximately 79.3 GB (81251 MiB) of memory, running
CUDA version 12.4. For dataset partitioning, we employed different strategies based on model
types: deep learning models used a 7:1:2 ratio for training, validation, and testing sets respectively,
while traditional models used an 8:2 split for training and validation. All evaluations employed a
sliding window prediction approach with a stride of 1, where traditional models utilized the entire
historical data available prior to the prediction point.

Table 17 presents the detailed experimental configuration across different evaluation scenar-
ios, including input window sizes, forecast horizons, and dataset lengths used for each ex-
periment type. Table 18 details the hyperparameter configurations for each full-shot model.
For zero-shot forecasting models, we used the following model variants: chronos-bolt-base,
TimeMoE-200M, and Moirai-small. These models were loaded using the official implementations
from their respective GitHub repositories: Chronos (https://github.com/amazon-science/
chronos-forecasting), TimeMoE (https://github.com/Time-MoE/Time-MoE), and Moirai
(https://github.com/SalesforceAIResearch/uni2ts).

Table 17: Experiment Parameters for Different Dataset Parts. Note: “Original Scale Evaluation”
indicates whether evaluation metrics were calculated after inverting normalized values back to their
original scale (Yes) or directly on the normalized values (No).

Experiment Type Input Window Forecast Horizons Dataset Length Original Scale Evaluation Running Time (hours)
Temporal Pattern Learning (Trend Period Testing) 96 24, 48, 96, 192 5000 No 30
Robustness Against Noise & Anomalies 96 96 5000 No 20
Short/Long-range Dependencies 96 10 5000 Yes 50
Cross-Variable Learning 96 96 5000 No 3
Dataset Scale Sensitivity 96 96 1000, 5000, 10000, 20000 No 40
Complex Real-World Pattern Simulation 96 96 5000 No 10
Zero-shot Model Testing 512 96 5000 No 3

Table 18: Hyperparameter Settings for Time Series Models
Model Architecture Parameters d model d ff learning rate training epoch Other Parameters
TimeKAN e layers=2 16 32 0.01 30 down sampling layers=2, down sampling window=2, begin order=0
TimeMixer e layers=2 16 32 0.01 30 down sampling layers=2, down sampling method=“avg”, down sampling window=2
TimesNet e layers=2 16 32 0.001 30 top k=5, num kernels=6
TSMixer e layers=2 512 2048 0.001 30 factor=3
SegRNN seg len=2 512 - 0.0001 30 -
PatchTST e layers=3 512 2048 0.0001 30 patch len=16, n heads=4, factor=3
iTransformer e layers=3 512 512 0.0005 30 n heads=8, factor=3
DLinear - - - 0.01 30 label len=10, moving avg=25
Autoformer e layers=2, d layers=1 512 2048 0.001 30 label len=10, factor=3, moving avg=25, n heads=8
PaiFilter - - - 0.01 30 hidden size=256
TexFilter - - - 0.001 30 embed size=512, hidden size=512
TimeLLM llm layers=32 32 128 0.01 5 patch len=16, stride=8, label len=10, factor=3, n heads=8
CATS d layers=3 256 512 0.01 30 patch len=48, stride=48, n heads=32, QAM start=0.1, QAM end=0.2
N-BEATS n blocks=[3,3,3] - - 0.001 30 stack types=[“seasonality”, “trend”, “identity”], mlp units=[[512,512],[512,512],[512,512]], n harmonics=10
N-HiTS n blocks=[1,1,1] - - 0.001 max steps=1500 stack types=[“identity”, “identity”, “identity”], mlp units=[[512,512],[512,512],[512,512]]
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D.2 Evaluation Framework

D.2.1 Evaluation Metrics

Mean Absolute Error (MAE) The Mean Absolute Error (MAE) quantifies the average absolute
deviation between the predicted values and the actual values. It treats all errors with equal weight
regardless of their magnitude, making it robust to outliers. MAE is particularly useful when the cost
of errors increases linearly with their size. Its mathematical formula is given by:

MAE =
1

n

n∑
t=1

|yt − ŷt| (3)

where yt represents the actual value at time t, ŷt represents the predicted value at time t, and n is
the total number of observations.

