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Abstract

Score-based diffusion models (SDMs) have emerged as a powerful tool for sampling from
the posterior distribution in Bayesian inverse problems. However, existing methods often
require multiple evaluations of the forward mapping to generate a single sample, resulting in
significant computational costs for large-scale inverse problems. To address this, we propose
an unconditional representation of the conditional score-function (UCoS) tailored to linear
inverse problems, which avoids forward model evaluations during sampling by shifting com-
putational effort to an offline training phase. In this phase, a task-dependent score function is
learned based on the linear forward operator. Crucially, we show that the conditional score
can be derived ezactly from a trained (unconditional) score using affine transformations,
eliminating the need for conditional score approximations. Our approach is formulated
in infinite-dimensional function spaces, making it inherently discretization-invariant. We
support this formulation with a rigorous convergence analysis that justifies UCoS beyond
any specific discretization. Finally we validate UCoS through high-dimensional computed
tomography (CT) and image deblurring experiments, demonstrating both scalability and
accuracy.

1 Introduction

Inverse problems seek to determine unknown quantities through indirect and noisy measurements, typically
leading to ill-posed scenarios. The Bayesian approach to inverse problems frames the task as a quest for
information. Blending statistical prior information of the unknown with a likelihood model for the mea-
surement data gives rise to a posterior distribution, which fully characterizes the unknown conditioned on
noisy data Kaipio & Somersalo| (2006]); [Stuart| (2010). In severely ill-posed problems, the quality of inference
is strongly dependent on the expressivity of the prior. Traditional hand-crafted priors, such as the total-
variation prior, tend not to be expressive enough to characterize complicated structures [Sun et al.| (2023).
Generative models offer a flexible and computationally feasible approach to prior modeling as they offer the
possibility of generating new samples after training on a data set characterizing the prior.

This work investigates sampling from the posterior distribution of linear inverse problems using score-based
diffusion models (SDMs) [Song et al.| (2021)), which have recently received wide attention in the literature (in
the context of inverse problems, see e.g. [Batzolis et al| (2021)); Lim et al| (2023)); Hagemann et al. (2023);
Graikos et al.| (2022); [Feng et al. (2023)); Sun et al.| (2023); [Pidstrigach et al.| (2023)); Dey et al.| (2024);
Holzschuh et al.| (2023); [Dou & Song] (2023); [Barbano et al.| (2023); |Cardoso et al.| (2023)); [Feng & Bouman
(2023)); |[Song et al.| (2024)); [Meng & Kabashimal (2022)); Kveton et al.| (2024); [Wu et al.| (2024a3b)); |[Baldassari
et al.| (2024b); |Yao et al.| (2025); |Chen et al.| (2025)). An SDM consists of two main components: a forward
diffusion process and a reverse generative process. In the forward diffusion, the model gradually transforms
the target distribution into a simpler, tractable distribution with a specific stochastic differential equation
(SDE) driven by Gaussian noise. The generative process simulates the time-reversal of the diffusion process
with a backwards SDE. This denoising phase relies on the drift, which is computed using the logarithmic
gradients (scores) of the diffused data densities. These scores are typically estimated using a neural network,
allowing efficient simulation of the backwards SDE and, consequently, sample generation from the target
distribution. SDMs have demonstrated significant success across a variety of domains, including inverse
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problems such as medical imaging Dey et al|(2024); Levac et al|(2023)); Barbano et al|(2023); Chung et al.|
(2023Db); [Song et al| (2022).

For inverse problems, posterior sampling with SDMs involves the challenging task of estimating the score
function conditioned on the measurements. A key difficulty is balancing computational efficiency with
scalability while ensuring accurate posterior sampling. Motivated by the limitations of existing approaches,
we propose a novel method for conditional sampling, based on an unconditional task-dependent representation
of the conditional score (UC0S) that overcomes these challenges by leveraging an explicit likelihood model,
which is often available and predefined in inverse problems. UCoS is particularly well-suited for large-scale
imaging tasks that require efficient posterior sampling for varying sets of measurement data.

The existing posterior sampling methods can be broadly categorized into three approaches. The first ap-
proach modifies the unconditional reverse diffusion process to guide sample trajectories towards the posterior,
either by adding a correction term to the score [Jalal et al| (2021)); |Chung et al| (2023a)); |Song et al.| (2023]);
[Adam et al.| (2022); [Chung & Ye (2022); [Levac et al.| (2023) or incorporating a data consistency optimization
step Song et al.| (2022); Dey et al.|(2024); |Chung et al|(2022). The second approach employs gradient-based
Monte Carlo sampling techniques, replacing the prior score with a learned score (Cardoso et al.| (2023)); [Sun|
let al.| (2023)); Feng et al|(2023]), with recent extensions to infinite dimensions Baldassari et al.| (2024b)). For
a recent review of methods largely following these two approaches (in finite dimensions), we refer to
. A key advantage of these approaches is that they allow the use of a pre-trained unconditional
prior score, accommodating different imaging tasks simultaneously without requiring task-specific training.
This is particularly useful for handling extensive multipurpose training sets in applications such as image
processing. However, such methods suffer from (1) high computational costs due to repeated forward evalua-
tions, (2) poor scalability in high-dimensional or large-scale inverse problems, and (3) potential inconsistency
in posterior samples due to the lack of rigorous convergence guarantees.

The third approach directly trains a conditional score function to perform conditional sampling, learning an
amortized version of the conditional score that depends on observations [Baldassari et al.| (2024a)); Batzolis|
. This method extends rigorously to infinite-dimensional diffusion models, making it attractive
for large-scale inverse problems, as it eliminates the need to evaluate the forward map during sampling.
However, it requires extensive training data on the joint distribution to reliably approximate the conditional
score function, particularly as the problem dimensionality increases.

We address the prohibitive sampling cost for large-scale inverse problems by demonstrating that this com-
putational overhead can be offloaded to the training phase, thereby accelerating posterior sampling. This
is achieved by designing a task-dependent training phase that depends on the forward mapping but not on
the measurement data. More precisely, we introduce a diffusion-like random process whose distribution is
explicitly dependent on the forward mapping, allowing the score (which we term the task-dependent score) to
be estimated using standard methods. We then demonstrate that the conditional score corresponding to the
posterior distribution can be recovered from this task-dependent unconditional score through simple affine
transformations involving the measurement data. Furthermore, we modify the training procedure to enable
evaluation of the conditional score without requiring application of the forward mapping during sampling.
In comparison to conditional method, integration of the explicit likelihood model into the process reduces
dimensionality of the training target. As a result, UCoS offers the best of both worlds: it eliminates the need
for forward mapping evaluations during posterior sampling, while requiring a trained score model of similar
complexity to that of unconditional score models. This enables more efficient scaling in online sampling as
the size or dimensionality of the problem increases.

Inverse problems are often about inferring quantities represented by functions such as solutions or param-
eters to PDEs. In Bayesian inversion, there has been a long-standing effort to develop methods that are
discretization-independent |Lehtinen et al| (1989); Lassas & Siltanen| (2004)); [Lassas et al| (2009)), aligned
with the principle to “avoid discretization until the last possible moment" |Stuart| (2010]). This is also critical
for the success of SDMs in Bayesian inversion as recent theoretical studies indicate that the performance
guarantees do not always generalize well on increasing dimension [Chen et al. (2023Db)); [Bortolil (2022)); [Pid-|
istrigach et al| (2023). Inspired by recent developments on defining the score-based diffusion framework in
infinite-dimensional spaces [Pidstrigach et al| (2023); Baldassari et al| (2024a)), we also extend our method
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rigorously to a separable Hilbert space setting. In particular, in the spirit of |[Pidstrigach et al. (2023), we
perform a convergence analysis of UCoS, establishing a bound between the samples generated by UCoS and
the true posterior target measure. Moreover, we conduct a numerical experiment of inverse problems related
to computerized tomography (CT) to illustrate practical applicability of UCoS.

1.1 Related work

The body of literature on SDMs is growing rapidly. Let us mention that [Song et al. (2021) developed a
unified framework combining score-based Hyvarinen & Dayanl (2005)); [Song & Ermon| (2019) and diffusion
Sohl-Dickstein et al.| (2015]); [Ho et al.| (2020) models to interpret SDMs as a time-reversal of certain SDEs.
Our paper is inspired by the work on conditional SDMs in the context of inverse problems. One line of
work seeks to modify the unconditional prior score function to generate samples which approximately follow
the posterior distribution. Examples of this include projection-based approaches [Song et al.| (2022)); [Dey!
et al.[ (2024), which project the samples on a subspace that solves the inverse problem during the generating
process; methods based on the gradient of a log-likelihood |Jalal et al. (2021); |Chung et al.| (2023a); [Levac
et al.|(2023) and plug and play approaches |Graikos et al.| (2022)) which add appropriately chosen constraint-
terms to the unconditional score function to steer the process towards generating desirable samples; and
the Doob’s h-transform approach [Denker et al.| (2024)) which learns a small, auxiliary correction to the
unconditional score function. A closely related approach is the Monte Carlo guided diffusion framework
(MCGDiff) |Cardoso et al.| (2023)), which leverages posterior samples from a linear Bayesian inverse problem
obtained via sequential Monte Carlo methods using the singular value decomposition (SVD) to guide the
training of a diffusion model. The theoretical foundation of MCGDiff however builds upon the availability
of the full SVD of the forward operator, which restricts its applicability to mildly ill-posed problems and
moderate-dimensional settings where the SVD can be computed and inverted stably. In contrast, UCoS is
designed to operate in a fully matriz-free manner, requiring access only to the forward map and its adjoint.

