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ABSTRACT

Large language models (LLMs) have demonstrated significant potential in code
generation. However, the code generated by these models occasionally deviates
from the user’s intended outcome, resulting in executable but incorrect code. To
mitigate this issue, we propose GIFT4CODE, a novel approach for the instruction
fine-tuning of LLMs specifically tailored for code generation. Our method leverages
synthetic data produced by the LLM itself and utilizes execution-derived feedback
as a key learning signal. This feedback, in the form of program input-output
specifications, is provided to the LLM to facilitate fine-tuning. We evaluated our
approach on two challenging data science benchmarks, ARCADE and DS-1000.
Our results suggest that the method enhances the LLM’s alignment with user
intentions, considerably reducing the incidence of executable but incorrect outputs.
Consequently, this leads to a marked improvement in the quality of generated code.

1 INTRODUCTION

Large language models (LLMs) trained on code have demonstrated tremendous success as Al pair
programmers in assisting developers writing code (Chen et al., 2021a; Austin et al., 2021; Li et al.,
2023; Chowdhery et al., 2022; Li et al., 2022; Nijkamp et al., 2022; Fried et al., 2022; Li et al.,
2023). Developers often interact with code LLMs using succinct natural language (NL) intents (e.g. «
in Fig. 1) to describe their tasks (Barke et al., 2022; Ross et al., 2023). However, NL intents are
often ambiguous (Yin et al., 2022b). This ambiguity can be problematic in complex tasks, such as
manipulating Pandas DataFrames or PyTorch Tensors (Lai et al., 2022).

Aucxiliary input-output (I/O) specifications, ranging from concrete I/O examples to high-level NL
summaries (e.g. red text in Fig. 1), offer a natural way to reduce this ambiguity (Gulwani et al.,
2015; Balog et al., 2016; Jain et al., 2022; Yin et al., 2022a). Prior to the emergence of LLMs,
auxiliary specifications served as essential problem descriptions in program synthesis (Gulwani, 2016;
Devlin et al., 2017; Shi et al., 2020). Real-world synthesis systems like FlashFill are testimony to
the adoption and effectiveness of I/O specifications (Gulwani, 2011; Gulwani et al., 2012). In this
work, we consider the problem of LLM-based code generation when the LLLM has access to both a
natural-language intent and an additional I/O specification.

However, code LLMs often fall short on following intents with additional complex semantic con-
straints like I/O specifications out-of-the-box, leading to plausible solutions that fail to satisfy the
constraints (e.g. y’, Fig. 1). Such a lack of alignment between the user’s intent and the model’s
predictions (Chen et al., 2021a) could pose unnecessary burden on developers who are then required
to fix the generated code (Bird et al., 2023). Therefore, we posit that addressing this misalignment by
grounding the code generated by LLMs to the provided specifications is of paramount importance.

Instruction fine-tuning has emerged as an effective strategy to tackle the issue of misalignment (Wei
etal., 2021; Sanh et al., 2021; Chung et al., 2022). Classical approaches for instruction tuning typically
require a substantial amount of parallel labeled data of NL intents and gold model responses. The
process of gathering such data is labor-intensive and time-consuming. Recent studies have suggested
that generating synthetic instruction-following data using the LLM itself is a promising approach to
improve alignment, with empirical success on natural language text generation tasks (Wang et al.,
2022a; Honovich et al., 2022a; Taori et al., 2023; Peng et al., 2023, inter alia).
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Figure 1: Left: Illustration of how developers prompt code LLMs with NL intents and 1/O specifica-
tions to generate code with complex outputs (pandas Dataframes). Vanilla code LLMs fail to
understand extra I/O specifications. Right: Our proposed instruction tuning approach uses synthetic
intents and code solutions, where intents are augmented with I/O specifications derived from program
execution results. Models trained on the synthetic data could better follow a developer’s intent.

In this paper we build upon the recent success of instruction tuning using synthetic data and fine-tune
code LLMs to follow NL intents with additional I/O specifications. Unlike existing approaches,
our key insight is to leverage program execution for synthetic data generation. First, in contrast to
other open-ended text generation tasks where assessing the quality of target responses is challenging,
the quality of synthetic code generation data can be easily improved using heuristics such as code
executability (Yin et al., 2022c). Moreover, from the program execution states one could derive
precise and aligned 1/0 specifications that can be included in the intents to supervise a model to
follow those extra semantic constraints (Fig. 1, Right). In other words, when fine-tuned on such
synthetic data, a model learns to ground NL (task descriptions to program execution states expressed

as I/O specifications (Berant et al., 2013).

We apply our grounded instruction fine-tuning for code (GIFT4CODE) method to two challenging
natural language to code generation applications: synthesizing complex pandas programs in
computational notebooks (ARCADE, Yin et al. (2022b)) and answering data science questions on
Stack Overflow (DS-1000, Lai et al. (2022)). First, we demonstrate the value of leveraging program
execution information by showing that strong code LLMs can already be significantly improved by
up to 10% absolute on ARCADE after fine-tuning on intents and executability-filtered code solutions
without including any I/O specifications in synthetic data. Then, to further align model predictions to
various types of user-provided I/O specifications, we derive those specifications at different levels of
abstraction from code execution results. This ranges from concrete input/output examples to succinct
natural language summaries of target variables ('specifications in Fig. 1). By fine-tuning on parallel
data of intents with I/O constraints and their target code solutions, the model is better at following a
developer’s intents while producing code that is more likely to execute to the desired outcome.

2 PROBLEM FORMULATION

Natural Language to Code Generation Code generation considers the task of translating a devel-
oper’s natural language intent & into a machine-executable program y (e.g. Fig. 1, Left). An intent
usually contains a succinct and potentially ambiguous [task description. For tasks with complex

outputs, the intent may also include additional 1/O specifications as extra clarifications.! Code gen-
eration tasks are often contextualized, meaning that an intent is associated with certain programmatic

"For simplicity, we consider I/O specifications as part of the intent hereafter.



Under review as a conference paper at ICLR 2024

contexts c (Iyer et al., 2018), such as the code that a developer has already written in an IDE prior to
the intent (e.g. df =pd.read_csv ("flights.csv") for x, not shown in Fig. 1). Intuitively, a
model needs to leverage both the intent and the programmatic context (e.g. variable df) to generate a
suitable code solution.

Supervised Instruction Tuning for Code LLMs Supervised instruction tuning aims to improve
code LLMs by fine-tuning them on parallel data of intents and target code solutions. In this paper
we consider automatically synthesizing such parallel data by prompting LLMs using few-shot
demonstrations (other approaches are discussed in §5). Specifically, the synthetic dataset consists of
examples {{c, z,y)} of intents & with programmatic contexts ¢ and their generated code solutions y.

