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ABSTRACT

In this paper, we aim to enhance self-supervised learning by leveraging Bayesian
techniques to capture the full posterior distribution over representations instead
of relying on maximum a posteriori (MAP) estimates. Our primary objec-
tive is to demonstrate how a rich posterior distribution can improve perfor-
mance, calibration, and robustness in downstream tasks. We introduce a practi-
cal Bayesian self-supervised learning method using Cyclical Stochastic Gradient
Hamiltonian Monte Carlo (cSGHMC). By placing a prior over the parameters of
the self-supervised model and employing cSGHMC, we approximate the high-
dimensional, multimodal posterior distribution over the embeddings. This explo-
ration of the posterior distribution yields interpretable and diverse representations.
By marginalizing over these representations in downstream tasks, we gain signif-
icant improvements in predictive performance, calibration and out-of-distribution
detection. We validate our method across various datasets, demonstrating the prac-
tical benefits of capturing the full posterior in Bayesian self-supervised learning.

1 INTRODUCTION

Figure 1: Illustration of our probabilistic self-
supervised learning approach. We fit a prior over
the parameters of the online network Fθ, per-
form Bayesian optimization instead of MAP es-
timation, capture the posterior over embeddings,
and marginalize over embeddings in downstream
tasks.

Self-supervised learning is a learning strategy
where the data themselves provide the labels
(Jing & Tian, 2020). The aim of self-supervised
learning is to learn useful representations of the
input data without relying on human annota-
tions (Zbontar et al., 2021). Since they do not
rely on annotated data, they have been used as
an essential step in many areas such as natu-
ral language processing, computer vision and
biomedicine (Jospin et al., 2022), where the
data annotation is time-consuming and expen-
sive. Despite the notable advancements made in
recent years, self-supervised models are often
trained using stochastic optimization methods
which estimate the distribution over parameters
as a point mass, ignoring the inherent uncer-
tainty present in the parameter space. Remark-
ably, if the regularizer imposed on the model
parameters is viewed as the log of a prior on
the distribution of the parameters, optimizing
the cost function may be viewed as a maximum
a-posteriori (MAP) estimate of model parameters (Li et al., 2016b). Bayesian methods provide prin-
cipled alternatives that model the whole posterior over the parameters and effectively account for
the inherent uncertainty in the parameter space (Zhang et al., 2020). While the benefits of Bayesian
methods and modeling uncertainty have been extensively explored in supervised learning (Li et al.,
2016a; Maddox et al., 2019; Wilson & Izmailov, 2020), their potential advantages in self-supervised
learning remain largely unexplored.
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Indeed the posterior distribution over the parameters of a self-supervised learning model may be
multimodal and thus insufficiently represented by a single point estimate. Each mode in the poste-
rior can provide a meaningful different representation of data. By exploring the posterior distribution
over the parameters instead of relying on point mass, our aim is to enhance performance and general-
izability in downstream tasks. Additionally, it enables the estimation of uncertainties associated with
predictions in downstream task, which holds significant value in numerous critical decision-making
systems. In this paper, we address these challenges by introducing a novel approach that explores
the posterior distribution over representations, offering a more robust framework for self-supervised
learning. Our contributions are as follows:

• We propose a novel Bayesian formulation for self-supervised learning that surpasses the
limitations of MAP estimation by approximating the full posterior distribution over repre-
sentations.

• Our probabilistic approach uses cSGHMC, a family of Markov Chain Monte Carlo
(MCMC) methods, to effectively capture multimodality in the posterior, enabling explo-
ration of a diverse representation space and avoiding convergence to narrow, indistinguish-
able samples.

• We provide a rigorous empirical analysis to validate the effectiveness of our sampling-based
approach. Our results demonstrate the potential of Bayesian learning, improving predictive
performance, generalizability, and calibration in various downstream tasks. Specifically,
we demonstrate the advantage of our method over deterministic approaches in tasks such
as semi-supervised learning, transfer learning, and out-of-distribution detection.

2 RELATED WORKS

This work closely aligns with two lines of research: Bayesian inference and self-supervised learning.

Bayesian Inference Bayesian Deep Learning, emerging from Bayesian Neural Networks (Denker
& LeCun, 1990; Neal, 1996), offers an alternative to point estimation by capturing model uncer-
tainty. Sampling the posterior distribution presents challenges, leading to approximation methods.
MCMC algorithms are popular for accurate posterior sampling, while variational inference (VI)
learns an approximate posterior. Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC)
methods (Welling & Teh, 2011; Chen et al., 2014; Ma et al., 2015)) combine MCMC with mini-
batching, enabling scalable inference. Cyclical Stochastic Gradient MCMC (cSG-MCMC) (Zhang
et al., 2020) specifically addresses the exploration of highly multimodal parameter spaces within
realistic computational budgets.

Self Supervised Learning Self-supervised learning is key to extracting representations from vast
unlabeled data, enhancing downstream task performance (Von Kügelgen et al., 2021). Among the
promising approaches in self-supervised learning, contrastive methods (Chen et al., 2020) stand out.
They learn representations by maximizing the similarity between embeddings of distorted images
(Zbontar et al., 2021). A challenge in similarity learning is feature collapse, where features con-
verge to a single point. Techniques like negative sampling in SimCLR (Chen et al., 2020) and stop
gradients in BYOL (Grill et al., 2020) help prevent this collapse.