Another line of work seeks to approximate the conditional score function of the posterior distribution directly
Saharia et al.| (2023]); Batzolis et al| (2021)); Baldassari et al.| (2024a)). As this approach increases the input
dimension of the score function drastically, the training process is more computationally expensive and
requires more high quality training samples, which may be restrictive, especially in very high dimensional
problems.

The theory of infinite-dimensional SDMs has been initiated only very recently. [Hagemann et al. (2023)
modifies the training phase of diffusion models to enable simultaneous training on multiple discretization
levels of functions and prove consistency of their method. |Lim et al.[(2023) also generalizes the trained model
over multiple discretization levels proposing to generate samples with the annealed Langevin algorithm
in infinite dimensions. [Pidstrigach et al.| (2023 was the first to formulate the SDM directly in infinite-
dimensional space, demonstrating that the formulation is well-posed and providing theoretical guarantees.
Our work is closely connected to Baldassari et al.| (2024a), where the authors introduce the conditional
score in an infinite-dimensional setting. Moreover, they provide a set of conditions to be satisfied to ensure
robustness of the generative method and prove that the conditional score can be estimated via a conditional
denoising score matching objective in infinite dimensions.

1.2 Main contribution

This work presents a novel and scalable framework for posterior sampling in high-dimensional and infinite-
dimensional inverse problems. The key insight is that posterior samples generated via conditional SDMs can
be computed without any evaluation of the forward operator during sampling. Instead, without introducing
any errors, the computational effort can be shifted to the offline task of training the unconditional score of a
specific diffusion-like random process. This foundational principle generalizes to other infinite-dimensional
diffusion models, beyond the Ornstein-Uhlenbeck process studied here. More precisely,

e In Theorem we establish an identity for the conditional score connecting it to a task-dependent
unconditional score through affine transformations depending on the forward mapping and the mea-
surement data. The theorem extends this general principle to infinite-dimensional setting.
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e In Theorem we derive an error estimate for the generative process following the ideas suggested
by [Pidstrigach et al.| (2023). In particular, the error estimate explicitly underscores the contribution
of the loss function employed in training.

We numerically explore our method in Section [5] demonstrating that task-dependent training is effective in
practice and that online posterior sampling can be performed without evaluations of the forward operator.

2 Background

2.1 Score-based diffusion models in infinite dimensions

Finite-dimensional score-based diffusion models Score-based diffusion models (SDMs) are state-of-
the-art machine learning generative models (Song et al.[(2021])) that learn a data distribution through gradual
denoising of a normally distributed random variable. A diffusion process diffuses an image Xy ~ pg from
t =0 to t =T via the SDE (Ornstein-Uhlenbeck process, or OU)

1
dX; = fiXtdt + dWy,

where the marginal densities are denoted by p;, in particular, for large T', pr is close to the Gaussian density
N(0,I). The marginal densities are then reversed using the backward SDE

1
such that Y ~ pg.

Infinite-dimensional score-based diffusion models Let us now review the unconditional SDMs in
infinite dimensions proposed by [Pidstrigach et al.| (2023). Let p be the target distribution, supported on a
separable Hilbert space (H,(-,-)g). Let {X}'}][_, stand for the infinite-dimensional diffusion process for a
continuous time variable ¢ € [0, T] satisfying the following infinite-dimensional SDE

dx" = —%Xt“dt +CY2dBy, (1)
where C is a fixed trace class, positive-definite, symmetric covariance operator C : H — H and By is a Wiener
process on H with covariance tI, see Appendix We assume that the process X[ is initialized with pu,
i.e., X* ~ p. Notice carefully that we embed the initial condition p to the notation X}', ¢ > 0, as we later
analyze the interplay between different initializations. Here and in what follows, we assume that the initial
conditions and the driving process are independent. We adopt the formal definition of the score functions
by [Pidstrigach et al.| (2023):

Definition 2.1. Define the (weighted, unconditional) score function s(x,t; p) for x € H as

1
1—et

Remark 2.2. Assume that H = R™ and that the distribution p admits a density pg with respect to the
Lebesgue measure. For any ¢ > 0 the random variable X}* obtained through SDE in equation || has a density
pt. The unconditional score s(x, ¢; ) given in equation [2| then satisfies s(x,t; u) = CV, logpi(z). In other
words, in finite dimensions, Def. 2.I]reduces to the common score identified as the log-gradient of the density,
scaled by the covariance matrix C € R™*".

s(z,t;pu) = — (x — e TPR(XEIX) = x)) : (2)

Now assume that for T" > 0, )
sup E|s(XP' 6 )|l < oo, (3)
te[0,7T]

It is shown in Pidstrigach et al|(2023) that given Y/ ~ £ (X}) the following SDE

1 _
v = (v s 60 ) e+ 0
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is the time-reversal of equa‘Eion where By is a different Wiener process on H. The process Y/ is independent
of the past increments of By, but not of the future ones, see |Anderson| (1982)).

Training and sampling In both finite and infinite dimensional diffusion models, the score function is
learned by a neural network sg(-,-;p) : H x [0,t] — H such that sg(z,t;p) ~ s(x,t;u) (where in finite
dimension H = R™ we interpret s(z,t; 1) as Vlogp(z)). A common technique to enable empirical learning
of the score function is conditional denoising score matching, introduced in |Vincent| (2011)). This method
has been shown to work in the conditional Batzolis et al|(2021) and infinite dimensional setting Baldassari
et al.|(2024a) for the forward SDE given by the OU process. Training is performed via stochastic gradient
descent by minimizing a score-matching objective (loss function),

SM(s0) = Eenvio, 1Bz (xiy At 150 (2, t; 1) — s(2, b 1) |3, (5)

over some appropriate class of neural network. Here A : [§,7] — R™T is a positive weighted function and
0 < < T a truncation that avoids numerical instability for small times. In general, the score function s is
intractable, such that a denoising score-matching objective is introduced,

g1 _t
DSM(sg) = EtNU[a,T]E(z,mO)Nz(X;‘,Xg))\(t)2||59($7t%,U) —(l—-eH)2(z—e 2x0)||?{.

It can be shown, that the two objectives equal up to a constant that does not depend on the parameter 6.
After training a score sg(-,t) for all time ¢ € [0,T], we can then generate samples from g by running the
backward SDE equation [4] with the trained score sy instead of s. The solution of the backward SDE can
then be numerically solved using traditional methods such as Euler-Maruyama approximations.

2.2 Bayesian inverse problems and conditional score

In this paper, we focus on the setting, where the score corresponding to the reverse drift is conditioned on
observations. We consider a linear inverse problem

y = Ax + €, (6)

where x € H is the unknown in some separable Hilbert space H, y € R™ stands for the measurement
and A : H — R™ is a bounded linear operator. The random noise is modeled by a centered Gaussian
distribution € ~ A(0,T), I' € R™*™. We adopt a Bayesian approach to inverse problem equation |§| Stuart
(2010) and assume to have some prior knowledge of the distribution of x before any measurement is made.
This knowledge is encoded in a given prior u, defined as a probability measure on H. This approach gives
rise to a posterior that is absolutely continuous with respect to the prior and its Radon—Nikodym derivative
is given by, p-almost everywhere,

W) = e (-5 lae-ult). 7
Z(y) = /Hexp(—;llAm—yH?)u(dw)

In this context, Baldassari et al.| (2024a) defines the conditional infinite-dimensional score as follows:
Definition 2.3. Define the (weighted) conditional score function s(z,¢; u¥) for x € H as
ot

1—et

s(z,t;pY) = (x - e_TtIE(X(‘f\Y =y XI'= x)) .

Remark 2.4. Note the dependency of the conditional score on the measurement y. In the same spirit of
equation |3} [Baldassari et al.|(2024a) assume the uniform boundedness in time of the expected square norm
of s(z,t;pY) for all y € R™ to prove the well-posedness of the corresponding time-reversal SDE, given by
equation [4] with 1 replaced by p¥ and s(z,t; ) by s(z, t; u).
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3 UCoS: theory and implementation

3.1 Theoretical foundations of UCoS in function space

In this section, we establish the theoretical foundation for our method by showing that the conditional
score associated with the posterior distribution in the linear inverse problem [f] can be expressed as an affine
transformation of an unconditional score derived from a modified diffusion process. This key observation
allows us to shift the complexity of posterior sampling to an offline training phase, where only the prior
distribution and forward model are used. To build intuition, we begin by illustrating the idea in the finite-
dimensional setting H = R". Consider the posterlor pY in equation [7] diffused by equation [I Suppose the
probability densities of the prior p and X} 1 are absolutely continuous w.r.t. Lebesgue measure and denote
them by pp and q;(-|y), respectively. The transitional probability for the multivariate OU process is given
by pi(z]z0) = N(e /220, (1 — e7*)C) and thus

atoly) = | alclyorlal)d:

- %w /Rn Ppo(2) exp (; Az — 3/”%) pe(zl2) dz (8)

complete square

) [ a(e)esp (= s = il ) ds

where we completed the square w.r.t. the product of likelihood and transitional probability p;. Here, the
quantities 3}, m}(x,y) and w(z,y) satisfy:
-1
1 A)

1

/

Xy = <€t_
Hayy) = S (AT IS S d
my(x,y) = X Y 2 i T | an

2
wt(x7y) X  €exp (_ Hy - etAxHCt) )

where C; = (e! — 1)ACAT +T € R™*™. Consequently, we have that

V. log ai(zly) = — Vo [|ly — €' Ax||{, + V. log ((po * N'(0,5}))(mf (x,9)))

(9)
== Vo |ly - e Azg, + (Vam)(z,9)T [Va log (po + N (0, 57)] (m} (2, 9)).

