
Under review as a conference paper at ICLR 2024

PRUNING VIA RANKING (PVR): A UNIFIED STRUC-
TURED PRUNING APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

The increase in width and depth has facilitated neural networks to learn from large
amounts of data leading to state-of-the-art results in both vision and NLP tasks.
In order to democratize such massive networks, it is important to deploy them
on resource-limited devices through model compression techniques such as struc-
tured pruning. Unfortunately, most pruning methods are tailored towards com-
pressing specific models due to widely differing network architectures for distinct
tasks. At the same time, it is desirable for pruning algorithms to generate opti-
mal sub-networks according to user-specified parameter budgets. In this work,
we propose Pruning via Ranking (PvR), a novel, global structured pruning ap-
proach which generates dense sub-networks that comply with any user-supplied
parameter budget. PvR consists of a grouping module and a ranking module that
are used to generate smaller networks in terms of both function composition as
well as network width for a given dataset. The smaller networks are then trained
from scratch instead of being fine-tuned as we empirically demonstrate using a
recently proposed model complexity measure that re-initialization after pruning
followed by re-training results in better performance. We compare our method
against multiple pruning approaches on benchmark datasets, namely, CIFAR10,
Tiny ImageNet and IMDB 50K movie reviews, with standard models, namely,
VGG16, ResNet34 and Bert-base-uncased. We use both accuracy and model in-
ference latency metrics to evaluate the performance of each approach. The smaller
networks proposed by PvR for a range of parameter budgets when trained from
scratch outperform all other methods across all datasets and models. In fact, our
recommended sub-networks with fewer layers achieve less than 1% test accuracy
drop even after pruning 90% of the original model across all networks and datasets
while enjoying lower inference latency due to reduced depth.

1 INTRODUCTION

Pre-trained models are highly over-parameterized networks that learn effective representations from
massive amounts of data. These models have become the cornerstone for achieving state-of-the-art
results in varied downstream tasks across the computer vision (Ren et al., 2015; Simonyan & Zis-
serman, 2014; He et al., 2016) and natural language processing (Radford et al., 2018; 2019; Devlin
et al., 2018) domains. Despite their incredible success, pre-trained models are difficult to democra-
tize for use on commercial hardware especially on low-end systems due to their immense size which
leads to large memory footprint and inference time. Thus, a good amount of recent deep-learning lit-
erature is focused on reducing the size of such large models while keeping their performance intact.
Some of these methods include network pruning (LeCun et al., 1989; Hassibi & Stork, 1992; Han
et al., 2015; Molchanov et al., 2016; Li et al., 2016), low-rank weight approximation (Denton et al.,
2014; Lebedev et al., 2014), weight quantization (Courbariaux et al., 2016; Rastegari et al., 2016),
and knowledge distillation (Hinton et al., 2015; Romero et al., 2014) among which pruning-based
methods have garnered a lot of attention due to their size reduction versus performance trade-off.

Broadly, there are two approaches to network pruning: i) masking the individual weights followed by
fine-tuning/re-training or ii) masking the entire neurons/channels of a pre-trained network followed
by fine-tuning/re-training. The first method is known as unstructured pruning which results in a
sparse model (Frankle & Carbin, 2018) while the second is known as structured pruning which
results in dense sub-networks (Li et al., 2016). Sparse models require specialized hardware and

1

Under review as a conference paper at ICLR 2024

software to achieve speedup and reduced storage costs (Han et al., 2016). On the other hand, dense
sub-networks can reduce inference time and storage costs on any currently available hardware.

Most structured pruning methods are tailored towards compressing specific models due to widely
differing network architectures for distinct tasks. For example, a number of pruning methods are
dedicated to compressing Convolutional Neural Networks (Sui et al., 2021; Luo & Wu, 2020; Li
et al., 2022) while others focus on pruning language models (McCarley et al., 2019; Ma et al., 2023;
Hou et al., 2020). Recently, Fang et al. (2023) proposed a method to evaluate dependencies within
any architecture and generate groups that need to be pruned together. To showcase the generality of
their method, they used ℓ2 norm-based pruning (Li et al., 2016), a strong structured pruning baseline,
to compress several different networks. Nevertheless, very few structured pruning methods exist that
can seamlessly work with both vision and NLP specific models (Chen et al., 2021b). At the same
time, it is desirable for pruning algorithms to generate optimal sub-networks according to user-
specified parameter budgets since one cannot assume the size of the end device where the smaller
network is to be deployed.

