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ABSTRACT

Conditional Neural Fields (CNFs) are increasingly being leveraged as continu-
ous signal representations, by associating each data-sample with a latent variable
that conditions a shared backbone Neural Field (NeF) to reconstruct the sample.
However, existing CNF architectures face limitations when using this latent down-
stream in tasks requiring fine-grained geometric reasoning, such as classification
and segmentation. We posit that this results from lack of explicit modelling of
geometric information (e.g. locality in the signal or the orientation of a feature) in
the latent space of CNFs. As such, we propose Equivariant Neural Fields (ENFs),
a novel CNF architecture which uses a geometry-informed cross-attention to con-
dition the NeF on a geometric variable—a latent point cloud of features—that
enables an equivariant decoding from latent to field. We show that this approach
induces a steerability property by which both field and latent are grounded in ge-
ometry and amenable to transformation laws: if the field transforms, the latent rep-
resentation transforms accordingly—and vice versa. Crucially, this equivariance
relation ensures that the latent is capable of (1) representing geometric patterns
faitfhully, allowing for geometric reasoning in latent space, (2) weight-sharing
over similar local patterns, allowing for efficient learning of datasets of fields.
We validate these main properties in a range of tasks including classification, seg-
mentation, forecasting, reconstruction and generative modelling, showing clear
improvement over baselines with a geometry-free latent space.

1 INTRODUCTION

Neural Fields (NeFs) (Xie et al., 2022) have recently gained prominence in the machine learning
community as a novel representation method that models data as continuous functions. These fields,
expressed as fθ : Rd → Rc, map spatial coordinates—such as pixel locations x ∈ R2—to a
corresponding signal, like RGB values fθ(x) ∈ R3, with θ representing the model’s parameters.
The parameters are optimized to approximate a target signal f , ensuring ∀x : f(x) ≈ fθ(x). This
capability makes NeFs effective for representing continuous spatial, spatio-temporal, and geometric
data, particularly in cases where grid-based methods fall short (Dupont et al., 2022). Their promise
lies in serving as resolution-free representation that may be used irrespective of data resolution or
discretization (Xie et al., 2022). Moreover, NeF-representations unify downstream models over
different data modalities, allowing for transfer of modelling principles between data modalities that
otherwise require data-specific engineering efforts (Dupont et al., 2022; Papa et al., 2023).

Building on this concept, conditional neural fields (CNFs) introduce a conditioning variable z ∈ Z
to the model. Given a dataset of N fields D = {fi : Rd → Rc}Ni=1, each specific field can now be
represented by a specific conditioning variable zi via ∀x : fi(x) ≈ fθ(x; zi), while model weights θ
are shared over the entire dataset. This approach enables CNFs to efficiently model datasets of fields
using a set of latent variables that condition a shared backbone NeF. This allows for representing
and analysing fields fi by means of their latent representation zi, enabling novel approaches for
solving tasks involving fields through a framework known as learning with functa (Dupont et al.,
2022). Applications of this include tasks such as classification, segmentation, and the generation of
continuous fields (Dupont et al., 2022; Papa et al., 2023), as well as continuous PDE forecasting by
solving dynamics in the latent space (Yin et al., 2022; Knigge et al., 2024).
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Figure 1: Equivariant Neural Fields (ENFs) ground Neural Fields (NeFs) in geometry using a latent
point cloud. A latent set z consisting of tuples (pi, ci) of pose information pi and context ci is
optimized to reconstruct to the field f(·) as a function fθ(·; z) using gradient-descent. Due to their
explicit positional grounding and locality, the latent retains important geometric features in the input
field. The latent z can then be used in downstream tasks, e.g. classification, segmentation, and
geometric reasoning, where transformations in the field are mirrored in the latent representation
through group actions Lg[f ] ∼ g · z.

Geometry in CNFs A notable limitation of conventional CNFs, however, is a lack of explicit
geometric interpretability; each field fi is encoded by a ”global” variable zi, meaning for instance
that any notion of locality or other explicit spatial relationships—which have proven a strong in-
ductive bias in computer vision—is lost. Althought this global representation has inherent benefits,
e.g. enabling the use of simple MLPs as downstream models and allowing for intuitive interpola-
tion between latent signal representations, empirically it has shown limited performance in settings
where samples of the dataset are not consistently globally aligned (Bauer et al., 2023). For instance,
in classification tasks, spatial organisation of an image’s content is crucial for understanding shape
and enabling geometric reasoning (Van Quang et al., 2019); current neural fields lack such geo-
metric inductive biases, limiting their performance in e.g. classification and generative modelling
(Bauer et al., 2023; Papa et al., 2023). To this end, we propose equivariant neural fields (ENFs),
a new class of NeFs that allows for the identification of continuous fields with concrete geometric
representations (Fig. 1).

Geometry-grounded neural fields When the goal is to utilise field representations zi in down-
stream tasks, it is crucial that these representations capture both textural/appearance information and
explicit geometric information. Our approach is inspired by the idea of neural ideograms—learnable
geometric representations (Vadgama et al., 2022; 2023), and addresses the pervasive issue of texture
bias, which causes typical deep learning systems to overfit to textural patterns and ignore important
geometric cues (Geirhos et al., 2018; Hermann et al., 2020). To address this challenge, we pro-
pose defining representations that (1) explicitly separate aspects of geometry–specifically the pose
of features–from appearance and (2) are localized in the input signal such that geometric concepts
like orientation and distance are maintained from input to latent space. This necessitates that the ge-
ometric components of the representations have a meaningful structure, adhering to the same group
transformation laws applicable to the fields. Geometrically, this means that distortions in the field
translate to corresponding distortions in the latent space, ensuring that geometric (shape) variations
are preserved and representable in latent space.

To establish an explicit grounding in geometry, we propose modelling the conditioning variables
as geometric point clouds z = {(pi, ci)}Ni=1, comprising N pose-appearance tuples, with pi ∈ G
being a pose (element) in a group G, and ci ∈ Rc an appearance vector. This representation space
has a well-defined group action, namely gz = {(gpi, ci)}Ni=1, allowing us to formalise the notion of
grounding a neural field through the following

Steerability property: ∀g ∈ G : fθ(g
−1x; z) = fθ(x; gz) . (1)

This property ensures that if the field transforms, the latent transforms accordingly (Fig. 2) and is
also used by Atzmon et al. (2022) and well known from other works in non-field based settings
Bekkers (2019); Cohen et al. (2019); Weiler & Cesa (2019); Deng et al. (2021).
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Figure 2: ENFs preserve transformations through
their steerability property; if the field transforms
with a group action g, the latents transform ac-
cordingly via the following group action on the
pointcloud; gz = {gpi, ci}Ni=1.

Figure 3: ENFs are a local signal encoding; a
latent zi is optimized to represent a local signal
patch. We show that this inductive bias allows for
leveraging weight-sharing, and improves down-
stream performance by retaining important geo-
metric features.

Contributions With this work we present the following contributions: A new class of geometry-
grounded equivariant neural fields that posses

• the steerability property and thus proveable generalization over group actions
• weight sharing which enables more efficient learning
• localized representations in a latent point set which enables unique editing properties

We verify these properties through a range of experiments that (1) support the claim that latents
are geometrically meaningful, (2) show competitive reconstruction and representation capacity on
segmentation, classification, forecasting and super-resolution tasks on image and shape data.