The identity equation [8] can be formally interpreted as expressing ¢; for a given time as a mixture of the
prior pg and a Gaussian distribution with time-dependent covariance ¥; modulo transformations with w; and
my. What is more, the conditional score corresponding to ¢; in equation equation [J] can be expressed as a
transformation of the score of this mixture, i.e. Vlog (pg * N'(0,3})). This idea enables us to approximate
the posterior score off-line up to affine transformations.

Remark 3.1. The principled idea of transforming from task-dependent unconditional score to the conditional
score outlined above generalizes to other linear diffusion models beyond the specific Ornstein-Uhlenbeck
process equation [I| studied here. This raises the important question of how to design an efficient underlying
diffusion model to balance the computational effort further in a desirable way, e.g. by temporal or spectral
weighting of the diffusion. This consideration is beyond the scope of this paper.

We will now make the transformation above precise in infinite-dimensional separable Hilbert space H. First,
we define a random process {X 1T, such that its distribution is given by the mixture model

)/Z{L = 5(:5 + Zt, )A(:él ~ and Z; ~ N(Oa Et) (10)
with 3; given by
¥ = (e —1)C — (&' = 1)2CA*C L AC (11)
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and

Cy = (' —1)ACA* +T € R™*™, (12)
The next lemma ensures that ¥; is a valid covariance operator.
Lemma 3.2. Fort > 0, the operator ¥y : H — H is trace class, self-adjoint and positive definite.

Remark 3.3. While the mixture in equation [10] is well-defined for any t > 0, we observe that the process
X}" is no longer diffusive in the sense that it may stay dependent of X/} as ¢t grows. Indeed, we notice the
dual behaviour from two cases: if A = I, we have ¥; = C(C + (e — 1)7'T")7!T" and for A = 0 we have
¥ = (e! — 1)C indicating different asymptotics for the variance of )N({‘ depending on the singular values of
A. We note studying an SDE corresponding to )N(t” or its time-reversal is beyond the scope of this paper.

Definition 3.4. We define the (weighted) unconditional score function of the process equation [10| by
$(2,t5m) = — (2~ B(XYIKE = 2)). (13)

Lemma 3.5. Assume that H = R™ and our prior measure i admits a density given by pg. Moreover, let X{‘
be defined by equation . Then for every t > 0, the random variable X} admits a density p:(x) satisfying

5(z,t; ) = XV, log pe(2).

Let us now proceed to the main result of this section.

Theorem 3.6. Let He be the Cameron-Martin space of C (see Appendi:z: and assume that the prior
satisfies u(He) = 1. Fort > 0, let X} be given by equation and define

me(x,y) = etz 4 (e = 1)CA*C; M (y — et/? Ax). (14)
Then the conditional score function s(x,t; u¥) related to it holds that

st ) = AO) (3 (mul, ) b ) + () — e'/2a) (15)
for (z,y) € Hx R™ a.e. in Z(X}',Y) and t > 0, where

A(t) = (e/? —e7t/2) 7L, (16)

Special case of Gaussian prior Let us now study the score § corresponding to the special case of a
Gaussian prior measure. This enables us to derive an explicit formula which can give insights, in particular,
regarding the regularity of the score function.

Lemma 3.7. Let = N(0,Sy) be a Gaussian measure and suppose the covariance operator C satisfies the
assumptions of Theorem 5.6, Then there exists a covariance operator C on H such that ¥,(3; + Sp) 7! :
H — H can be well-defined as a linear and bounded operator for t > 0. Moreover, in that case

§(z,ts ) = —X4(8i+So) 'z

3.2 Task-dependent score approximation

The result of Theorem motivates a new way to approximate the score function in a task-dependent
manner. Notice first that the term my(z,y) in equation depends on the forward map A in a non-
trivial and time-dependent way. Therefore, even if training of § can be performed offline and utilized as an
approximation in equation equation [I5] one would still need to evaluate A during the sample generation. In
what follows, we propose an approximation scheme for the conditional score that circumvents this issue. Let
us fix some t > 0 and define the operator

Ry = (' = 1)I + (e —1)’CA"C; A, (17)
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Observe that R; : H — H is bijective and we have

my(z,y) = Re&e(2,y) (18)

for any z € H, y € R™ and t > 0, where
E@,y) == CAT Yy + A(t)a (19)

and )\ is given in equation For the proof, see Lemma Notice that the first term of £ depends on
A, and can be computed once for any y, but does not depend on ¢t. Motivated by this transformation, we
define the function

T(',t; ,U) = g(Rtata H) =+ Rt'7

which serves as the approximation target for a neural network. Since R; : H — H is a bounded linear
bijection, we can write, for £ € H,

S(Etp) + € =r(BE T ),
This motivates the use of a neural network r¢(-, ¢; 1) to approximate (-, t; u). In other words,

ro(Ry &t ) = 3(E i p) + & (20)

Remark 3.8. In the finite-dimensional setting H = R"™ with Gaussian prior as in Lemma [3.7] the operator
rg is given by

1 —1
ro(C,tp) = (et — 10—1 +ATF—1A+SO—1) c¢.

and is a bounded linear mapping for any ¢t > 0. In particular, rg : R®™ x R — R" depends only on a spatial
variable { and a temporal variable ¢ but not on the measurement y. This is in stark contrast to the conditional
approach Baldassari et al.| (2024al), where the conditional score (x,y,t) — s(z,t; u¥) : R* x R™ xR — R" in
Def. is approximated.

The next lemma adapts the training procedure discussed in Section 23] to the setting of forward process
X*#. Let us define continuous-time score matching objective (loss function) and the denoising score-matching
objective

oo . _ 1. 2
SM(rg) :=E [)\(zf)2 [|8(&e, t; 1) + & — 1o (R, lxt,t;u)HH} ;
Y 1. L2
DSM(rg) := E {A(t)Q [ro(Ry e, 5 1) — x0||H} .
with the expectations taken w.r.t. t ~ U, T, (Zo, &) ~ ,,Sf()?g,)?f) We make an assumption regarding

the boundedness of the second moment of the conditional score uniformly in time following |Baldassari et al.
(2024a).

Assumption 3.9. The prior u has bounded second moment, Ex.,[| X% < oo, and

2
Sup Ey"’ﬂ'yEwt’Vg(XéLy) ||S(xt?t7/j/y)HH < 0.
tels,T)

Notice that Assumptiondoes not require us to sample from Y ~ 7, or to compute the transform m(x,y).
See Lemma [B.3]in the appendix for detailed justification.

Lemma 3.10. Let Assumption[3.9 hold. It follows that
SM(rg) = DSM(rg) + V,
where the constant V < oo is independent of 6.

The result follows from repeating the arguments in [Baldassari et al.| (2024al). Truncation ¢ > § guarantees
that complications with singularity at ¢ — 0 are avoided, see Appendix [B.4] for details.
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3.3 Matrix-free implementation

Building on the theoretical framework established in the previous section, we now describe how UCoS can
be implemented efficiently in practice. A key strength of our approach is that it remains entirely matrix-free:
it requires only the ability to evaluate the forward operator A and its adjoint A* without ever forming
or inverting these operators explicitly. This property enables UCoS to scale to high-dimensional and ill-
posed inverse problems where standard representations (e.g., via SVD or matrix factorizations) become
computationally infeasible. In what follows, we outline the two-phase implementation pipeline: an offline
training phase in which a task-dependent score approximation is learned, and an online sampling phase where
posterior samples are generated using only the trained network and a precomputed observation-dependent
shift.