Keeping these objectives in mind, we propose PvR (Pruning via Ranking), a novel, neuron/filter
ranking approach that can be used to prune both vision as well language models. PvR consists of a
grouping module and a ranking module where the former component is used to group similar neu-
rons together for faster pruning while the latter component is used to estimate the global importance
of the said groups. Once the groups are ranked globally, the least important ones are removed based
on a user-supplied parameter budget leaving behind a dense smaller sub-network that is reduced in
both depth and parameter count. The resultant dense sub-network is re-initialized and trained from
scratch instead of being fine-tuned using the preserved weights. This is motivated by a recently pro-
posed model complexity measure called, Geometric Complexity (GC) (Dherin et al., 2022). We use
GC to empirically demonstrate that re-initialization after pruning followed by re-training is a bet-
ter heuristic. Through extensive evaluations on benchmark datasets, namely CIFAR10 (Krizhevsky
et al., 2009), Tiny ImageNet (Le & Yang, 2015), and IMDB 50K movie reviews (Maas et al., 2011),
with both vision and language models, namely VGG16 (Simonyan & Zisserman, 2014) with batch
normalization, ResNet34 (He et al., 2016) and Bert (Devlin et al., 2018), we show that the dense,
shallower sub-networks recommended by PvR significantly outperform all other methods.

1.1 OUR CONTRIBUTIONS

• We propose a novel neuron/filter global ranking method, PvR that automatically generates a
shallower, dense sub-network for a given dataset, pre-trained model, and parameter budget.

• We use a recently proposed model complexity measure, Geometric Complexity, to empiri-
cally demonstrate that re-initializing a structurally pruned network is a better initialization
heuristic.

• Finally, the resultant sub-networks from PvR are re-initialized and trained from scratch
with their effectiveness being demonstrated through multiple experiments on benchmark
datasets in both the vision and NLP domains against distinct pruning schemes in terms of
both accuracy as well as model inference latency.

2 RELATED WORK

Many structured pruning approaches have been proposed in the past for convolutional networks
(He & Xiao, 2023). Weight-dependent methods evaluate the importance of individual filters in
convolutional neural networks without using any input data information. Some of the more famous
approaches are Norm-based filter pruning methods such as ℓ1 (Li et al., 2016) and ℓ2 that remove fil-
ters having the smallest ℓ1 or ℓ2 norm, respectively. Recently, Filter Pruning via Geometric Median
(FPGM) (He et al., 2019) was proposed which prunes filters that are close to the geometric median
of a particular layer. Activation channel pruning methods utilize the output from the convolution
operation on input data to determine which filters to remove. HRank (Lin et al., 2020) removes
filters corresponding to the lowest average rank of the activations in the current layer. CHannel
Independence or CHIP (Sui et al., 2021) removes filters corresponding to the channels having the
highest cross-channel correlation in a given layer. ThiNet (Luo et al., 2017) uses a greedy algorithm
with a reconstruction error loss to approximate the next layer’s activation map. The filters corre-
sponding to the channels that do not contribute to the reconstruction error are pruned. NISP (Yu

2

Under review as a conference paper at ICLR 2024

et al., 2018) uses an off-the-shelf feature ranking method to determine the neuron importance of
the penultimate layer. These scores are then propagated backward to determine the importance of
filters in the previous layers. Finally, the filters with the least importance scores are pruned. CURL
(Luo & Wu, 2020) masks one channel at a time and uses KL-divergence as the criterion between
a model’s original output and the masked channel output to determine the importance of the fil-
ter corresponding to the masked channel. Based on global sorting, the least important filters from
across the model are pruned. Regularization-based methods introduce a regularization term during
model training to induce network sparsity. Network Slimming or NS (Liu et al., 2017) prunes filters
whose scaling factor in the batch normalization layer on the corresponding channel output is small.
Training of such models is done jointly with the scaling factor and channel-level sparsity-induced
ℓ1 norm. Optimization tool-based methods utilize either the first or second-order Taylor Expan-
sion to approximate the change in loss induced by filter pruning. One of the more famous methods
(Molchanov et al., 2019) uses the first-order expansion to derive importance scores for each filter
which is defined as the sum of the product of individual filter weights and their corresponding gradi-
ent. Other methods such as Random Channel Pruning or RCP (Li et al., 2022) have been introduced
as a structured pruning extension of the Lottery Ticket Hypothesis (Frankle & Carbin, 2018). RCP
generates multiple network copies by pruning filters randomly. The networks are then trained for
a few epochs and a subset of the best-performing models are selected. These models are further
trained and finally, the best-performing model is selected.

A number of structured pruning methods have also been proposed for language models (Hou et al.,
2020; Zhu et al., 2023; Devlin et al., 2018). DynaBert (Hou et al., 2020) uses first-order estimation
to capture neuron importance scores and then generates both width and layer adaptive BERT (Devlin
et al., 2018) sub-networks. Fan et al. (2019) prune entire layers from language models by developing
a structured dropout technique known as LayerDrop which acts as a regularizer during training but
generates shallower sub-networks, on-demand during inference. Voita et al. (2019) prune entire
heads of language models using stochastic gates and a differentiable relaxation of the ℓ0 penalty.
McCarley et al. (2019) introduce additional trainable parameters or masks to different parts (such as
attention heads) of pre-trained language models. The mask values are learned via a single forward
pass and the least important parts are pruned. CoFi (Xia et al., 2022) introduces masks at different
granularities of a language model which allows the method to produce more flexible structures. It
also uses a layerwise distillation objective to transfer knowledge from the unpruned network to the
pruned one. LLM-Pruner (Ma et al., 2023) finds non-critical structural dependencies in language
models and uses first-order information to safely prune non-optimal groups. It is to be noted that
even though structured pruning methods such as OTO (Chen et al., 2021a) work with both vision and
language models, they are out of the scope of this work because they do not operate in the paradigm
of targeted parameter budget.

