
Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

A PROBABILISTIC PERSPECTIVE ON REINFORCEMENT
LEARNING VIA SUPERVISED LEARNING

Alexandre Piché∗
ServiceNow Research
Mila, Université de Montréal

Rafael Pardiñas, David Vázquez
ServiceNow Research

Chris J. Pal
ServiceNow Research
Canada CIFAR AI Chair, Mila, Polytechnique Montréal

ABSTRACT

Reinforcement Learning via Supervised Learning (RvS) only uses supervised
techniques to learn desirable behaviors from large datasets. RvS has attracted
much attention lately due to its simplicity and ability to leverage diverse trajec-
tories. We introduce Density to Decision (D2D), a new framework, to unify a
myriad of RvS algorithms. The Density to Decision framework formulates RvS
as a two-step process: i) density estimation via supervised learning and ii) de-
cision making via exponential tilting of the density. Using our framework, we
categorise popular RvS algorithms and show how they are different by the design
choices in their implementation. We then introduce a novel algorithm, Implicit
RvS, leveraging powerful density estimation techniques that can easily be tilted to
produce desirable behaviors. We compare the performance of a suite of RvS al-
gorithms on the D4RL benchmark. Finally, we highlight the limitations of current
RvS algorithms in comparison with traditional RL ones.

1 INTRODUCTION

Leveraging large amounts of off-policy data is essential for using Reinforcement Learning (RL) in
real-world settings (Levine et al., 2020). Recently, a straightforward and efficient approach to use
large datasets has been to treat RL as a Supervised Learning problem, namely RL via Supervised
Learning (RvS) (Emmons et al., 2021). The simplicity of RvS comes from bypassing the difficulties
of Temporal Difference (TD) learning (Sutton, 1988), to instead use the observed return to learn
good policies. Furthermore, the efficiency of RvS comes from the ability to learn from sub-optimal
trajectories present in the dataset.

The RvS algorithms usually convert the RL problem into behavior cloning where the samples are
weighted by, filtered by, or conditioned on the observed Monte Carlo (MC) return. It is however
unclear what objective these RvS algorithms are maximising. We introduce the Density Estimation
to Decision Making (D2D) framework to unify the RvS algorithms. This novel framework allows
us to formulate RvS as a two steps process. The first step consists of performing density estimation
over the dataset, which can be done via supervised learning. The second step consists of sampling
from the exponential tilt of the learned density to obtain samples that are both likely and have high
observed MC returns.

Using the D2D framework, we can derive recent algorithms such as Return Conditioned Policy (Ku-
mar et al., 2019), Upside-Down RL (Srivastava et al., 2019), Trajectory Transformer (Janner et al.,
2021), Decision Transformer (Chen et al., 2021), and others. We also introduce implicit RL via
Supervised learning, a new implicit algorithm leveraging advances in density modeling. We bench-
mark these different algorithms using the D4RL framework (Fu et al., 2020). Finally, we highlight
the limitations of current RvS algorithms in comparison with traditional RL algorithms.

∗Correspondence to alexandre.piche@servicenow.com

1

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

a1

s1

a2

s2

a3

s3

at

st

G1

r1 r2 r3 rt

.

Figure 1: Having access to the Monte Carlo return G1 =
∑T

t′=1 γ
(t′−1)rt′ provides information

about the future trajectory and, since it is observed (shaded), it can easily be used with supervised
learning and density estimation algorithms.

2 A PROBABILISTIC INFERENCE PERSPECTIVE ON RL VIA SUPERVISED
LEARNING

Reinforcement Learning via Supervised Learning algorithms are trained on large datasets collected
by agents of diverse expertise. The promise of RvS algorithms is in leveraging large amounts of
sub-optimal and near-optimal data to achieve performance beyond what would be attainable by only
using less but near-optimal data. Current RvS algorithms use the dataset to learn a good policy
by weighting the transitions as a function of the return, by conditioning the action distribution on
the return, or by learning a forward model of the environment to estimate the return of an action.
These different approaches do not look related at first glance, but consolidating them into an unified
framework would improve our understanding of the connections between these methods and allows
us to design better algorithms.