Pre-Trained Models as Bayesian Priors Previous works have modeled pretrained representations
as Bayesian priors optimal for downstream tasks. Gao et al. (2022) use reference priors to compute
uninformative priors via mutual information. Shwartz-Ziv et al. (2022) propose a variational ap-
proach to construct an informative prior. Our approach differs by sampling the full posterior rather
than relying on a variational approximation, which risks overlay representation. We also employ
a simple representation for the posterior, yielding effective results across tasks while improving
uncertainty estimation.

3 PROBLEM STATEMENT

Given a dataset D, a self-supervised learning model Fθ parameterized by θ, aims to produce a rep-
resentation Zθ by solving a predefined proxy task. In this paper, we wish to learn a distribution over
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the embeddings Zθ by placing a prior over the parameters θ and adopting Bayesian learning instead
of relying on MAP estimation. Our method is illustrated in Fig. 1. To learn the representations, we
use BYOL, a state-of-the-art contrastive learning method that eliminates the need for negative sam-
ples and demonstrates robustness to changes in batch size and data augmentations. However, this
choice does not limit our probabilistic approach, which can extend seamlessly to other contrastive
learning methods. In order to capture the distribution over the embeddings, we utilize cSGHMC. In
the following sections, we first provide a description of the self-supervised learning model employed
for representation learning. Then, we describe cSGHMC and demonstrate how it enables obtaining
a distribution over the embeddings.

3.1 SELF SUPERVISED LEARNING

Contrastive learning aims to learn representations by contrasting two augmented views of an image.
BYOL achieves this by minimizing a contrastive loss between an online network Fθ (parameterized
by θ) and target network Fξ (parameterized by ξ). The online network consists of three components,
an encoder ϕ(.) (e.g., Resnet-18), a projection head g(.) (e.g., a Multi-Layer Perceptron (MLP)) and
a prediction head f(.) (e.g., an MLP). The target network is similar but lacks the prediction head.
These two networks interact and learn from each other. The online network is trained to predict
the representation of the target network, which is extracted from the same image under a different
augmented view. The target network is updated using a slow-moving average of the online net-
work, acting as a regularization mechanism and eliminating the need for negative samples, thereby
preventing collapsed representations (Von Kügelgen et al., 2021). Moreover, this enhances BYOL’s
robustness to image augmentations and batch size changes compared to methods like SimCLR (Grill
et al., 2020).

Formally, for a given mini-batch X = {xi}Ni=1 sampled from a dataset D, BYOL produces two
distorted views, t(X) and t′(X), via a distribution of data augmentations T . These two batches of
distorted views are then fed into the online network and the target network, respectively, resulting
in batches of embeddings, Zθ and Zξ. The embeddings are subsequently transformed into Yθ and
Yξ using the projection heads gθ and gξ. The online network then outputs a prediction fθ(Yθ)
of Yξ employing the prediction head fθ. Finally, the mean squared error between the normalized
predictions fθ(Yθ) and target projections Yξ is defined as: Lθ,ξ = ∥fθ(Yθ)−Yξ∥2. L̃θ,ξ is computed
by separately feeding t′(X) to the online network Fθ and t(X) to the target network Fξ. It is worth
noting that Lθ,ξ and L̃θ,ξ are the same, the only distinction lies in the views fed to the target and
online networks, which are swapped. Then, at each training step, a stochastic optimization step is
performed to minimize LBYOL

θ,ξ = Lθ,ξ + L̃θ,ξ, where the gradient is taken only with respect to θ and
not ξ1. So, during training only the parameters θ of the online network Fθ are updated as follows:

θ ← optimizer(θ,∇θLBYOL
θ,ξ ). (1)

The weights ξ are an exponential moving average of the online network’s parameters θ with a target
decay rate τ ∈ [0, 1]: ξ ← τξ + (1 − τ)θ. At the end of training, the projection head gθ(.) and the
prediction head fθ(.) are dropped and the encoder ϕθ(.) is used for the downstream task.

3.2 POSTERIOR SAMPLING USING CSGHMC

In the Bayesian paradigm, for a given dataset D = {xi}ni=1 and a θ-parameterized model, the
posterior distribution over θ is computed using Bayes’ rule as: p(θ|D) ∝ p(D|θ)p(θ), where p(θ)
is a prior assigned to the parameters θ and p(D|θ) is the likelihood.

In MAP optimization, the prior has the role of a regularizer and the likelihood has the role of a cost
function. An optimizer is optimized to find the MAP solution which is amenable to the parameter
update:

∆θ = − ℓ

2

(
n

N

N∑
i=1

∇θ log p(xi|θ) +∇θ log p(θ)

)
, (2)

for a given randomly sampled mini-batch X = {xi}Ni=1 ⊂ D and learning rate ℓ.