3 PVR: PRUNING VIA RANKING

Pruning via Ranking (PvR) is a fast pruning algorithm that computes the global importance of neu-
rons/filters across a model with the least important neurons/filters being pruned away. PvR not only
reduces the number of parameters but also reduces the depth of a network which allows our rec-
ommended sub-networks to be much faster during both training and inference than similarly sized
networks generated by other pruning methods. PvR is mainly composed of two components, a
grouping module that groups similar neurons/filters and a ranking module that ranks the generated
groups. It is to be noted that PvR only performs forward passes on the pre-trained model to generate
the groups and their corresponding ranks.

3.1 RANKING MODULE

Let fθ be an L layer neural network parameterized by θ where θ = {θ1, θ2, · · · , θL}. Here, θji
denotes the j-th neuron/filter at layer i. Given a dataset D = {(x0, y0), · · · , (xn, yn)} composed
of input and output pairs xk and yk, respectively, the task of training fθ is solving the following
minimization problem,

min
θ

1

n

n∑
k=1

E(yk, fθ(xk)) (1)

3

Under review as a conference paper at ICLR 2024

where E is the error function, fθ(xk) ∈ Rc is the softmax final output of fθ for a given input xk

and c is the number of classes. A neuron is important if its removal changes the class labels of the
input samples compared to the original net. Specifically, the removal of a neuron from the original
net may lead to one of the following three main cases.

1. Class score distribution remains the same as in the original network.

2. Class score distribution changes, but the maximum scoring class does not change.

3. Maximum scoring class changes.

For a set of samples, if the removal (exactly one at a time) of three different neurons N1, N2, N3

leads to case 1, case 2, and case 3 respectively, then N3 is considered the most important and N1 is
the least important neuron. Guided by the above cases, under an i.i.d. assumption, the importance
of the j-th neuron in the i-th layer is determined by,

Ij
i =

n∑
k=1

L (fθ(xk), fθ′(xk)) (2)

where, L = I + |fθ(xk)q − fθ′(xk)q|

and, I =

{
1 if argmax(fθ(xk)) ̸= argmax(fθ′(xk))

0 otherwise

Here, θ′ = (θ|θji = 0) denoting that the j-th neuron/filter in the i-th layer is masked, d is a hyper-
parameter, q = argmax(fθ(xk)) which denotes the index of the class predicted by fθ(xk) and
fθ(xk)q denotes the q-th component of the vector fθ(xk). The motivation behind introducing I in
the scoring function L is that if masking a neuron/filter causes a misclassification, then it must be
considered important for the given task and should be assigned a large importance value. Since
|fθ(xk)q − fθ′(xk)q| ≤ 1, assigning a value less than 1 will reduce the importance of misclassifica-
tion while any value greater than 1 has the same effect on the final ranking (the scores might change,
but it is rank consistent). Hence, in all our experiments, we assign a value of 1 for misclassifications.
On the other hand, if two different neurons/filters produce the same number of misclassifications, as
measured by I , then the tie is broken by |fθ(xk)q − fθ′(xk)q| which measures how far the proba-
bility of the predicted class deviates before and after masking.

Advantage of our scoring function over KL divergence: Measuring the impact of masking a
neuron/filter on the final output of a network in order to estimate its importance is not a new concept
and in fact, is used by CURL (Luo & Wu, 2020) with a KL-divergence-based criterion. We, instead,
define our own criterion as in Eqn. 2. The advantage of our approach over KL-divergence can be
understood using the following example. Let us assume that there exists a binary classification task
for which a neural network is designed such that the final layer consists of two neurons, representing
classes 0 and 1, respectively, with the softmax function being applied to the output. Consider a
sample input, x that results in the output vector, [0.4, 0.6], from the pre-trained model denoting that
the sample belongs to class 1. Now consider two filters, p1 and p2 wherein masking p1 results in
the output vector [0.6, 0.4] and masking p2 results in the output vector [0.1, 0.9]. Clearly, p1 is more
important than p2 as removing p1 results in a misclassification while removing p2 leads to improved
model prediction. We now compute the importance of p1 and p2 for both KL-divergence and our
proposed method.

KL
(
fθ(x) ∥ fθ|p1=0(x)

)
= 0.081

KL
(
fθ(x) ∥ fθ|p2=0(x)

)
= 0.310

L
(
fθ(x), fθ|p1=0(x)

)
= 1.2

L
(
fθ(x), fθ|p2=0(x)

)
= 0.3

As can be seen from the computed scores, using a KL-divergence based criterion instead of our
proposed scoring function will produce incorrect rankings of the neurons.