Mean Squared Error (MSE) The Mean Squared Error (MSE) measures the average of the squares
of the errors between predicted and actual values. By squaring the errors before averaging, MSE
penalizes larger errors more heavily than smaller ones, making it especially sensitive to outliers. It
is widely used when large errors are particularly undesirable. The mathematical representation is:

MSE =
1

n

n∑
t=1

(yt − ŷt)
2 (4)

Root Mean Squared Error (RMSE) The Root Mean Squared Error (RMSE) is the square root of
MSE, bringing the error metric back to the same unit as the original data. This makes RMSE more
interpretable than MSE while still maintaining the property of penalizing large errors more heavily.
RMSE is commonly used in regression problems and time series forecasting. It can be calculated
as:

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)
2 (5)

Mean Absolute Percentage Error (MAPE) The Mean Absolute Percentage Error (MAPE) ex-
presses the prediction error as a percentage of the actual value, providing a scale-independent mea-
sure of accuracy. This makes it useful for comparing forecast performance across different datasets
with varying scales. However, MAPE is undefined for zero values and can give misleadingly high
errors for small actual values. Its formula is:

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣× 100% (6)

Symmetric Mean Absolute Percentage Error (SMAPE) The Symmetric Mean Absolute Percent-
age Error (SMAPE) is a modified version of MAPE that addresses some of its limitations. By using
the average of actual and predicted values in the denominator, SMAPE avoids division by zero and
provides a more balanced measure that’s bounded between 0% and 100%. It treats positive and
negative errors symmetrically, making it suitable for evaluations where both over-forecasting and
under-forecasting are equally important. The formula is:

SMAPE =
100%

n

n∑
t=1

|yt − ŷt|
|yt|+|ŷt|

2

(7)

D.2.2 Theoretical Performance Boundaries

One significant advantage of using synthetic datasets is that we can precisely determine the theoret-
ical optimal prediction for each time series type. In real-world datasets, the underlying data gener-
ation process is typically unknown, making it impossible to establish true performance boundaries.
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With our synthetic approach, we can separate each time series into its predictable and unpredictable
components, allowing us to calculate the theoretical minimum error achievable by any forecasting
model.

Core Logic Our calculation of the theoretical optimum is based on time series decomposition:

Time Series = Predictable Part + Unpredictable Part (8)

This represents the performance limit of an ideal model that has full knowledge of the Data Gen-
erating Process (DGP). The Predictable Part consists of deterministic functions (e.g., trend, sea-
sonality), which an ideal model can perfectly predict. The Unpredictable Part is generated by
stochastic processes (e.g., white noise, random walk), for which the best forecast is its mathematical
expectation.

Therefore, our Theoretical Optimal Forecast is defined as:

Optimal Forecast(t+ h) = Predictable Part(t+ h) + E[Unpredictable Part(t+ h)] (9)

The error between this forecast and the actual value, which includes the stochastic components,
stems entirely from the unavoidable randomness we designed into the data. This provides a reliable
theoretical lower bound for model performance. Specifically:

• For white noise ϵ(t) ∼ N (0, σ2): The expectation is 0, so E[ϵ(t+ h)] = 0.

• For random walk p(t) = p(t−1)+ϵ(t): The best forecast for the future is the last observed
value p(t). In this context, the unpredictable component is the actual future realization of
ϵ(t+ h), whose expectation is 0.

• For ARMA processes: The optimal forecast comes from the correctly specified ARMA
model with true parameters, which captures all predictable temporal dependencies through
E[Xt+h|Xt, Xt−1, . . .].

Trend and Periodic Datasets For trend and periodic datasets without noise, the time series are
generated by deterministic mathematical functions without any stochastic components. Since these
patterns are entirely predictable given sufficient historical data, the theoretical optimal MSE and
MAE values are exactly zero. This provides a clear benchmark against which to measure model
performance on pure pattern learning.

Stochastic Processes For stochastic processes, the optimal prediction strategy depends on the
specific process characteristics:

• For random walk processes, the optimal prediction is the naive forecast (i.e., ŷt+1 = yt),
since by definition yt+1 = yt + ϵt where ϵt is unpredictable noise. Therefore, the optimal
MSE/MAE is calculated using the naive forecasting method.

• For white noise processes, the optimal prediction is the mean of the process (assuming prior
knowledge that the series is white noise but without knowing its mean), as each observation
is independent of previous values.