3.3.1 Offline phase: learning the task-dependent score

The goal is to learn a parametrized neural network 7y (e.g., a Fourier neural operator—FNO) that approxi-
mates the function r(-,¢; ). This is done by minimizing the training loss

DSM(rg) := E [A(t)? \[ro (Ry &4 t; o) — f?o||i1]

with t ~ U[8,T], (0, %) ~ L(XY, X!"). By the definition of the process X/, we have X! = X/ + Z, in
distribution, with Z; ~ N(0,3;). Using this identity, we observe that R, 1%, conditioned on &, is Gaussian

with covariance
1

n C+CA* T tAC
et —1

Cov(R; X" | X)) = R;'S, (RY)" =

by the identity
1

et — 1

followed from Lemma and Lemma (i). Now we can directly generate the desired quantity by observing
that

R = I+CA T 1A,

1. 1 e - 1 e
Rt 133,5: (et—1[+CA T 1A> I0+\/ﬁcl/221 +CA T 1/222

in distribution, where (Zg, Z;) ~ L()?(‘)L,)N(t“) and 21,20 ~ N(0,1) i.i.d. In consequence, the training phase
requires application of the forward operator A, its adjoint A*, the covariance of the noising process C and the
precision matrix of the observational noise I'"!. We note that I in the case of degenerative noise distribution,
I'~! can be replaced by the pseudoinverse.

3.3.2 Online phase: posterior sampling without forward map evaluations

The offline training, detailed above, will yield an (e.g. FNO) approximation rg ~ r independent of any
measurement data. Once this is done, sampling from the posterior is performed by simulating a reverse-
time diffusion process using the transformed score s, defined as (taking into account Theorem and the

equations [17] and
s(@,y; 1¥) = A(t) (re(ft(x,y),t;u) - e_%a:) 7
where
r(n,t; 1) = S(Rem, t; ) + Rem,
and
E(@,y) = CAT Yy + Atz

Note that after collecting a new measurement vector y, the term CA*I' 'y is computed once before the
generative process and remains constant throughout it. In consequence, the generative process does not
require evaluation of any operators in addition to rg.
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4 Convergence analysis

The aim of this section is to conduct rigorously the theoretical convergence of the proposed method. More
precisely, we establish a quantitative bound of the error term that indicates how far the samples generated
by UCoS lie from the true posterior target measure. In particular, we quantify how this error term depends
on different types of numerical approximations. Let us fix T > 0 and § € (0,7). Consider a partition
{0 =t1 < -+ < t, =T} of [§,T] with mesh size At := min{t; — t;11]0 < ¢ < N — 1} and define
[t] := max {t;|]1 <i<mn, t; <t}. For clarity, we reverse time in equation [4{and let Wt“y = YT“: for y my-a.e.
be the ideal solution satisfying

. 1 ;
awl = <_2wg‘y —s(WH T —t; uy)) dt +CY%dB, (21)

initiated at wo = (1—e~T)z+e~T/2x4 for z ~ N(0,C) and xg ~ p¥. Observe that equationis a ‘standard’
SDE where W} "is independent of the future increments of B;. Moreover, let v; correspond the numerical
approximation to W/ satisfying

Y ]. Yy Y
v’ = = SV = T = 1)) [ro (&r i (V]

9 1t = 1t] vy)aT_ LtJ;;u') _e(T—\_tJ)/QVLI:j} dt+cl/2dBt

and initiated at vy = (1 — e~ 7)z. Here, the two stochastic processes share the same Wiener process B; and
initialization z. In what follows, we consider a discrete-time loss given by

2
e1085 = BintsmBy, _gpin NN [5G0, L) + 21y = ro(BE ), L] (22)

I
Lt)
We are now ready to state the main result of this section.

Theorem 4.1. Let Assumptz'on and the assumptions of Theorem hold. Assume further that s(-,t; )
and ro(-,t; u) are Lipschitz continuous with Lipschitz constant Lg(-) € L*([6,T]). Then,

By, Bl or_s)mzzwi? v ) lwr — vr—sll3; < M (enum +eross + ernir +9)
where eoss s given in equation[23, and
ernvit < € TExul| X3, enum < O(AL),

and the constant M depends on the quantities
T
Eitrfo. 15 Eymry B 2w [15(we, T — £ 193 Excpe| X 1|37, / L%(r)dr, trg(C) and T.
5

Note that the Lipschitz continuity assumption of the drift is a natural setup for the backward SDE to
retain the uniqueness of a (strong) solution, see |[Pidstrigach et al.|(2023). It also follows from there that for

my-almost every y € R™ the random variable W}Ly is distributed according to the posterior u¥.

5 Numerical experiments

We showcase our method in the context of inverse problems related to computerized tomography (CT) and
a Deblurring problem. Details of the numerical implementation are described in Appendix [D]and additional
and enlarged figures can be found in Appendix [E}

Following Baldassari et al.| (2024al), we utilize a Fourier neural operator (FNO)|Li et al.| (2021)) to parameterise
rg and perform training outlined in Section 2.1 on a Nvidia A100 GPU with 80 GiB. We compare UCoS
to four different methods. First, we consider one of the first conditional score approximation considered in
Jalal et al| (2021); Feng et al.| (2023) and refer to it by SDE ALD. Additionally, we implement Diffusion
Posterior Sampling (DPS) |Chung et al| (2023al), projection based methods for general inverse problems
(Proj) Dey et al.| (2024)) and the conditional score approach (Conditional) [Baldassari et al.| (2024al). Each
score approximation is given explicitly in Appendix The numerical implementation can be found at
https://anonymous.4open.science/r/SBD-task-dependent-UCoS/|
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CT-Imaging Here, the forward mapping A models a sparse-view imaging setting with a 45-degree angle
of view with 256 equiangular directions. The detector is assumed to have 256 apertures spanning over the
width of imaging area (i.e., 256 parallel line integrals per angle are measured) and, consequently, the problem
dimensions are given by m = n = 2562. Moreover, the measurement data is corrupted by additive Gaussian
noise with signal-to-—noise ratio of 20 dB.

Our training data is the Lung Image Database Consortium image collection (LIDC-IRI)—dataset Armato 111
(2015)), containing > 200.000 2D slices of resolution 512 x 512. However, we rescale them to 256 x 256.

Figure [I] and Table [1] illustrate that the posterior ensemble (N = 1000) generated by UCoS (our method) is
the most concentrated around the ground truth in terms of bias and standard deviation. Moreover, UCoS
achieves the fastest online sampling by avoiding operations with A but remains on par with the Conditional
method due to their similar FNO complexity in our implementation.

Figure 1: CT-imaging problem. On the left column, the top image is ground truth and the bottom is
measurement data (sinogram). On the right column, 5 posterior samples for the CT imaging problem with
an FNO architecture that uses 64 nodes per layer and their bias and standard deviation, with methods used
from top to bottom: SDE ALD, DPS, Proj, Conditional, and UCoS.

method bias std time (min)
SDE ALD 0.1042  0.1064 48
DPS 0.0552  0.0768 99
Proj 0.0610  0.0780 237
Conditional ~ 0.0621  0.0594 27
UCoS 0.0498 0.0316 27

Table 1: CT—imaging problem. Summary statistics of all methods with FNO architecture of 64 nodes in
each layer. Bias and std are computed on 1000 generated posterior samples and averaged over the number
of pixels.

Deblurring In this example, the forward operator A corresponds to a two-dimensional convolution with a
Gaussian kernel over the image domain. We observe the output function on the same grid with an additive
Gaussian noise vector.

The training data is given by the Large-scale CelebFaces Attributes (CelebA) Dataset [Liu et al. (2015),
which contains > 200.000 face images of celebrities. We scale the images to square resolution 175 x 175.

We demonstrate in figure [2| and Table [2 that the posterior ensemble (N = 1000) generated by UCoS (our
method) is the most concentrated around the ground truth in terms of standard deviation with similar bias
to most of the other methods. Once more UCoS and Conditional method achieve the fastest online sampling.

11
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method bias std time (min)
SDE ALD  0.0878  0.0915 300
DPS 0.0872  0.0801 239
Proj 0.0785 0.0622 15822
Conditional  0.2178  0.0950 85
UCoS 0.0884 0.0345 85

Table 2: Deblurring problem. Summary statistics of all methods. Bias and std are computed on 1000
generated posterior samples (100 for Proj) and averaged over the number of pixels.

Figure 2: Deblurring problem. On the left column, the top image is ground truth and the bottom is
measurement data. On the right column, 5 posterior samples and their bias and standard deviation, with
methods used from top to bottom: SDE ALD, DPS, Proj, Conditional, and UCoS.

Scaling analysis We analyze the influence of the complexity of the FNO approximation on the posterior
samples. We employ an architecture with 4 layers while varying the number of nodes uniformly across all
layers. For the full 256 x 256 resolution, we analyze posterior samples also for an architecture with 32 and
128 neurons per layer in figures [f] and [] in the appendix. In addition, for UCoS and Conditional, we train
models for numerous number of neurons on a reduced 64 x 64 resolution. In Figure[3] we compare the number
of nodes to the resulting posterior bias and standard deviation for the full 256 x 256 resolution (crosses) and
the reduced 64 x 64 resolution (lines).

We observe that, especially in terms of standard deviation, UCoS achieves saturation with substantially lower
model complexity. To provide context, halving number of nodes approximately halves the online sampling
time.

6 Conclusion, limitation and future work

This paper addresses the challenge of balancing the computational cost between offline training and online
posterior sampling in large-scale inverse problems. In many such problems, evaluating the forward operator
during sampling constitutes a major computational bottleneck. We introduce a novel, theoretically grounded
method UCoS that entirely removes this burden during sampling by shifting it to the offline training phase,
without introducing any approximation error. Our approach combines the computational benefits of the
conditional method introduced in |Baldassari et al.| (2024a)) with a more scalable score-learning formulation.
Furthermore, we demonstrate that this method is rigorous in an infinite-dimensional setting and, therefore,
independent of discretization.