3 GIFT4CODE: LEARNING TO FOLLOW INTENTS WITH I/O SPECIFICATIONS

In this section we elaborate on GIFT4CODE, our proposed approach to fine-tune code LLMs to better
follow developers’ natural language intents along with I/O specifications, using synthetic parallel
data. Fig. 1(Right) illustrates an overview of GIFT4CODE. We first synthesize a collection of intents
with code solutions via few-shot prompting (§3.1), and then execute model-predicted code to derive
I/0O specifications from execution results (§3.2). Finally, we fine-tune the code LLM to predict code
solutions given intents inlined with I/O specifications (§3.3).

3.1 GENERATING SYNTHETIC INTENTS AND CODE SOLUTIONS

Programmatic Contexts We initialize a program state given some programmatic context
and generate a series of contextualized NL-to-code problems for that context. As an ex-
ample, the synthetic problems in Fig. 1 (Right) could have the contextual code df =
pd.read_csv ("world_statistics.csv"), which initializes the DataFrame variable df,
subsequently used in the generated synthetic examples. The fact that our problems are contextualized
sets our approach apart from existing instruction-tuning methods for text generation models (Wang
et al., 2022a; Honovich et al., 2022a), where synthetic examples do not depend on any particular
contexts. In our case, we mine those programmatic contexts from real-world code repositories, such
as tabular datasets (e.g., . csv) used in data science notebooks on Github (§4).

Creating Initial NL Intents Given a programmatic context ¢, we few-shot prompt an LLM to
create a sequence of natural language intents {x;} (e.g. 1, €2 in Fig. 1(Right)). A problem x; that
appears later in the sequence might depend on the earlier ones {x;} (Nijkamp et al., 2022; Yin et al.,
2022b). To generate NL intents, we use a “generalist” LLM instead of the code LLM that we aim
to improve, since predicting intents conditioned on some context is similar to other text generation
tasks, which could be better handled by a LM trained on general-purpose text data (Zelikman et al.,
2022). The “generalist” LLM is a state-of-the-art general-purpose large language model. It achieves
competitive results with GPT-4 on a variety of NL reasoning tasks. > Empirically, we observe that the
problems generated by this LLM encompass a wide range of tasks relevant to the given programmatic
context. Readers can refer to Appendix B for examples. We remark that those model-predicted intents
do not come with I/O specifications yet.

Predicting Code Solutions After generating an intent x, we then prompt the code LLM to get a
code solution y for x (e.g. y; in Fig. 1(Right)). Specifically, a prompt to the LLM is the concate-
nation of the programmatic context ¢ and the intent &, with additional few-shot demonstrations of
{{c/,2',y’)}. Since many NL intents can be ambiguous and there could exist multiple alternative
solutions (e.g. without additional I/O specifications, the intent in green in Fig. 1(Left) could be an-
swered using tables with different layouts; see more in Yin et al. (2022b)), we therefore draw multiple
candidate code solutions {y} for each intent. Intuitively, {y} could have a variety of alternative
solutions for x, each leading to different execution results. This equips the model with the capacity
to predict code for the same task but with different user-provided I/O specifications.

Details are publicly available in Anonymous (2023b). The model is now publicly available as an API, but
was only privately accessible at the time of submission. Anonymized for double-blind review.
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Spec. Type Description Example I/O Specification

Generate a variable with name df and type

iabl
TypeDesc Variable type name pandas .Dat aFrame

Output variable df:

|Bangalore(float) |Chennai (float) |Delhi(float) |Hyderabad

(float) |Kolkata(float) |Hyderabad(float) |Kolkata(float) | ...
I/O Examples  Concrete I/O examples |————— |————— |l————— l————— l————— |l————— I

| nan | 1.04 | 8.08 | 3.62 | 7.56 | 7.56 | 8.32 |

| 1.18 | nan | 11.96 | 6.80 | 6.31 | 8.75 |

| 8.46 | 11.10 | nan | 9.19 | 9.52 | 10.32 |

Given the user intent and the code, the salient columns (at
LLM-generated NL sum- most given 3) in the input dataframe are airline, source_city,
maries of I/O examples destination_city. The output dataframe has columns (at most
given 3) such as Delhi, Mumbai, Chennai.

1/O Summary

Table 1: Types of I/O specifications proposed in this work at different levels of abstraction. Example
specifications are for the intent in Fig. 1(Left). Only the output specifications for |/O Examples are
shown for brevity.

Improving Quality of Synthetic Data The quality of synthetic data is a fundamental issue of
data augmentation in instruction tuning (Wang et al., 2022a; Honovich et al., 2022a), and existing
approaches in text generation typically resort to simple and noisy heuristics (e.g. rejecting examples
with different inputs but the same output). As motivated in §1, for NL-to-code generation, we can
reliably enhance the quality of candidate code solutions by leveraging inherent program properties,
such as filtering out any code that is not executable given the provided programmatic context.

3.2 CODE EXECUTION AND INFERENCE OF I/O SPECIFICATIONS

Given the set of synthetic problems {(x, {y})} generated by few-shot prompting, we execute the
code for each problem (step 2, Fig. 1(Right)) and derive 1/O specifications from the execution results
as additional semantic constraints to be included in the intents (step 3, Fig. 1(Right)).

Specifically, for each candidate solution y of an intent, we first execute its original programmatic
context ¢, followed by executing y. We trace the execution to collect the set of input and output
variables in y, denoted as {v}, which are used to derive I/O specifications (details below). Executing
code with arbitrary programmatic contexts collected from the wild is highly non-trivial due to issues
such as library dependency. However, the use of synthetic data alleviates the need for a complex
environment setup.

Given the set of input and output variables extracted from execution results, we formulate an I/O
specification, denoted as z, which serves as additional information to augment a developer’s intent,
thereby providing a more comprehensive problem description. The level of detail and the style
of these I/O specifications can vary based on the complexity of the problem and the developer’s
preferences. In this work, we investigate three distinct types of I/O specifications, each characterized
by its own linguistic style and level of abstraction, as illustrated in Tab. 1.

First, as a simple baseline, we utilize the variable type (TypeDesc, Tab. 1) as the I/O specification.
Next, we incorporate the concrete values of the input/output variables into the specification, which
we refer to as |/O Examples. This is reminiscent of classical program synthesis using I/O exam-
ples (Gulwani et al., 2012; Alur et al., 2013; Balog et al., 2016). However, in our scenario, these
I/O examples are used in conjunction with natural language (NL) intents to define the problem, in
line with Jain et al. (2022). Given that the majority of the problems in our synthetic dataset involve
complex Python objects such as pandas DataFrames, we simplify the I/O specification to include
only partial variable states (e.g. by excluding some rows and columns in large Dat aFrames). Please
refer to Appendix C for further details.

