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Abstract

Vision-language models (VLMs) like CLIP have showcased a remarkable ability to extract
transferable features for downstream tasks. Nonetheless, the training process of these models
is usually based on a coarse-grained contrastive loss between the global embedding of images
and texts which may lose the compositional structure of these modalities. Many recent
studies have shown VLMs lack compositional understandings like attribute binding and
identifying object relationships. Although some recent methods have tried to achieve finer-
level alignments, they either are not based on extracting meaningful components of proper
granularity or don’t properly utilize the modalities’ correspondence (especially in image-text
pairs with more ingredients). Addressing these limitations, we introduce Compositional
Alignment (ComAlign), a fine-grained approach to discover more exact correspondence
of text and image components using only the weak supervision in the form of image-text
pairs. Our methodology emphasizes that the compositional structure (including entities and
relations) extracted from the text modality must also be retained in the image modality.
To enforce correspondence of fine-grained concepts in image and text modalities, we train
a lightweight network lying on top of existing visual and language encoders using a small
dataset. The network is trained to align the entity and relational components across the
modalities. Experimental results on various VLMs and datasets demonstrate significant
improvements in retrieval and compositional benchmarks, affirming the effectiveness of our
plugin model.

1 Introduction

Vision-Language Models have achieved impressive results in a broad range of vision-language tasks Tan &
Bansal (2019); Bugliarello et al. (2021); Radford et al. (2021); Li et al. (2021a); Zeng et al. (2021); Gan
et al. (2022). The popular VLMs like CLIP Radford et al. (2021), and ALIGN Jia et al. (2021) focus on
extracting global representation of images and texts by image and text encoders which are trained using a
coarse-grained contrastive loss. Recent investigations have revealed that these VLMs struggle to comprehend
compositional structures Yuksekgonul et al. (2022); Thrush et al. (2022); Ma et al. (2023), such as binding
attributes to the corresponding objects or identifying relationships between subjects and objects. ‌

To provide fine-grained alignment in VLMs, some models, such as PEVL Yao et al. (2022) and X-VLM Zeng
et al. (2022), use more supervised datasets. In particular, they require fine-grained supervision, such as
bounding box coordinates corresponding to a given entity. On the other hand, VLMs like FILIP Yao et al.
(2021) don’t need more supervision than image-text pairs and match each fine-grained component to its
counterpart precisely. In these models, Fine-grained similarities between image regions and text words are
extracted and matched in an unsupervised manner to compute the overall similarity, which is then utilized
in standard contrastive learning. PyramidCLIP Gao et al. (2022) aligns image regions and object boxes with
descriptive text. This model considers the local and global views for both the image and the text modalities
and utilizes both Peer-level and Cross-level Alignment to tackle the mismatch of these modalities.

Despite introducing several fine-grained VLMs, these models don’t properly utilize the correspondence of
image and text modalities. For example, FILIP Yao et al. (2021) proposes a simple way to create fine-grained
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supervision by dividing an image into patches and the descriptive text into tokens. This method considers
each word of the text and each patch of the image as an independent component. For example, considering
the phrase "A red flower", the "red" and "flower" tokens can be mistakenly matched to disjoint sets of patches
without any losses.

To capture the correspondence of the text and image, the meaningful components of these modalities must
be extracted. In the textual modality, the Entity Relationship (ER) is utilized as a high-level conceptual
model. An entity is a word indicating an object, such as "flower", and phrases like "red flower," which
describes both the object and its attribute. Relations such as "a man riding a horse" correspond to a triplet
that contains two entities (i.e., subject and object) and the specified relation between them. To provide a
basis for better alignment of text and image, we also extract components of similar granularity for the visual
modality by considering object-bounding boxes as candidate regions for visual entities and boxes including
a pair of object-bounding boxes as candidate regions for visual relations Johnson et al. (2015). Since entities
and their attributes appear in the same area of an image in the visual modality, we consider both entities and
described entities (with their attributes) as textual entity components. Therefore, the phrase "a red flower"
as a textual entity must be matched with the specific region of the image containing a red flower, even if
the image also includes flowers of other colors. The VLM can then be trained to match the compositional
structures of the two modalities.