3.2 GROUPING MODULE

Computing Ij
i for individual neurons/filters in a wide and deep network leads to large computa-

tional overhead. In order to reduce this overload, we group layerwise similar neurons/filters so that

4

Under review as a conference paper at ICLR 2024

Ij
i estimates the importance of the j-th group in the i-th layer where the size of the group is a hyper-

parameter. The similarity between two neurons/filters is measured by the correlation between their
output activations/channels. Specifically, let Si ∈ Rn×m be the i-th layer’s activation output, n the
activation values, and m the number of neurons. Then the correlation matrix Ci ∈ Rm×m is gen-
erated by Ci = ST

i Si where the columns of Si are standardized. The neurons are then partitioned
into mutually exclusive groups as follows. We choose a neuron N and the k most similar neurons
to N are grouped together to form a single unit, say GN . This process continues until all neurons
end up being part of some group. For convolutional neural networks, let Gi ∈ Rn×m×fw×fh de-
note the output activation channels of the i-th layer with fw and fh being the width and height of
each individual channel. Then Si =

∑fw
t=1

∑fh
u=1 |Grstu

i |. This formulation can be generalized to
any higher dimensional tensors. Once Si is computed, the process to form groups is the same as
described before.

3.3 PRUNING STRATEGIES

Once the neurons/filters are grouped, the importance of each group (from all the layers) is estimated
using the ranking module as discussed in Section 3.1. They are then globally sorted across the
entire model and the least important ones are pruned until the required number of parameters is
achieved. We now present the pruning strategies used in this work for VGG16 (no skip connections),
ResNet34, and Bert-base-uncased. The reason for choosing these specific architectures is that most
of the vision and language model structures are based on/inspired by these networks. Thus, the
strategies used to prune these models can be replicated to prune almost any other network.

Pruning VGG16: Pruning networks without skip-connections such as VGG16 is rather straight
forward. The ranking module provides a sorted list of groups that need to be pruned. One can simply
iterate over the list and discard the least important groups until the user-supplied target parameter
budget is reached. The remaining groups form the smaller sub-network.

Pruning ResNet34: The ResNet type architectures have two different sets of skip-connections,
known as, identity and projection shortcuts (He et al., 2016). Layers with the same number of filters
share the identity shortcut while those where a transition between the number of filters is required,
for example between the layers having 64 and 128, 128 and 256, 256 and 512 filters, a projection
shortcut is introduced. Thus, when iterating over the sorted list provided by the ranking module,
if a group from a particular layer is discarded then the least important group from each subsequent
layer with an identity shortcut is discarded until a group from a layer after a projection shortcut is
encountered.

Pruning Bert: In Bert-based architectures, the self-attention layer and the final feed-forward layer
in every block share a skip connection. If a group needs to be discarded from either the self-attention
layer or the final feed-forward layer, then the least important groups from each of these layers across
all blocks in the network need to be discarded. But in doing so, if layer collapse occurs, then the
entire network is disposed off. In order to avoid this issue, we first discard groups across the network
until a minimum threshold is reached following which the entire block consisting of the current least
important group is discarded. Thus, we first prune the network width and then the network depth
until the user-supplied target parameter budget is achieved. Here, the threshold for the minimum
number of groups is a hyper-parameter.

It should be noted that since we do not set any minimum layer pruning threshold, some of the layers
can end up being pruned altogether. This phenomenon is known as layer collapse where entire
layers are pruned making a network untrainable (Tanaka et al., 2020). This is an issue, especially
for methods that use the preserved weights after pruning for further fine-tuning. Since our sub-
networks are re-initialized and trained from scratch (the reason for which is provided in Section 4),
layer collapse is not a problem but rather an important aspect of our method. Thus, PvR not only
determines the optimal layerwise network width but also the number of layers of the final pruned
architecture for a given dataset, pre-trained model, and parameter budget.

4 TO RETRAIN OR TO FINE-TUNE?

Once a smaller model is generated, its parameters can be initialized by using either the preserved
weights after pruning followed by fine-tuning or re-initialized using well-known random weight

5

Under review as a conference paper at ICLR 2024

(a) (b) (c)

Figure 1: A comparison of the value of GC at different stages of model parameter pruning for (a)
VGG16 network on the CIFAR10 dataset (b) ResNet34 network on the TinyImageNet dataset, and
(c) Bert base model on the IMDB movie reviews dataset. Fig. (c) is log transformed.

initialization methods (Glorot & Bengio, 2010; He et al., 2015) followed by re-training also known
as training from scratch. Authors Liu et al. (2018) recommend re-initializing and re-training a
structurally pruned model as they were able to achieve better test results in most cases using this
setup. Instead of using the final model performance as a guideline, we use Geometric Complexity
(GC) (Dherin et al., 2022), a recently proposed model complexity measure to determine which
initialization works best. GC is defined as,