2 BACKGROUND

Neural Fields and conditioning variables Neural Fields (NeFs) are learned functions fθ mapping
signal coordinates x to signal values f(x), parameterized by a neural network with parameters θ.
Due to their flexibility they have emerged as prominent continuous data representation, applied on
datatypes varying from object or scene data (Park et al., 2019; Mescheder et al., 2019; Sitzmann
et al., 2020a; Mildenhall et al., 2021) to audio and images Tancik et al. (2020); Sitzmann et al.
(2020b). In order to more efficiently represent whole datasets of signals, Conditional Neural Fields
only optimise a latent conditioning variable zf per signal-instance f ∈ D instead of optimising a
separate set of neural network parameters θi. The two most common approaches for obtaining latents
zf are autodecoding (Park et al., 2019) - where latents zf are initialized and optimized alongside
NeF parameters θ - and Meta-Learning based encoding - where optimization is split into an outer
loop that optimizes the backbone θ and an inner loop that optimizes latents zf . We explain both in
detail in Appx. A.1.1, and use both in experiments described in Sec. 4.

In seminal work by Dupont et al. (2022), a datatype agnostic approach for learning on these contin-
uous signal representations was proposed - involving first the optimization of a set of conditioning
variables z to reconstruct a dataset of signals D := {fj}nj=1 ∼ {zfj}nj=1, and afterward using
these variables as a surrogate for the data in downstream tasks such as classification, generation and
completion. Although this work highlighted the flexible data-agnostic nature of Conditional Neural
Fields (CNFs) by representing signals through a single ”global” condition variable zfj , later work by
Bauer et al. (2023) showed their limitations in performance for more complex tasks (i.e. involving
higher-resolution more varied natural data).
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Group theoretical preliminaries The notion of transformation-preservation of an operator - such
as the relation between field f and latent z - is best expressed through group theory. A group is an
algebraic construction (G, ·) defined by a set G and a binary operator · : G × G → G called the
group product, satisfying: closure: ∀h, g ∈ G : h · g ∈ G, identity: ∃e ∈ G : ∀g ∈ G, g · e = g,
inverse: ∀g∃g−1 ∈ G : g · g−1 = e and associativity: ∀g, h, i ∈ G : (g · h) · i = g · (h · i)
Given such a group G with identity element e ∈ G, and a set X , we can define the group action as
a map G × X → X , which we will denote with direct multiplication i.e. a group element g ∈ G
action on a coordinate x ∈ X is denoted gx. Note that when X = G the group action equals
the group product. For the group action on fields f : X → R we use a separate symbol, namely
[Lgf ](x) := f(g−1x). In this work we are interested in the Special Euclidean group SE(n) =
Tn ⋊ SO(n). SE(n) is the roto-translation group consisting of elements g = (t,R) with group
operation g g′ = (t,R) (t′,R′) = (t + Rt′,RR′); the left-regular action on function spaces is
defined by Lgf(x) = f(g−1x) = f(R−1(x− t)).

Equivariant graph neural networks for downstream tasks. A key property of our framework
is its ability to associate geometric representations with fields. This capability unlocks a rich toolset
for field analysis through the lens of geometric deep learning (GDL) (Bronstein et al., 2021). The
GDL field has made significant advancements in the analysis and processing of geometric data,
including the study of molecular properties (Batzner et al., 2022; Batatia et al., 2022; Gasteiger
et al., 2021; Brandstetter et al., 2021) and the generation of molecules (Hoogeboom et al., 2022;
Bekkers et al., 2023) and protein backbones (Corso et al., 2022; Yim et al., 2023). In essence, these
approaches characterise shape. Our encoding scheme makes these tools now applicable to analysing
the geometric components of neural fields, shown in Sec. 4.

Equivariant Graph Neural Networks (EGNNs) are a class of Graph Neural Networks (GNNs) that
imposes roto-translational equivariance constraints on their message passing operators to ensure
that the learned representations adhere to specific transformation symmetries of the data. Among
the various forms of equivariant graph NNs (Thomas et al., 2018; Brandstetter et al., 2021; Satorras
et al., 2021; Gasteiger et al., 2021; Bekkers et al., 2023; Eijkelboom et al., 2023; Kofinas et al.,
2024) we will utilise PΘNITA (Bekkers et al., 2023) as an equivariant operator to analyse and
process our latent point-set representations of fields. For the neural field, we leverage the same
optimal bi-invariant attributes as introduced in Bekkers et al. (2023)—which are based on the theory
of homogeneous spaces—to parameterise our neural fields, allowing for seamless integration. They
formalise the notion of weight sharing in convolutional networks as the sharing of message functions
(kernels) over point-pairs - e.g. relative pixel positions - that should be treated equally. By defining
equivalence classes of point-pairs that are identical up to a transformation in the group, we too derive
attributes that uniquely identify these classes and enable weight sharing in our proposed ENFs.

3 METHOD

In this section we introduce the Equivariant Neural Field (ENF) architecture. We start Sec. 3.1
by showing how we impose the proposed steerability property (Eq. 1), through the definition of
bi-invariant attributes. We construct a cross-attention operator conditioned by these attributes. We
subsequently constrain the operator to represent local sub-regions of the input domain by applying
a Gaussian window. Finally, we propose a k-nearest neighbouring approach to cope with the com-
putational complexity of the cross-attention operation between pixels and latents. In Sec. 3.2 we
finally discuss how we obtain a latent point cloud zf for a signal f .

Bi-invariance constraint Before presenting our equivariant neural field design, we need to under-
stand the constraints imposed by the steerability property equation 1. The key result, inspired by
Cohen et al. (2019); Bekkers (2019), is that for steerability, the field fθ must be bi-invariant with
respect to both coordinates and latents.

Lemma 1. A conditional neural field satisfies the steerability property iff it is bi-invariant, i.e.,
∀g ∈ G : fθ(gx; gz) = fθ(x; z).

Proof. If fθ satisfies the steerability property, then fθ(gx; gz) = fθ(g
−1gx; z) = fθ(x; z), so it

is bi-invariant. Conversely, if fθ is bi-invariant, then fθ(g
−1x; z) = fθ(gg

−1x; gz) = fθ(x; gz),
satisfying the steerability property equation 1.
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(a) (b) (c)

Figure 4: A visual intuition for the proposed cross-attention between coordinate xm and latent
z = {(pi, ci)}Ni=1. (a) Bi-invariant am,i is calculated between coordinate xm and pose pi as p−1

i xm.
(b) The query and key functions q transforms am,i into a query qm,i, and key function k maps
context vector ci to key ki. Attention coefficients are calculated through a softmax over qm,iki.
The softmax is taken over the N latents, yielding N attention coefficients attm,i, one for each latent
zi. (c) A value vm,i for each latent-coordinate pair is calculated as a function v of ci and ai - and
the resulting values are aggregated, weighted by their corresponding attention coefficients attm,i.

3.1 EQUIVARIANT NEURAL FIELDS CONDITIONED ON GEOMETRIC ATTRIBUTES

The cross-attention operation enables the use of latent-sets as conditioning variables for CNFs by
applying cross-attention between embedded coordinates xm and a latent set of context vectors
z={ci}Ni=1 (Zhang et al., 2023). Such cross-attention fields assign to each xm a corresponding
value fθ(xm; z), by matching a coordinate (query) embedding q(xm) against latent (key) vectors
k(ci) to obtain attention coefficients attm,i, and aggregating associated values v(ci) via

fθ(xm; z) = Wo

N∑
i=1

attm,i v(ci) with attm,: = softmax
i=1,...,N

(
q(xm)Tk(ci)√

dk

)
,

where Wo maps cross-attention outputs to NeF output/signal dimension Rc. Our desired latent
representation contains a geometric component, namely the poses pi associated with the context
vectors ci. In order to see how this geometric information could be leveraged, we highlight how
each of the three components (q,k,v) could depend on the geometric attributes:

fθ(xm; z) = Wo

N∑
i=1

attm,i v(xm, pi, ci) with attm,: = softmax
i=1,...,N

(
q(xm, pi)

Tk(xm, pi, ci)√
dk

)
.