In this paper, we propose a method that efficiently utilizes a base VLM and provides a fine-grained VLM.
Our method assumes that VLMs like CLIP can extract initial representations for entities of the text and
objects of the image and need to be empowered by a lightweight model that can align the structure of the
visual and textual modalities. Therefore, after extracting entities and relations from the text and identifying
candidate regions for entities and relations from the image, the initial representation of these components
is obtained using coarse-grained VLMs like CLIP. To capture the compositional structure, ComAlign is
trained on top of the frozen image and text encoders to provide fine-grained alignment of the image and
text components. This is done by modeling the compositional structures of the modalities as entity and
relational components and using a fine-grained matching strategy. This approach significantly improves zero-
shot retrieval and compositional benchmark performance of base models while using a lightweight network
and minimal training data. For example, it improves the I2T retrieval performance of CLIP-ViT-B32 on
MSCOCO Lin et al. (2014) by 5.60% and T2I by 6.27%, surpassing PyramidCLIP which uses the same
backbone while it trains the entire base model from scratch using a large dataset (despite our method only
requires training a lightweight network on top of the base model using a much more smaller dataset).

The primary contributions of our work are outlined as follows:

1. We developed a straightforward and efficient preprocessing pipeline that extracts relational and
entity components from both image and text modalities directly from raw data, eliminating the
need for additional labeling for either modality.

2. We implemented a streamlined approach for unsupervised component matching between text and
image modalities, utilizing the components extracted during the preprocessing phase. Additionally,
we trained a lightweight network as an extension to the base VLMs, enhancing their compositional
understanding and alignment capabilities.

3. We improved performance across compositional benchmarks and various vision-language tasks, in-
cluding retrieval, by leveraging minimal compositional unlabeled data and eliminating the necessity
for retraining the entire VLM.

2 Related Works

2.1 Vision-Language Models

Vision-language pretraining aims to establish a unified embedding space that bridges vision and language
modalities by leveraging large-scale image-text datasets. A prominent approach in this domain involves
using contrastive objectives to align image and text embeddings, bringing embeddings of matching pairs
closer while pushing unrelated pairs apart.
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One of the most influential models in this area is CLIP Radford et al. (2021), which leverages large-scale
image-text pairs and has attracted significant attention due to its exceptional performance in retrieval tasks
and zero-shot transfer capabilities. Building upon the success of CLIP, models like ALIGN Jia et al. (2021)
extended this approach by scaling up the pretraining dataset with noisy image-text pairs to further enhance
performance.

Additionally, several studies Li et al. (2021b); Mu et al. (2022); Wu et al. (2021); Cui et al. (2022) have
explored methodologies to improve the efficacy and data efficiency of vision-language pretraining. For in-
stance, DeCLIP Li et al. (2021b) and SLIP Mu et al. (2022) propose enhancing model performance by
incorporating self-supervised learning techniques. ZeroVL Cui et al. (2022) leverages a lower amount of data
by efficient sampling and augments the training data effectively using a novel mix-up method. Furthermore,
OTTER Wu et al. (2021) uses a soft image-text matching method for labeling in contrastive learning, which
significantly reduces the amount of training data required.

Some methods aim to retain the primary representations of Vision-Language Models while adapting them to
downstream tasks using prompt-tuning techniques Zhou et al. (2022); Sun et al. (2022); Bulat & Tzimiropou-
los (2022); Guo et al. (2023), which are more parameter-efficient. For instance, CoOp Zhou et al. (2022)
employs a set of learnable vectors to optimize context by minimizing classification errors. To handle multi-
label settings, where single-label matching methods like CoOp are insufficient, DualCoOp Sun et al. (2022)
introduces a pair of differentiable prompts to provide both positive and negative contexts for the target class.
Addressing the challenge of overfitting in soft prompt learning, LASP Bulat & Tzimiropoulos (2022) pro-
poses a Language-Aware Soft Prompting approach incorporating hand-crafted textual prompts to enhance
robustness. Similarly, for multi-label classification, TaI-DP Guo et al. (2023) employs double-grained prompt
tuning to capture both coarse-grained and fine-grained embeddings. In contrast to text-based prompt tun-
ing, some methods explore visual prompt tuning Bahng et al. (2022); Rong et al. (2023); Jia et al. (2022),
integrating the input image with learned visual prompts to adapt models effectively for downstream tasks.
For Example Bahng et al. (2022), integrates a learnable image perturbation with the image for adaptation
to a new task.