GC =
1

n

n∑
i=1

∥∇xi
fθ(xi)∥2F (3)

where, xi is input sample data, n is the total number of samples, fθ is a model and fθ(xi) is the
model output for an input xi. Authors advocate GC to be a proxy for neural network performance
and claim that training heuristics such as well-known parameter initialization schemes achieve low
GC values. Therefore, to compare the GC of the two separate weight initialization schemes, we
first train the VGG16, ResNet34, and Bert-base-uncased models on the CIFAR10, TinyImageNet,
and IMDB 50K movie review datasets, respectively, to maximum possible accuracy (see Table 1 for
exact accuracy values). The hyper-parameters used for training the models are provided in Section
5.1. Once the base models are trained, ℓ1, ℓ2 norm, Taylor expansion, HRank, CURL, Random
Channel pruning (RCP), and NISP pruning methods are applied to the VGG16 and ResNet34 net-
works while ℓ1 norm, ℓ2 norm and DynaBert pruning methods are applied to the Bert-base-uncased
network. (Please note that FPGM and LayerDrop do not require any parameter initialization step as
they train the original model). Each method prunes the respective models to 70%, 80%, 90%, 95%,
and 98% target parameter pruning percentages. After pruning, the models are initialized using the
two separate initialization schemes. The resultant GC, right after initialization without any further
fine-tuning or re-training, is shown in Fig. 1 which demonstrates that across all models, pruning
stages, methods, and datasets, GC for the re-initialization scheme is always lower than its corre-
sponding preserved weights initialization scheme. Thus, the observation made by Liu et al. (2018)
that training from scratch after pruning leads to better performance is bolstered by our evidence that
re-initialization post-pruning leads to smaller GC. Hence, we choose to re-initialize and train the
models recommended by PvR from scratch.

5 EXPERIMENTS

5.1 SETUP

Datasets and Models: All experiments are run on three datasets, namely, CIFAR10 (Krizhevsky
et al., 2009), Tiny ImageNet (Le & Yang, 2015) and IMDB 50K movie reviews (Maas et al., 2011).
On CIFAR10 we train a VGG16 model (Simonyan & Zisserman, 2014) with batch normalization.
On TinyImageNet we train a ResNet34 model (He et al., 2016) while on IMDB 50K movie reviews,
we train the Bert-base-uncased model (Devlin et al., 2018). All accuracy scores are reported on the
test set of the respective datasets.

6

Under review as a conference paper at ICLR 2024

Baselines: On the CIFAR10 and Tiny ImageNet datasets, we compare our method against ℓ1 norm,
ℓ2 norm, Taylor expansion, HRank, FPGM, CURL, Random Channel pruning (RCP), and NISP.
TinyBert is a hand-crafted network having about 90% less parameters than Bert. We train TinyBert
from scratch to show how a hand-crafted model fares against a network generated automatically
by PvR. LayerDrop stochastically drops layers during training so that the final model is resilient
to layer removal during inference. After training, LayerDrop prunes the network depth-wise on
demand which leads to the maximum pruning of 70% in the case of Bert.

Configuration: We use PyTorch (Paszke et al., 2019) running on an NVIDIA A100 GPU to carry
out all the experiments. All three networks are trained to achieve maximum reported accuracy
on their respective datasets (results are available in Table 1). For VGG16 and ResNet34, we use
SGD with momentum as the optimizer with a momentum value of 0.9 while for the Bert-base-
uncased model, we use the AdamW (Loshchilov & Hutter, 2017) optimizer. The learning rate for
each experiment is independently chosen via a grid search over the range [0.0001, 1.0]. The cosine
annealing scheduler (Loshchilov & Hutter, 2016) is used in tandem with the SGD with momentum
optimizer while with AdamW we use the linear warmup scheduler (Goyal et al., 2017). The VGG16
model is trained for 200 epochs with a batch size of 128, the ResNet34 network is trained for 100
epochs with a batch size of 512, and the Bert-base-uncased model is trained for 20 epochs with a
batch size of 32. We use the pruning library introduced by Fang et al. (2023) to implement all of the
baseline methods. Hyper-parameters specific to each method are taken from the respective works
except for RCP where the number of sampled sub-architectures is set to 20 instead of 100 since we
do not possess the required resources. We use the same optimizer, scheduler, batch size, and number
of epochs for training all methods, including PvR. The learning rate is chosen independently for
each experiment via a grid search over the range [0.0001, 1.0]. Similar to CURL, we use only a
fraction of the entire dataset during the ranking phase of PvR. Specifically, we randomly select 50
training samples per class for both the CIFAR10 and Tiny ImageNet datasets. For the IMDB 50K
movie reviews dataset we select 500 samples per class. The group size is set to 2, 4 and 64 for
the CIFAR10, Tiny ImageNet, and IMDB 50K movie reviews experiments, respectively. Typically,
the group size should be close to 1 with larger values producing faster rankings at the cost of more
coarse-grained pruning results. The architecture of each model as recommended by PvR at different
pruning percentages is provided in Section A.1 in the Appendix.