12
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Figure 3: Comparison of the error dependence of the conditional method and UCoS on the parametrization
of the score approximation. X-axis: number of nodes per layer in the FNO, Y-axis: L2 norm of the bias
(left) or std (right), averaged over the number of pixels. Dashed lines correspond to 64 x 64 resolution and
crosses correspond to the problem with 256 x 256 resolution.

The general principle of transforming a task-dependent unconditional score into a conditional score, as devel-
oped in this work, extends beyond the specific OU diffusion process considered here. This opens up intriguing
questions about selecting the appropriate process to achieve a more efficient balance of computational effort.

That said, the theoretical foundation of UCoS relies critically on the interplay between a linear forward model
and a Gaussian likelihood, which together enable the diffused posterior to be reinterpreted as a diffused
prior under a new, task-specific process. This structure allows us to derive an exact identity between the
conditional score and a transformed unconditional score, as captured in Theorem However, extending
this exact correspondence beyond settings where one can ‘complete the square’ — as done in equation |8 —
appears nontrivial. Investigating whether similar structures can be identified in nonlinear or non-Gaussian
problems remains an important avenue for future work.
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A Probability measures on Hilbert spaces

A.1 Gaussian random processes in an infinite dimensional Hilbert space

This section introduces notations and outlines some basic properties of probability measures on Hilbert
spaces. For a more comprehensive introduction, we refer to |Da Prato & Zabczyk| (2014); Hairer| (2023]).

Gaussian measures on Hilbert space Let (H,(-,-)y) be a separable Hilbert space with norm || - ||z =
V-, ). A bounded linear operator C' : H — H is called self-adjoint if (x,Cy)y = (Cz,y) gy for all z,y € H
and positive definite if (Cx,x)g > 0 for all z € H. We say that a self-adjoint and positive definite operator
C is of trace class if

try(C) = Z(Cen,en> < 00,
n=1

where {e,} is an orthogonal basic of H. We denote by L} (H) the space of all self-adjoint, positive definite
and trace class operators on H. A random variable taking values in H is called Gaussian if the law of (h, X) g
is Gaussian for each h € H. Gaussian random variables are determined by their mean m = E[X] € H and
their covariance operator defined as

(Cg,h) =E[(g, X —m)(h, X —m)].

In this case, we denote X ~ N (m,C). If m =0, X is called centred. It can be shown that if X is a Gaussian
random variable on H then C € LT (H), moreover, E[|| X||%] = trg(O).

The Cameron—Martin space We define the Cameron—Martin space associated with a Gaussian measure
pu=N(0,C) on H to be the intersection of all linear spaces of full measure under x, and denote it by H,
or Heo. It can be shown that H,, = C'?H and H,, is compactly embedded and dense in H. In infinite
dimensions, it is necessarily the case that pu(H,) = 0. Moreover, H, can be endowed with a Hilbert space
structure with an inner product

(9, hym, = (9,C *hyy = (C~2g,C7 1 2h) .

Ezample 1. Let H = R% and pu = N(0,C) be a Gaussian measure on H with a positive definite covariance
matrix C' € R%*?, Then since C'/?H = H, the Cameron-Martin space is the whole space R¢.

Cameron—Martin’s theorem The Cameron-Martin space H,, plays a special role in that it characterises
precisely those directions in which one can translate the Gaussian measure p without changing its null sets,
thus pp, := N(h,C) and p = N(0,C) are equivalent if and only if h € H,,. Moreover, the Radon-Nikodym
derivative of u; with respect to p is given by

d 1

dLMh(x) = exp <<h,:c>H“ — 2||h||%,}> ,  pras.,x € H. (23)
Note that since H, = C'/2H is dense in H, the random variable (h,z)y, = (C~*/?h,C~/2z)y, x € H, can
be defined properly using a limiting process, see Remark 2.24 in [Da Prato & Zabczyk! (2014]).

A.2 Wiener processes B; in an infinite dimensional Hilbert space

In this subsection, we recall the definition of the Wiener processes B; in an infinite dimensional Hilbert
space. As H is an infinite dimensional Hilbert space, the process B; can not be defined as random variable
taking values in the Hilbert space H, but we need to start our considerations with a larger Hilbert space Y
having the additional properties that are described below. At each time ¢ € [0, T] the process B; is defined
to be a Gaussian random variable taking values in the Hilbert space Y so that the expectation of B; is zero
and the covariance operator is tCy, where Cy: Y — Y is a symmetric and injective trace-class operator in

18
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Y. That is, for ¢, € Y and 0 <t <t+ s <T we have

E(<Bt7¢>Y) = Oa
E((Bi, )y - (Bi, ¥)y) = (¢, Cy d)y,
E((Biys — Bi, 0)y - (Biys — B, ¥)y) = (¢, Cy d)y.

We require that Y and Cy are such that
H = Ran(Cy/?) = Cl/*(Y).

Under the above assumptions, H is the Cameron-Martin of the Gaussian random variable B, for t > 0.
Then, we can define for b € Y and ¢ € Cy (Y) an extension of H-inner product (u, ¢)y by setting

<’LL, ¢>H = <U7 C;1¢>Y
Using these definitions, it holds that for all ¢,9 € Cy(Y) C H and 0 <t < ¢t + s < T we have

E(<Bt7¢>H) =0,
E(<Bta¢>H ! <Bt7w>H) = t<¢a¢>Ha
E((Bt4s — Bt,¢)u - (Bits — B, ¥)u) = s(¢, ¢)v-

Motivated by these formulas, we call By, 0 < t < T, a Wiener process in H having the (generalized)
covariance operator tI.

We also note that in formula equation [I] we use the symmetric trace-class operator C: H — H and the
increments C'/2dB,;. These increments can be interpreted as the differences of the random process t —
C'/2B,. At any time 0 < t < T, the random variable C'/2B, takes values in the space H, and its covariance
operator in H isC: H — H.

B Proofs for Section 3

B.1 Task-depedent score

Recall that C; =T + (e! — 1)ACA* : H — H and ¥; = (¢! — 1)C — (et — 1)2CA*C;'AC: H — H.

Proof of Lemma[3.3 It is clear that ¥, is self-adjoint. For positive definiteness, we write

Seo= OV ((eh - DI = (¢ - 1)%M2ArCr A ?) ¢

1
— 2 ( . 1 1I+Cl/2A*F_1AC1/2> 61/2’
et —

where we applied Lemma (a) for the last identity. Since CA*C, LAC is also positive definite, it immedi-
ately follows that

0 <try(Xs) = (e — Dtry(C) — (e — 1)*trg(CA*C;HAC < (ef — 1)try(C) < oo

and, consequently, 3; is trace-class. O

Proof of Lemma[3.5. We replicate the proof of Lemma 1 in [Pidstrigach et al.| (2023) for the process X/".
The density p.(-|zo) of X} conditioned on X' = x( is Gaussian centered at zy with covariance X;.
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For what follows, let pg(zo) be the density of )N((’f and p¢(z) the density of )~({‘ . We apply Leibniz’s rule to
obtain

YiVelogpi(z) = <]5t(lx)vx/ﬁt(x|$o)dﬁo(xo)>

= —Zt/zzl(l‘ —xo)%dﬁo(xo)

=~ [« - m)paola)
= (v -BEXXL =),
where we utilized Bayes’ formula for the second last identity. This proves the claim. O

Lemma B.1. For anyt > 0, we have that
(a) the linear operator Z; = (et — 1)1 — (et — 1)2CY/2A*C;*ACY? : H — H is bijective and

=l = L1y caTTlact?,
et —1

(b) the linear operator ) = I — (et — 1)CA*C; A is bijective and
@) =T+ (' —1)CA T A and
(c) it holds that
(ef —1)cA*C;t =2, A T

Proof. a) Invertibility from the right can be derived by straightforward computation

=N L ic2ar-taci
et —1
=T+ (e = 1)CV2A T TACY? — (¢! = 1)CV2A*C ! ((ef — 1)ACA* +T)T1ACY2 = 1

=C,

Similarly, invertibility from the left follows from an analogous computation. The invertibility in (b) can be
established using the same arguments. For the identity in (c), we have
YATTIC, = (el —1)CA* — (e —1)2CA*C; T ACA* + (ef — 1)2CA*T 1 ACA*
—(e! —1)3cA*C;tACA Tt AcA*
= (' —1)CA* + (¢! —1)2CA T tACA*
—(e' —1)’°CA*C; ' ((ef —1)ACA* +T) I T ACA*

=C

= (el —1)CA"
The desired identity follows by inverting Cy. O
B.2 Proof of Theorem

Theorem [3.0] is a direct consequence of the following proposition.
Proposition B.2. Let the assumptions of Theorem[3.6 hold. Then

E(X}|X} = my(z,y) = E(XLY =y, X} = z), (24)

for (z,y) € HxR™ a.e. in Z(X}',Y) and t > 0.
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Throughout this section, we denote the transition kernel densities

n(zo, ) = dN (g, (et — 1)C)
R0 T AN(0, (ef — 1)C)

whenever the Radon-Nykodym derivatives make sense.