• For ARMA processes, the optimal prediction comes from the correctly specified ARMA
model with the true parameter values used in data generation, as this captures all predictable
temporal dependencies.

Datasets with Noise For datasets with added noise, we know both the observed values and the
true underlying signal. The optimal prediction is based on the true signal component without noise.
The optimal MSE/MAE is calculated by comparing this true signal with the observed values, repre-
senting the theoretical minimum error achievable in the presence of observation noise.

Complex Time Series Datasets For complex time series like Network-Traffic or Stock-Price that
combine multiple components (trend, seasonality, event-driven spikes, and noise), we identify which
components are theoretically predictable from historical data (typically trend and seasonality) and
which are not (random events and noise). The optimal prediction includes only the predictable
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components, and the optimal MSE/MAE is calculated by comparing these predictable components
with the full observed series.

To ensure fair comparison, all optimal calculations are performed using the same multi-step forecast
horizons as those used by the deep learning models in our experiments. This approach allows us to
quantify precisely how close each forecasting model comes to the theoretical performance ceiling
for each type of time series pattern.

E Models Forecasting Visualization

In this subsection, we provide visual comparisons of model forecasting performance across a diverse
range of time series patterns. Figure 31 to Figure 34 show the prediction results of various forecast-
ing models on representative datasets. We visualize model behavior on fundamental trend patterns
(linear and exponential trends in Figure 31), periodic signals (Square-Wave and Triple-Sin patterns
in Figure 32), and the impact of varying noise levels on both periodic and trend patterns (Double-Sin
and Linear-Trend in Figure 35 and Figure 36). Additionally, we showcase forecasting capabilities
on time series with temporal dependency characteristics (ARMA(1,1) process and Random Walk in
Figure 33) and on more complex simulated real-world patterns (Network Traffic and Temperature
Sensor data in Figure 34). These visualizations complement our quantitative analyses by providing
intuitive representations of how different architectures handle various temporal patterns.

Figure 31: Comparison of model predictions for different trend patterns. The left panels show
predictions for linear trend, while the right panels show predictions for exponential trend. Each
subplot represents a different model’s prediction (red dashed line) compared to ground truth (blue
solid line) and input window (green solid line).

F Limitations

While our synthetic benchmark framework offers valuable insights into model capabilities, sev-
eral limitations should be acknowledged. First, our generated time series, despite their complexity,
may not fully capture the intricacies of real-world data where multiple factors interact through so-
phisticated, non-linear mechanisms rather than simple superposition of components. Second, our
current framework does not address time-varying patterns where the underlying dynamics evolve
over time—a common characteristic in many real-world systems that we plan to explore in future
work. Third, due to computational constraints, we conducted all experiments with a fixed input
window size of 96 time steps, which, although standard in the field, limits our understanding of how
different temporal contexts might affect model performance.
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Figure 32: Comparison of model predictions for different periodic patterns. The left panels show
predictions for Square-Wave patterns, while the right panels show predictions for Triple-Sin patterns.
Each subplot represents a different model’s prediction (red dashed line) compared to ground truth
(blue solid line) and input window (green solid line).

(a) ARMA(1,1) Process (b) Random Walk Process

Figure 33: Model forecasting comparison on time series with temporal dependency characteristics.
Left panels show predictions for ARMA(1,1) process with autocorrelation; right panels show pre-
dictions for Random Walk pattern commonly observed in financial data. Each subplot displays a
model’s prediction (red dashed line) against the ground truth (blue solid line) with the input window
(green solid line).

(a) Network Traffic (b) Temperature Sensor

Figure 34: Model forecasting performance on simulated real-world time series data. Left panels
show predictions for Network Traffic; right panels show predictions for Temperature Sensor. Each
subplot displays a model’s prediction (red dashed line) against the ground truth (blue solid line) with
the input window (green solid line).
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Figure 35: Comparison of model predictions under different noise levels for all models (Double-
Sin). Blue lines represent model predictions, green lines show the true underlying signal, and yellow
dashed lines represent the noisy observations.
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Figure 36: Comparison of model predictions under different noise levels for all models (Linear-
Trend). Blue lines represent model predictions, green lines show the true underlying signal, and
yellow dashed lines represent the noisy observations.
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