We introduce the Density to Decision (D2D) framework to unify the RvS methods listed above.
This framework consists of two steps: i) learning a density model using the dataset, and ii) using the
learned density for decision making. Using this framework, we demonstrate that these RvS methods
approximate the same density but make different design choices in their approximation. Finally, we
propose an algorithm using a different design choice better suited for density estimation and efficient
decision making.

2.1 FROM DENSITY ESTIMATION TO DECISION MAKING

Density Estimation. The dataset is composed of the triplets: states, action and MC return
(st,at, Gt). Their graphical structure and dependencies are depicted in Figure 1. The MC re-
turn (Sutton & Barto, 2018) can be understood as providing hindsight information about the out-
come of the trajectory (Furuta et al., 2021). The first step consists of learning a density over the
triplets which can easily be estimated via supervised learning methods. Specifically, the objective
can be defined as the negative log-likelihood of the data:

E{st,at,Gt}∼D

[
− log pθ(at, Gt | st)

]
. (1)

Decision Making. We are interested in making decisions better or as good as the best ones ob-
served in the dataset. Thus, we cannot simply sample from the learned density as this would result in
decisions present in the dataset ignoring the quality of these decisions. To improve decision making
we have to direct the sampling towards the best decisions in the dataset. A natural approach is to use
the Exponential Tilt (Asmussen & Glynn, 2007; O’Donoghue et al., 2020) of the MC return, which
is defined as:

pθ(a, G | st; η) = pθ(a, G | st) exp(η−1Gt − κ(η)), (2)

where κ(η) is the cumulant generating function logE[eη−1G] and st is observed. As we decrease
η → 0, the density becomes concentrated around regions that are potentially less likely in the
dataset but where the MC return is large. We recover the dataset density by increasing η → ∞

2

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Density Estimation (E(st,at,Gt)∼D) Decision Making (a, G ∼ pθ(a, G | st; η))
RWR exp(η−1Gt)pθ(at | st) pθ(a | st)
RCP pθ(at | st, Gt)pθ(Gt | st) pθ(a | st, G)pθ(G | st) exp(η−1G− κ(η))
RBC pθ(Gt | st,at)pθ(at | st) pθ(G | st,a)pθ(a | st) exp(η−1G− κ(η))
IRvS (Ours) pθ(at, Gt | st) pθ(a, G | st) exp(η−1G− κ(η))

Table 1: Comparison of different policy training and action selection.

independently of the MC return. Making η an important hyper-parameter as we want samples that
are both likely in the dataset and have high MC return. Alternatively, we can examine the log of the
exponential tilt to gain intuition. Specifically, taking the log on both sides we obtain and note that
logE[eη−1G] is a constant, maximizing pθ(a, G | st; η) is equivalent to maximizing the following:

max
a,G

log pθ(a, G | st) + η−1Gt (3)

resulting in action MC return pairs that are likely under the dataset and where the MC return is large.

Connection to Control-as-Inference. We note the similarity between D2D decision-making ob-
jective and the Control-as-Inference target density. In both cases, the exponential function is used
to turn a trajectory return into a positive number which can then be treated as a probability density.
Thus, trajectories with larger return have higher density making them more likely to be sampled.
The main difference with Control-as-Inference is in the training process. Control-as-Inference in-
troduces observed “optimality variables“ (Levine, 2018). These optimality variables are used to
define a backward message. The trajectory density is decomposed by time step using the back-
ward message which must be approximated using (soft) TD-learning. Thus making training more
challenging than D2D which can be performed by simple supervised learning.

Algorithm 1 Density to Decision Framework

Input: Dataset D = {st,at, Gt}Tt=1
Input: Learning rate α
Input: Temperature η
Density Estimation
while not converged do

Sample minibatch B ∼ D
Compute loss
L(θ)←

∑
(st,at,Gt)∈B − log pθ(at, Gt | st)

Update parameters θ ← θ + α∇θL(θ)
end while
Decision Making
s0 ∼ µ(s0)
t← 0
while episode not done do

at, Gt ∼ pθ(a, G | st) exp(η−1G)
st+1, r ∼ penv(s, r | st,at)
t← t+ 1

end while

2.2 A PROBABILISTIC INFERENCE PERSPECTIVE ON RVS ALGORITHMS

Using our D2D framework, we can categorize multiple RvS algorithms as different design choices to
approximate the same density. An overview of the different methods an design choices are provided
in Table 1.