(e%x), 7z, x) = Cil/\/(/((qé)o’gg) (z),

A plan of proof for Proposition is as follows. We first develop auxiliary results: Lemma shows that
the laws of m(X}",Y) and X}" coincide when conditioned on Xy = 0. Lemma is used to express each
expectation in equation [24]in terms of transition kernels n; and 7, of the corresponding forward SDEs, which
in turn can be written as Radon-Nykodym derivatives of certain measures. After that, we use Lemma [B25]
to show that the measures N'(0, (¢! —1)C) and N (0, ;) are equivalent, in particular their Cameron-Martin
spaces equal, which concludes the proof. Finally, we put together the argument at the end of the section.

Lemma B.3. Let Z; ~ N(0,(1 — e *)C), Zy ~ N(0,T) and Zs = N(0,%;) be mutually independent
Gaussian random variables on H. Moreover, let xqg € H be arbitrary. It holds that

L(my(e ™ wg+ Z1, Axo + Z2)) = Lo + Zs).

for any t > 0.

Proof. We have that
mt(eft/on + Zl,Al'() + ZQ) = X9+ et/221 + (Bt - I)CA*Ct_l(Zl — Et/ZAzl)
1
= X9+ et/QtilEtC_lZl + ZtA*F_le
et —

is a Gaussian random variable centered at xy with a covariance

1
et — 1

1
1C_1) Et = Zt.

et —

Cov(my(e V2w + Z1, Ao + Zo)) = S, ATIAY, + DINGIED I

= % (A*F—lA +
This proves the claim. O
Lemma B.4. The following holds
(i) For (xz,y) € H x R™ a.e. in L(X/')Y),

v(d
E(XpY =y, X =) = Jy womi (o, @) (dao)
Ji (o, 2)p¥ (dzo)

(ii) Forz € H Z(X!")-a.e.,

S wone(wo, 2) pu(do)

XX = o) = T o, o)(dao)

Proof. (i): We first observe that, if X ~ N (zo,C) then aX ~ N (azxg,a?S) for any a > 0, and as a direct
consequence

N (z0,C)(A) = N(axg, a*C)(aA), (25)
for any o > 0 and A € B(H). By using this property for a = e~*/2, it holds that
dN (xg, (et — 1)C)

ny(zo,x) = N0, (e —1)C) (e'/2x)
AN (e7t?xg, (1 — e 1)C)
= TNV a-ene @
= EX{Y =y X{' =a),
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for (z,y) € H € R™ a.e. in Z(X}'Y), where the last equality follows from the proof of Theorem 2
in [Pidstrigach et al.| (2023) and that A(e~*2xzg, (1 — e~*)C) is the transition kernel of the forward SDE
equation [

(ii): We repeat the aforementioned argument from [Pidstrigach et al. (2023) adapted to our case. The joint
distribution of X/*, X/} is given by n(zg,z)(N(0,X;))(dz) @ p(dzo). Indeed, for any A € o(X{'), B € o(X}"),

- AN (z9, %
JI. it ano st = [[ S @05 ()
AxB AxB t
=[] Wz dontds)
AxB
= P(XVeAX!'eB),
where it is used that N (zo, ;) is the forward transition kernel of the process X*. We show that

J zonu (o, x) p(do)

fla) = [ (o, x)p(dzo)

is a version of the conditional expectation E(XY|X! = z). Let P; be the law of X/, that is,
Py(A) = P(X' € A), Aeo(XM).
The function f(z) is o(X}")-measurable by Fubini’s theorem and for any A € o(X}"),

oy (af(0) = [ LR D) gy
7 (o, @ T

_ / fHIoﬁt(‘ro’I)M(dxo)ﬁ(jo’xt)N(o,Et)(daj)u(d‘%o)

HxA fH ﬁt(xOv x)u(dwo)

= zone(To, T T fH i(Zo, x)pu(dio) .
B //AxH ofie(wo, 2)u{czo) Sy (w0, 2 ) (dmo)N(O’Et)(d )

_ / / w0, @)a(dao)N (0, Z0)(de) =B,z (Lao)-
AxH 0

The above properties define the conditional expectation and we can conclude the proof. O

Lemma B.5. We have that

(i) £:(H) = C(H); moreover,

-1 sp—1 t —1p-1
S gy = AT A+ (f=1)7C )|C(H). (26)
(ZZ) H(et—l)C = Hzt.
(iii) The measures N'(0, (e! —1)C) and N(0,%;) are equivalent.
(iv) For xg € Hct_1)c, we have
(w0, -V ry, = (x0, AT A) g + (o, VH e (27)
in N(0,%)-a.e
Proof. For the purpose of this proof, we abbreviate
Cr = (e —1)C. (28)
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(i): We first show that C,(H) = %, (H). Note that we can write ¥; as
S =G (I - (ZA*C;lA) :

where the last factor on the right-hand side is invertible (see Lemma (b)) proving that ranges of ¥; and
C; coincide. To prove equation [26} let z € Xy (H) = C(H), then for some z € H,

Z=2ux = (Zm - é;A*Ot_lAé;I.
We have

(A*r—lA n 5;1) 2 = AT 'AGz — AT ACA*C; ACw + 1 — A*C; ACa

— 2+ AT 'ACe — AT (r n A(ZA*) CrlACx =,
since I' + A@A* = C;. This shows that

Ylz=x= (A*F_lA + 5;1) z.
(ii): Notice first that we can write

e ~

Hs =c & (C(H)), Hy, =" (sy(m)),

t

where cllll#1 (Hy) denotes the closure of Hy C Hy w.r.t Iz, Let us prove that the norms ||| ;_ and
Ct

Il 7., are equivalent on ¥,(H) = C.(H) as, together with (i), this will prove the statement.
t

To this end, let # € $;(H) = C;(H) and apply (i) and Cauchy-Schwarz inequality to obtain

2 2 - 2
ol < N2l = (= AT YAz)y + I
t t

IN

~1/2 gxp— ~1/2 2 2
|erearmrac 2 el + el

(1+]

Ct
where the operator norm H(ZUQA*F“A@}/QH is finite.
L(H,H)

Gartal? Yy
t Vo ) Vel

(iii): From (i¢), the covariance operators of y and v have the same Cameron—Martin space, by the Feldman—
Hajek theorem we need to show that C, 1/ 2EtCt_ /2 _ T is Hilbert-Schmidt. To this end, note that

5-1/2¢ 5—1/2 51/2 gx ~—1 g 51/2
¢,V P — 1= - AT ACH? = B
The operator B? is of trace class, since

try(BY) = try (@/QA*CglAdA*CglAé}/Q)

IN

HA*C;lAdA*C;lAH try(Cy) < oo,
L(H,H)

proving the claim.

(iv): Let o € X:(H). By (i), we have

(X0, )iy, = (S 'm0, )1
= (A T Axo, Y + (C "o, Vi (29)
= <A*F71AI0, g + (o, >H,CV N(O, ¥i)-ae.

Now since X¢(H) = C(H) is dense in Hy, = Hy , the identity above can be uniquely extended to Hy, by the
white noise mapping, see (Da Pratol 2006, p. 23). This completes the proof. O
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Corollary B.6. We have

e (wo, X[ i + (w0, ATY )y = (w0, ma( X[ Y ) s, (30)
t
in distribution.

Proof. Combining Lemmas (iv) and it follows that

<x07mt(X#a Y)>H2t = <x0a mt(va Y)>H'cv + <$0,A*F71Amt(X#7 Y)>H
in distribution. Therefore, we obtain

<x07mt(XtHaY)>H>:t
= <x0’mt(X#a Y)>H’c" + <$0, A*FilAmt(X#a Y)>H

= @0, X - + (20, CATCTHY — ePAXL)) i + €20, AT AX )
+ (2o, (' — {)A* T ACA*C;7 (Y — et/QAX{‘)>;;
= et/ (o, XI 1 + et (xo, AT VAX "V g + (20, A*C7HY — /2 AX")) i
+(ef =1
t/2<$0,X#

)
)<x0,A* “TACA O Y —e2AX ) g

>H + e (wo, ATV AX ) i + (w0, AT H(Y — €2 X[ )\
)i

= et/2<x07X# <x01A*F_1Y>H

in distribution, where we have used that

A*CT 4 (ef — 1)ATTLACA* Gy = AT 1 (T + (ef — 1)ACA™) ;7 = AT

=C}

This completes the proof. O

Proof of Proposition[B.2 Let zo € Hz C H where C; = (¢! —1)C. By virtue of Lemma we will prove
that

fH zon(zo, ) (dxo) . fH wofi (o, me(, y))pu(dwo)

= ~ ) 31
i o, 2o dre) [y o, et y)(dzo) ey
for (z,y) € H € R™ a.e. in Z(X}',Y). Notice that it suffices to show that
dpy 1 .
el ) (@) = Zosiu(eo, (e ) (32)

for 2o € H p-a.e. and for (z,y) € H € R™ a.e. in Z(X!",Y), where Z(y) does not depend on z, hence will
be canceled out in equation By Bayes’ theorem equation [7]

dp? 1 1 2 .
W= e (—5 14 ulE) i)