1It was depicted by stop-gradient in Fig.1
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In contrast to MAP optimization, in the Bayesian paradigm the model explores the distribution
over the model parameters. Welling & Teh (2011) showed that this distribution can be approximated
using Stochastic Gradient Langevin Dynamics (SGLD) by injecting Gaussian noise to the parameter
updates of SGD so that they do not collapse to just the MAP solution. This leads to the following
parameter update:

∆θ = − ℓ

2

(
n

N

N∑
i=1

∇θ log p(xi|θ) +∇θ log p(θ)

)
+
√
ℓϵ, ϵ ∼ N (0, I). (3)

Note that whenD is too large, it is too expensive to evaluate the log posterior U(θ) := log p(D|θ)+
log p(θ), for all the data points at each iteration. Hence, SG-MCMC methods use a mini-batch gra-
dient to approximate ∇θU(θ) with an unbiased estimate ∇θU(θ) ≈ n∇θŨ(θ), where ∇θŨ(θ) :=
1
N

∑N
i=1∇θ log p(xi|θ) + 1

n∇θ log p(θ). In particular, the log prior scales with the dataset size at
each iteration. SGHMC (Chen et al., 2014) is an improved counterpart of SGLD which introduces
a momentum variable m. The posterior sampling is done using the following update rule:

m = βm− ℓ

2
n∇θŨ(θ) +

√
(1− β)ℓϵ; ϵ ∼ N (0, I)

θ = θ +m, (4)

where β is the momentum term. The convergence to the true posterior is ensured by equation 3 and
equation 4, given that learning rate ℓ follows the Robbins-Monro conditions and decays towards zero
(Welling & Teh, 2011). Recently, cSG-MCMC was proposed, which adopts a cyclical learning rate
schedule defined by cycles of iterations with a high-to-low learning rate and ensures the effective
capture of multimodal posterior distribution. The method consists of two stages: The exploration
stage, where a large learning rate at the beginning of each cycle encourages the sampler to take large
steps, enabling it to escape local modes via stochastic gradients, and the sampling stage, where a
small learning rate at the end of each cycle allows the sampler to explore individual local modes. In
this paper we apply cSGHMC to take samples from the posterior distribution.

4 POSTERIOR OVER REPRESENTATIONS

To infer a posterior over the embeddings, we place a prior p(θ) over the parameters θ of the online
network Fθ as depicted in Fig. 1. By placing a distribution over θ, we induce a distribution over
an infinite space of online networks Fθ. This, in turn, results in a distribution over embeddings Zθ.
Sampling from this distribution corresponds to sampling from the following conditional posterior:

p(θ|X) ∝ p(X|θ)p(θ), (5)

where X is a mini-batch. Equation 5 can be interpreted intuitively as follows: We sample weights
θ from the prior p(θ). By conditioning on this sample of weights, we construct a specific online
network Fθ. This network is then utilized to generate an embedding Zθ for the mini-batch X . In
the following, we describe how we use cSGHMC to sample from the posterior p(θ|X) over the
representations.

Prior and Likelihood. To perform Bayesian approximation over embeddings, we place an
isotropic Gaussian prior p(θ) = N (0, I) on the parameters θ of the online network Fθ, which is
implemented through weight decay. Then for a mini-batch X = {xi}Ni=1 we compute the mini-
batch average gradient of Ũ(θ), expressed as ∇θŨ(θ) := 1

N

∑N
i=1∇θ log p(xi|θ) + 1

n∇θ log p(θ),
where the likelihood p(xi|θ) is the loss function similar to that used in BYOL, defined as:

li(θ) =
∥∥fθ(yi1)− y′i1

∥∥2 + ∥∥fθ(yi2)− y′i2
∥∥2 , (6)

with yik, y
′
ik representing the online and target projections for i-th input sample xi, respectively.

Specifically, we define: yi1 = gθ(ϕθ(t(xi))), yi2 = gθ(ϕθ(t
′(xi))), y′i1 = gξ(ϕξ(t

′(xi))), y′i2 =
gξ(ϕξ(t(xi))) where t, t′ ∼ T . Then, we compute the following regularized loss function over a
mini-batch X:

J (θ) = 1

N

N∑
i=1

li(θ) +
1

2n
∥θ∥2, (7)
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(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-10

(d) CIFAR-10 (e) CIFAR-100 (f) ImageNet-10

Figure 2: Performance comparison. First row indicates improvement in accuracy. The second row
indicates improvement in calibration. Bayesian approaches outperform all other baselines in terms
of both accuracy and calibration.

and update the parameters θ of the online network according to the rule outlined in equation 4.
A precise description of our proposed method for sampling from the posterior distribution over
embeddings Zθ is outlined in Algorithm 1 in Appendix A. The algorithm generates samples from the
posterior over the parameters θ of the online network Fθ. This yields a distribution over embeddings
Zθ, as we compute the gradients of the loss with respect to the sampled parameters θ.

