Causal Inductive Synthesis Corpus

Zenna Tavares Ria Das
Massachusetts Institute of Technology Massachusetts Institute of Technology
Cambridge, MA 02139 Cambridge, MA 02139
zenna@mit.edu riadas@mit.edu

Elizabeth Weeks Kate Lin
Massachusetts Institute of Technology Wellesley College
Cambridge, MA 02139 Wellesley, MA 02481
eweeks@mit.edu kate.lin@wellesley.edu
Joshua B. Tenenbaum Armando Solar-Lezama
Massachusetts Institute of Technology Massachusetts Institute of Technology
Cambridge, MA 02139 Cambridge, MA 02139
jbt@mit.edu asolar@csail.mit.edu
Abstract

We introduce the Causal Inductive Synthesis Corpus (CISC) — a manually con-
structed collection of interactive domains. CISC domains abstract core causal
concepts present in real world mechanisms and environments. We formulate two
synthesis challenges of causal model discovery: the passive discovery of a model
of a CISC domain from observed data, and active discovery while interacting with
the domain. CISC problems are expressed in AUTUMN, a Turing-complete pro-
gramming language for specifying causal probabilistic models. AUTUMN allows
succinct expression for models that vary dynamically through time, respond to ex-
ternal input, have internal state and memory, exhibit probabilistic non-determinism,
and have complex causal dependencies between variables.

1 Introduction

Young children engage in forms of intuitive scientific discovery, building structured causal theories
of their environment [[13} (3| [2]] using many of the principles that underpin professional science.
Significant progress has been made in modelling many of these principles — in particular Bayesian
inference over structured representations [[15} 15, [12]], discovery of causal models from observational
and interventional data 14} 4,[9], and the optimal design of experiments [[11} 6} [10}[7]]. Nevertheless,
automatic discovery of models of realistic phenomena from observation and interaction remains
largely out of reach. The objective of this contribution is to facilitate progress towards automatic
scientific discovery, first by introducing a representation of causal models that is expressive enough
to succinctly capture the complexities of real world phenomena, and second by presenting a corpus
of domains and accompanying benchmark challenge.

Most real-world causal mechanisms are complex. They often possess internal state, have time-varying
behaviour, and are composed of both continuous and discrete components with complex logical and
algorithmic relationships between them. For instance, a typical microwave will heat only if the door is
closed, a duration has been keyed in, and the start command has been pressed. Radiation then causes
a continuous increase in temperature, while the display discretely counts down the remaining time.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

- define Ants and Food
object Ant {(Cell 0 0 gray)
object Food {(Cell 0 0 red)

[

- ants initially randomly placed
ants : List Ant
ants = init map Ant (randPositions GRID 6)
next update (prev ants) nextAnt

- food gets removed if ant lands on it
foods : List Food
foods = init ()
next update (prev foods)
obj -> if nextTo obj (closest obj Ant)
then removeObj obj
else obj

- add random food to grid on click
on clicked
foods = addObj (prev foods)
(map Food (randPositions GRID 4))

- move every ant to the closest food
nextAnt : (Ant -> Ant)
nextAnt ant = move ant (unitVec ant (closest ant Food)))

Figure 1: An AUTUMN program. This program simulates ants seeking food, starting at £ = 0 from
top-left, clockwise. A number of ants (grey) are initially randomly positioned on the grid. On clicking,
food (red) is placed at random positions on the board. All ants then take a move at each timestep
towards the closest food item.

These properties are difficult or impossible to represent them with traditional modelling formalisms,
such as causal graphical models.

Complex mechanisms can, on the other hand, be easily encoded as programs — indeed many (such as
the internal logic of a microwave) are literally programs. We introduce a functional reactive language
[} 18] called AUTUMN for expressing causal probabilistic models. Functional reactive programming
languages augment functional languages — which are oriented around defining pure mathematical
functions — with primitive support for temporal events. AUTUMN allows succinct expression of
models that vary dynamically through time, respond to external input, have internal state and memory,
exhibit probabilistic non-determinism, and have complex causal dependencies between variables.