However, despite their strengths in achieving remarkable performance, these methods have difficulties un-
derstanding the distinct components within each modality and their relationships. In contrast, our proposed
approach improves the model’s ability to understand these components and their relationships by incorpo-
rating a parameter-efficient adaptation technique.

2.2 Fine-grained Semantic Matching

Aligning only coarse-grained embeddings across two modalities may overlook the nuanced alignment of
components and their interrelationships across two modalities, resulting in an imprecise correspondence.
For solving these alignment problems some methods have introduced image-text contrastive learning across
various semantic levels Zeng et al. (2022); Yao et al. (2021); Pan et al. (2023); Zhang et al. (2022); Gao
et al. (2022). For example, MVPTR Li et al. (2022) creates two levels of semantic components for vision and
language. In the visual modality, it uses object boxes with position-aware features and object tags, while
in the linguistic modality, it processes text tokens and phrase-level inputs derived from a scene graph. On
the other hand, X-VLM Zeng et al. (2022) identifies visual concepts based on associated texts and aligns
them with the visual concepts at various levels of granularity. However, these models require fine-grained
supervision for matching components during the training process.

On the other hand, various fine-grained image-text matching methods Pan et al. (2023); Zhang et al. (2022);
Yao et al. (2021); Gao et al. (2022) have been proposed to enhance matching accuracy between images
and textual components. CHAN Pan et al. (2023) uses hard matching, presuming that each textual entity
corresponds to a specific image region, employing max pooling over image regions for similarity computation.
Additionally, fine-grained VLMs like FILIP Yao et al. (2021) and PyramidCLIP Gao et al. (2022) utilize the
fine-grained image-text matching ideas to improve aligning the image and text modalities. FILIP Yao et al.
(2021) adopts a bidirectional approach, breaking images into patches and text into tokens, and assumes
a correspondence between each text token and image patch using average pooling. PyramidCLIP Gao
et al. (2022), in contrast, employs hierarchical semantic matching by integrating local and global views of
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both modalities and utilizing peer-level and cross-level matching to address modality mismatches. Despite
advancements in image-text matching methods, they fail to break down components into distinct semantic
categories while simultaneously matching each component with its counterpart in the other modality, as
achieved by our method. Our method extracts three levels of semantic components within each modality
and ensures precise matching across corresponding levels, enabling more accurate and meaningful cross-modal
alignments via only training a lightweight network on the top of the base VLMs.

3 Proposed Method

In this section, we explain our proposed method for extracting and aligning the compositional structure of
image and text. Initially, we extract fine-grained components from images and texts. These components,
along with the entire image and text, are processed by a frozen pre-trained VLM to obtain representations.
We then feed them into our ComAlign encoders to capture the interactions between the fine-grained and
coarse-grained features within each modality. By aligning corresponding concepts across modalities, we
achieve representations that effectively capture both fine-grained and coarse-grained information.

3.1 Preprocessing: Extracting Fine-Grained Components

The structured nature of text enables us to extract entity and relational components more accurately
compared to images, which lack an inherent structure. To address this limitation in images, we employ a
pre-trained object detector that identifies candidate entities and relationships. This approach introduces a
preprocessing pipeline designed to extract fine-grained components from both text and image data that
initially lack detailed annotations. Our method focuses on two distinct types of fine-grained components:

1. Entity Components: These represent individual objects in images or entities in text (along with
their corresponding adjective, if available).

2. Relational Components: These capture regions showcasing interactions between two objects in
images or parts of texts showing relationships between two entities.

3.1.1 Textual Modality Preprocessing

For textual data, we utilize SpaCy’s en_core_web_sm pre-trained English language model Honnibal et al.
(2020). This model extracts:

• Textual Entity Components: Represented as pairs e = (adjective, entity), where nouns serve as
entities, and adjectives provide additional context. In cases where no adjective is associated with an
entity in the text, the entity component can be represented as e = (entity).

• Textual Relational Components: Represented as triplets r = (entity1, relation, entity2), where
relation describes either spatial or non-spatial relationship between two entities identified within the
text.

3.1.2 Visual Modality Preprocessing

For images, we leverage a pre-trained object detector to identify:

• Visual Entity Components: Object-bounding boxes serve as entity components, each scored by
the confidence of the object detector (pi), which reflects the likelihood of its objectness. The top-N
objects with the highest scores are retained as the final set of visual entity components.