Contrastive Learning and Cross Entropy Zimmermann et al. (2021) analyzed the link between
contrastive learning and identifiability, showing that contrastive learning inverts the data-generating
process. They demonstrated that the InfoNCE loss family corresponds to the cross-entropy between
the ground-truth and inferred latent distributions. This suggests that the BYOL loss in equation 6
can also be interpreted as a cross-entropy loss, providing a valid likelihood. By incorporating a
prior over the online network and using cSGHMC with the update rule from equation 4, we can
efficiently sample from the posterior distribution over embeddings. To ensure valid samples, we only
draw posterior samples after the model stabilizes, minimizing parameter updates. At this stage, the
online network’s parameters remain stationary, ensuring the samples accurately reflect the converged
posterior.

Practical Considerations Wenzel et al. (2020) showed that tempering the posterior: p(θ|D) ∝
exp(−U(θ)/T ), where T < 1 is the temperature, improves performance for Bayesian inference.
In our work, we also adopt a cold posterior approach, selecting T via tuning on validation set (see
Appendix C.1 for details). Following Zhang et al. (2020), we carefully chose the epoch at which
Gaussian noise is injected to update parameters (referred to as epoch-noise in Algorithm 1), such
that it maintains a balance between the exploration and sampling stages. Additionally, we address
computational constraints, including sampling cost, efficiency, and memory overhead, discussed in
Appendix B.

Our proposed probabilistic approach extends the principles of MAP optimization into a Bayesian
framework, offering the added benefit of uncertainty estimation. In fact, by performing MAP opti-
mization using SGD instead of posterior sampling, one approximates the entire posterior distribution
over θ with a single point estimate, thus disregarding the richness of the full posterior.

Marginalizing over Representations: After completing the pre-training phase, we proceed to
marginalize the posterior distribution over θ for downstream tasks. To compute the predictive dis-
tribution for a new instance x we use a model average over all collected samples with respect to
the posterior over θ: p(y|x,D) =

∫
p(y|x, θ)p(θ|D)dθ. Solving this integral is intractable. Instead,

we approximate it using Monte Carlo approximation, given by: p(y|x,D) ≈ 1
S

∑S
s=1 p(y|x, θs),

5
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where θs, s = 1, . . . , S, is sampled from p(θ|D). We observe that this model average signifi-
cantly enhances performance, calibration, and out-of-distribution detection in downstream tasks. In
addition, by obtaining samples from the posterior, the uncertainty for a new instance x in a down-
stream task can be computed. In a multi-class classification setting with C classes, this is given by:
H(y|x,D) = −

∑
c∈C p(y = c|x,D) log p(y = c|x,D).

5 EXPERIMENTS

In this section, we present the experimental results, evaluating the performance and efficiency of the
proposed method across several tasks, including semi-supervised learning and out-of-distribution
detection. We implemented our code in PyTorch (Paszke et al., 2017), and the code is available
at: https://github.com/Mjavan/PSelf-Supervised.

5.1 EXPERIMENTAL SETUP

Datasets For pre-training phase, we pre-train all models on two image datasets STL-10 (Coates
et al., 2011), using its 100,000 unlabeled samples, and Tiny-ImageNet (Le & Yang, 2015), using its
100,000-sample training set. For downstream tasks, we conduct our experiments on four image clas-
sification datasets: CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), STL-10 and ImageNet-10
(Chang et al., 2017). Pre-trained models are fine-tuned on different subsets of the training set from
these datasets and evaluated on the test set. Only, for ImageNet-10, we use the validation set for
evaluation due to the absence of ground-truth labels in the test set.

Implementation Details We adopt ResNet-18 (He et al., 2016) as an encoder for the self-
supervised learning model. Following the original setting of BYOL, we use 2-layer MLPs as the
projection and prediction heads. We apply the standard ResNet without modification on the input
images of original sizes for all datasets which produces a feature vector of size 512 for each sample.
We refer this feature vector as representation or embedding. We use the same set of data augmen-
tations as described in Grill et al. (2020) on both datasets for pre-training, consisting of random
cropping, resizing with a random horizontal flip, followed by a color distortion and a grayscale
conversion.

Evaluation Metrics Two widely-used metrics including Accuracy (ACC), and Negative Log Like-
lihood (NLL) are used to evaluate our method. Higher value of ACC indicates better performance
of the model and lower value of NLL indicates better calibration. NLL is a proper scoring rule and
a popular metric for evaluating predictive uncertainty (Lakshminarayanan et al., 2017).

Baselines In order to demonstrate the effectiveness of our proposed probabilistic approach, re-
ferred to as BBYOL, we conduct a comparative analysis with several methods including: (i) BYOL:
MAP estimation trained with SGD; (ii) BYOL ENS: stochastic optimization ensemble method
trained with SGD, where network parameters are collected every 200 epochs; (iii) SnapBYOL:
MAP estimation trained with SGD and cyclical stepsize schedule; (iv) SnapBYOL ENS: a stochas-
tic optimization ensemble method with a cyclical stepsize schedule, where network parameters are
collected at the end of ecah cycle and (v) EnsembleBYOL: an ensemble of BYOL trained with SGD
from scratch for different random initialization. In the methods mentioned above, when we use only
the last embedding in a downstream task we refer to the model as BYOL, SnapBYOL and BBYOL.
Instead, when we perform marginalization over embeddings, we adopt BYOL ENS, SnapBYOL
ENS and BBYOL ENS. EnsembleBYOL also signifies marginalizing over embeddings.