3

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Return Conditioned Policy (RCP). One can model the return conditional policy p(a | s, G) and
a state conditional distribution over return p(G | s) using supervised learning. Conditioning on the
return G allows the model to leverage trajectories with a sub-optimal observed return, potentially
resulting in more efficient learning. An additional advantage of this approach is that a simple Gaus-
sian approximation to pθ(a | s, G) can capture a multimodal action distribution p(a | s), which
can be obtained by marginalising the return G, i.e., p(a | s) = Epθ(G|s)[pθ(a | s, G)]. To recover
the richness of the training distribution, one would need to learn a multimodal distribution over MC
return pθ(G | s), but in practice only a subset of the training behaviors is desired: the best behavior.
The learning is done over the following factorisation:

L(θ) = E{st,at,Gt}∼D

[
− log pθ(at | st, Gt)pθ(Gt | st)

]
, (4)

where θ denotes the density that is learned, and the decision making distribution is obtained:

pθ(a, G | st; η) = pθ(a | st, G)p(G | st) exp(η−1G− κ(η)). (5)

Kumar et al. (2019) and Srivastava et al. (2019) estimate the maximum return and then condition on
it at the beginning of the episode. For simplicity, it is also possible to ignore η and simply condition
the policy on the maximum observed return in the dataset: pθ(a | st, Gmax) as is done in Decision
Transformer (DT) (Chen et al., 2021).

Reweighted Behavior Cloning (RBC). One can model a state-conditional action distribution
pθ(a | s) and a state-action conditional return distribution pθ(G | s,a). Contrary to RCP which
can capture a multimodal action distribution p(a | s) by combining simpler return conditional dis-
tributions, in turn RBC must directly learn a multimodal action distribution pθ(a | s). The decision
making distribution can be approximated via reweighting the action samples. Density estimation
and decision making can be respectively done as:

L(θ) = E{st,at,Gt}∼D

[
− log pθ(at | st)pθ(Gt | st,at)

]
(6)

pθ(a, G | st; η) ≈ C
∑
i

exp(η−1Gi)δ(ai, Gi), (7)

where C is a normalising constant G ∼ p(G | a, st) and a ∼ p(a | st). For example, Trajec-
tory Transformer (TT) (Janner et al., 2021) performs decision making by sampling multiple actions
from pθ(a | st) and evaluates pθ(G | st,a) for each action using model roll-outs sampled from
pθ(st+1, rt | st,at). Again, η can be ignored in this case by taking the action with the highest ob-
served return. The ancestral sampling (Bishop & Nasrabadi, 2006) procedure used to select action
in RBC and TT does not scale well for large action spaces and long planning horizons.

Return Weighted Regression (RWR). It is possible to approximate the target density by bypass-
ing the estimation of the return altogether. A policy can be learned using importance weights to bias
the policy toward actions with a higher observed return. This has the advantage of being simple and
computationally efficient. Specifically, one can directly amortize the distribution using importance
weights proportional to the exponential of the observed MC return:

L(θ) = DKL

(
exp(η−1G)p(G, s,a) | pθ(a | s)p(·)

)
= E{st,at,Gt}∼D

[
− exp(η−1Gt) log pθ(at | st) + c

]
. (8)

where c does not depend on θ. Action selection can be performed efficiently using a forward pass
pθ(a | s). We note the similarity with reward weighted regression (Peters & Schaal, 2007). Alter-
natively, the weights could also be an indicator variable I{G>g} which is 1 when the observed MC
return is higher than a return threshold g and 0 otherwise.