Let us now write

1 N 1 e 1
—5 lAzo —yllt = (w0, ATy} — S {wo, AT Azo)sr — 5 Iyl
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and set Z(y) = Z(y) exp (% \|y||1%) For zo € Hg,

1 1
ny(zo, XI') exp ((wo,A*F1Y>H — §<x0,A*F*1AxO>H ~ 5 ||Y||1%>

1 1 kT — 1 kT —
= ——exp (et/2<z0,Xt“>HC~ -5 |5 + (x0, A*T7Y ) gy — 5 (w0, AT YAzo) i)
t Ct

Z(Y)
1 /2 / 1 1 2 1 1 (33)
= = XM g AT Yy — = - = AT A
7o) exp (6 (z0, X} >Hct + (2o, ) =g ||$o||Hc~t 5 (2o, wo)H)
1 . 1
=7 (o, me(X', Y ) mrs, — 5 ll2ollg, )5
in distribution, where we have used Corollary [B.6] and the identity
2|l + (z0, AT~ Az = [0l 3, - (34)
Ct

which follows from Lemma (iv).
Now by Lemma (#9), o € Hy, and thus the Cameron-Martin theorem gives

1 .
exp (Lo (XE ) s, = 5 oy, ) = Felan, X))

in distribution, which together with equation [33]lead to equation [32] Therefore, identity equation [31] holds
true, which completes the proof. O

B.3 Gaussian example

Proof for Lemma[3.73 Let C be a covariance operator such that (51/2(]{)) = 1. As Sé/Q(H) is the
intersection of all linear subspaces of full measure under p (see Prop. 4.45 in Hairer, 2023), it holds
Se/2(H) c CV2(H).

We now find another covariance operator C such that the score function § corresponding to C is bounded
linear. Let C be such that C*/?(X) C SS/Q(X) for any linear subset X of H. This implies

So(H) CC(H) = X:(H). (35)
We identify the law of X/ by using the relation
XF o ~ N(zo, ),
where xq is a realisation of the prior = N(0, Sp). Hence
X!~ N(0,%¢ 4 So).
By the reasoning of Lemma 4.4 in [Hairer et al.| (2006]) it holds that
XPIXE ~ N (', C")
with some covariance operator C’ and
m' = S(%+ So) T X

Note that in Lemma 4.4 of Hairer et al| (2006), the operator ¥;(%; + Sp)~! is defined as a measurable
extension of the bounded map

A:(Se+So)Y2H) = H, o+ 2(2¢+Sy) 'z
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to the whole space H as per Theorem I1.3.3 in [Daleckij| (1991). In our case, it is possible to give an explicit
formula for a possible extension using the inclusion equation [35 We define

Si(Be+80)t = ((Be+S0)7'E)”
= ((T+271S)7'5718) .
This map coincides with A on (3; 4+ So)/2(H) and as we will now show, it is defined even the whole space
H. The operator ¥, : H — ¥;(H) is bounded and invertible. Hence also ¥; ' : ¥;(H) — H is bounded. By
equation the map 3, 1Sy is well defined and bounded. We can now identify the score function 3 as by
using the previous equality for the conditional expectation
St = - (2 BRI =2))

= —z+ SQ(Zt + So)_lz

= [So(zt + So)_l — I] z.

= —Et(zt‘l—S())_lZ.
This yields the claim. O

B.4 Conditional score matching
Recall that my(z,y) = e'/%x + (et — 1)CA*C; My — e!/? Azx) and & (x,y) := CA*T 'y + A(t)z for € H and
y € R™. Moreover, R; := (e! — 1)I + (! —1)2CA*C;*A: H — H.
Lemma B.7. The operator R, : H — H is bijective and the identity
mt(xa y) = Rtft(fﬁ, y)
holds for all x € H and y € R™.

Proof. First note that bijectivity is implied by Lemma (b). By direct computation,
Ri&(z,y) = R (CAT 'y+ A(t)z)

= (e —1)CA T 1y — (e —1)2CA*C;'ACA' Ty
+el/2x — et2 (et —1)CA*CT Ax

= e/?x —el/?(et —1)CA*C Az
+(e' = 1)CA* (O M[(e! — 1)ACA* + T+ (¢! — 1)C; P ACA T Yy

=C,
= x4 (et —1)CA*C! (y - et/zAx)

= mt(xvy)'

This completes the proof. O

Proof of Lemma[3.10, We replicate the arguments of [Baldassari et al.| (2024a)) adapted to our setting. First,
observe that

1 . 2
ro(Ry " & ts ) — (&0, t; 1) — B[,
1 2 s _ C1- . N
= [Jro(Ry "o, t ) ||y + 13(Ee, 85 1) — Boll3 — 20ro(Ry e, t 1), 5(Ze, 1 1) — Fe)m-
It holds by definition equation T3]

Eit,\,g(}#)Oﬂe(Rt_litv t; ,LL), g(i'ta t; N’) - j75>H
_ _ “1z 4 (B —F) — d
=B Lo <r9(Rt Tt t’u)’EEUNE(Xé‘lit)(xt o) J"‘t>H

- EioNf(gg)Eitwf()?t’ﬂjo)<r9(R;1i’tv t 1), To) H-
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Hence it holds
2 1~ . 2
A E;, gy [ro (R Easts 1) — 3(F4, t; 1) + e
2 1~ . ~ 112
=V'(t) + \(¢) E:%ONX(}(VSL)E@NS()?{‘@O) |ro(Ry &4, t; 1) — onH
with
V'(t) = \(t)°E

|5(Z, t, 1) — F4|| 3 — A()°E.

~ 12
on@(g(f{}I;) |‘r0||H (36)

To conclude, we add expectation with respect to ¢t ~ [4,T]. Note that by Assumption the first term on
the rhs of equation [30] is uniformly bounded in ¢ and by elementary calculations

FmL(XH)

- 12
E,, o MO 10l < MO Ean el
such that
1
Vi=EsmV'(t) < sup V'(t) < .
T—-9 tels,T)

This concludes the proof.

C Proofs for Section 4

Proof of Theorem[{.1 Below, we use the notation f < g, if f(z) < Cg(x) for all x with some universal
constant C' > 0. Recall that true solution W} " of the time-reversed denoising process and corresponding
approximative solution process V' ! satisfy

1
awy’ = <2Wt”y —s(W T - t;Hy)) dt +C'/*dB,,

y 1 y y _ v
AV = =5V = MT = [t]) [7“0 (ngLtJ(VLIzJ y), T — LtJ;u) — T2y dt+ ¢'/2dB,.

In what follows, we abbreviate the expectation E, . E as E, unless otherwise specified.

(wT,UT—s)Nf(W;yaV;i;)
Decomposition of the error. Let us first consider the difference
Ellw, — vl = Ellwe—wo— (v —vo) + (wo — vo)ll

S E|lwy —wo — (v — U0)||§{ +ernNiT,

2 . .
where e7nrr := E ||wg — vo||7;. Now we decompose the difference into three terms as follows:

wy —wo — (vg — vp) = /0 [Z1(7) + Zo(7) + Z3(7)] dr,

where we have

Ii(r) = —%(wr—wm)+S(wT,T—T;uy)—8(wL7J,T—LTJ;N?’),
Io(r) = s(wy ), T—[7)ip?)=NT —|7]) (rg(ﬁT,LTJ (wir,9), T — 7)) — e(T_m)/me) and
I3(T) = )‘(T - I_TJ) {Te(ng['rj (w['rjvy)7T - I_TJ;M> - T9<£T7LTJ (ULTJ?y)’ T - I_TJ;/J)}

~(NT = [7))eT D24 1) (wir) —vpy) -

Bound for £;y7r. Recall that vg = (1 — e~ 7)Z and wy = (1 — e~ 7)Z 4+ e~ 7/2X,, where Z ~ N(0,C) and
Xo ~ p¥. It directly follows that

ernit < € TByr, Eymp @)% = € TEpuy 2] -
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where we applied marginalization of the joint distribution.

Contribution from 7Z;: We observe that

T—6 )
exvar i=E / Iy (7)1 dr
2
dr

T—0
0 H

T-6 T—6
§ E/O ||w7- _wL"'JH?{dT—'_]E/O ||S(wT,T—T;My) — S(wLTJ’T_ LTJ;'u’y)HiIdT'

By Lemma 2 in [Pidstrigach et al.| (2023), it holds that

D) (wr —wir)) + s(wr, T =73 %) = s(wi-, T = |7]; %)

s(Xt“y,t; pY) = el "/2E (s(Xfy,T; uy)\X,f‘y> , 0<t<7<T,

for my-a.e. y € R™. Therefore, we deduce by Lemma 11 in [Chen et al|(2023a) that for the time-reversed
process it holds that

2
El|s(w,, T — 7 %) — s(wi-, T — |7]; %) ||,
2
< 4E HS(wT,T — ) — (e 2y T — T;My)HH
+2(1- ) B sw T - )
2
<ALX(T - 7)E HwT - e(tﬂ”)mwm HH +2(1 — e UN)2E || s(w,, T — 7 uy)HiI ,

where we used the Lipschitz continuity of s. We note that

wslwy ~ N <e*(t*‘q)/2wt, (1- e*(tfs))C> , (37)
for T >t > s >0, see [Itd (1984)). It immediately follows that
E Hw — =D/ w, JH (1 —e = Mytry(0),
and, consequently,
Eljwr—wioy [ S B s — e 200 | (1 - el 2P |

ST g(c)
(1= D22 (B By el + (1= ™0 ()
S (1= e 3ty (C) + (1= A2 By all}y + tru(C))
Combining the arguments yields
evon 5 (T=0) (1= ™29t (€) + (1= 222 (Epm ol + 04 () ) )
LT = 7)(1 = e )try (C) + (1 — )R ||s(w,, T — 75 p")[[3;

Since the last expectation and E,~,, Hx||i1 are bounded by assumption, and note that 1—e~2* = O(At), (1—
eAt/2)2 = O(At), we obtain the required upper bound.