In our effort to generate a more natural variety of I/O specifications that closely resemble the style of
specifications in developers’ NL intents, we employ an LLM to summarize the values of input/output
variables {v} into a succinct natural language description z (I/O Summary). Intuitively, the NL I/O
summary includes salient information in the variables that can best clarify the original intent (e.g. the
subset of columns in a DataFrame that are most relevant to solve a problem, as in Tab. 1, Bottom).
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Specifically, we few-shot prompt the generalist LLM to generate z, using information from its
programmatic context ¢, the intent x, the code solution y, as well as I/O variables {v}, i.e. z ~
Pum(- | e,z y, {v}). We then update the intent & by appending z to it. The few-shot exemplars
used for prompting cover example I/O summaries for various types of Python objects, such as nested
container types (e.g. nested dicts), along with more complex objects like pandas DataFrames
and pytorch or tensorflow Tensors. See Appendix C for additional details.

3.3 FINE-TUNING CODE LLMS TO FOLLOW INTENTS WITH I/O SPECIFICATIONS

Our approach, GIFT4CODE, aims to fine-tune code LLMs to generate code that adheres closely to
the desired intents which are supplemented by I/O specifications. In our synthetic training data, each
example (¢, x, y) consists of a programmatic context ¢, an intent « augmented with I/O specifications,
and the corresponding code solution y. During fine-tuning, the code LLM learns to generate code that
not only satisfies the provided intents but also respects the specified I/O constraints, while leveraging
any relevant information in the programmatic contexts. In other words, we optimize P iy (y | ¢, x).
It is worth noting that the code LLM that undergoes this optimization is different from the “generalist”
LLM employed to generate the NL intents and I/O specification z.

4 EXPERIMENTS

The core research question explored in this section is whether GIFT4CODE enhances the LLM’s
ability to follow developers’ NL intents with complex 1/0 specifications. While common code
generation benchmarks like HumanEval and MBPP Chen et al. (2021a); Austin et al. (2021) feature
simple algorithmic tasks (e.g., sorting) utilizing basic Python data types (e.g., lists), thus allowing for
the use of concrete I/O examples as specifications, they lack the diverse and complex I/O specifications
that we aim to explore. For more open-ended tasks such as data science programming, the output
data type is more complex and diverse (e.g., Pandas DataFrames, PyTorch tensors). Hence, we apply
our method to two different data science code generation applications.

ARCADE (Yin et al., 2022b) is a benchmark of natural language to code generation in interactive
data science notebooks. Each evaluation notebook consists of a series of interrelated NL-to-code
problems in data wrangling (e.g. “Min-max normalize numeric columns”) and exploratory data
analysis (e.g. intents in Fig. 1) using the pandas library. ARCADE features succinct NL intents to
reflect the style of ephemeral queries from developers when prompting LLMs for code completion.
More than 50% of the dataset’s problems are under-specified, which means that additional I/O
specifications could provide extra clarification. To construct programmatic contexts for synthetic
training data generation, we scraped 7,500 CSV files that are used in public Jupyter notebooks. Each
context contains a DataFrame import statement, for example, df = pd.read_csv (-), followed
by an NL description of the DataFrame to help the LLM understand its content. We generated
6 intents for each programmatic context and sampled 5 candidate code solutions for each intent.
Roughly 60% of the code samples were executable. After filtering based on executability and API
diversity (§3.1), we obtained around 20K synthetic training examples.

Our synthetic data only comprises pairs of questions and code samples which lack rich context. To
avoid regression in context understanding during instruction fine-tuning, we crafted a mixture dataset
which combines the synthetic data and the Python data used to fine-tune the code LLM. Note that this
Python data does not contain any execution-based signals or I/O specifications. After approximately
1,500 instruction tuning steps with a batch size of 64, the model reaches its optimal performance.
This process consumed about 1.5 epochs of our synthetic dataset.

DS-1000 (Lai et al., 2022) is a benchmark of data science problems sourced from Stack Overflow
(S0O). Compared to ARCADE, problems in DS-1000 feature a wider variety of I/O types, such as
numpy/scipy Arrays and pytorch/tensorflow Tensors, making it particularly appealing
to evaluate our instruction tuning approach aimed at generating code following I/O specifications.
However, in contrast to ARCADE which features succinct NL intents, DS-1000 follows the typical
style of detailed problem descriptions found in SO posts. These elaborate descriptions often include
additional information such as task background and descriptions of unsuccessful attempts, providing
a more complex intent structure, with an average length of 140 words. Given that such elaborate
intents may not reflect the style of developers’ prompts to code LLMs, we do not focus on generating
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intents with similar styles. Instead, we held-out 500 problems in DS-1000 and use their annotated
intents as training data, while evaluating on the remaining problems.’

4.1 SETUP

Base Code LLM We use a strong decoder-only code language model with 62B parameters. The
model was first pre-trained on a collection of 1.3T tokens of web documents and github code data,
and was then fine-tuned on a disjoint set of 64B Python code tokens together with 10B tokens from
Python Jupyter notebooks (Anonymous, 2023a).*

Learning Methods We evaluated the performance of both the baseline and instruction-tuned
models across a range of data formats, as shown in Tab. 2. For each I/O specification type, we
augmented the intents and few-shot exemplars with specifications of the corresponding type. Similarly,
at test time, we augmented the intents with the same type of I/O specifications. The baseline models
are tested under both zero-shot and few-shot prompting. For the latter, we manually created exemplars
for all types of specifications. These exemplars were prepended to the prompt when querying the
LLM for code generation during inference.

Simulate Noisy I/O Specifications at Test Time At testing time, the generation of /O Summary
underwent a minor modification from the process detailed in §3.2. We remove the concrete input/out-
put variable states {v} to produce noisy I/O summaries, simulating scenarios where users might give
noisy I/O specifications (Devlin et al., 2017). We illustrate an example in Appendix C where the
LLM generates an imperfect specification. While the “generalist” LLM uses the code solution to
generate noisy I/O summaries, we remark that the code LLM, which we aim to evaluate, does not
have access to the ground truth solution. In other words, the “generalist” LLM acts merely as a “data
labeler” to create I/O summaries in prompts in order to construct the evaluation dataset. It is also a
common practice in program synthesis to derive specifications from ground truth solutions, which
then serve as the sole input to the model during its evaluation (Balog et al., 2016).

Metrics We adopted the pass @k metrics as defined in Chen et al. (2021a); Austin et al. (2021),
which is calculated as the fraction of problems with at least one correct sample given k samples.
Following Yin et al. (2022a), we drew 50 samples to calculate pass@5 and pass @20 to reduce the
variance in ARCADE. Similar to Lai et al. (2022), we drew 40 samples to calculate pass@1 on
DS-1000. Consistent with the original works’ settings, the sampling temperature was set to 0.8 for
ARCADE and to 0.2 for DS-1000 respectively.

4.2 MAIN RESULTS

Tab. 2 presents the pass@Fk results on ARCADE and DS-1000. We evaluate both few-shot prompting
and fine-tuning with synthetic data. Specifically, for ARCADE we evaluate on two versions of the
dataset. First, we consider the original version where an intent is prefixed by prior notebook cells as
its programmatic context (Full Context), as well as a No Context ablation to simulate the scenario
where users query a code LLM using an intent without any context. This no-context setting is more
challenging, where the zero-shot performance of the base code LLM is nearly halved. The standard
errors in all cells of the table are less than 0.5%, and are excluded for clarity in presentation.