5.2 RESULTS

Table 1 reports the top-1 accuracy on CIFAR10, top-1 along with top-5 accuracy on Tiny Imagenet,
and top-1 accuracy on IMDB 50K movie reviews. The table demonstrates that PvR outperforms
all pruning methods across all pruning stages for all three models. Our approach outperforms the
VGG16 pre-trained model when 80% and 90% of the model parameters are pruned while achieving
less than 1% accuracy drop even after 95% parameter reduction. In fact, surprisingly, our generated
Bert-base-uncased sub-networks outperform the original model across multiple pruning stages, es-
pecially at the 98% mark. On the CIFAR10 dataset, ℓ1 and ℓ2 norm pruning approaches turn out to
be strong baselines while HRank and CURL give strong competition to PvR. On the TinyImageNet
dataset, our pruned ResNet34 networks achieve less than 1% top-5 accuracy drop even after pruning
away 90% of the original model size. At the 98% mark, ℓ1 norm pruning comes close in terms
of top-1 accuracy while ℓ2 norm and Taylor expansion pruning approaches come close in terms of
top-5 accuracy. On the IMDB 50K movie reviews dataset, the sub-network generated by PvR at the
90% pruning stage outperforms TinyBert, a handcrafted model of similar size.

Additionally, we also report model inference latency which is defined as the amount of time re-
quired for a model to make a prediction for a single sample. Inference latency is heavily influenced
by the layerwise width of a network as irregular layer structure (not power of two) leads to little
improvement in the time required to predict a single sample. We do not report FLOPs count as simi-
larly sized models can have the same FLOPs count but considerably different inference latency (Liu
et al., 2021). Tables 2 and 3 report the inference latency, in milliseconds averaged over 1500 runs,
of the pruned models generated by each structure pruning method. Pruning techniques that glob-
ally rank and remove neurons/filters are more prone to irregular layer widths than their layer-wise
pruning counterparts. This is why CURL-based sub-networks are slower than the original unpruned
networks. However, PvR-generated sub-networks have substantially reduced inference latency even
with irregular layer widths due to reduced depth. This is why in the VGG16 architecture at the 98%
pruning mark, the PvR-generated sub-network has significantly low latency while for the ResNet34

7

Under review as a conference paper at ICLR 2024

Table 1: Comparison of the Top-1 and Top-5 accuracy scores on the test set of the CIFAR10, Tiny
ImageNet and IMDB 50K movie reviews datasets, for multiple pruning methods at different levels
of pruning for the VGG16, ResNet34 and Bert-base-uncased networks. The model size row denotes
the actual size of the model on disk in megabytes.

Percentage of Parameters Pruned

Dataset Model Methods 0% 70% 80% 90% 95% 98%

CIFAR10 VGG16
(Top-1)

Base 94.25 - - - - -
ℓ1 Norm - 93.53 92.60 92.05 90.22 87.32
ℓ2 Norm - 93.45 92.99 91.64 90.36 87.64
Taylor - 93.23 92.87 91.55 90.37 87.22
FPGM - 92.72 91.64 90.85 88.41 87.09
RCP - 86.68 85.9 84.00 84.09 83.78
HRank - 92.84 93.09 92.36 91.44 91.1
CURL - 94.18 93.89 93.49 92.14 91.66
NISP - 92.51 91.48 90.28 88.77 87.00
PvR (ours) - 94.21 94.33 94.32 93.64 92.18
Model Size (MB) 112 33.7 22.5 11.2 5.56 2.25

Tiny
Imagenet

ResNet34
(Top-1)

Base 63.02 - - - - -
ℓ1 Norm - 60.95 58.73 56.42 55.07 52.15
ℓ2 Norm - 60.50 58.51 56.78 54.96 51.18
Taylor - 60.65 59.4 57.06 55.16 51.59
FPGM - 60.73 59.14 56.22 52.88 50.42
RCP - 58.18 56.52 54.21 50.65 45.46
HRank - 57.90 55.30 52.85 50.55 46.83
CURL - 58.38 56.85 55.13 48.33 39.49
NISP - 57.06 54.76 52.62 50.82 45.10
PvR (ours) - 62.68 61.47 59.54 58.27 52.49

Tiny
Imagenet

ResNet34
(Top-5)

Base 83.22 - - - - -
ℓ1 Norm - 81.59 80.65 79.30 79.16 76.68
ℓ2 Norm - 81.28 80.58 79.40 78.32 77.42
Taylor - 81.68 80.61 79.79 78.86 77.42
FPGM - 81.68 80.39 78.70 76.46 76.13
RCP - 80.51 79.26 78.08 75.57 72.19
HRank - 80.27 78.85 77.02 75.68 73.26
CURL - 80.68 80.22 79.81 74.80 67.46
NISP - 79.39 77.56 76.78 75.35 71.89
PvR (ours) - 83.08 82.84 82.34 81.59 77.97
Model Size (MB) 163 46.8 30.6 15.2 8.03 2.72

IMDB 50K
movie reviews

Bert-base-
uncased
(Top-1)

Base 82.24 - - - - -
TinyBert - - - 82.48 - -
ℓ1 Norm - 82.16 82.18 81.86 82.00 81.57
ℓ2 Norm - 82.14 81.97 81.93 82.18 81.90
LayerDrop 80.74 80.61 - - - -
DynaBert - 81.78 81.96 81.42 80.89 80.00
PvR (ours) - 82.41 82.02 82.60 82.10 82.56
Model Size (MB) 1220 339 246 130 73.4 36.1

architecture, our recommended sub-networks have much lower inference latency than all other meth-
ods across all pruning stages. Experiments with the inference latency of Bert-base-uncased pruned
networks, as shown in Table 3, reveal that PvR offers the best accuracy versus inference latency
trade-off.