• Visual Relational Components: Candidate visual relational components are generated by con-
sidering all possible pairs of object-bounding boxes from the extracted visual entity components.
For each pair, we define a minimal bounding box that encapsulates both objects. The confidence
score of a visual relation component is calculated as the product of the scores of the two entities
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(pi × pj). The top-M visual relational components with the highest scores are selected as the final
set.

This dual-modality preprocessing pipeline ensures that both textual and visual components are represented
at a fine-grained level, facilitating further downstream analysis and integration across modalities.

3.2 Architecture

First, we embed the extracted textual and visual components. More precisely, the object and relation
bounding boxes in the image are cropped, resized, and then embedded by the image encoder of the base
VLM. Textual entities and relations are also embedded by the text encoder of the base VLM. Moreover,
the frozen VLM also embeds the whole image and text. The obtained representations for the N entity
components, the M relational components, and the global representations of image i are shown as {hI,e

i }N
e=1,

{hI,r
i }M

r=1, and hI,g
i , respectively. The corresponding representations for the entities, relations, and the whole

input for text j are also denoted as {hT,e
j }N

e=1, {hT,r
j }M

r=1, and hT,g
j , respectively. N and M are treated as

hyper-parameters, determined before training. The number of extracted entities and relationships is adjusted
by truncating excess components or padding to reach the determined numbers N and M , respectively.

We want to improve the representations of fine-grained components since they have been extracted indi-
vidually by the base VLM. To this end, we employ a simple two-layer transformer architecture to find the
contextualized representations of components that also have been enforced to consider the fine-grained and
coarse-grained correspondence of the image and text modality. Therefore, the representation of image i and
text j are fed as hI

i = [hI,g
i , hI,e1

i , ..., hI,eN

i , hI,r1
i , ..., hI,rM

i ] and hT
j = [hT,g

j , hT,e1
j , ..., hT,eN

j , hT,r1
j , ..., hT,rM

j ]
to the ComAlign image and text encoder, respectively. Specifically, the contextualized representations are
obtained as:

zI
i = FθI

(hI
i ), zT

j = GθT
(hT

j ), (1)

where the ComAlign encoder networks FθI
and GθT

are two-layer transformer models for improving vision
and language representations, respectively.

3.3 Training Objectives

The goal is to ensure that each image’s representation closely aligns with its corresponding text while
simultaneously differing significantly from the representations of unrelated texts. To achieve this, we must
match the corresponding components in the image and text pair. First, we define the fine-grained matching
method for aligning image and text representations. Then, we indicate how entity, relational, and global
similarity between image and text representations are obtained.

Fine-Grained Matching: We intend to match the corresponding components of two modalities. To do this,
we use the matching strategy introduced in FILIP Yao et al. (2021) and align the two set of representation
vectors {xk}C

k=1 and {x′
k}C′

l=1, using the following Fine-Grained-Matching (FGM) function:

FGM({xk}C
k=1, {x′

l}C′

l=1) = mean1≤k≤C

{
max1≤l≤C′

{
xT

k x′
l

}}
. (2)

in which for each vector in the first set, the most similar vector from the second set is identified based on dot
product similarity, treating these two vectors as the matched pair, and then compute the average similarity
across all these matched vector pairs.

Entity and Relational Components Similarity: We compute the entity-based similarity between images
and text by defined fine-grained matching. Image-to-Text (I2T) and Text-to-Image (T2I) similarities of image
i and text j is defined as follows:

sI2T,E
i,j = FGM({zI,e

i }N
e=1, {zT,e

j }N
e=1), sT 2I,E

i,j = FGM({zT,e
j }N

e=1, {zI,e
i }N

e=1), (3)
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Figure 1: Overview of the proposed method. Given a batch of image-text pairs, each image and text is pre-
processed by object-detector and NLP tools to extract entity and relational components. These components,
along with the original image and text, are processed by a base VLM to obtain visual and textual represen-
tations. These are then passed through our ComAlign image and text encoders. We calculate the similarity
score between an image and a text using three types of scores: 1) Coarse-grained similarity: Calculated as
the dot product of the global features of the image and text. 2) Fine-grained entity-based similarities: The
entity similarity matrix is obtained by calculating the cosine similarity between each pair of the visual entity
component representation and the textual entity component representation. 3) Fine-grained relation-based
similarities: Similarly, the relation similarity matrix is computed according to the cosine similarity of all
pairs of visual and textual relation representations. By employing Fine-Grained Matching on the obtained
matrices, the whole entity-based similarity and relation-based similarity between the image and text are
found (for both Text2Image and Image2Text directions). The final aggregated similarities are used during
both the contrastive training and inference process.
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where zI,e
i ∈ RD and zT,e

j ∈ RD shows the representation of the entity component e of image i and text j
respectively, and N denotes the number of entity components.