In our few-shot prompting experiments, we observe that pass@k generally improves with more
detailed I/O specifications. Interestingly, on ARCADE, the improvements from prompting using
I/O specifications compared to the baseline where no I/O specifications were used (no spec), are
more notable in the more challenging no-context scenario (e.g. 15.96 — 23.75 v.s. 30.98 — 37.11
for +1/0 Examples). This trend suggests that additional specifications could provide more valuable
clarifications when adequate programmatic contexts are lacking.

Next, we fine-tune the base code LLM using our synthetic parallel data using different types of /O
specifications. Interestingly, without using any I/O specifications in the synthetic intents, on ARCADE
the model already registers significant improvements compared to the zero- and few-shot settings.

*We only use the annotated intents, while the code solutions and I/O specifications are still predicted by the
LLM. We ensure the training and evaluation problems are disjoint and from different SO posts.
*Model details are available in Anonymous (2023a), but withheld from this submission for review.



Under review as a conference paper at ICLR 2024

ARCADE DS-1000
Methods pass@5 pass@20

No Context  Full Context No Context Full Context

Zero-shot Prompting ‘

pass@1

Code LLM (no spec.) 12.45 24.67 19.85 37.47 . 22,62
Few-shot Prompting ‘

Code LLM (no spec.) 15.96 30.98 26.35 42.30 . 2392
+ TypeDesc 16.58 29.68 29.68 42.30 2590
+ 1/O Examples 19.85 32.47 30.79 43.23 I 2641
+ 1/O Summary 23.75 37.11 34.50 46.75 : 26.25

Synthetic Data Fine-tuning :

Code LLM (no spec.) 20.78 34.33 33.40 46.94 . 2456
+ TypeDesc 21.52 36.73 33.58 48.61 2735
+ 1/O Examples 25.23 42.30 38.03 53.99 I 28.66
+ 1/O Summary 28.01 43.79 43.04 55.47 ‘ 29.34

StarCoder 15B 11.75 22.38 17.24 32.52 I 26.52

WizardCoder 15B 12.45 24.04 18.58 34.30 I 27.35

Table 2: pass@k on ARCADE and DS-1000. For each type of I/O specification in Tab. 1
(e.g. +1/0 Summary), intents are augmented with I/O specifications of that type (e.g. intents inline
with I/O summary) in fine-tuning data or few-shot exemplars. At test time, input intents use the same
type of I/O specifications.

The model-predicted code solutions are filtered using executability heuristics, which helps improve
the quality of the synthetic data, and a model fine-tuned on such data could generally be better at
following users’ intents, even without I/O specifications. Moreover, by fine-tuning the model to
follow intents with additional I/O specifications, we observe significantly better results. We also
remark that instruction fine-tuning using natural language I/O summaries (+1/0 Summary) yields
the best results on both datasets. Intuitively, those I/O summaries could encode salient information in
target input and output variables through natural language descriptions, which could make it easier
for the model to capture patterns in the data as compared to other more elaborate versions such as
using concrete I/O examples.

We also evaluated Starcoder (Li et al., 2023) and its instruction tuned variant WizardCoder (Luo et al.,
2023) on ARCADE and DS-1000. The result shows that GIFT4CODE is a more effective instruction
tuning method in the data science domain. This is especially observed by the fact that GIFT4CODE
offers much more relative improvement to the base model than the gains WizardCoder boasts over
StarCoder. Overall, our results demonstrate that GIFT4CODE significantly improves the performance
of code LLMs in following intents with I/O specifications at varying level of abstraction.

4.3 QUALITATIVE ANALYSIS

To gain deeper insights into the behavior of the different models, we present a qualitative analysis of
the baseline model, its few-shot prompting variant with LLM specifications (I/O Summary), and our
proposed GIFT4CODE approach. We illustrate this analysis using two examples from the ARCADE
dataset, as shown in Fig. 2.

In the first example (Fig. 2, Left), the base code LLM (cell 4) fails to group the “League” column
as requested in the user’s intent. Note that the provided solution is still executable so it cannot be
filtered by executability heuristics. The few-shot prompting variant with I[/O summary (cell 5) also
fails here. It struggles to correctly utilize these specifications despite selecting the correct salient
columns, leading to an output that does not meet the user’s requirement either. In contrast, the output
from GIFT4CODE (cell 6) successfully generates a solution which computes the sum of the two
salient columns then sorts the result, effectively utilizing the provided specifications and adhering to
the user’s intent.

The second example (Fig. 2, Right) further underscores the advantages of GIFT4CODE. The baseline
code LLM (cell 4) attempts to call a non-existing column (Turbo_Type), leading to a KeyError.
This represents a failure mode that the model tries to adhere a user’s intent but generates an in-
executable solution that refers to incorrect input variables due to lack of I/O specifications. The
few-shot prompting variant (cell 5) presents another interesting failure mode. While the model is
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[1] import pandas as pd [1] import pandas as pd

import numpy as np

df=pd.read_csv('dataset/car_price_prediction.csv')
df=pd.read_csv('dataset/full_data.csv') df['Mileage'] = df['Mileage'].apply(
df=drop(['Unnamed: 8'],axis=1) lambda x : str(x).replace("'km"," ")).astype(int)

[2] # Schema of Dataframes: [2] # Schema of Dataframes
# Columns in df with example values: # Columns in df with example values: Manufacturer (LEXUS)

# name (Mike), subject (math), score (90), date (©5-01), Model (RX 450), Category (Jeep), Engine volume (3.5)
Ti 16:00), H_S 4.0), A_S 1.0 q
ime ( ), H.Score (4.0), AScore (1.0) [3] How many turbo jeep cars does Lexus have? EF
[3] What is the maximum total score in each league? EF . . .
# LLM Generated Spec: Output is an int. Given the user intent
# LLM Generated Spec: The output is pandas.core.series.Series and the code, the salient columns (at most given 3) in the
of type float64. Given the user intent and the code, the input dataframe are Engine volume, Category, Manufacturer
salient columns (at most given 3) in the input dataframe are
League, H_Score, A_Score. . . .
[4] Code LLM (KeyError, calling a non-existing column)
[4] Code LLM (irrelevant code)
df[(df['Manufacturer'] == 'Lexus') & (
df[df['League’ ]=="premier-league"].groupby( df['Model'] == 'RX 450') & (df['Turbo_Type'] ==
'Date').sum()[['H_Score', 'A_Score']].sort_values( 'Turbo') & (df['Category'] == 'Jeep')
by=['H_Score', 'A_Score'], ascending=False)
[5] I/0 Summary Few-shot (syntax error (in red))
[5] I/0 Summary Few-shot (sorts the wrong column)
df[(df.Manufacturer == 'Lexus') & (df.Category ==
df.grogpby('LE§gue')[[1H,§core‘,‘A,Score']].sum().sort,v ‘Jeep') & (df.Engine volume.str.contains(
alues('H_Score',ascending=False) .head(1) "turbo’, case=False))].shape[@]