8

Under review as a conference paper at ICLR 2024

We perform an ablation study to observe the change in accuracy of pruned networks with increasing
group size as well as the time required for pruning under varying group sizes. Specifically, we look
at the 98% pruned version of the VGG16 and ResNet34 networks for group sizes varying from 2−32
and 4 − 32, respectively. We perform this ablation study for only the maximum level of pruning as
it is the worst-case scenario in terms of both accuracy and time. According to Fig. 2a and 3a in
Section A.2 of the Appendix, PvR is generally robust to group size as the top-1 accuracy drop from
group size of 2 to 32 is about 1% and the top-5 accuracy drop from group size of 4 to 32 is about
2%. At the same time, with a group size of 32, PvR is able to prune VGG16 and ResNet34 under 20
seconds and 12 minutes, respectively, as demonstrated in Fig. 2b and 3b.

Table 2: Comparison of the inference latency of pruned sub-networks generated by multiple pruning
techniques for the VGG16 and ResNet34 models. The results are reported in terms of milliseconds
averaged over 1500 runs with a standard deviation of 0.01− 0.001. Smaller values are better.

Model Pruning
Level Base ℓ1 ℓ2 Taylor FPGM RCP HRank CURL NISP PvR

VGG16

0% 1.72 - - - - - - - - -
70% - 1.78 1.78 1.78 1.71 1.59 1.78 1.75 1.78 1.68
80% - 1.82 1.82 1.82 1.70 1.55 1.82 1.74 1.82 1.69
90% - 1.76 1.76 1.76 1.72 1.53 1.76 1.88 1.76 1.13
95% - 1.68 1.68 1.68 1.68 1.52 1.68 1.84 1.68 1.04
98% - 1.47 1.47 1.47 1.55 1.49 1.47 1.69 1.47 0.95

ResNet34

0% 4.03 - - - - - - - - -
70% - 4.20 4.20 4.20 5.097 4.24 4.20 5.83 4.20 2.69
80% - 4.13 4.13 4.13 4.99 4.16 4.13 5.75 4.13 2.59
90% - 3.95 3.95 3.95 4.98 4.10 3.95 5.91 3.95 2.60
95% - 3.89 3.89 3.89 4.88 4.02 3.89 5.88 3.89 2.60
98% - 3.39 3.39 3.39 4.24 3.53 3.39 4.67 3.39 2.54

Table 3: A comparison of the inference latency of pruned sub-networks generated by multiple prun-
ing techniques for the Bert-base-uncased model. The results are reported in terms of milliseconds
averaged over 1500 runs with a standard deviation range of 0.01− 0.001. Smaller values are better.

Model Pruning
Level Base ℓ1 ℓ2 TinyBert LayerDrop DynaBert PvR

Bert-base-uncased

0% 5.63 - - - - - -
70% - 5.37 5.37 - 5.74 5.39 5.25
80% - 5.37 5.37 - - 5.43 5.14
90% - 4.98 4.98 2.01 - 1.58 4.03
95% - 4.98 4.98 - - 0.70 1.58
98% - 4.89 4.89 - - 0.67 1.50

6 CONCLUSION

In this work, we propose Pruning via Ranking (PvR) a novel, global structured pruning approach that
reduces both parameters as well as depth and generates dense sub-networks that comply with any
user-supplied parameter budget. PvR consists of a grouping module and a ranking module that are
used to efficiently estimate the importance of groups of neurons/filters. The pruning strategies for
the VGGG16, ResNet34, and Bert-base-uncased models are also shown. We use a recently proposed
model complexity measure, Geometric Complexity (GC) to show that re-initialization after pruning
is a better training heuristic. Finally, the pruned networks are re-initialized and trained from scratch.
Through exhaustive comparisons, in terms of accuracy and model inference latency, against diverse
pruning approaches on benchmark datasets with standard models, we demonstrate the efficacy of
our approach. We also show that PvR is robust to group size.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 19637–19651. Curran
Associates, Inc., 2021a. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/a376033f78e144f494bfc743c0be3330-Paper.pdf.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. Advances in Neural Information Processing Systems, 34:19637–19651, 2021b.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David Barrett. Why neural networks find sim-
ple solutions: The many regularizers of geometric complexity. Advances in Neural Information
Processing Systems, 35:2333–2349, 2022.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3):243–254, 2016.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10

https://proceedings.neurips.cc/paper_files/paper/2021/file/a376033f78e144f494bfc743c0be3330-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a376033f78e144f494bfc743c0be3330-Paper.pdf

Under review as a conference paper at ICLR 2024

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey,
2023.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic bert
with adaptive width and depth. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 9782–9793. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisit-
ing random channel pruning for neural network compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 191–201, 2022.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1529–1538, 2020.