Relational components are matched similarly:

sI2T,R
i,j = FGM({zI,r

i }M
r=1, {zT,r

j }M
r=1), sT 2I,R

i,j = FGM({zT,r
j }M

r=1, {zI,r
i }M

r=1). (4)

where zI,r
i ∈ RD and zT,r

j ∈ RD shows the representation of the relational component r of image i and text
j respectively, and M denotes the number of relational components.

Global Similarity We use the standard dot product for computing the similarity between two global
features, considering zI,g

i ∈ RD and zT,g
i ∈ RD:

sI2T,G
i,j = sT 2I,G

i,j = (zI,g
i )T zT,g

j . (5)

The loss function is the sum of the contrastive losses for each of the entity, relational, and global features,
with the similarity calculated differently for each category. Specifically, the image-to-text and text-to-image
contrastive losses are defined as:

LI2T
i =fi({sI2T,E

i,j }B
j=1) + fi({sI2T,R

i,j }B
j=1) + fi({sI2T,G

i,j }B
j=1), (6)

LT 2I
i =fi({sT 2I,E

i,j }B
j=1) + fi({sT 2I,R

i,j }B
j=1) + fi({sT 2I,G

i,j }B
j=1), (7)

where fi is defined as:

fi({si,j}B
j=1) = − log exp(si,i)∑B

j=1 exp(si,j)
. (8)

The final loss in a batch is computed by mean of I2T and T2I losses as:

L = 1
2B

B∑
i=1

(LI2T
i + LT 2I

i ). (9)

Figure 2 shows an example of this calculation process.

Figure 2: Illustration of the process of calculating Image-to-Text (I2T) and Text-to-Image (T2I) similarity,
including global, entity, and relational components.
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3.4 Inference

During inference, the fine-grained and coarse-grained representation of the images and texts (zI , zT ) are
obtained according to the proposed method in Section 3.2. To calculate the T2I and I2T similarities be-
tween each image-text pair, we consider a weighted sum of corresponding fine and coarse-grained similarities
(s.,E , s.,R, s.,G) along with the dot product of the base VLM image and text representations (hI,g, hT,g).

Additionally, we use fine-grained T2I similarities to calculate the final I2T similarity score. This approach
is based on the assumption that not all visual components of an image are captured in its caption, as it
often fails to describe every detail present in the image. In fact, the expectation of finding a corresponding
matched textual component for each visual component is somewhat unrealistic. Therefore, incorporating
T2I fine-grained similarities could help compensate for this weakness. The final similarity score is formulated
as follows:

sI2T
i,j = (hI,g

i )T hT,g
j + α1(sI2T,G

i,j + sI2T,E
i,j + sI2T,R

i,j ) + α2(sT 2I,E
i,j + sT 2I,R

i,j ), (10)

sT 2I
i,j = (hI,g

i )T hT,g
j + β1(sT 2I,G

i,j + sT 2I,E
i,j + sT 2I,R

i,j ). (11)

Here, s
I2T/T 2I,E/R/G
i,j are calculated according to Equations 3, 4, and 5. Also, α1, α2 and β1 are considered

as hyper-parameters.

4 Experiments

4.1 Experimental Setup

Base VLMs We applied our alignment method to two CLIP model backbones released by OpenAI: ViT-
B/32 and ViT-L/14. Furthermore, we tested our method on four other models: NegClip Yuksekgonul et al.
(2022), CoCa Yu et al. (2022), Vitamin Chen et al. (2024), and Mobileclip Vasu et al. (2024). NegCLIP
enhances contrastive learning by utilizing negative samples to better distinguish between similar images
and texts. CoCa combines a caption generation objective with contrastive learning to improve fine-grained
understanding. ViTamin introduces a scalable vision model with a three-stage architecture that integrates
two MBConv block stages and a final Transformer block stage, combining the advantages of convolutional
and transformer-based methods to maintain high feature resolution and scalability. MobileCLIP optimizes
lightweight image-text models through multi-modal reinforced training, leveraging knowledge transfer from
robust CLIP encoders and an image captioning model via a reinforced dataset.