The steerability condition demands that the field has to be bi-invariant with respect to transforma-
tions on both xm and pi, and the easiest way to achieve this is to replace any instance of xm, pi
by an invariant pair-wise attribute a(xm, pi) that is both invariant and maximally informative. With
maximally informative we mean that coordinate-pose pairs that are not the same up to a group action
receive a different vector descriptor, i.e., a(xm, pi) = a(x′

m, p′i) if and only if there exists a g ∈ G
such that x′

m = gxm and p′i = gpi.

Equivariant Neural Fields Based on recent results in the context of equivariant graph neural
networks Bekkers et al. (2023), we let a(xm, pi) := p−1

i x be the the unique and complete bijective
identifier for the equivalence class of all coordinate-pose pairs that are the same up to a group
action. Bijectivity here implies that the descriptor p−1

i xm contains all information possible to
identify the equivalence classes, and thus the use of those attributes leads to maximal expressivity.
In this work we use bi-invariants for translation (aR

n

) roto-translation (aSE(2)) - as well as a ”bi-
invariant” that breaks any equivariance a∅ (see Appx. B for details). We define the ENF as follows:

fθ(x; z) = Wo

N∑
i=1

attm,i v(a(x, pi), ci) with attm,: = softmax
i=1,...,N

(
q(a(x, pi))

Tk(ci)√
dk

)
.

As specific parameterizations for a,q,k,v, we choose:

5
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a(x, pi) := ϕ(p−1
i x) (2)

q(a(p−1
i x)) := Wqa(x, pi) k(ci) := Wkci , (3)

v(a(x, pi), ci) := (Wvci)⊙ (Waγa(x, pi)) + (Waβa(x, pi)) (4)
with ⊙ denoting element-wise multiplication and ϕ a relative coordinate embedding function which
we set to be a Gaussian RFF embedding (Tancik et al., 2020). In neural field literature it is known
that neural networks suffer from high spectral biases (Rahaman et al., 2019). Due to smooth input-
output mappings it becomes difficult to learn high-frequency information in low-dimensions such as
the coordinate inputs for a NeF. Gaussian RFF embeddings introduce high-frequency signals in the
embedding to alleviate the spectral bias.

Since the value transform has as goal to fill in spatially varying signal patches during reconstruction,
the value-function is also conditioned on the geometric attributes p−1x. To add extra expressivity we
chose to apply the conditioning via FiLM modulation (Perez et al., 2018) which applies a feature-
wise linear modulation with a learnable shift β and scale γ modulation.

A crucial difference with standard transformer-type methods on point clouds is that cross-attention is
between relative position embeddings—relative to the latent pose pi—and that the value transform is
of depth-wise separable convolutional form (Chollet, 2017; Bekkers et al., 2023), which is a stronger
form of conditioning (Koishekenov & Bekkers, 2023) than additive modulation as is typically done
in biased self-attention networks such as Point Transformer (Zhao et al., 2021).

Enforcing and learning locality in the latent point cloud With the current proposed setup, cross-
attention is universally applied across the entire set of latents and coordinates. Given the Softmax
distribution, each coordinate indiscriminately receives a nonzero attention value for every latent
(pi, ci) ∈ z. Consequently, although latents possess inherent latent space positional attributes, they
do not strictly represent localised regions of the signal, breaking the locality we require.

(a) (b)

Figure 5: (a) Global attention between coordi-
nates xm and latents zi can result in high atten-
tion values for non-local latents. (b) Locality is
enforced through a Gaussian window µσ(xm, pi),
attenuating the dot-product qm,iki as a function
of the distance between xm and pi.

To address this issue, we modify the attention
mechanism by incorporating a Gaussian spatial
windowing function with parameter σatt into the
computation of attention coefficients. This ap-
proach follows the strategy proposed by Cor-
donnier et al. (2019). Specifically, the atten-
tion scores derived from the dot product be-
tween the query and key values are modulated
by a Gaussian window µ, which is dependent
on the Euclidean distance between latent posi-
tions ppos and the input coordinates, expressed
as µσ(xm, pi) = −σatt||pposi − xm||2. Here,
σatt is a hyperparameter that regulates the size
for each latent (Fig. 5). We have:

att(x, z) = softmax
i=1,...,N

(
q(a(x, pi))

Tk(ci)√
dk

+ µσ(x, pi)

)
, (5)

where µ(xm, pi) represents the Gaussian window computed for each latent position. To enhance
the expressiveness of the model even further, σatt can be made latent-specific, encoding for the
spatial extent of a latent zi. This extension allows the latents to be expressed as point clouds:
zf = {(pi, ci, σi)}Ni=1, effectively coupling position, appearance, and locality attributes within the
latent space. However, we keep this for further research - fixing σatt in our experiments.

A note on efficiency A limitation of the proposed method is the considerable computational com-
plexity required to calculate output values for large numbers of input coordinates; larger more com-
plex signals require a larger number of latents to be represented accurately leading to an exponential
number of attention coefficients needing to be calculated each forward pass (complexity scales as
O(Nlatents ×Ncoordinates)). Since we localize latents, larger input domains present a trade-off. Either
we maintain a small number of latent points—requiring a larger σatt to cover the entire domain,
diminishing locality—or we increase the number of latent points, aggravating computational cost.

To mitigate the computational overhead associated with the cross-attention between the latent points
and the sampled coordinates, we propose employing a k-nearest neighbours (k-NN) approach for
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the cross-attention operation. Specifically, for each pixel, we first identify its k-nearest latent points
and then compute cross-attention for this coordinate only over these k nearest latents. This approach
reduces computational cost while preserving the advantages of local representations (Appx. D.5).

(a) (b) (c)

Figure 6: Latent point cloud editing. Subfigures
(a) and (b) show two reconstructed CIFAR-10 im-
ages with corresponding latents zcar,zduck. Sub-
figure (c) shows a reconstruction of the latent set
zcar-duck when selecting latents from either zcar or
zduck based on their position.

Properties of Equivariant Neural Fields
Weight sharing - Conditioning ENF’s attention
operator on attributes a which uniquely iden-
tify equivalence classes of (latent-coordinate)-
pairs, ensures that the cross-attention opera-
tors—be it the attention logits or the value
transform—respond similarly regardless of the
pose under which a signal pattern presents it-
self. This form of weight-sharing has shown
improved data and representation efficiency in
GNN-based architectures (Bekkers et al., 2023)
and—as such—we hypothesize that our pro-
posed ENF architecture similarly benefits from
these properties compared to other types of
NeFs. We confirm this property in figure 10,
which shows that ENFs share weights over
group actions g ∈ G for the geometry in which
the point clouds are grounded. In Sec. 4 we verify these benefits on downstream tasks.