All models are trained from scratch for 1000 epochs. In BBYOL and SnapBYOL, we collect 1
sample at the end of each cycle for the last 4 cycles resulting in a total of 4 samples. In BYOL, we
take 4 samples on last 200 epochs, maintaining a regular interval of 50 epochs between each sample.
To ensure consistency in the training budget across all methods, we trained EnsembleBYOL by
employing the SGD optimizer with a fixed learning rate for 250 epochs, using four different random
seeds. Other training and baseline hyperparameters are provided in Appendix C.1. The experiments
are carried out on Nvidia A40 48 GB and it takes about 21 gpu-hours on STL-10, and 24 gpu-hours
on Tiny-ImageNet. We repeat experiments for 3 random seeds and report average NLL and ACC
over 3 runs with the standard error from the mean predictor.
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(a) Testing Accuracy (b) Testing NLL (c) Restart Learning Rate

Figure 3: Left (a-b): The effect of ensemble size on the performance of CIFAR-10 and CIFAR-100
in BBYOL ENS as a function of the number of cycles. Adding more embeddings improves accuracy
and calibration. Right (c): The effect of restart learning rate on CIFAR-100. Larger learning rate
improves accuracy.

5.2 IMAGE CLASSIFICATION

5.2.1 SEMI-SUPERVISED LEARNING

In this section we present the evaluation results of proposed method on a semi-supervised image
classification task. In this task, the quality of learned representations is assessed by fine-tuning a
pre-trained model on subsets of original training datasets with labels. We evaluate over a variety
of downstream training set sizes and analyze the obtained gains in performance and calibration.
We follow the semi-supervised protocol in Grill et al. (2020) and provide a detailed description of
hyperparameters in Appendix C.2.

In Fig. 2, we compare the methods outlined above across various dataset sizes in terms of accuracy
and calibration. We observe the followings: (i) BBYOL consistently outperforms BYOL, Snap-
BYOL and Ensemble BYOL by a large margin in both metrics across all datasets. (ii) Marginalizing
over representations in BBYOL ENS improves performance and calibration compared to BBYOL.
Marginalizing is more effective when the downstream task is more difficult for example in CIFAR-
100. (iii) Marginalizing over representations in BYOL ENS and SnapBYOL ENS also improves
performance. It is due to the nature of contrastive loss which induces diversity in the parameter
space. Whenever the loss is not too high, marginalizing over these representations contributes to
enhanced performance. However, even with this improvement, BBYOL ENS still achieves sizable
gains in both performance and calibration over the baselines.

Among above observations, Point (i) is particularly interesting, even if we do not want to use model
averaging over representations due to a higher test-time cost, the last representation in BBYOL
trained using a Bayesian approach has significant better performance in accuracy and calibration
compared to a MAP estimation. In Appendix D.1, we provide additional evaluations with models
pre-trained on Tiny-ImageNet. To further assess the efficacy of our proposed probabilistic approach,
we also conduct experiments using SimCLR (Chen et al., 2020), with results presented in Appendix
D.3. Consistent with our previous findings, the proposed probabilistic self-supervised methods out-
perform their deterministic counterparts across all metrics.

Ensemble Size In some applications, it may be beneficial to vary the size of the ensemble dy-
namically at test time depending on available resources. Fig. 3 (a-b) displays the performance of
BBYOL ENS on CIFAR-10 and CIFAR-100 as the effective ensemble size, is varied. Although en-
sembling more models generally leads to better performance, in most cases we observe substantial
improvements in accuracy and drops in NLL when the second and third models are introduced to the
ensemble. This suggests that only a small number of embeddings are necessary to yield further per-
formance gains in Bayesian model averaging. This implies that Bayesian marginalization provides
particularly compelling results if one is willing to expend a little additional computation.

Restart Learning Rate We then investigate the impact of restart learning rate at the beginning of
each cycle in Fig. 3 (c). The results confirm that ensembles with higher restart learning rates exhibit
superior performance, likely attributed to the substantial perturbation introduced between cycles,
thus enhancing representation diversity.
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5.3 OUT-OF-DISTRIBUTION DETECTION

To further investigate the efficacy of the proposed probabilistic approach compared to
MAP estimation, we explore the out-of-distribution (OOD) detection task (Zhang et al.,
2020). This task involves evaluating a model trained on known data with unseen data,
where we expect a better model to exhibit low probability and maximum entropy, re-
sulting in the mode of the predictive entropy histogram being focused at higher values.

Figure 4: Histogram of the predictive
entropy on test examples from unknown
data (SVHN), as we vary the ensemble
size.