3 IMPLICIT RL VIA SUPERVISED LEARNING

Using the D2D framework to investigate current RvS algorithms highlights the design choices that
are currently made for the density estimation and decision making phases. We notice that no method
directly model the joint distribution over the action and the return. Modeling the joint presents

4

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

certain difficulties, but could potentially provides certain advantages. We now introduce a novel
implicit method to model the joint distribution and that can be use to perform decision making in an
efficient manner.

Using the D2D framework, we introduce a novel RvS algorithm. As opposed to the previous meth-
ods that factorize the joint distribution into different conditional distributions, it is possible to model
the joint distribution directly. Modeling the joint has the advantages of using both the action dis-
tribution and the future return distribution signals to train a better model. It also does not require
ancestral sampling to produce and evaluate an action as sampling can be done at the same time.

3.1 DENSITY ESTIMATION PROCEDURE

In order to model the joint distribution over action and return we leverages advances in Energy
Based Models (EBMs) (LeCun et al., 2006). EBMs are a promising class of generative models that
can easily model discontinuity and their effectiveness for behavior cloning has been demonstrated
in Florence et al. (2021). Specifically, the energy function is defined as:

pθ(a, G | s) =
exp(−Eθ(s,a, G))

Zθ
, (9)

where Eθ(s,a, G) is the parametrized energy function and Zθ =
∫
a

∫
G
exp(Eθ(s,a, G))dGda is

the normalising constant. Training the density model can be performed using the InfoNCE loss
function defined as:

L(θ) =
N∑
i=1

− log(p̃θ(ai, Gi | s, {ãji , G̃
j
i}

Nneg.
j=1))

p̃θ(ai, Gi | s, {ãji , G̃
j
i}

Nneg.
j=1) =

exp(−Eθ(si,ai, Gi))

exp(−Eθ(si,ai, Gi)) +
∑Nneg.

j=1 exp(−Eθ(si, ã
j
i , G̃

j
i))

.

where {ãji , G̃
j
i}

Nneg.
j=1 is a set of negative counter-examples. Negative sampling can be performed

efficiently by minimizing ã, G̃ = argmina,G Eθ(a, G | st) using stochastic gradient Langevin
dynamics (Welling & Teh, 2011) (SGLD), see Algorithm 2 for details.

3.2 DECISION-MAKING PROCEDURE

We now have access to a differentiable joint density pθ(a, G | s) from which we can sample action
and MC return pairs using SGLD. Doing so will result in action and MC return likely under the
training dataset irrespective of the observed MC return, which is equivalent to implicit behavior
cloning as done by Florence et al. (2021). Instead, we want to bias sampling towards high region of
observed MC return. To do so, we will use the exponential tilt in G to bias the sampling towards
action, MC return pairs with high observed MC returns. Specifically, we use the exponential tilt in
G is defined as:

pθ(a, G | st; η) = pθ(a, G | st) exp(η−1G− κ(η)), (10)

where κ(η) is the cumulant generating function logE[eη−1G]. We note that the density is still differ-
entiable and can be efficiently sampled via SGLD. As in the D2D framework, η controls the trade-off
between the likeliness of a (a, G) pair under the dataset and the MC return.

3.3 RELATED WORK

We note that other works have used EBM in RL. Interestingly, most of the previous works treat the
Q-value as the energy and does not model how likely the Q function is (or the MC return in our
case). Sallans & Hinton (2004) parametrize the Restricted Boltzman Machine (Freund & Haussler,
1991; Welling et al., 2004) negative energy function as the Q value. And more recently, Haarnoja
et al. (2017) learn a Q function via the (soft-) Bellman equation, then treat the Q function as the
negative energy function which is sampled via a stochastic neural network.

5

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

2 4 0 4 2
action

0.2

0.0

0.2

M
C

Re
tu

rn
 (G

)

(a) p(a, G | s0)

2 4 0 4 2
action

0.2

0.0

0.2

M
C

Re
tu

rn
 (G

)

(b) p(a, G | s0) exp(G
0.1

)

2 4 0 4 2
action

0.2

0.0

0.2

M
C

Re
tu

rn
 (G

)

(c) p(a, G | s0) exp(G
0.05

)

Figure 2: In a), we examine the dataset joint distribution over action (x-axis) and MC return (y-axis)
given s0, where the action is an angle ∈ [−π/2, π/2]. In b) and c), we observe the exponential tilt
in G of the initial density for different temperatures η. As we decrease the temperature, the density
concentrate on actions with a more significant MC return.