Locality and (geometric) interpretability- The use of latent point clouds allows for localization of the
cross-attention mechanisms around the latent pose, akin to how a convolution operator works with
localised kernels. Not only does this improve interpretability and downstream performance (field
patterns can be attributed to specific latent points), it enables unique field editing possibilities. Since
our method is based on sets of latents and each element is responsible for a local neighbourhood of
the input domain, we can take arbitrary unions(e.g. stitching) or intersections(e.g. latent-merging)
of point-sets of different samples (Fig. 6).

3.2 OBTAINING LATENT POINT CLOUDS z

Following Park et al. (2019); Dupont et al. (2022) we obtain a latent point cloud zf for a specific
sample f using gradient descent, optimizing zf for reconstruction of the original signal f . For
instance, in images a latent point cloud z may be optimized for an L2-loss between fθ(·, z) and
f(·). Of course, this also requires optimizing θ to meaningfully map latents to fields. The two most
common approaches to this end are Autodecoding (Park et al., 2019) - where zf and θ are optimised
simultaneously over a dataset, or MAML (Finn et al., 2017; Tancik et al., 2021) - where optimization
is split into an outer and inner loop, with θ being optimized in the outer loop and z being re-initialized
every outer step to reconstruct the current signal batch in a limited number of SGD steps in the inner
loop. We detail these approaches in Appx. A.1.1, using both in the experiments.

4 EXPERIMENTS

First, we show the ability of Equivariant Neural Fields (ENFs) to reconstruct datasets of input fields
f - i.e. to associate a latent point cloud zfj to a given dataset of samples fj ∈ D that accurately
reconstructs them. Then, we validate ENFs as an improved NeF-based downstream representation
for various tasks requiring geometric reasoning; classification, segmentation and forecasting. To
show the flexibility of NeF-based representations, we perform these tasks on a range of modalities.

Each downstream experiment consists of two stages: (1) fitting a ENF backbone fθ for reconstruc-
tion of the input fields fj ∈ D to obtain latents pointclouds zfj , and (2) training a downstream
model—that takes zfj as input—for each specific task. The bi-invariant am,i we choose to con-
dition our ENF, as well as the downstream model, varies depending one the type of task we’re
performing—described per experiment below. Since our goal is to assess the impact of grounding
continuous representations in geometry, besides dataset-specific baselines, we also compare against
Functa (Dupont et al., 2022), the framework that originally proposed functional representations zfj
as data surrogates.
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Table 1: Test-set reconstruction PSNR (db↑) on
CIFAR10, CelebA64x64, ImageNet1k, test accu-
racy (%↑) on CIFAR10.

CIFAR10 CELEBA IMAGENET

TASK RECON. CLASS. RECON. RECON.

Functa 38.1 68.3 28.0 7.2
ENF a∅ 36.5 68.7 30.6 24.7
ENF aR2

42.2 82.1 34.6 27.5
ENF aSE(2) 41.6 81.5 32.9 26.8

Table 2: Test reconstruction (IoU↑) on
ShapeNet16 and ShapeNet55 and test clas-
sification accuracy (%↑) on ShapeNet16.

SHAPENET16 SHAPENET55
MODALITY VOXEL (OCC) P. CLOUD (SDF)

TASK RECON. CLASS. RECON.

NF2vec - 93.3 -
Functa 92.1 90.3 25.7
ENF a∅ 90.7 96.4 72.3
ENF aR3

92.9 96.6 73.2

For experimental details and hyperparameters we refer to Appx. C.

4.1 RECONSTRUCTION CAPACITY

First we evaluate our proposed ENFs on their reconstruction capabilities. • Image data We
show results for reconstruction trained with Meta-Learning on CIFAR10 Krizhevsky et al. (2009),
CelebA64×64 (Liu et al., 2015) and ImageNet1K (Deng et al., 2009) using different bi-invariant at-
tributes am,i—resulting in equivariance to different corresponding transformation groups—in Tab.
1. We provide results for a Functa baseline, following the setup described in (Dupont et al., 2022).
Notably, translational weight sharing (aR

2

) outperforms settings with no-transformation (a∅) and
roto-translational weight sharing (aSE(2)). Moreover, it seems that locality alone is itself a useful
inductive bias when moving to higher resolution, more varied images; Functa outperforms ENF a∅

on CIFAR10 reconstruction, but on CelebA and ImageNet all ENF parameterizations outperform
Functa. These results reinforce locality and equivariance as inductive biases in image-based con-
tinuous reconstruction tasks. • Shape data We show shape reconstruction results (Tab. 2) on two
common shape representations; voxels (3D occupancy grids) and meshes. For voxel data we take
train and test splits from the 16-class ShapeNet-Part segmentation dataset (Yi et al., 2016) (which we
denote ShapeNet16) and fit their corresponding voxel-based representation as occupancy function
R3→{0, 1} - also using the obtained representations in the ShapeNet-Part segmentation experiment
detailed below. For mesh data we opt instead to fit the full 55-class ShapeNetCore (v2) object dataset
(Chang et al., 2015), fitting these with 150k points sampled from the signed distance function of the
mesh (more details in Appx. C.3). Unlike Dupont et al. (2022), we were unable to get sufficient
quality reconstructions with meta-learning and instead obtain latents z using autodecoding on shape
data (finding discussed in Appx. A.1.1). Results show that ours as well as the baseline models
struggle with accurately reconstructing the underlying shape from the SDF point clouds, we think
due to the more complex optimization objective.

4.2 DOWNSTREAM TASKS

Image classification One major limitation of Functa—noted by Bauer et al. (2023)—was lacking
performance on complex image tasks such as classification. To show performance of our model in
this setting, we reproduce the CIFAR10 classification experiment listed in Bauer et al. (2023)—aug-
menting CIFAR10 with 50 random crops and flips per image, and training an ENF to reconstruct
these using meta-learning, obtaining latent point clouds z. We do this for different bi-invariants a

corresponding to no equivariance (a∅), translational (aR
2

) and roto-translational (aSE(2)) equivari-
ance. We then train a PΘNITA classifier (Bekkers et al., 2023) to classify these latent point clouds -
conditioning the message passing function on the same bi-invariants, now calculated between poses
pi. Results (Tab. 1) show a test-accuracy improvement of 13.8 percentage points (68.7%→82.1%)
over Functa (Dupont et al., 2022), and also indicate that in this setting (roto-)translational equivari-
ance is a strong inductive bias—with aSE(2), aR

2

-ENFs outperforming a∅-ENFs.

Shape classification Highlighting the flexibility of NeF-representations we apply the same setup
to shape classification, training PΘNITA classifiers on the aforementioned ShapeNet16 dataset. Re-
sults in Tab. 2 show that relevant geometric features are better preserved in a localized latent space.
Here, the performance difference between equivariant (aR

3

) and non-equivariant (a∅) ENFs are neg-
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ligible. This is to be expected due to the global alignment of the ShapeNet dataset. This shows ENF
performs well under equivariance constraints even in non-equivariant settings.

Table 3: Mean class
and instance IoU
(↑) on ShapeNet.