We consider two datasets CIFAR-10 and SVHN (Net-
zer et al., 2011) as OOD datasets. A pre-trained model
on STL-10, is fine-tuned on CIFAR-100 and evaluated
on SVHN and CIFAR-10. Fig. 4 presents the his-
togram of the predictive entropy for SVHN. The his-
togram for CIFAR-10 had the same distribution, so we
just included SVHN. Additionally, we assess the qual-
ity of the predictive uncertainty using two quantitative
metrics, NLL and the area under the receiver operat-
ing characteristic curve (AUROC) (Deng et al., 2009),
a higher value of AUROC indicates a better detector.
We see that the uncertainty estimates from BBYOL and
BBYOL ENS are better than the other methods, as the
mode of histogram focuses at higher values. BYOL
ENS and SnapBYOL ENS also improve uncertainty es-
timate on unseen data compared to BYOL and Snap-
BYOL, respectively, but they still exhibit lower en-
tropy than BBYOL ENS. Moreover, the predictive un-
certainty improves on unseen data, as the ensemble size increases reaching to the highest value in
BBYOL ENS (12), where we take 12 samples from last 4 cycles (3 samples per cycle). It indicates
that the embeddings generated by sampling from the posterior in BBYOL suggest diverse modes,
offering varied characterizations of the training data. When assessing unseen data, each mode yields
distinct predictions, resulting in maximum disagreement and increased entropy. The quantitative
results for NLL and AUROC are summarized in Table 1.

Table 1: OOD detection. BBYOL ENS outperforms baselines across ensemble sizes (in parenthe-
ses). Our results are underlined; with the best in bold. Standard errors for NLL (rounded to two
decimals) were zero

OOD Method NLL ↓ AUROC (%) ↑ OOD Method NLL ↓ AUROC (%) ↑

SVHN
BYOL 2.61 84.1± 1.7

CIFAR-10
BYOL 2.62 84.3± 1.4

SnapBYOL 2.51 91.6± 0.7 SnapBYOL 2.52 90.8± 0.9
BBYOL 2.40 95.3± 0.5 BBYOL 2.41 94.8± 0.6
BYOL ENS (4) 2.38 93.6± 0.4 BYOL ENS (4) 2.38 93.6± 0.3
SnapBYOL ENS (4) 2.35 96.8± 0.1 SnapBYOL ENS (4) 2.35 96.5± 0.0
BBYOL ENS (4) 2.33 98.4± 0.0 BBYOL ENS (4) 2.33 98.2± 0.0
BBYOL ENS (12) 2.31 99.0 BBYOL ENS (12) 2.31 99.0

6 CONCLUSION

In this paper, we introduce a Bayesian approach to representation learning that challenges the lim-
itations of traditional MAP-based solutions. Rather than relying on point estimates, we explore
the full posterior distribution over representations using a powerful SG-MCMC method tailored to
capture multimodal structure. This probabilistic perspective enables richer and more diverse repre-
sentations. Our extensive experiments reveal that sampling from the posterior leads to significant
improvements in accuracy, calibration, and uncertainty estimation across various downstream tasks.
By embracing the complexity of the posterior, our method offers deeper insights into data and en-
hances model robustness and reliability in real-world scenarios. While Bayesian marginalization
introduces negligible computational overhead during inference, it still provides a clear performance
boost.
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A PSEDOCODES

Algorithm 1 Probabilistic Self-Supervised Learning
Input: ℓ0 initial learning rate; β ∈ [0, 1) momentum term; p(θ) = N (0, I) prior over θ; τ ∈ [0, 1] target
decay rate; T ≥ 0 temperature; K number of iterations in one cycle
Output: sequence θ1, θ2, ...

1: for k = 1, 2, . . . do
2: Xk = {xi}Ni=1 // sample a batch of N images
3: for xi ∈ Xk do
4: t ∼ T , t′ ∼ T // sample image augmentations
5: yi1 = gθ(ϕθ(t(xi))) and yi2 = gθ(ϕθ(t

′(xi)))
6: y′

i1 = gξ(ϕξ(t
′(xi))) and y′

i2 = gξ(ϕξ(t(xi)))

7: li(θ) = ∥fθ(yi1)− y′
i1∥2 + ∥fθ(yi2)− y′

i2∥2
8: end for
9: ℓk ← C(k)ℓ0 // update learning rate using cyclic modulation

10: if epoch-noise then
11: ϵk ∼ N (0, I) // sample noise
12: mk ← βmk−1 − ℓk

2
n
N

∑N
i=1∇θlog li(θ)− ℓk

2
∇θ log p(θ) +

√
T (1− β)ℓkϵk

13: else
14: mk ← βmk−1 − ℓk

2
n
N

∑N
i=1∇θ log li(θ)− ℓk

2
∇θ log p(θ)

15: end if
16: θk ← θk−1 +mk // update θk using Equation equation 4
17: ξk ← τξk−1 + (1− τ)θk
18: if k mod K = 0 then
19: yield θk // sample θk at the end of cycle
20: end if
21: end for

B COMPUTATIONAL CONSIDERATIONS

In the pre-training phase, both BBYOL and BBYOL ENS have the same computation time as BYOL
trained with SGD, since samples are drawn during the training of a single network. In terms of mem-
ory overhead, BBYOL introduces only a minimal additional requirement compared to traditional
MAP estimation. As only one sample is taken per cycle, the memory overhead remains negligi-
ble. We store only the posterior sample at the end of each cycle, which requires insignificant extra
memory. Hence, Bayesian optimization does not incur any significant computational cost during
pre-training, apart from this small and manageable memory overhead.