Contribution from Z,: Applying Theorem we obtain
Io(r) = MNT = [7D{8(Rr—|7)&(wi5,9), T = |7]; 1) + Re— |- &(wi 7], y)
—ro(€r— i) (Wi7),y), T = 7))}
= )‘(T - LTJ){ (mT 7] (wL‘rJ y) |_TJ ) ﬂ) + mrp_|r| (wLTJ ) y)
—ro(RyL | mr ) (W[r], ), Tim)}
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and now it follows by reversing time and applying Lemma that

T—6 5
E/ [T, dr = eLoss,
0

where €705 is given by equation

Contribution from 73: By triangle inequality and the assumption on uniform Lipschitzness of rg we have

IZ7)]l < AT = L DLA(T = 7)1y (w171.) = &) @119
+ MT = [ ))eT D2 1) oy — vyl
< Rs(T = (7)) [[wiry = vy [l

where we abbreviate r,(7') = Ls(7)A(7')2 + A(7')e™ /2 + 1 for convenience. Note that by assumption
ks(-) € L2[5,T).

Combining the estimates, we obtain

T-5
2
E [lwr—s — 'UT75||§{ Senum +ELoss T EINIT + E/ ks (T = |7])? [Jwir) = vp) HH dr.
0

Applying Gronwall’s inequality, it follows

T—5
E |lwr—s — U:héll?q S (enum + €ross + €rnviT) €Xp (/ ks(T — LTJ)2d7'> .
0

We may factor in the truncation by utilizing equation

2
Eyor, Exmpy 2 (0,0) H(l - e*‘s/z)x +v1-— e*‘szHH

(1—e )R, ||2)3 + (1 — e O)tru(C)
o(6).

Ellwr — wr—s|3

A

Hence, we conclude

T-5
E|lwr — vr_s|% < (envar + €Loss + €1n1T) €xp <2/ k(T — LTJ)2d7> +9,
0
which yields the result. O

D Details of numerical implementation

Neural network architecture In Figure[d] we highlight the FNO architecture that we use to approximate
the score function in our approach. Here, we implement 4 hidden layers and s denotes the number of pixels
in both horizontal and vertical directions, while h represents the number of hidden nodes. The Conditional
method employs the same architecture but omits the transform f(¢) and includes an additional input node y.
This modification affects only the dimensionality of the first layer, changing it to R****3  while all subsequent
layers remain unchanged. Consequently, the total number of parameters remains in the same order. The
unconditional score approximation also follows the same architecture as UCoS but without the transform

f).

We use the FNO architecture from [Baldassari et al.| (2024a) and choose § = 5- 1072 and T' = 1. Similar to
the works of |Pidstrigach et al.| (2023);|Baldassari et al.| (2024al), we run the forward SDE with a non-constant
speed function leading to the SDE

dX, = —%ﬁ(t)Xtdt +/BH)CAW;
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Figure 4: Our FNO architecture. The scalar multiplication is given by f(t)x = H_%d(x) Activation function
o is given by Relu. The lifting block R is given by a linear layer and Q by two linear layers and an activation
function. The Fourier layers are followed by a batch-normalization layer before the activation function.
Below each layer is the dimensionality of a tensor after passing through each layer

with B(t) = 0.05 + ¢(10 — 0.05).

We train the neural network for 10 epochs for the 32-nodes architecture, 30 epochs for the 64-nodes archi-
tecture and 65 epoch for the 128-nodes architecture, where training is done on a Nvidia A100 GPU with
80 GB of memory. Training takes from 14-46 minutes for the unconditional method (depending on the
architecture), 17-47 minutes for the conditional method and 24-51 minutes for UCoS.

During the training process we use the Adam stochastic optimizer with linearly decaying learning rate ranging
from 0.002 to 0.0005. Samples are generated on the same machine. A uniform Euler-Maruyama approxi-
mation with 1000 steps is employed. Additional information can be found in the numerical implementation
https://anonymous.4open.science/r/SBD-task-dependent-UCoS/.

Comparison methods For clarity, let us give the precise score approximation of the following methods
that we compare our method with. Note that some of these methods are used in combination with some
other sampling method in the reference but we will always utilise backwards in time Euler-Maruyama
approximations.

o SDE ALD uses the score approximation of [Jalal et al.| (2021)), which is given by
so(w,t; 1¥) = s(x,t, p) + A" (L +30) "y — Ax) (38)

for the hyper-parameter v; under the assumption I' = ¢2I for some ¢2 > 0. In line with [Feng et al.
(2023), we tune ~y; such that the additive term has equal norm to the score function.

o DPS|Chung et al.|(2023a)) employs a similar idea to SDE ALD by removing the hyper—parameter -,
and changing the mean of the Gaussian likelihood to be an estimate of xg:

so(w,t; 1Y) = s(w,t, 1) — pVa ||y — A(do(2))|3

for some p which is chosen such that p = £/ ||y — A(Zo(x))]| for some constant . We use a grid-search
algorithm to find the optimal £. Above Zo(z) is an estimate of E(Xy|X; = x) using the definition of
the score function equation [2.1

e Proj|Dey et al.|(2024): This projection-based approach adds a data consistency step before every
reverse time Euler—-Maruyama step:

= MATA+ 1 -ND)"" (1= N, + A4 y,).
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We tune the hyper-parameter A by a grid search algorithm. Since the operator (AAT A+ (1 —\)I)~*
is very large in terms of GPU-memory, we employ an iterative scheme with 10 iterations at each
time step to solve the inverse (CT-imaging problem) or a very small batch-size (Deblurring problem).
This significantly increases runtime compared to applying a precomputed operator.

o Conditional [Baldassari et al| (2024a): This approach approximates the conditional score function

1
1—et

s(z,t;p¥) = — (:13 —PR(XY| XS =2, Y = y))

directly.

E Additional figures

We depict posterior samples for a more powerful FNO architecture with 32 nodes in Figure [p|and 128 nodes

per layer in Figure [6] similar to Figure [I] and Table [I] in the main text.

DODDD

@ @@@@ (« -4 SgEtIX)SD 0%?4
—

std time
0.0741 35
DPS 0.0605  0.0680 69
Proj 0.0644 0.0667 224
Conditional  0.2336  0.0923 15
UCoS 0.0489 0.0379 15

DDDD

Figure 5: On the left column, the top image is ground truth and the bottom is measurement data (sinogram).
On the middle column, 5 posterior samples for the CT imaging problem with an FNO architecture that uses
32 nodes per layer and their bias and standard deviation, with methods used from top to bottom: SDE ALD,
DPS, Proj, Conditional, and UCoS. The table on the right column summarizes statistics of all methods. Bias

and std are computed on 1000 generated posterior samples and averaged over the number of pixels.

method bias std time (min)
SDE ALD  0.1044  0.0644 7
DPS 0.0788  0.1723 176
Proj 0.0616  0.0702 266
Conditional 0.0467 0.0516 57
UCoS 0.0541  0.0262 57

Figure 6: On the left column, the top image is ground truth and the bottom is measurement data (sinogram).
On the middle column, 5 posterior samples for the CT imaging problem with an FNO architecture that uses
128 nodes per layer and their bias and standard deviation, with methods used from top to bottom: SDE
ALD, DPS, Proj, Conditional, and UCoS. The table on the right column summarizes statistics of all methods.
Bias and std are computed on 1000 generated posterior samples and averaged over the number of pixels.

More samples and in higher resolution for all methods can be found below in Figures [7] [8] and [9]
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Figure 7: Posterior samples for CT imaging problem with a FNO architecture that uses 32 nodes per layer.
Methods from top to bottom: SDE ALD, DPS, Proj, Conditional, UCoS.

Figure 8: Posterior samples for CT imaging problem with a FNO architecture that uses 64 nodes per layer.
Methods from top to bottom: SDE ALD, DPS, Proj, Conditional, UCoS.
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Figure 11: Comparison of the error dependence of the conditional method and UCoS on the parametrization
of the score approximation. X-axis: number of nodes per layer in the FNO, Y-axis: L2 norm of the bias
(left) or std (right), averaged over the number of pixels. Dashed lines correspond to 64 x 64 resolution and
crosses correspond to the problem with 256 x 256 resolution.
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