MODEL

IN
ST

M
IO

U

C
L

S
M

IO
U

PointNet 83.1 79.0
PointNet++ 84.9 82.7
DGCNN 83.6 80.9

NF2vec 81.3 76.9
Functa 82.8 74.8
ENF 82.2 75.4

ShapeNet-Part segmentation Where classification primarily evaluates
how well the latent point clouds captures global information, we also want
to evaluate ENFs performance on fine-grained tasks. As such, we evaluate
on the ShapeNet part segmentation task (Yi et al., 2016). The ShapeNet-Part
dataset consists of point clouds for 16 ShapeNet object-classes, each with a
varying number of annotated parts for a total of 50 segmentation classes. We
use the ENF aR

3

backbone defined in the voxel reconstruction task above
(fθrecon ) to obtain a latent zrecon for a shape. Then, a second ENF (fθseg ) is
trained to map points on this shape to a one-hot encoding of their corre-
sponding segmentation classes, i.e. fθseg(xm; zrecon) maps xm to its class label
ym. Results (Tab. ??) somewhat surprisingly show ENF and Functa perform
comparably in this task (detailed results and visualizations in Appx. D.6). We again think this
attributable to the fact that all shapes are aligned and centered - we further investigate these results
in Appx. D.6.1. We additionally include results for point cloud-specific architectures, and NF2Vec
- a framework for self-supervised representation learning on 3D data from (non-conditional) NeFs.
These results show that ENF only slightly underperforms modality-specific baselines.

Figure 7: Top- OMBRIA test sample of SAR (S1),
optical (S2) before and after flooding with ground
truth flood map. Bottom- ENF reconstructions
fθrecon(·; zrecon) and predicted mask fθseg(·; zrecon).
Table 4: Test IOU (↑)
for flood map segmen-
tation on OMBRIA, for
different observation
rates.

MODEL PSNR (↑) IoU (↑)

100% OF fIN OBSERVED
OmbriaNet N.A. 72.36
Functa 16.77 42.75
ENF 31.65 74.00

50% OF fIN OBSERVED
OmbriaNet N.A. 27.02
Functa 16.71 42.74
ENF 31.37 73.65

10% OF fIN OBSERVED
OmbriaNet N.A. 0.0
Functa 16.77 42.92
ENF 24.87 71.58

Table 5: Test IOU
(↑) zero-shot resolution
transfer on OMBRIA.
fθrecon ,fθseg were trained
on 128×128 resolu-
tion.

MODEL PSNR (↑) IoU (↑)

256×256 TEST RESOLUTION
Functa 16.72 37.14
ENF 28.61 72.92

128×128 TEST RESOLUTION
Functa 16.71 35.48
ENF 29.31 73.21

64×64 TEST RESOLUTION
Functa 16.58 36.90
ENF 33.31 72.50

Flood Map Segmentation For a more chal-
lenging segmentation task we apply ENFs on
multi-modal flood mapping dataset (Drakon-
akis et al., 2022). This small dataset (759/85
train/test split) provides dual-modal temporal
data; aligned Synthetic Aperture Radar (SAR)
and optical satellite images at 256×256 reso-
lution obtained by satellites Sentinel 1 and 2
(S1,S2), of disaster sites before and after their
flooding, along with corresponding masks that
segment the flooded area. The goal is to predict
binary segmentation mask given these 4 differ-
ent input fields. We first train a reconstruction
aSE(2)-ENF fθrecon with MAML to obtain a la-
tent zrecon that decodes into the four observa-
tions. Next, a segmentation ENF fθseg is trained
to predict, given a latent zrecon, the binary mask
at each location.

We evaluate and compare our model against
the multi-modal U-Net proposed by Drakon-
akis et al. (2022). As suggested by Dupont
et al. (2022) we trained Functa—unable to fit
the training set with MAML—using autode-
coding instead. However, we found Functa un-
able to generalize to test images in this com-
plex low-data setting, collapsing to remember-
ing the training dataset (achieving 31.5 recon
PSNR and 93.7 IoU on the 256×256 train set). Results (Tab. 4, Fig. 7) show the importance of
inductive biases in complex limited-data regimes. We provide results for subsampled observations
to simulate missing data, showing the robustness of NeF-based methods to sparsity—ENF performs
well even at 10% observation rate where classical convolution-based methods fail. Moreover, we
show zero-shot resolution transfer results (Tab. 5) where fθrecon , fθseg are trained on 128×128 resolu-
tion data are deployed on 64 × 64 and 256 × 256 resolution data without fine-tuning, showing the
resolution agnostic nature of NeF-representations.

ERA5 Climate forecasting Following (Yin et al., 2022; Knigge et al., 2024) we evaluate our NeF-
based representation on dynamics forecasting. ERA5 (Hersbach et al., 2019) is a dataset of hourly
global temperature observations. We use the dataset as described in Dupont et al. (2021), which
contains data defined over 46×90 latitude-longitude grids. From the training and test sets, we extract
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Table 6: ERA5 reconstruction
Tt-MSE↓ and 1-hour forecast-
ing Tt+1-MSE↓. *MSE be-
tween ground truth observa-
tions at Tt and Tt+1.

Tt-MSE↓ Tt+1-MSE↓
Identity* - 2.42E-05
Functa 5.75E-05 3.45E-03
ENF 8.04E-06 9.44E-06

Figure 8: Visualization of ground truth ERA5 test sample and
ENF prediction of the change in temperature between observa-
tions Tt and Tt+1. We show the true (∆T) and predicted (∆T̂ )
difference between the temperature maps at t and t+ 1.

5693 and 443 pairs of subsequent observations Tt, Tt+1 for train and test sets respectively. Using
MAML, we train an ENF fθ with bi-invariant a∅ (no symmetries exist in this data) to reconstruct the
global temperature state Tt using zt, and optimize a PΘNITA MPNN to predict an update ∆zt that
maps zt to a latent ẑt+1 = zt +∆zt which decodes into the state at t+ 1, i.e. Tt+1≈fθ(·; zt+1) ≈
fθ(·; zt +∆zt). Training is done sequentially, i.e. first the backbone fθ is optimized and afterward
the MPNN is trained, keeping fθ fixed. Results (Tab. 6, Fig. 8) show that the latent space of ENF
lends itself well for modelling such complex dynamics - where a global latent representation such
as Functa seems unable to model the relevant fine-grained details needed for forecasting.

Figure 9: Qualitative sam-
ples for generative modelling on
CIFAR-10 and Celeba64×64.

Table 7: FID for generative
modelling on CIFAR-10 and
Celeba64×64.

CelebA64×64 CIFAR-10
MODEL FID ↓ FID ↓
GEM - 23.8
GASP 13.5 -
DPF 13.2 15.1

Functa 40.4 78.2
ENF 33.8 23.5

Image generation Following
(Dupont et al., 2022; Bauer
et al., 2023), we provide re-
sults for diffusion applied to a
dataset of latents obtained from
pretrained ENFs on CIFAR10
and Celeba64 × 64. As down-
stream diffusion model, we uti-
lize DiT-B (Peebles & Xie,
2023), a natural choice for our
set-latent (training detailed in
Appx. C.4). We provide results
in FID (Heusel et al., 2017) for
unconditional generation in Tab. 7 and samples in Fig. 9. We provide comparison to Functa (Dupont
et al., 2022), as well as other frameworks for generative modelling over fields (Du et al., 2021;
Dupont et al., 2021; Zhuang et al., 2023)–notably each of these methods is trained on a generative
objective and does not support self-supervised pre-training like Functa or ENF. On globally aligned
CelebA64×64, both Functa and ENF produce perceptually qualitative samples, but unlike ENF,
Functa is unable to generalize to CIFAR-10, where data is less homogeneous and not aligned. These
results again show clear benefit of a geometrically interpretable latent space for downstream tasks,
though previously proposed frameworks specific to generative modelling over fields achieve better
performance than ENF. The latter points to a possible area of improvement, and future work could
look into incorporating insights from these works into a generative adaptation of the ENF frame-
work, e.g. through latent-space regularization of perceptual consistency as per Du et al. (2021).