Within a programmatic representation of causal models, such as AUTUMN, scientific discovery is
then in part a problem of program synthesis. However, unlike conventional synthesis formulations,
causal direction is important and must be inferred. Moreover a complete model of scientific discovery
cannot presuppose that the necessary data is given; what experiments to run and what data to collect
are integral parts of the problem. We introduce the Causal Inductive Synthesis Corpus (CISC), a suite
of interactive models designed for causal discovery. CISC domains are distillations of mechanisms,
modelling causal concepts such as circuits, magnetism, disease propagation, fluids, and foraging.
CISC problems resemble simple video games but have no notion of external reward. Instead, CISC
provides a framework for defining challenging passive and active inductive synthesis problems.

2 The Autumn Language

AUTUMN is designed to express models that vary as a function of time or external input. Many
constructs are standard. The expression x = val binds the symbol x to the value val. Local values
are bound using let. Values have types; x : Int denotes that x is of type Int. Functions are values
with function types. f : Int — Bool denotes the type of functions the Int to Bool.

Sequences Values in an AUTUMN program represent sequences that vary with time. A value v at
time ¢ may be (i) time invariant, i.e., v; = c for some constant c, (ii) stateless and time varying, i.e,
vy = f(t) for some function f, or (iii) stateful / recurrent sequences defined in terms of previous
values, i.e., vy = f(vi—1). In AUTUMN, sequences are specified by defining two expressions in
a recurrence relation: the initial value and the value as a function of previous values. These are
constructed using a primitive language pattern init exprl next expr2, which is sufficient to express
the aforementioned kinds of sequences:

Variables x,y, 2 € Var
Int | Bool | Real | 74 — 72 | Q
[b|r | L]x|Ae: 7.t
if t1 then ¢ else t3 | t1 & to |
tq1 to | letx:tl intg ‘
(temporal terms) on ty to | init ¢; next ty
prob terms rand

Figure 2: Abstract Syntax

1. Time invariant values are simply constants v = init 3 next 3. This can also be expressed
more succinctly as simply v = 3.

2. Stateless, time-varying values are simply functions of time:

v = init iseven time
next iseven time

This can also be expressed more succinctly as simply applying a function to an existing time
varying value, which is interpreted pointwise:

v = iseven time

3. Stateful and recurrent sequences refer to previous values in their definition. The simplest
example is perhaps time itself, which need not be defined as a primitive, but can be expressed
using the primitive prev x which returns the value of x at the previous timestep:

time = init 1
next (prev time) + 1
A more complex example is a value that evolves according to the Fibonnaci sequence:
fib = init 0
next if time == 1

then 1
else (prev fib) + (prev prev fib)

Events A second way to specify temporal events is using the construct on, with the pattern
on event intervention. An event is any sequence of type Bool, and an intervention is a mod-
ification to a value. In the following example, if a click occurs at a time later than 5, the value of x
will reset to O:

x = init O next (prev x) + 1
on click & (time > 5)
X =0

The primitives on, init, next, prev in combination with a standard library enable succinct expression
of a wide variety of models (see Figure|[T).

3 The Causal Inductive Synthesis Corpus

The Causal Inductive Synthesis Corpus (CISC) is a collection of environments expressed within the
AUTUMN language. CISC problems are abstract models of mechanisms and environments.

Specification Let £ denote the set of all AUTUMN models. CISC is a dataset D =

(m1,ma,...,my) of N AUTUMN models, i.e., m; € L. For each model m € D, there is also a
collection of M test trajectories 1,5 = (71, 7o, ..., Tases) and MT*" train trajectories T =
(T1, T2, -+, Tagmn). A trajectory is a pair (a, 0), where a and o are finite sequences (of identical

length) of actions and observations respectively. The action space A = N2U {1, |, -, —, skip, stop}
allows for selecting a grid-cell, pressing an arrow, performing no action, or stopping a simulation.
The observation space O = C" > is a colored grid of cells, where W (width), H (height) are
constants and C'is a set of colors.