We used the NegCLIP checkpoint from its official GitHub repository1, as well as the CoCa model, which
was accessed via an OpenCLIP checkpoint Ilharco et al. (2021) which was trained on the LAION-2b dataset
Schuhmann et al. (2022). Both models are built on the ViT-B/32 network backbone. Additionally, for
ViTamin-B-LTT and MobileCLIP-B, we used OpenCLIP checkpoints, with each model pre-trained on dif-
ferent versions of the DataComp dataset Gadre et al. (2024).

Implementation Details The training process was performed on an Nvidia 1080 GPU, with each base
model training completed within 4 hours (All our experiments were also performed on the specified GPU
card). This minimal training time and low GPU VRAM requirement are due to our lightweight network,
which consists of a two-layer transformer and a relatively small training dataset of approximately 100,000
image-text pairs. All models were trained using the AdamW optimizer Loshchilov & Hutter (2017) and
a StepLR learning rate scheduler, with a batch size of 1600 image-text pairs. Positional encoding was
implemented in the transformer layers as described in Vaswani et al. (2017). We set the maximum number
of both entity and relational components, N and M , to 10. We used spaCy to extract components from the
text, and YOLOv9 Wang et al. (2024) as the object detector to identify visual components. The training
process is depicted in Algorithm 1.

1https://github.com/mertyg/vision-language-models-are-bows
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We performed hyper-parameter tuning for training and inference using a subset of the training dataset we
composed. Further details can be found in Appendix A.2.

Algorithm 1 Training process of ComAlign
1: Initialize preprocessed dataset D and batch size B
2: Initialize transformer models FθI

and GθT

3: for update step = 1 to M do
4: Sample a batch of image-text pairs (hI

i , hT
i )B

i=1 from D
5: Compute image and text representations: zI

i = FθI
(hI

i ) and zT
i = GθT

(hT
i )

6: Decompose zI
i and zT

i into entity, relational, and global features zI,e
i , zI,r

i , zI,g
i and zT,e

i , zT,r
i , zT,g

i ,
respectively.

7: Calculate similarity scores for entities, relations, and global features: s.,E , s.,R, s.,G using Equations
3, 4, and 5

8: Compute the final loss using Equations (6) through (9)
9: Update model parameters θI and θT of FθI

and GθT
using the Adam optimizer

10: end for

4.2 Datasets

Visual Genome This dataset comprises 100,000 images with fine-grained annotations. Each image includes
two types of annotations: 1) Attribute Annotations: These annotations describe the objects and their
attributes. 2) Relational Annotations: These annotations consist of triplets in the format (Subject, Object,
Relation).

MSCOCO This dataset contains approximately 100,000 images, each accompanied by five descriptive cap-
tions. We used the version of MSCOCO released in 2017.

Flickr30K This dataset includes around 30,000 images, each with several captions similar to MSCOCO.

4.3 Zero-shot Image-Text Retrieval

Zero-shot image-text retrieval consists of two sub-tasks: image-to-text retrieval and text-to-image retrieval.
We use Flickr30K Plummer et al. (2015) and Visual Genome Yuke Zhu (2017) datasets for training. For
the Flickr30K zero-shot retrieval, we trained our model on around 100K image-text pairs from the Visual
Genome dataset, excluding images that are also part of Flickr30K. For the MSCOCO zero-shot retrieval,
we removed images from the Visual Genome dataset present in MSCOCO alongside training data from
Flickr30K, resulting in a dataset of approximately 80K image-text pairs.

We evaluate the performance of our alignment method on the Flickr30K and MSCOCO datasets, comparing
it to the base VLMs and PyramidClip Gao et al. (2022). PyramidClip is pre-trained from scratch on a dataset
containing 143 million samples. It introduces multiple semantic levels and employs contrastive alignment
between both peer-level and cross-level components. This approach enhances the model’s compositional and
fine-grained understanding, resulting in improved retrieval performance.