[6] GIFT4Code (sums and sorts the correct columns) [6] GIFT4Code (correctly uses the specs)
df['Total_Score'] = df['H_Score'] + df['A_Score'] df[(df['Category'] == 'Jeep') & (
df.groupby('League')['Total_Score'].max().sort_values( df['Manufacturer'] == 'LEXUS') & (

ascending=False) df['Engine volume'].str.contains('Turbo'))].shape[0]

Figure 2: Two examples on ARCADE. Left: the base code LLM does not follow the intent to group
the “League” column. Its few-shot prompting variant failed to correctly utilize the specifications.
GIFT4CODE’s solution aligns to the user’s intent. Right: code LLM tries to call a non-exsiting
column, leading to a KeyError. Its few-shot variant follows the specifications incorrectly, leading
to the syntax error. GIFT4CODE generates correct solution.

trying to follow the additional I/O specification (presumably because of the few-shot demonstrations)
by referring to the Engine volume column in the specification, it fails to generate a syntactically
correct code snippet (df .Engine volume). It is important to note that this is a common failure
mode of the few-shot prompting model, as we explain in Fig. 3 later. Once again, GIFT4CODE
outperforms other settings, generating solutions that answer the natural language question while
following the additional specifications.

Executability
75 76

4.4 EXECUTION RATE VS Pass@k 73 74 77 78

. . GIFT4Code
We delve further into the experimental re-

sults to examine the relationship between ex-
ecutability and the quality of the generated
code. Surprisingly, we observe that a model
with a higher execution rate does not neces-
sarily produce better code. Fig. 3 plots the o
frequency of common error types alongside CodelLM Tk

Bl Schema Error

Few-shot mmm Syntax Error

SyntheticFT

the code execution rates of different mod- o 00 260 00 800 1000 1200
els’ predictions. The baseline code LLM, Error Counts

despite generating a substantial amount of
executable code (higher ), often produces
incorrect (irrelevant) solutions, leading to a
high executable rate but low pass @k accu-
racies (Tab. 2). This suggests that a model’s
ability to generate executable code does not
necessarily indicate its competence in gen-
erating semantically correct code that aligns
with the user’s intent. This insight is further
evidenced when we fine-tune the model on
synthetic data without I/O specifications, labeled as SyntheticFT in Fig. 3. The model’s execution
rate decreases in this scenario because it attempts to better align with user intent, leading to a higher
rate of schema understanding errors (e.g. referring to non-existing columns as in cell 4, Example 2,

Figure 3: Frequency of error types and code execution
rate for different methods. Bottom x-axis stands for the
counts of schema errors and syntax errors. Top x-axis
represents execution rate. Instruction fine-tuning with-
out specifications (SyntheticFT) decreases executabil-
ity. Few-shot prompting with specifications reduces
schema understanding errors with more syntax errors.
GIFT4CODE achieves the best performance by com-
bining their strengths.
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Fig. 2). However, the pass@Fk scores of this synthetic fine-tuned model remain significantly higher
than the base code LLM in Tab. 2, demonstrating the importance of intent alignment.

Incorporating I/O specifications using few-shot prompting leads to another interesting observation.
We observe a reduction in schema understanding errors, indicating that the model indeed benefits
from the extra specifications. However, given the vast diversity of Python I/O specifications, it is
impossible to cover all variants within the few-shot exemplars. Consequently, the model struggles to
reliably leverage the specifications, leading to a surge in syntax errors when referring to arbitrarily
string-valued schema elements (e.g. cell 5, Example 2, Fig. 2). GIFT4CODE effectively mitigates
these syntax errors, leading to a higher execution rate while achieving the best pass @k accuracies.

5 RELATED WORK

Execution Guided Code Generation One area of study primarily focuses on utilizing execution
as I/0 examples, facilitating the synthesis of programs that align with the intended behavior. Gulwani
(2016) involves synthesizing intended programs in an underlying domain-specific language (DSL)
from example based specifications. This method has been further explored and adapted to different
applications in subsequent studies (Devlin et al., 2017; Chen et al., 2018; Bunel et al., 2018). Another
strand of research (Chen et al., 2021b; Wang et al., 2018; Ellis et al., 2019) leverages intermediate
execution results to guide the search of programs. More recently, there have been attempts to utilize
program execution results to verify and select code samples predicted by LL.Ms, either during auto-
regressive decoding to prune search space (Zhang et al., 2023), or by few-shot prompting (Chen et al.,
2023) and post-hoc reranking (Shi et al., 2022; Ni et al., 2023).

Instruction Fine-tuning Instruction fine-tuning is a widely adopted approach to address the mis-
alignment issue in LLM-generated content. LLMs such as FLAN (Wei et al., 2021), which excel
at understanding and executing instructions from prompts, are trained on labeled training data. Re-
inforcement learning with human feedback (RLHF) aims to mitigate the amount of labeling effort
using model-based reward (Ouyang et al., 2022). Other works also confirmed the effectiveness of
using instructional data in the fine-tuning stage (Mishra et al., 2021; Sanh et al., 2021; Chung et al.,
2022; Wang et al., 2022b). To lower labeling cost, several recent works explored the possibility of
automatic instruction generation (Ye et al., 2022; Zhou et al., 2022; Honovich et al., 2022b). In
particular, SELF-INSTRUCT (Wang et al., 2022a) demonstrated that LLMs can be further improved
by utilizing its own generation of instruction data. Our work differs from this line by considering
execution-based specifications. Additionally, recent works attempted to distill instruction following
data from more capable LLMs that have already been instruction-tuned (Honovich et al., 2022a; Taori
et al., 2023; Chiang et al., 2023; Peng et al., 2023). In contrast, GIFT4CODE generates synthetic data
from vanilla LLMs that have not gone through instruction-tunning.

Synthetic Data from LLMs Besides generating data for instruction following, a number of recent
studies have also harnessed general-purpose LLMs to generate realistic synthetic data in areas where
labeled data limited, such as language understanding and clinical research (Rosenbaum et al., 2022a;
Tang et al., 2023; Borisov et al., 2022; Liu et al., 2022; Rosenbaum et al., 2022b; Josifoski et al.,
2023). To improve the quality of synthetic data extracted from LLMs, such approaches usually apply
a rejection sampling procedure and filter predictions based on domain-specific heuristics such as
logical consistency (Bhagavatula et al., 2022; Yin et al., 2022¢). GIFT4CODE is in spirit of this line
in that it leverages program execution feedback to filter code predictions (Xu et al., 2020).

6 CONCLUSION

We have presented GIFT4CODE, a framework for instruction fine-tuning large language models of
code in which the training is guided by execution based specifications. Empirically, we demonstrated
how our approach enhances the quality of generated code, substantially improving accuracy on two
challenging data science benchmarks, ARCADE and DS-1000.