Figure 3: Example domains from Causal Inductive Synthesis Corpus. From top-left clockwise:
a simulation of water interacting with a sink, a Tetris clone, a snake clone, interacting magnets,
food-seeking ants, obfuscated objects, a particle simulation, a simple weather simulation.

Passive Discovery: The passive inductive synthesis problem is to produce a synthesizer s that
maps a set of trajectories 7" produced from a ground truth AUTUMN model m onto a hypothesis
AUTUMN model 7 = s(T"") where m,m € L.

The score of a hypothesis 7 is a measure of the degree to which it matches m on the test trajectories.
Recalling that AUTUMN programs may be probabilistic, let sim denote a stochastic simulation
function such that sim(m, a) is a random variable over observations, the score of m is marginal
likelihood averaged over T/

score,, (M) L Z p(sim(1n, ai") = o) (D

= test
Mm m o ,m test
(a0)ETH;

The score of a synthesizer s is then the average score over D:

1 .
score(s) = v Z score,, (s(T;;™)) @
meD
m

Active Discovery In contrast to the passive case, in active discovery the observational data is not
given and must be produced by an active agent. The active inductive synthesis problem is to produce
a pair (m,0) where 7 : O x ® — A x ® is a policy with internal memory @, and o is stateful
synthesizer. The agent interacts with a model, producing observational data until a stop action is
performed. At this point a hypothesis model 1 = o (T, ¢) is produced as function of the internal
state ¢ € ® of the agent and the trajectory T = (a, o) it has observed.

For the sake of evaluation consistency we force the domains to be deterministic by fixing the random
seed, and hence T is a function of a model m and 7. The score of a pair (7, c) on m is then the score
of the AUTUMN program it produces on completion.

score,, (o, m) = score,, (o (T, ¢)) (3)

Implementation Computing marginal probabilities in AUTUMN programs is in general intractable,
making computation of score functions a challenge. We approximate these scores using importance
sampling.

References

[1] Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the second
ACM SIGPLAN international conference on Functional programming, pages 263-273, 1997.

[2] Alison Gopnik. Scientific thinking in young children: Theoretical advances, empirical research,
and policy implications. Science, 337(6102):1623-1627, 2012.

[3] Alison Gopnik and Laura Schulz. Mechanisms of theory formation in young children. Trends
in cognitive sciences, 8(8):371-377, 2004.

[4] Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Scholkopf.
Nonlinear causal discovery with additive noise models. In Advances in neural information
processing systems, pages 689-696, 2009.

[5] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332-1338, 2015.

[6] Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of
Mathematical Statistics, pages 986—1005, 1956.

[7] Quan Long, Marco Scavino, Rail Tempone, and Suojin Wang. Fast estimation of expected
information gains for bayesian experimental designs based on laplace approximations. Computer
Methods in Applied Mechanics and Engineering, 259:24-39, 2013.

[8] Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming,
continued. In Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, pages 51-64,
2002.

[9] Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Scholkopf. Causal discovery with
continuous additive noise models. The Journal of Machine Learning Research, 15(1):2009—
2053, 2014.

[10] Elizabeth G Ryan, Christopher C Drovandi, James M McGree, and Anthony N Pettitt. A review
of modern computational algorithms for bayesian optimal design. International Statistical
Review, 84(1):128-154, 2016.

[11] Kenneth J Ryan. Estimating expected information gains for experimental designs with appli-
cation to the random fatigue-limit model. Journal of Computational and Graphical Statistics,
12(3):585-603, 2003.

[12] Feras A Saad, Marco F Cusumano-Towner, Ulrich Schaechtle, Martin C Rinard, and Vikash K
Mansinghka. Bayesian synthesis of probabilistic programs for automatic data modeling. Pro-
ceedings of the ACM on Programming Languages, 3(POPL):1-32, 2019.

[13] Laura Schulz. The origins of inquiry: Inductive inference and exploration in early childhood.
Trends in cognitive sciences, 16(7):382-389, 2012.

[14] Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

[15] Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow
a mind: Statistics, structure, and abstraction. science, 331(6022):1279-1285, 2011.

	Introduction
	The Autumn Language
	The Causal Inductive Synthesis Corpus