Jiaqiang Liu, Jingwei Sun, Zhongtian Xu, and Guangzhong Sun. Latency-aware automatic cnn
channel pruning with gpu runtime analysis. BenchCouncil Transactions on Benchmarks, Stan-
dards and Evaluations, 1(1):100009, 2021.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jian-Hao Luo and Jianxin Wu. Neural network pruning with residual-connections and limited-data.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1458–1467, 2020.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf

Under review as a conference paper at ICLR 2024

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

JS McCarley, Rishav Chakravarti, and Avirup Sil. Structured pruning of a bert-based question
answering model. arXiv preprint arXiv:1910.06360, 2019.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264–11272, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman Aliari Zonouz, and Bo Yuan. Chip: Channel
independence-based pruning for compact neural networks. Advances in Neural Information Pro-
cessing Systems, 34:24604–24616, 2021.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural
networks without any data by iteratively conserving synaptic flow. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 6377–6389. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. arXiv preprint arXiv:2204.00408, 2022.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao, Ching-
Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score propagation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9194–
9203, 2018.

12

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://proceedings.neurips.cc/paper_files/paper/2020/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf

Under review as a conference paper at ICLR 2024

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

A APPENDIX

A.1 PRUNED ARCHITECTURES

A.1.1 VGG16

Table 4: The number of channels per layer for each pruning percentage. Here, ”M” denotes the
position of the max-pooling layer.

Pruned
Amount Architecture

0% 64, 64, ”M”, 128, 128, ”M”, 256, 256, 256, ”M”, 512, 512, 512, ”M”, 512, 512, 512, ”M”
70% 58, 64, ”M”, 126, 128, ”M”, 238, 224, ”M”, 192, 192, 94, ”M”, 56, 482, 512, ”M”
80% 58, 64, ”M”, 126, 128, ”M”, 238, 224, ”M”, 192, 192, 94, ”M”, 56, 196, 512, ”M”
90% 54, 64, ”M”, 124, 128, ”M”, 224, 220, ”M”, 174, 110, ”M”
95% 42, 64, ”M”, 110, 126, ”M”, 170, 138, 92, ”M”
98% 36, 62, ”M”, 78, 112, ”M”, 92, 44, 46, ”M”

A.1.2 RESNET34

Table 5: The number of channels per layer per block with the number of blocks being denoted by ×
and each block being denoted by [.].

Pruned
Amount Architecture

0% [64, 64]×3, [128, 128]×4, [256, 256]×6, [512, 512]×3
70% [60, 60]×3, [112, 112]×4, [328, 328]×3
80% [60, 60]×3, [104, 104]×4, [256, 256]×3
90% [60, 60]×3, [100, 100]×4, [152, 152]×3
95% [60, 60]×3, [76, 76]×4, [88, 88]×3
98% [60, 60]×3, [36, 36]×4, [44, 44]×3

A.1.3 BERT-BASE-UNCASED

13

Under review as a conference paper at ICLR 2024

Table 6: The first value in the architecture column indicates the hidden size, the second value (or
list of values) indicates the intermediate size (or the blockwise intermediate sizes), the third value is
the number of attention heads and the final value is the number of hidden layers. These values are
provided in the form of the HuggingFace config.json file

Pruned
Amount Architecture

0% 768, 3072, 12, 12
70% 256, [2944, 3008, 3008, 2944, 3072, 2944, 3008, 2944, 3072, 3008, 3008, 2944], 4, 12
80% 192, [2944, 3008, 3008, 2944, 3072, 2944, 3008, 2944, 3072, 2880, 3008, 2944], 3, 12
90% 128, [2944, 3008, 2944, 3008, 2944, 3008, 2560, 2944, 2944], 2, 9
95% 128, [2880, 2880, 2880], 2, 3
98% 64, [2880, 2880, 2880], 2, 3

A.2 ABLATION STUDY

(a) (b)

Figure 2: (a) Change in Top-1 accuracy of the 98% pruned VGG16 network with increasing group
size trained on CIFAR10 (b) The time required by PvR to prune 98% of the parameters of the
VGG16 network on the CIFAR10 dataset with increasing group size

14

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 3: (a) Change in Top-1 and Top-5 accuracy of the 98% pruned ResNet34 network with
increasing group size trained on TinyImageNet (b) The time required by PvR to prune 98% of the
parameters of the ResNet34 network on the TinyImageNet dataset with increasing group size

15

	Introduction
	Our Contributions

	Related Work
	PvR: Pruning via Ranking
	Ranking Module
	Grouping Module
	Pruning Strategies

	To retrain or to fine-tune?
	Experiments
	Setup
	Results

	Conclusion
	Appendix
	Pruned Architectures
	VGG16
	ResNet34
	Bert-base-uncased

	Ablation Study