Limitations The Python types featured in ARCADE and DS-1000 still represent a limited subset
of all potential Python types. Furthermore, I/O specifications may not always accurately capture a
developer’s true intent. We plan to extend our approach to consider a broader variety of Python types,
including custom-defined classes, and to explore other types of specifications in future work.
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A APPLYING GIFT4CODE TO DATA SCIENCE CODE GENERATION

In this appendix section, we demonstrate the practical application of our proposed approach
GIFT4CODE, as discussed in §3, to a specific dataset, ARCADE (Yin et al., 2022b). We follow
the same setup as described in §3. Our starting point involves a “Generalist LLM” and a Code LLM,
the alignment of which we seek to improve.

A.1 SYNTHETIC DATA GENERATION

We first gathered CSV files from diverse GitHub repositories focusing on data science projects. These
CSV files encompass a wide range of data types, structures, and domains, serving as the programmatic
context to initialize the synthetic data generation. Subsequently, we employed a “Generalist” LLM
specifically designed for natural language understanding tasks, distinguished from the base code
LLMs. This model was utilized to generate natural language questions based on the information
extracted from the collected CSV files. For the following sections, we denote the set of natural
number from 0 to W and Ny, = {1,2,3,...,W}.

Creating NL Intents (Questions) Using the entire CSV file as the programmatic context to prompt
the “Generalist” LLM is infeasible due to its length after tokenization. Instead, we extracted the
header for each CSV file as the programmatic context c; to query the LLM to generate the NL intents
{x;}. Given the length of an entire CSV file after tokenization, using it as the programmatic context
to prompt the “generalist” LLM is impractical. Instead, we derive the header and its first three rows
from each CSV file as the programmatic context, denoted as c;, to query the LLLM to produce NL
intents x;. To construct the few-shot exemplars, we randomly selected a subset of CSV headers,
denoted as C’ = {c} | i € Np} where P < 10. The prime symbol ’ in the superscript denotes the
variable will be used in the few-shot exemplars. We manually crafted a set of 10 data science-related
questions corresponding to each ¢}, denoted as X, = {x | j € Nyg}. This process allowed us
to create a few-shot prompt set P that consists of pairs of CSV headers and associated questions,
formulated as P = {(c}, X])}/_,.

We employed the standard few-shot prompting approach, which concatenates P to each CSV header
¢; when querying the LLM. In specific, each header ¢; is augmented to é; = (P, ¢;). In this
configuration, the LLM is prompted to generate questions related to ¢;, while emulating the style of
‘P. After generation, we perform diversity filtering on X;. Let X; denote the set of NL questions after
the filtering process. We initialize X; as {qo} where ¢g ~ U(X;)), a question randomly selected
from X;. Similar to Wang et al. (2022a), we iterate over { X \ o }, a new question is added to the set
X only when its ROUGE-L overlap with any ¢ € X is less than 0.7. Questions that are repetitive
are also filtered out. For notation simplicity, in the following sections, we use X; to represent the set
of NL intents after the filtering process. Empirically, we observe that the NL questions generated by
this LLM encompassed a wide range of tasks relevant to the given programmatic context, as shown
in Listing 2 and Listing 3.
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Predicting Code Solutions Subsequently, we employed the code LLM, which we aim to improve,
to generate code that addresses these NL questions. For each question ¢/ € X, where j denotes
the j™ question associated with the programmatic context ¢;, we can draw code solutions from
Piim(y | ¢, q]). This leads to a pool of code samples {y}/. Following this, we applied heuristic
filtering on these code samples, adopting two criteria: 1) Maximizing the diversity of Python library
API calls, and 2) Ensuring the produced execution output is meaningful, for instance, yielding a
pandas.DataFrame object if the code is executable. This process resulted in a synthetic dataset
D that enables instruction fine-tuning. Notice that D does not contain any I/O specifications yet.

The synthetic data generation process leverages the capabilities of the LLM to create a diverse set of
natural language intents that correspond to the header information extracted from the CSV files. By
incorporating the knowledge and understanding of “Generalist” LLM, we are able to generate a rich
and varied synthetic dataset that contains a wide range of data science tasks and scenarios.

Executing Code Samples Executing code derived from a pre-training corpus which was used to
train the code LLM can be challenging, as it often demands notoriously complicated environment
setup. In contrast, the synthetic code samples offer a significant advantage, as they can be executed
more easily without the need for complex environment setup. Moreover, the execution of synthetic
code samples enables us to track variables and their states both before and after running the code.
This information can be utilized to identify input variables that exhibit state changes after execution.
We label these variables as inputs to the code. In addition, by examining the final states of these input
variables, we can effectively establish the input-output specifications of the code.

B LLM GENERATED NL INTENTS

In this section, we demonstrated the NL questions generated by the “generalist” LLM on the ARCADE
dataset. To begin, we provide an exemplar used in the few-shot prompt when querying the LLM to
generate NL questions, as seen in Listing 1. The given exemplar consists of the CSV header along
with the first three rows. If any entry within the first three rows exceeds 50 characters in its string
representation, we truncate it to maintain conciseness. As shown in Listing 1, we handcrafted 10
diverse questions, covering as many data science topics as possible.

In this section, we provide two examples of NL intent generation. Each of these examples, as shown
in Listing 2 and Listing 3, includes both the programmatic context and the output generated by the
LLM. Listing 2 illustrates an instance regarding a Pokémon game experience. Notably, the LLM
tends to generate relatively basic questions in this context, which don’t necessitate the use of complex
Python APIs such as pandas.groupby. Conversely, Listing 3 presents an example related to
a Netflix TV and movie dataset. In this case, the LLM produces more comprehensive questions.
Addressing these questions requires multiple API calls, indicating a higher level of complexity.

C 1I/0 SUMMARY EXAMPLES

To begin with, we showed an example of a few-shot exemplar used to prompt the “generalist” LLM
in generating an I/O summary for the ARCADE dataset, as detailed in section 3.2. The exemplar
in Listing 4 comprises an input dataframe schema, a Python code solution, execution output, and
user intent. The anticipated response to this prompt is an I/O summary, outlining the input-output
variable names and their types. In this example, there is only one variable — ""alc"" which is a
pandas.DataFrame. Next, the LLM is expected to give a succinct description on the salient
input columns, as well as a brief summary of the example output columns.

We present two examples of LLM generated I/O summaries on the ARCADE dataset, as illustrated in
Listing 5 and Listing 6. As mentioned in §4.1, we deliberately obscure the execution output details
when prompting the LLM to generate an I/O summary. This step helps to more realistically simulate
user provided specifications. Each example consists of its prompt we used to query the LLM for the
I/O summary, the resulting example augmented by the generated I/O summary and the ground truth
execution output which was never exposed to LLM.