The primary computational overhead occurs during the downstream phase, where both fine-tuning
and prediction costs scale linearly with the number of samples drawn from the posterior. For exam-
ple, if 4 samples are drawn, Bayesian inference incurs approximately 4 times the computational cost
of the traditional MAP method. However, our experiments indicate that even a modest sample size
(3-4) significantly boosts performance and generalization across all metrics compared to the base-
lines, making this approach computationally efficient. Notably, a single posterior sample (without
ensembling) in BBYOL consistently outperforms traditional MAP methods at the same computa-
tional cost. Moreover, BBYOL ENS significantly outperforms deep ensembles as well as BYOL
ENS and SnapBYOL ENS, which have the same train and test-time costs.

C IMPLEMENTATION DETAILS

C.1 PRE-TRAINING

BBYOL We follow the steps outlined in Algorithm 1 for training BBYOL. We use cS-
GHMC (Zhang et al., 2020) with cyclic learning rate schedule of length 50 epochs. In accordance
with Zhang et al. (2020), we adopt normal priorN (0, I) for the parameters of the online network. As
stated in the main paper, scaling the prior with the dataset size is necessary for training cSGHMC,
given that we evaluate it on a minibatch of data. For injecting Gaussian noise, we swapped over
epochs {35, 40, 45} and select epoch 40. For the initial learning rate we swapped over {0.1, 0.2, 0.3}

11
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and set the initial learning rate to 0.2. The batch size is set to 256 and we use momentum term of 0.9.
As described in (Zhang et al., 2020), tempering helps improve performance for Bayesian inference
with neural networks. Therefore, we swapped the values {0.1, 0.01} and set the temperature to 0.1.

BYOL For training BYOL we use SGD optimizer with a fixed learning rate schedule and momen-
tum term 0.9. For the initial learning rate we swapped over {0.0003, 0.003} and set the learning rate
to 0.003. We found that using weight decay destroys representations so no weight decay is used.
Other parameters are as the same as BBYOL.

SnapBYOL To train SanpBYOL, we employ the SGD optimizer with a cyclic learning rate
schedule of length 50 epochs. For the initial learning rate, for STL-10 we swapped over
{0.1, 0.09, 0.07, 0.03, 0.02, 0.01, 0.009} and set the initial learning rate to 0.01. For Tiny-ImageNet
we swapped over {0.03, 0.02, 0.01, 0.009, 0.008, 0.007, 0.006} and set the initial learning rate to
0.006. It is worth noting that for learning rates higher than this, the model does not converge when
applied to Tiny-ImageNet. Similar to BYOL, we did not employ weight decay, and all other param-
eters remain consistent with those of BYOL.

EnsembleBYOL To train EnsembleBYOL, we utilized the same parameters as BYOL while in-
corporating a normal prior ofN (0, I) on the parameters of the online network. We trained the model
for four different random seeds, each for 250 epochs.

C.2 FINE-TUNNING

For fine-tuning, we follow the protocol of Grill et al. (2020). To begin, we initialize the network
with the parameters of the pre-trained representation and then fine-tune it using a subset of the
original labeled datasets. We do not use any data augmentation during fine-tuning. We utilize cross-
entropy as the loss function and employ SGD with Nesterov momentum as the optimizer. We set the
batch size to 80 and the momentum to 0.9. We experiment with different combinations of learning
rates including {2e − 5, 1e − 5, 1e − 4, 2e − 4, 3e − 4, 4e − 4, 5e − 4}, weight decay options of
{0, 5e−4} and the number of epochs set to {50, 60}. We select the hyperparameters that give us the
best performance on our local validation set and report performance on test set. Table 2 describes
parameters for each dataset.2

D ADDITIONAL EXPERIMENTS

D.1 EXPERIMENTS WITH PRE-TRAINED MODELS ON TINY-IMAGENET

In this section we provide results obtained from pre-training on Tiny-ImageNet and fine-tuned on
CIFAR-10 and CIFAR-100. We pre-train all models with parameters described in Appendix C and
take 4 samples at last 200 epochs for BYOL, BBYOL and SnapBYOL. For EnsembleBYOL, we
marginalise over representations obtained from four pre-trained models, each trained with different
random seeds. The results in semi-supervised image classification on CIFAR-10 and CIFAR-100 are
illustrated in Fig. 5. Consistent with our results from pre-training on STL-10, BBYOL and BBYOL
ENS outperform their MAP estimation counterparts in both metrics and various dataset sizes.