5 CONCLUSION

Building upon fascinating work using Neural Fields (NeFs) as continuous data surrogates, this paper
introduces Equivariant Neural Fields (ENFs); a novel NeF parameterization that re-introduces induc-
tive biases (locality, equivariance) into NeF-based representations. ENF uses a geometry-grounded
conditioning variable—a latent attributed point cloud—to achieve an equivariant decoding process,
ensuring that transformations in an input field are preserved in the latent space and enabling steering
of the latent to transform the output signal. This steerability property allows for the accurate repre-
sentation of geometric information, and for efficient weight-sharing over spatially similar patterns,
significantly improving learning efficiency and generalization, as validated on a range of experi-
ments with varying data modalities and objectives.
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6 REPRODUCIBILITY

All datasets can be downloaded via their cited references without any effort except for the ShapeNet
dataset - which requires registration and approval. The pre-processing steps are described in ap-
pendix C.3. For all model parameter settings for the ENFs, downstream models or Functa we refer
to the appendix C. As supplementary material we added a codebase containing code to reproduce
results for the CIFAR10 and OMBRIA experiments. Code for all other experiments will be released
during the rebuttal phase of the review process, containing all settings to reproduce the experiments
in config files.
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A APPENDIX

A.1 AUTODECODING AND META-LEARNING

A.1.1 META-LEARNING

When fitting samples with (Conditional) NeFs using autodecoding (gradient-descent based optimi-
sation of the latent at test-time) (Park et al., 2019), two key challenges emerge: (1) optimising the
sample-specific parameters/latent z for a novel sample can be time-consuming -taking e.g. up to
500 gradient updates (Yin et al., 2022)- and (2) more gradient updates to NeF weights may impede
downstream performance through a phenomenon known as overtraining (Papa et al., 2023) -where
the relationship between field f and z is obscured by oversensitivity to high-frequency details. To
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address the first point, Sitzmann et al. (2020a); Tancik et al. (2021); Dupont et al. (2022) propose a
Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) based optimisation method, enabling
the network or latent initialisation to be learned such that each sample can be fitted with just a few
gradient steps. More specifically, Dupont et al. (2022) proposes an inner-outer loop structure where
the modulations are updated in the inner loop, while the base network weights are updated in the
outer loop. This method corresponds to an instance of learning a subset of weights with MAML, also
known as Contextual Variable Interaction Analysis (CAVIA) Zintgraf et al. (2019). More recently,
Knigge et al. (2024) note that this meta-learning approach also improves downstream performance
by imposing structure on the NeF’s latent-space. We provide pseudocode for this approach in Alg.
1.

Algorithm 1 Meta-learning ENF

Randomly initialize shared base network fθ
while not done do

Sample batch of signals f
Sample random coordinates x
Initialize latents zf ← {(pi, ci)}Ni=1 for a batch of signals.

for all step ∈ 1, ..., Ninner and j ∈ B do
zf ← zf − ϵ∇zfLmse

(
fθ(x, z

f ), f(x))
)

end for
Update ENF: θ ← θ − η∇θL′

mse
end while

A.1.2 AUTODECODING

During our experiments, we found that not all types of signals lend themselves easily to this encoding
approach when using ENFs (specifically SDFs and occupancy functions). Although it saves time
in inference and adds structure to the latent space, (Dupont et al., 2022) also remark on the limited
expressivity of Meta-Learning due to the small number of gradient descent steps used to optimize a
latent z. As such, for all shape experiments we instead opt for autodecoding (Park et al., 2019), in
which latents and backbone are optimized simultaneously. We provide pseudocode for this approach
in Alg. 2.

Algorithm 2 Autodecoding ENF

Randomly initialize shared base network fθ
Initialize latents zf0 ← {(pi, ci)}Ni=1 for all signals
while not done do

Sample batch of signals f
Sample random coordinates x
Update latent: zft+1 ← zft − ϵ∇zft Lmse

(
fθ(x, z

f
t ), f(x))

)
Update ENF: θt+1 ← θt − η∇θtLmse

(
fθt(x, z

f
t ), f(x))

)
end while

A.1.3 A NOTE ON POSE INITIALIZATION

We noted during our experiments that initialization of the latent poses-i.e. their initial posi-
tion/orientation in the inner loop-has a significant impact on the reconstruction capacity and stability
of the ENF. We found that a good way to initialize the latents is to space them as equidistantly as
possible and then adding small Gaussian noise ( N(0, 1e − 3)), e.g. for 2D images on a perturbed
2D grid. Any orientations are initialized canonically, i.e. all latents are initialized with the same
orientation. When defining an equidistantly spaced grid is hard, for example on point clouds or
data defined on a sphere, we propose using Farthest Point Sampling on a training grid to initialize
positions for the latents.
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B BI-INVARIANT FUNCTION PARAMETERIZATIONS am,i

The bi-invariants attributes that are used in the experiments section are listed here.

Translational symmetries Rn In this setting, poses correspond to translations ti ∈ Rn:

aR
n

m,i = xm − ti (6)

Roto-translational symmetries SE(2). In this setting, poses pi correspond to group elements g =
(θi, ti) ∈ SE(2). We adopt the invariant attribute introduced by (Bekkers et al., 2023):

a
SE(2)
m,i = Rθi(xm − ti) (7)

No transformation symmetries. A simple ”bi-invariant” for this setting that preserves all geometric
information is given by simply concatenating coordinates p with coordinates x:

a∅i,m = pi ⊕ xm (8)

Parameterizing the cross-attention operation in Eq. 3.1 as function of this bi-invariant results in a
framework without any equivariance constraints. We use this in experiments to ablate over equivari-
ance constraints and its impact on performance.

C EXPERIMENTAL DETAILS

We provide hyperparameters per experiment. We optimize the weights of the neural field fθ in
all experiments with Adam (Kingma & Ba, 2014) with a learning rate of 1e-4, and an inner step
size of 30.0 for ci and 1.0 for pi (increasing inner step size in general speeds up convergence and
improves reconstruction - but may also lead to instabilities). For downstream classification we train
an equivariant MPNN Fψ , using 3 message passing layers in the architecture specified in Bekkers
et al. (2023) conditioned on the same bi-invariant which was used to fit the ENF, with a hidden
dimensionality of 256, always trained with learning rate 1e-4. The std parameters σq, σv of the RFF
embedding functions φq, φv are chosen per experiment based on an ablation. In general, increasing
both values leads to increased frequency response of the ENF, though generally the model is more
susceptible to small change in σq . as well as hidden dim size and the number of attention heads are
chosen per experiment, detailed below. We run all experiments on a single H100.

C.1 IMAGE RECONSTRUCTION, CLASSIFICATION, SEGMENTATION, FORECASTING

CIFAR10 reconstruction and classification For CIFAR10 (Krizhevsky et al., 2009) reconstruc-
tion and classification we use a hidden dim of 128 with 3 heads, 25 latents of size 64, a batch size
of 32 and restrict the cross-attention operator to k=4 nearest latents for each input coordinate x. For
σq, σv we choose 1.0 and 3.0 respectively. We train the ENF model and the classifier for 100 epochs.

CelebA64×64 For CelebA Liu et al. (2015) we use a hidden dim of 256, 36 latents of size 64, a
batch size of 2 and restrict the cross-attention operator to k=4 nearest latents for each input coordi-
nate x. For σq, σv we choose 2.0 and 10.0. We train the model for 30 epochs.