The first example Listing 5 focuses on a dataset detailing mobile phone information, with the user
intent being to determine the quantity of different smartphones released each decade. The subsequent
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First 3 rows from dataset 4-wheeler-EV.csv (column data types in parentheses)

| Comfort (float) | Performance (float) | Fuel Economy (float)

| Value for Money (float) | Condition (string) | driven (string) | rating (float)

| model_name (string) |

Few hundred kilometers | 5 hyundai kona |

5 5 | New
| 1 | 1 | New | Haven't driven it | 0 | hyundai kona |
5 4

| New | Few thousand kilometers | 5 | hyundai kona |

First 3 rows from dataset 2-wheeler-EV.csv (column data types in parentheses)

| Owned for (string) | Ridden for (string) | rating (int)

| Visual Appeal (float) | Reliability (float) Performance (float)

| Service Experience (float) | Extra Features (float) | Comfort (float)

| Maintenance cost (float) | Value for Money (float) | Model Name (string) |
|
| Never owned | nan | 1 | 3 | 4 | nan | nan | nan | 4 | nan | 1 | TVS iQube |

| >1 yr | <5000 kms | 1 | 3 | 1 | nan | 1 | nan | 3 | nan | 3 | TVS iQube |

| < 3 months | < 5000 kms | 3 | 4 | 4 | nan | 2 | nan | 5 | nan | 2 | TVS iQube

Here are a series of contextually dependent data wrangling and exploratory data

analysis tasks for the dataset:

Task
Task

average performance rating better than the ones that have not yet been purchased?

Task

1:
2:

3:

How many new cars have a performance rating of more than 37

Among the Hyundai Kona reviews, do those with a purchase history have

Create a new column called "Review's Word Count" and Show the rating of

the shortest review

Task
Task
Task
less
Task
Task
Task
Task
[END]

4:
5:
6:

Which model has the highest average word count?
How many reviews are for used cars for this model?

What are the top five models with most number of bikes having mileage

than 5000 kilometers

7
8:
9:
10:

Which of these models has the highest comfort score on average?
What are those models mostly used for?
How many times the word scooter was mentioned in the bike's reviews?

Show a list of words that were mentioned only once in the reviews

Listing 1: An exemplar in the few-shot prompt when querying LLM to generate NL intents.
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| id (int) | identifier (string) | species_id (int) | height (int) | weight (int)

| base_experience (int) | order (int) | is_default (int) |

1 | bulbasaur | 1 | 7 | 69 | 64 | 1 | 1 |
| 2 | ivysaur | 2 | 10 | 130 | 142 | 2 | 1 |
3 | venusaur | 3 | 20 | 1000 | 263 | 3 | 1 |

(a) The programmatic context to query the “generalist” LLM, albeit only a subset of the columns are displayed.

Here are a series of contextually dependent data wrangling and exploratory data
analysis tasks for the dataset:

Task 1: How many pokemons are there in the Pokedex?

Task Find the total number of columns that are integers.
Task Calculate the ratio of mean weight to height for each pokemon
Task How many pokemon have the same average base experience as their id?

Find the order for each pokemon that weighs less than 100 pounds

2
3

Task 4: What is the weight of “Snorlax” ?
5
Task 6
7

Task What is the “mean” and “median” of “height” column ?

Task 8: Show the names of the pokemons with minimum and maximum weight, height
and base experience.

Task 9: Show the first 20 and last 10 pokemon with their average base experience.
Task 10: Create a new column called "size_cat" that has size categories for

pokemon (child: 1-10, teenager: 11-20, adult: 21+)

(b) LLM generated questions for the above programmatic context.

Listing 2: Programmatic context and generated questions on an example concerning pokemon game
experience dataset.
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| show_id (string) | type (string) | title (string) | director (string) |
| country (string) | date_added (string) | release_year (int) |
e
| s1 | Movie | Dick Johnson Is Dead | Kirsten Johnson | United States |

September 25, 2021 | 2020 | PG-13 | 90 min | ... |
| s2 | TV Show | Blood & Water | nan | South Africa |

September 24, 2021 | 2021 | TV-MA | 2 Seasons |
| s3 | TV Show | Ganglands | Julien Leclercqg | nan |

September 24, 2021 | 2021 | TV-MA | 1 Season |

(a) The programmatic context to query the “generalist” LLM, albeit only a subset of the columns are displayed.

Here are a series of contextually dependent data wrangling and exploratory data

analysis tasks for the dataset:

Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task

1:

O J o U Ww N

9:
10:
11:

What is the count of number of seasons for each show?
How Many shows have “TIV14” as rating?
How many movies have a rating of 13+?
Show the top 10 TV shows with most number of seasons
Make a new column "genre" that combines all genres into one column.
Show the names of casts who have been in at least 5 shows?
How many TV Shows are there that have been released before 20172
For each director, how many shows have been added in 20207
Show the movies that have director's name with the letter 'b' in it.
Show the number of shows released before 2020 in the genre “Documentaries”?

For each type, what are the average durations?

(Show dataframe that has type and duration as columns)

(b) LLM generated questions for the above programmatic context.

Listing 3: Programmatic context and generated questions on an example concerning Netflix TV show
and movie dataset.
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I/O summary generated by the LLM identifies the "smartphone" and "year" columns as the most
relevant from the input dataframe and describes the output values as being of int64 type, with an
index year. The generated I/O summary correctly describes the ground truth presented in the bottom
of Listing 5.

In the second example Listing 6, the LLM is dealing with movie data where the user’s intent is to
chronologically list the worldwide gross of films released each month from November 2021 to June
2022. The corresponding I/O summary generated by the LLM correctly identified the salient columns
in the input dataframe, “Worldwide” and “Released Date”. However, an observed discrepancy
between the ground truth output and the I/O summary indicates that the LLM’s generation is not
entirely accurate for this specific example.

These two test examples on ARCADE illustrate the LLM’s capabilities in generating I/O summaries,
while highlighting the potential discrepancies that may occur.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we offer two additional experiments that supplement the results presented in §4.2. We
have demonstrated the GIFT4CODE model consistently outperforms in all types of I/O specifications.
A natural follow-up question might be whether the instruction fine-tuning degrades the model’s
programming ability if no specifications are provided by the user. To address this concern, we have
conducted further experiments where an instruction tuned model is evaluated on the ARCADE dataset,
in the absence of any specification.

The results in Tab. 3 demonstrate that while the instruction tuned model does perform slightly worse
than the model fine-tuned on data with no specifications, the difference is marginal. In the pass@5
and pass @20 settings, both with no context and full context, the model’s performance (all types of
specifications) only decreases by most 2% when compared with the model without specifications.
This is expected as the discrepancy between the fine-tuning data and the testing data could lead to a
minor regression in performance. This marginal decrease in performance is counterbalanced by the
significant improvement we previously observed in §4.2. Therefore, GIFT4CODE with I/O summary
still remains the superior method for instruction fine-tuning.