D.2 EXPERIMENTS USING IMAGENET PRE-TRAINED ENCODER

To disentangle the impact of parameters from the enhancements achieved by our proposed prob-
abilistic method compared to the deterministic baselines, we perform an experiment in which we
initialize the backbone parameters (ResNet-18), using pre-trained weights from ImageNet. In this
experiment, we employ an ImageNet-trained ResNet-18 feature extractor as an encoder and train all
methods described in Appendix C.1 for 200 epochs on STL-10, with an initial learning rate set to 0.1.
As described in Appendix C.1, we use cyclic learning rate schedule of length 50 epochs for BBYOL
and SnapBYOL and take one sample at the end of each cycle, yielding 4 embeddings in total. In
BYOL, we take 4 samples with regular interval of 50 epochs between each sample. For BBYOL

2We employed the same parameters for fine-tuning on ImageNet-10 using a pre-trained model on STL-10,
which were originally used for fine-tuning of a model pre-trained on Tiny-ImageNet.
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Table 2: Parameters used during the fine-tuning phase for each dataset

Pre-training Fine-tuning Split (%) Learning rate Weight decay
100 2e− 4 0

CIFAR-10 50 5e− 4 0
25 5e− 4 0
10 5e− 4 0
100 5e− 4 0

STL-10 CIFAR-100 50 3e− 4 0
25 4e− 4 0
10 5e− 4 0
100 5e− 4 0

STL-10 50 5e− 4 0
25 5e− 4 0
10 5e− 4 0

100 2e− 4 0
CIFAR-10 50 5e− 4 0

25 4e− 4 0
10 4e− 4 0
100 5e− 4 0

Tiny-ImageNet CIFAR-100 50 5e− 4 0
25 5e− 4 0
10 5e− 4 0
100 2e− 4 0

ImageNet-10 50 5e− 4 0
25 3e− 4 0
10 5e− 4 0

(a) CIFAR-10 (b) CIFAR-10

(c) CIFAR-100 (d) CIFAR-100

Figure 5: Performance comparison. Bayesian approach outperforms MAP estimation in terms of
both accuracy and calibration.

we employ N (0, I) as a prior and introduce Gaussian noise starting from epoch 40. The rest of
parameters remain consistent as described in Appendix C.1. In the downstream phase, we fine-tune
on the training set of each classification task, following the protocol outlined in Appendix C.2 and
using the parameters from Table 2. Table 3 indicates the accuracy and NLL on the test sets of each

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

dataset3. Consistent with our previous results, BBYOL and BBYOL ENS outperform all baselines
in both metrics.

Table 3: Downstream evaluation results on different datasets by fine-tuning on each task: bold
indicates the best result. BBYOL and BBYOL ENS lead to better classification accuracy as well as
better predictive uncertainty as evidenced by lower NLL.

Method / Data CIFAR10 CIFAR100 ImageNet10 STL10
BYOL 93.3 73.6 90.2 93.0
SnapBYOL 93.8 74.4 91.9 93.6
BBYOL 93.6 76.8 94.9 93.6

A
C

C
↑

BYOL ENS 94.1 77.0 91.6 93.5
SnapBYOL ENS 94.2 77.5 92.6 93.9
BBYOL ENS 94.3 79.5 95.9 94.4
Method / Data CIFAR10 CIFAR100 ImageNet10 STL10
BYOL 0.19 0.89 0.32 0.21
SnapBYOL 0.18 0.87 0.25 0.19
BBYOL 0.18 0.77 0.14 0.19

N
L

L
↓

BYOL ENS 0.16 0.76 0.26 0.19
SnapBYOL ENS 0.16 0.75 0.22 0.18
BBYOL ENS 0.16 0.67 0.11 0.17

D.3 EXPERIMENTS USING SIMCLR

We also assess the efficacy of our proposed probabilistic approach with the SimCLR method (Chen
et al., 2020). In this experiment, we employ an ImageNet-trained ResNet-18 feature extractor as
the backbone. We train methods described in Appendix C.1 for 200 epochs on STL-10, using the
NT-Xent loss (Chen et al., 2020) with a temperature of 0.1 and an initial learning rate set to 0.1.
We adhere to the settings outlined in Appendix C.1 for each method, employing 4 embeddings with
a 50-epoch interval between each sample for marginalization. Table 4 displays the results, with
BSimCLR representing our proposed Bayesian method, while SimCLR and SnapSimCLR denote
the deterministic methods trained using fixed and cyclic learning rate schedules, respectively. We
observe that the results obtained by BSimCLR and BSimCLR ENS outperform all baselines with a
significant gain in both metrics.

3Only for ImageNet-10, we employ the Validation set for evaluation due to the absence of ground-truth
labels in the Test set.
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Table 4: Downstream evaluation results on different datasets by fine-tuning on each task using
representations from SimCLR: bold indicates the best result. BSimCLR and BSimCLR ENS lead to
better accuracy and better predictive uncertainty.

Method / Data CIFAR10 CIFAR100 ImageNet10 STL10
SimCLR 88.9 67.5 84.8 86.7
SnapSimCLR 89.6 69.4 85.7 86.7
BSimCLR 93.7 75.5 93.5 92.8

A
C

C
↑

SimCLR ENS 89.3 69.1 85.5 86.5
SnapSimCLR ENS 89.9 70.8 86.3 86.3
BSimCLR ENS 94.0 78.4 94.3 93.3
Method / Data CIFAR10 CIFAR100 ImageNet10 STL10
SimCLR 0.31 1.09 0.50 0.39
SnapSimCLR 0.28 1.04 0.46 0.38
BSimCLR 0.19 0.81 0.20 0.21

N
L

L
↓

SimCLR ENS 0.29 1.03 0.47 0.39
SnapSimCLR ENS 0.27 0.98 0.44 0.38
BSimCLR ENS 0.17 0.71 0.17 0.20
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