ImageNet1K reconstruction For ImageNet1K (Deng et al., 2009) reconstruction we use a hidden
dim of 128 with 3 heads, 169 latents of size 64, a batch size of 2, restricting the cross-attention
operator to k=4 nearest latent for each input coordinate x. For σq, σv we choose 2.0 and 10.0
respectively. We train the model for 2 epochs.

Ombria For OMBRIA Drakonakis et al. (2022) we trained a reconstruction model fθrecon with, 256
hidden dim, 4 heads, 169 latents of size 128, a batch size 8. Restricting the cross-attention operator
to k=1 nearest latent for each input coordinate x. For σq, σv we choose 2.0 and 10.0 respectively.
The segmentation model fθseg has hidden size of 128, 8 heads, with cross-attention restricted to k=4
nearest latents, trained with batch size 16. For σq, σv we choose 2.0 and 3.0 respectively. We train
both models, sequentially, for 500 epochs.
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ERA5 forecasting For ERA5 forecasting (Hersbach et al., 2019) we train a reconstruction model
fθrecon with 128 hidden dim, 3 heads, 36 latents of size 64, a batch size of 32. Restricting the cross-
attention operator to k=4 nearest latent for each input coordinate x. For σq, σv we choose 2.0 and 8.0
respectively. Inputs are defined over a latitude longitude θ, ϕ grid, which we map to 3D euclidean
coordinates per x = [cos θ cosϕ, cos θ sinϕ, sin θ]. We first train the ENF for 800 epochs. As
forecasting model, we train a PΘNITA MPNN of 3 layers with 256 hidden dim for 1000 epochs.
Both models are trained with a batch size of 32.

As objective, since we don’t want to overfit the reconstruction error incurred by fitting a latent zt
to the initial state, we supervise the forecasting model with L2 loss between the decoded output for
predicted latent ẑt+1 per:

Lforecast = ||(fθrecon(·; zt) + ∆T )− (fθrecon(·; ẑt+1)||22
∆T being the ground truth change in temperature, and ẑt+1 = Fψforecast(zt).

C.2 FUNCTA BASELINE MODELS

For the Functa baselines (Dupont et al., 2022), we try to keep as close as possible to the setup defined
by the original authors. However, we found that training deeper models in the shape experiments (≥
8 layers) lead to very unstable training. Instead, for these experiments, we opted to go for shallower
models, up to 6 layers. For all experiments we use a hidden dim of 512 and latent modulation
size of 512 as used in (Bauer et al., 2023), except for ImageNet1K reconstruction, where we use a
1024 latent modulation. We would like to note here that in all experiments, the Functa baseline has
larger parameter count than the ENF models applied to each task (e.g. for CIFAR10, ENF has 522K
params where Functa has 2.6M params). Although we did not explore this in-depth, it seems that
the proposed ENF representation is more parameter efficient compared to the deep SIREN model
defined in (Dupont et al., 2022).

For downstream models we follow (Bauer et al., 2023) and use a 1024 hidden dim 3 layer residual
MLP (∼2.1M params). Like in our ENF experiments, we use the same architecture across tasks,
only changing the output head to accomodate.

C.3 SHAPE RECONSTRUCTION AND CLASSIFICATION

Voxel Dataset and Segmentation The voxels are given with the ShapeNet dataset where the seg-
mentation labels are given as point clouds. However, the coordinate frames of the voxels are differ-
ent, so to align them we mapped both between -1 and 1.

We trained a model fθrecon with a hidden dim of 128, 3 heads, 27 latents of size 32. We set σq, σv for
the RFF embedding functions ϕq, ϕv to 2 and 10 respectively. For Functa we used, a latent dim of
864 to have the same latent parameters as the conditioning variable used for ENF. As NeF we used
a 5-layer Siren with a hidden-dim of 512, w0 is set to 10. The modulation network is a two-layer
MLP of hidden sizes 256 and 512.

As is customary for ShapeNet-part segmentation, we condition on the object class and supervise over
all segmentation classes with a cross-entropy loss, but only calculate test IoU based on segmentation
classes that correspond to the object class. We chose the class-emb dim to be 32 for all settings.

The segmentation NeFs are all trained for 500 epochs with the same parameters as the reconstruction
NeF. However, for ENF, we chose σq, σv to be 1, 1 for extra stability.

SDF Dataset To create the signed distance functions from ShapeNetCore V2 Chang et al. (2015)
objects, we took their meshes and made them water-tight using Point Cloud Utils (Williams, 2022).
Afterwards, we sampled a point cloud of 150,000 points from the surface. To create the actual SDF,
we perturbed the points with Gaussian noise along the mesh normals, and recalculate the signed
distances to the surface. Finally, the dataset consisted of 55 classes with a total number of 42.472
and 5.000 samples for the train and test set respectively.

For ENF we used a latent point cloud of 27 points with context vectors of dimension 32. The std
parameters σq, σv for the RFF embedding functions ϕq, ϕv are 2 and 10 respectively. The hidden
dim of the ENF was set to 128 and we used 3 attention-heads. The
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For Functa (Dupont et al., 2022) we used a latent modulation of 864 which corresponds to ENFs
chosen 27*32 parameters for the conditioning variable. As a NeF we used a 5 layer Siren with an
hidden-dim of 512 and a w0 parameter of 15. As a modulation network we used a two-layer MLP
with 256,512 hidden-dim.

C.4 GENERATIVE MODELLING ON ENF LATENT SPACE

For generative modelling experiments CelebA64×64 and CIFAR-10 we train a Diffusion Trans-
former (DiT-B) (Peebles & Xie, 2023) on ENF latents, utilizing the context vectors as input tokens
and their positions as input for an RFF position embedding added to the tokens. We use the same
approach for CelebA as for CIFAR10; we train an aR

2

ENF with MAML on the image dataset, and
use this model to obtain sets of ”ground truth” latents z0 := {pi, ci,0}Ni=1 for each image. We then
train a DiT-B on a diffusion objective on this latent space, where the forward diffusion kernel is
given by:

zt = {(pi,
√
ᾱtci,0 +

√
1− ᾱtϵ

c
i )}Ni=1, (9)

with ϵc ∈ N(0, 1), i.e. we only add noise to the latent vectors, as we find adding noise to the
poses leads to unstable training (something to be investigated in future work). To generate a sample,
we take a random set of ”ground truth” poses from the training set, and attach a context vector
ci,t ∈ N(0, 1) to each pose to denoise. We supervise the DiT-B with the v objective (Salimans &
Ho, 2022). Like (Peebles & Xie, 2023), we use a tmax=1000 linear noise schedule ranging from
1e−4 to 1e−2, and generate samples using DDIM (Song et al., 2020) in 512 steps.

In both settings, we train the diffusion model for 200 epochs using Adam, a constant learning rate
of 1e−4, no weight-decay or dropout, and generate 50k samples to calculate FID.

D ADDITIONAL RESULTS

D.1 SIZE OF LATENT POINT-CLOUD

In this section, we delve deeper into the hyper-parameters of the latent point clouds used as condi-
tioning variables. Equivariant Neural Fields can increase the number of parameters used to represent
a signal in two ways: by increasing the number of latent points or by expanding the dimensionality
of the context vectors. Intuitively, we can either enhance the representational capability of a single
region in the input domain or create more, smaller regions with lower representational dimensions.