4 EXPERIMENTS

4.1 DIDACTIC EXAMPLE

We present a simple didactic experiment to communicate better the advantages of modeling the joint
distribution over the state, action, and MC return p(a, G | s). The agent starts the episode at the point
(0, 0) with a randomly selected target and must choose an angle α ∈ [−π/2, π/2] (the half-circle)
as an action. Reaching one of the targets results in a positive reward while the other one results in a
negative reward. The angle is then converted to a 2d action as a = (∆x,∆y) = (cos(α), sin(α)).
The agent deterministically choose the angle to minimize the distance with the selected target. A
small amount of Gaussian noise is then added to the action a to make the policy stochastic. There
is no learning in this experiment. Graphical depiction of the environment and of random trajectories
can be seen in Figure 3 in Appendix A.1.

In Figure 2a, we examine the joint distribution of the angle α (x-axis) and the MC return (y-axis)
conditioned on the initial state s0 = (0, 0). The distribution colors represent the (unobserved) target
on which the behavior policy was conditioned. We can observe that the distribution is bimodal in
both the MC return and the angle distribution. The stochasticity of the discounted MC return comes
only from the random noise added to the policy as some policies take longer to reach the target. For
each target conditioned policy, we can observe a mode for the action at around π/4 (−π/4) for the
blue (orange) policy representing an angle of 45◦ (−45◦)

Given the observed angle and return for s0 in the dataset in Figure 2a, we are interested in generating
a distribution over the best action. Since the environment dynamics are fixed and the stochasticity
comes from the policy alone, we can use the exponentially tilted density p(a, s, G) exp(η−1G) with
respect to G to generate a distribution over best actions. In Figures 2b and 2c, we can observe that as
we decrease the temperature, the density over the maximum return increases and so does the density
over the angle α = π/4.

We observe that even without access to the target on which the policy was conditioned, modeling
the joint density including the MC return G allows us to recover the distribution over the desired
policy. Similarly, in offline RL, we do not observe the expertise level of the policies that collected
the data. We can nevertheless use the observed return as guidance to learn desirable behaviors.

4.2 CONTINUOUS CONTROL DATASET

To better understand the importance of the different design choices in RvS, we compare the algo-
rithms on the D4RL benchmark (Fu et al., 2020). The D4RL benchmark provides a suite of tasks
and datasets to evaluate offline RL agents (Levine et al., 2020). We compare the different algorithms
on three continuous locomotion tasks with diverse datasets.

6

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Algorithm IRvS (Ours) RBC RCP RWR
Dataset

halfcheetah expert 95.2 (0.1) 53.0 (1.4) 91.3 (0.3) 92.6 (0.2)
halfcheetah medium 41.9 (0.3) 37.9 (0.3) 42.5 (0.1) 42.5 (0.2)
halfcheetah medium-expert 92.4 (0.6) 43.1 (0.8) 91.3 (0.3) 92.5 (0.4)
halfcheetah medium-replay 31.9 (0.4) 29.4 (0.4) 37.5 (0.4) 39.1 (0.5)
halfcheetah random 0.7 (0.2) 1.1 (0.1) 2.2 (0.1) 2.3 (0.0)
hopper expert 110.4 (0.3) 51.9 (1.2) 46.3 (11.1) 77.3 (9.4)
hopper medium 53.3 (0.6) 23.4 (1.6) 18.7 (1.9) 47.1 (2.5)
hopper medium-expert 110.2 (0.3) 28.5 (0.6) 11.6 (4.4) 59.2 (7.4)
hopper medium-replay 6.9 (0.3) 17.0 (0.3) 11.4 (2.1) 19.2 (1.1)
hopper random 3.3 (0.2) 2.9 (0.2) 4.1 (0.5) 2.9 (0.1)
walker2d expert 107.1 (0.2) 72.7 (13.1) 108.9 (0.3) 108.3 (0.2)
walker2d medium 60.6 (2.7) 30.3 (0.5) 54.1 (4.8) 70.1 (1.2)
walker2d medium-expert 104.4 (0.8) 71.5 (2.5) 110.5 (0.2) 108.3 (0.4)
walker2d medium-replay 24.3 (0.9) 10.9 (0.6) 11.3 (1.0) 23.9 (2.0)
walker2d random 5.0 (0.4) 4.1 (0.2) 1.1 (0.2) 4.5 (0.4)