E BROADER IMPACTS

We outline the broader impacts of our research in both positive and negative aspects. On the positive
side, our proposed approach, GIFT4CODE could significantly increase developers’ productivity by
enhancing the alignment of Large Language Models (LLMs) with user intentions in the context of
code generation. It also lowers the barrier of entry to programming for non-experts. On the negative
side, like any technology that automates human labor, tools which generate code might displace jobs.
In our early investigation, this is still far from happening because the pass @20 accuracy on ARCADE
is still less than 50% which is lower than an average Python expert can achieve.

A potential impact, which we regard as neutral, is the potential of our research to fundamentally
reshape the nature of programming itself. By making the code generation more specification-driven,
our approach aligns with the paradigm of declarative programming. It allows programmers to focus
more on high-level problem-solving rather than the details of syntax. On the other hand, it still has
certain degree of disconnection from the common coding style which is imperative. Therefore, the
implications of this transformation are still unknown.
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nun

The input dataframe schema is:

Schema of Dataframes:

Columns in alc with example values:

country (Afghanistan), beer_servings (0), spirit_servings (0), wine_servings

total_litres_of_pure_alcohol (0.0), continent (AS)

nwn

# The Python solution is:

import pandas as pd

alc = pd.read_csv("drinks.csv")

alc['continent'].unique ()

alc.groupby ('continent') .agg({'beer_servings': np.mean}) .sort_values
'beer_servings', ascending=True)

alc.dropna()

# The execution output is:
alc:

|  beer_servings (float) |

| 102 |
| 20 \

# The user intent 1s:

Rank the continents that consume the least amount of beer on average.

# The I/0 specification is:
alc: a pandas.core.DataFrame. Given the user intent and the code, the salient
columns (at most given 3) in the input dataframe are beer_servings, continent.

The output dataframe has columns (at most given 3) such as beer_servings.

Listing 4: An exemplar regarding pandas.DataFrame.
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wnn

The input schema is:

# Schema of Dataframes:

# Columns in phones with example values:

# manufacturer (Nokia), model (1100), form (Bar), smartphone (No), year (2003)

nwn

# The Python solution is:
yearly_smartphones = phones.groupby(['year', 'smartphone'],
as_index=False) .size () .pivot_table(
index="'year',6 columns='smartphone', values='size').fillna(0)
yearly_smartphones.groupby ( (yearly_smartphones.index//10)*10).Yes.sum()

# The execution output is:
__output___:

pandas.core.series.Series

# The user intent 1is:
How many different smartphones were released each decade?

The I/0 specification is:

(a) The prompt used to query LLM for I/O summary.

# In[ ]:
import pandas as pd
import numpy as np

phones = pd.read_csv('dataset/best-selling-mobile-phones.csv')

# In[ ]:

# Schema of Dataframes:

# Columns in phones with example values:

# manufacturer (Nokia), model (1100), form (Bar), smartphone (No), year (2003)

# In[ ]:

phones [phones.form.str.lower () .str.contains ('touchscreen')].groupby (
'manufacturer') .model.nunique () .idxmax ()

# In[ ]:

year_phones = phones[phones|['year'] >= phones|['year'].max()-15]

year_phones.groupby (['year', 'manufacturer', 'form'], as_index=False).size () .pivot (
index=["'year', 'manufacturer'], columns='form').fillna(0)

# In[ ]:

How many different smartphones were released each decade?

mmww

Input-output Summary:

__output__: a pandas.core.series.Series. Given the user intent and the code, the
salient columns (at most given 3) in the input dataframe are smartphone, year.

The output values are of type int64, with an index year. Here is my code solution:
mnn

# In[ ]:
(b) A test example on ARCADE augmented with a LLM generated I/O summary.
year
1990 0.0
2000 12.0
2010 58.0

Name: Yes, dtype: floaté64

(c) The ground truth of the output in the above test example.

Listing 5: An example of an I/O summary generated by the LLM on ARCADE for a
pandas.Series.

21



© ® N R WD =

© % N R WD =

L R

Under review as a conference paper at ICLR 2024

nwn

The input schema is:

Schema of Dataframes:

Columns in df with example values:

Movie (JugJdugg Jeeyo), Worldwide (74.5), India Net (50.24), India Gross (54.5),
Budget (100), Verdict (None), Movie Type (Bollywood), Released Date (24-Jun-22)

# The Python solution 1is:
df_t[['month', 'Worldwide']].groupby ('month').sum().T

# The execution output 1is:
__output__:
pandas.core.frame.DataFrame

# The user intent 1is:
List the worldwide gross of the films released for each month since November,

2021 to June 2022. List the months in chronological order.

# The I/0 specification is:

(a) The prompt used to query LLM for I/O summary.

# In[ ]:

from datetime import datetime

import pandas as pd

df = pd.read_csv('dataset/bollywood_2022.csv")

# In[ ]:

# Schema of Dataframes:

# Columns in df with example values:

# Movie (JugJdugg Jeeyo), Worldwide (74.5), India Net (50.24), India Gross (54.5),
# Overseas (20.0), Movie Type (Bollywood), Released Date (24-Jun-22)
# In[ ]:

df.columns = [column.replace(' ', '') for column in df.columns]

# In[ ]:

List the worldwide gross of the films released for each month # since

November, 2021 to June 2022. List the months in chronological order.

mmon

Input-output Summary:

__output__: a pandas.core.DataFrame. Given the user intent and the code,

the salient columns (at most given 3) in the input dataframe are Worldwide,
Released Date. The output dataframe has columns (at most given 3) such as month,
Worldwide. Here is my code solution:

nwn

# In[ ]:
(b) A test example on ARCADE augmented with a LLM generated I/O summary.
| April, 2022 (float) | December, 2021 (float) | February, 2022 (float)
| January, 2022 (float) | June, 2022 (float) | March, 2022 (float)
| May, 2022 (float) | November, 2021 (float) |

| 1748.13 | 10988.6 | 1812.99 | 114.12 | 4763.05 | 3849.25 | 7730.75 | 169.23 |

(c) The ground truth dataframe of the output in the above test example.

Listing 6: An noisy example of LLM generated I/O summary. The LLM generated I/O specification
is inaccurate as evident from the discrepancies between the I/O summary in part (b) and the ground
truth in part (c).
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ARCADE
Methods pass@5 pass @20

No Context  Full Context No Context Full Context
Synthetic Data Fine-tuning ‘

Code LLM (no spec.) 20.78 34.33 33.40 46.94 ‘
+ TypeDesc 20.59 33.43 32.98 46.01 :
+ 1/0 Examples 20.04 31.76 31.40 43.60 |
-+ 1/O Summary 20.04 32.39 32.24 45.14 [

Table 3: pass@k on ARCADE. For each type of I/O specification in Tab. 3 (e.g. +1/0 Summary),
intents are augmented with I/O specifications of that type (e.g. intents inline with I/O summary) in
fine-tuning data. At test time, input intents do not contain have any specification.
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