To gain further insights into how these conditioning variables behave, we train multiple CNFs using
different latent point-cloud configurations. In these experiments, the chosen latent dimension or
number of latent points is adjusted to keep the total number of parameters as close as possible across
configurations. We trained each model for 400 epochs, as only small improvements occurred beyond
this point and the overall trend was already clear. After fitting the ENF, we used the meta-learned
representation to perform classification tasks. We employed a simple message-passing GNN, which
we trained for 20 epochs, after which performance improvements began to degrade. Below, we
present the ablation results for these different approaches to increasing representational capabilities.

Table 8: Reconstruction PSNR (db↑) and ACC (%↑) on CIFAR10 for different parametrisations of
the latent point-clouds, i.e. varying N, d in z := {ci ∈ Rd}Ni=1.

# LATENTS(N) LATENT DIM(D) # PARAMS PSNR ACC (%)

1 1600 1600 22.69 53.21
4 400 1600 29.14 64.98
9 178 1602 35.49 73.54
16 100 1600 39.93 77.09

D.2 ABLATION ON GAUSSIAN SPATIAL WINDOWING AND KNN APPROXIMATION

To evaluate the impact of Gaussian spatial windowing (GSW) and the k-Nearest Neighbors (kNN)
approximation in the proposed method, we trained four models on the CIFAR10 dataset: one with
both features disabled, one with only kNN enabled, one with only GSW enabled, and one with both
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enabled. Besides evaluating the difference in reconstruction capabilities, we are mainly interested in
the downstream performance. We argue that the introduced locality enhances latent-space structure
by improving weight-sharing across local-patches.

After training the models, we used the different ENF models to generate latent representations for
CIFAR10 classification. The results are shown in Table 9. While reconstruction performance re-
mains almost consistent across the different setups, GWS significantly improves downstream classi-
fication accuracy. Moreover, the kNN approximation does not negatively affect either reconstruction
nor classification performance. Interestingly, kNN even provides a slight improvement even with-
out GWS. We hypothesize that this improvement comes from kNN introducing an implicit form of
windowing—not by modifying attention values directly but by limiting the set of attention values
considered. To conclude, there can be observed that the introduced locality in CNF latents does
improve the downstream performance.

Table 9: Reconstruction PSNR (db↑) and ACC (%↑) on CIFAR10 to ablate the Gaussian spatial
windowing and kNN approximation.

ENF SETUPS PSNR (DB ↑) ACC (% ↑)

ENF 39.1 70.1
ENF + kNN 40.8 72.8
ENF + GWS TBD TBD
ENF + GWS + kNN 42.2 82.1

D.3 TRANSFORMING THE LATENT POINT-CLOUD

We provide visualizations for transformations applied to the latent pointclouds for different bi-
invariants a in Fig. 10.

Figure 10: Transformations applied to latents z for different bi-invariants a. (a) a∅m,i is not bi-
invariant to any transformations, (b) aR

2

m,i is bi-invariant to translations, producing distorted patterns

on rotation and (c) aSE(2)
m,i is bi-invariant to roto-translations; the output fθ(x; z) equivaries with both

rotations and translations applied to z.

D.4 ENF WITH GEOMETRY-FREE LATENT SETS

To further investigate what design choices the performance of ENF results from, we provide an
ablation on CIFAR10 over a geometry-free implementation of ENF. We do this by removing the
pose information from the latent set, i.e. we set z := {ci}Ni=1, and use a ”bi-invariant” that is only
a function of xj , ai,j = xj . Since now latents do not have a position, we remove the Gaussian
windowing and KNN approximation, but keep the rest of the ENF architecture as well as the hyper-
parameters used identical to the settings reported in Appx. C under ’CIFAR10 reconstruction and
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classification’. We observe highly unstable training during the reconstruction phase, and reconstruc-
tion performance on the test set converges to 22.3. We think this attributable to the fact that now
any update to one of the latent codes affects the output of the NEF globally, leading to a much more
complex optimization landscape. This highlights another advantage of either having a single global
latent, or using locality as inductive bias; optimization of single or locally responsible latents seems
to lead to a simpler optimization landscape compared to optimizing a set of global latents.

We subsequently train a simple 4 layer transformer with hidden dim 256 and 4 heads as classifier.
Note that this transformer uses no positional encoding, since the latent z in this setting has no
associated geometry/positional information. We train for 500 epochs on the augmented dataset, after
which training accuracy has converged to 95%. We observed overfitting early into training. Utilizing
early stopping, best performance was achieved after just 5 epochs, yielding a test set accuracy of
0.47. These observations (Tab. 11) are in line with the outcome of our other experiments; geometry-
grounded latents are more informative for downstream tasks.

Table 10: Reconstruction PSNR (db↑) and classification test accuracy (%↑) on CIFAR10 when
ablating over latent geometry.

PSNR ACC (%)

Functa 38.1 68.3
ENF w/ pose-free latents 22.3 47.9

ENF w/ R2 latents 42.2 82.1

D.5 DETAILS ON COMPUTATIONAL EFFICIENCY

To allow for more fine-grained comparison of our method with previous work, we provide details
on time and memory efficiency of our approach on the CIFAR10 classification experiments listed in
Tab. 1 with aR

2

, when both Functa and ENF are fit using MAML with 3 inner loop steps. Moreover,
we compare efficiency also when ablating over the KNN approximation of the attention operation.
We report estimated FLOPs (obtained through JAX’s AOT api), GPU memory usage per sample and
training time per epoch for a batch size of 32. We see that the naive implementation that does not
truncate the attention operator is significantly more FLOP-intensive and memory intensive compared
to Functa (Dupont et al., 2022) and the KNN approximate implementation. Functa in all settings
does have considerably higher runtime, attributable to its relatively deep sequential architecture
compared to the shallow single layer architecture of ENF. These results show that, besides being
more performant on fine-grained downstream tasks, ENF also scales favourably compared to Functa.

Table 11: Computational efficiency of ENF with and without KNN approximation to the Functa
baseline for the CIFAR10 experiment.

FLOPS (×109) GPU MEMORY (GB/SAMPLE) TIME PER EPOCH (S)

Functa 28.3 0.61 2864
ENF w/o KNN approx. 104.5 1.83 1801
ENF w KNN approx. 22.7 0.40 207

D.6 ADDITIONAL SHAPENET-PART SEGMENTATION RESULTS

Below we show the full table with ShapeNet-Part segmentation results with IoUs per class in table
12 and some qualitative examples in figure 11.

D.6.1 SHAPENET-PART SEGMENTATION WITHOUT SHAPE INFORMATION

Further investigating the results obtained in the ShapeNet Part classification task, we train an ENF
fθseg without conditioning on zrecon - i.e. without any shape-specific conditioning but instead only
conditioning on the object class. This model obtains class and instance mIoU of 64.3 and 69.2
respectively, indicating that a lot of points in this dataset can be correctly segmented purely based
on their absolute position, and as such the backbone NeF model does not need to capture to perform
decently on this dataset - though we would expect additional geometric to help with performance.
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Figure 11: Qualitative examples drawn randomly from the ShapeNet segmentation test set.

Table 12: Segmentation class and instance averaged IOU (↑) on ShapeNet, and mIoUs per class.
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Functa 82.8 74.8 82.1 72.5 40.2 72.5 88.5 60.9 89.2 82.2 80.1 93.9 63.8 90.6 77.3 46.3 76.0 81.5
ENF 82.2 75.4 80.7 77.2 42.1 73.2 87.7 64.4 89.4 79.6 80.6 93.8 62.7 91.8 76.9 52.5 74.1 80.6
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