Table 2: The results displayed are the return average over 100 episodes after 100k gradient steps
averaged over 6 seeds. Standard error is shown in the bracket.

For each algorithm, we fine tuned the hyper-parameters for 3 seeds on the half-cheetah medium-
expert, walker2d medium-expert and hopper medium-expert datasets. We note that for RCP the best
return to condition on is tricky to tweak and wildly differs across environments. We tune the target
return . We note that our RCP implementation performs slightly better than Emmons et al. (2021)
implementation on certain tasks such as walker2d medium-expert. While significantly worst on
the hopper suite as it requires wildly different hyper-parameters than the half-cheetah and walker2d
tasks.

Algorithm 1 outlines the training and evaluation procedure. We train the density estimation algo-
rithms for 100k gradient steps and then evaluate them on 100 episodes (of 1000 steps each). We
repeat this procedure for three seeds. As in Emmons et al. (2021) we define G as the average future
reward. Additionally, we normalize each state coordinate to have mean 0 and standard deviation 1,
and G to lie in [−1, 1].
We focus on the Gym Locomotion v2 tasks, consisting of the HalfCheetah, Hopper, and Walker2D
datasets from the D4RL offline RL benchmark (Fu et al., 2020). These datasets are collected by
agents with medium and expert levels of expertise in solving the respective tasks. The difficulty lies
in leveraging sub-optimal and near-optimal trajectories to learn a policy. In ?? we show the baseline
comparisons for the medium-expert dataset for the previously mentioned tasks. The values reported
are the average return and standard deviation for 3 training initialisation seeds over 100 episodes
each. We can see that IRvS performs on par with the best among the other methods for the Hopper
and Walker tasks.

5 DISCUSSION

In this section, we highlight the differences between D2D and traditional Offline RL algorithms
and discuss the advantages of both approaches. We first compare the supervised density estimation
procedure used by D2D algorithms as opposed to the TD learning approach used by Offline RL
algorithms to evaluate actions. We then compare the Exponential Tilt approach of D2D algorithms
as opposed to the maximization of a learned Q value by Offline RL algorithms to perform action
selection.

The first difference to note is the action evaluation procedure. RvS uses the observed Monte Carlo
return rather than a parametrized Q value to learn a policy. On one hand, Q values can be chal-
lenging to learn when function approximation, off-policy, and bootstrapping are used as it can di-
verge (Van Hasselt et al., 2018), while the observed MC return provides an easy signal to use. On
the other hand, Q-values learned via TD learning (Sutton, 1988) perform trajectory stitching thus

7

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

a good action in a bad trajectory can be evaluated independently of the trajectory outcome and be
recognised as a good action. While in D2D, a good action in a bad trajectory will only be evaluated
based on the trajectory outcome. A potential middle ground would be to use TD learning to perform
on-policy evaluation (no policy optimization) as it is stable and provides good performances (Goo
& Niekum, 2022; Brandfonbrener et al., 2021).

The second main difference between D2D and Offline RL algorithms is the action selection strategy.
For a given state, D2D algorithms limit action selection candidates to the actions that have been
observed for that state in the dataset. The agent might be optimistic for state-action pair that have
not been observed in the dataset, and selecting unobserved actions would potentially result in worst
performance than limiting action selection to observed actions. Yet, limiting action selection could
potentially limit the asymptotic performance of the agent. D2D algorithms can explicitly control
the risk-reward tradeoff via the temperature η. For small η, the agent might select action with high,
but less likely, MC return. As we increase the temperature, the agent will seek less risk. A similar
strategy is used by popular offline RL algorithms. For example, by using explicit density estimation
to constraint the action selection to the actions observed in the dataset (Wu et al., 2022), training the
Q-value network to be conservative for unobserved actions (Kumar et al., 2020) or by constraining
the policy using behavior cloning regularization (Fujimoto & Gu, 2021).

6 CONCLUSION

In this work, we introduce the Density Estimation to Decision Making framework which unifies
commonly used RvS Algorithms. The 2 steps process brings clarity on the training and action
selection of these algorithms, and also provides guidance on designing novel algorithms. Using our
framework we introduce IRvS which directly targets the joint density distribution over the action
and return instead of the commonly used arbitrary density factorization. We show that IRvS is
competitive with the state-of-the-art RvS algorithms on the D4RL Mujoco locomotion tasks. Finally,
we discuss the trade-off of using RvS over traditional Offline RL algorithms.

Reinforcement Learning via Supervised Learning algorithms have been shown to be competitive
with Offline RL algorithms for trajectory optimization. An interesting next step would be to compare
their performance, generalisation capabilities and robustness on more difficult tasks.

REFERENCES

Søren Asmussen and Peter W Glynn. Stochastic simulation: algorithms and analysis, volume 57.
Springer, 2007.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without
off-policy evaluation. Advances in Neural Information Processing Systems, 34, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. arXiv preprint arXiv:2106.01345, 2021.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. arXiv
preprint arXiv:2109.00137, 2021.

Yoav Freund and David Haussler. Unsupervised learning of distributions on binary vectors using
two layer networks. Advances in neural information processing systems, 4, 1991.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

8

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. arXiv preprint arXiv:2111.10364, 2021.

Wonjoon Goo and Scott Niekum. You only evaluate once: a simple baseline algorithm for offline rl.
In Conference on Robot Learning, pp. 1543–1553. PMLR, 2022.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning, pp. 1352–1361.
PMLR, 2017.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Brendan O’Donoghue, Ian Osband, and Catalin Ionescu. Making sense of reinforcement learning
and probabilistic inference. arXiv preprint arXiv:2001.00805, 2020.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In International Conference on Machine Learning, 2007.

Brian Sallans and Geoffrey E Hinton. Reinforcement learning with factored states and actions. The
Journal of Machine Learning Research, 5:1063–1088, 2004.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmidhu-
ber. Training agents using upside-down reinforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
International Conference on Machine Learning, 2011.

Max Welling, Michal Rosen-Zvi, and Geoffrey E Hinton. Exponential family harmoniums with
an application to information retrieval. Advances in neural information processing systems, 17,
2004.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. arXiv preprint arXiv:2202.06239, 2022.

9

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

A APPENDIX

A.1 TOY EXPERIMENT

Figure 3: Example of trajectories in the toy task.

A.2 STOCHASTIC GRADIENT LANGEVIN DYNAMICS

Algorithm 2 Stochastic Gradient Langevin Dynamics

Input: Initial state s
Input: Initial action a ∼ U(−1, 1)
Input: Initial MC return G ∼ U(−1, 1)
Input: Learning rate α
Density Estimation
for i ∈ {1, . . . , 100} do

g ← ∇(a,G)Eθ(s,a, G)

u← clip(12g + ϵ,−0.5, 0.5), ϵ ∼ N (0, 1)
(a, G)← (a, G)− αu

end for
Return: (s,a, G)

10

	Introduction
	A Probabilistic Inference Perspective on RL via Supervised Learning
	From Density Estimation to Decision Making
	A Probabilistic Inference Perspective on RvS Algorithms

	Implicit RL via Supervised Learning
	Density Estimation Procedure
	Decision-Making Procedure
	Related Work

	Experiments
	Didactic Example
	Continuous Control Dataset

	Discussion
	Conclusion
	Appendix
	Toy Experiment
	Stochastic Gradient Langevin Dynamics