Table 1 shows our results compared to the baselines. We observe extensive performance improvement
for CLIP-ViT-B/32 and CLIP-ViT-L/14 in image-to-text (I2T) and text-to-image (T2I) retrieval on both
datasets. Additionally, our method improves CoCa’s performance (which also leverages captioning objective
that leads to better compositional understanding), except in text-to-image retrieval on the Flickr30K dataset,
where our performance was comparable to the base model. Notably, while NegCLIP employs a full-finetuning
approach that improves compositional understanding using hard negative image-text pairs, our contribution
complements theirs via fine-grained matching of components leveraging only the available weak supervision
in the form of image-text pairs. Hence, when applying our method on NegCLIP, we achieved up to a 3.06%
improvement in image-to-text retrieval on Flickr30K.

Interestingly, when applied to CLIP-ViT-B/32, COCA-ViT-B/32, and NegClip-ViT-B/32 that have the same
encoder backbones, our model outperforms PyramidCLIP in image-to-text retrieval. It is worth to mention
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Table 1: Zero-shot image-text retrieval results on MSCOCO and Flickr30K datasets.

Method
MSCOCO Flickr30K

image-to-text text-to-image image-to-text text-to-image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ViT-B/32 50 74.96 83.28 30.35 54.77 66.09 78.59 95.36 97.63 59.72 84.83 90.67
CLIP-ViT-B/32 + ComAlign 55.60 79.72 86.88 36.62 63.55 74.77 82.24 97.04 98.61 66.27 88.22 93.11
Relative gain 5.60 4.76 3.60 6.27 8.78 8.68 3.65 1.68 0.98 6.55 3.39 2.44
COCA-ViT-B/32 54.04 77.72 86.08 35.89 61.20 71.97 82.64 95.36 97.63 64.31 86.96 91.77
COCA-ViT-B/32 + ComAlign 56.42 80.30 88.06 37.29 63.98 74.93 84.22 96.64 98.32 63.07 86.31 92.05
Relative gain 2.38 2.58 1.98 1.40 2.78 2.96 1.58 1.28 0.69 -1.24 -0.65 0.28
NegClip-ViT-B/32 56.84 80.72 88.06 41.56 68.68 78.92 83.03 95.56 97.53 68.73 89.90 94
NegClip-ViT-B/32 + ComAlign 58.60 82.62 89.42 42.16 69.82 79.93 86.09 96.74 98.22 69.11 90.43 94.49
Relative gain 1.76 1.90 1.36 0.60 1.14 1.01 3.06 1.18 0.69 0.38 0.53 0.49
PyramidCLIP-ViT-B/32 52.6 79.04 86.8 39.64 65.14 75.37 80.96 96.64 98.61 67.31 89.30 93.53

CLIP-ViT-L/14 56.08 79.6 86.86 35.31 59.96 70.14 86.29 97.33 99.30 67.83 88.85 93.25
CLIP-ViT-L/14 + ComAlign 61.86 84.34 90.80 42.40 69.04 78.78 89.25 97.92 99.30 73.19 91.97 95.44
Relative gain 5.78 4.74 3.94 7.09 9.08 8.64 2.96 0.59 0 5.36 3.12 2.19
ViTamin-B-LTT 59.56 82.48 89.08 39.74 65.48 75.11 85.50 97.33 99.01 69.03 89.46 93.53
ViTamin-B-LTT + ComAlign 61.26 83.16 90.02 42.77 68.73 78.10 87.27 98.12 99.30 73.74 91.89 95.24
Relative gain 1.7 0.68 0.94 3.03 3.25 2.99 1.77 0.79 0.29 4.71 2.43 1.71
MobileCLIP-B 69.5 88.26 93.34 49.66 74.32 82.69 91.42 98.32 99.50 78.75 93.55 96.25
MobileCLIP-B + ComAlign 70.92 89.02 93.8 51.66 76.56 84.34 92.60 98.71 99.60 80.55 94.53 97.08
Relative gain 1.42 0.76 0.46 2 2.24 1.65 1.18 0.39 0.1 1.8 0.98 0.83

that we only train a small network on top of the base models using a small dataset (100K samples) while
PyramidCLIP trained the entire network with a massive dataset (143M samples). Our careful construction
of entity and relational components, combined with a straightforward matching strategy, enables our method
to utilize the fine-grained information in the base models effectively.

Additionally, in Vision-Language Models such as CLIP-ViT-L/14, which employs a larger Vision Trans-
former with smaller patches that outperforms CLIP-ViT-B/32, our proposed model again achieves notable
enhancements, improving performance by 5.78% in image-to-text zero-shot retrieval and 7.09% in text-to-
image zero-shot retrieval on the MSCOCO dataset. Moreover, our model is applied to two recent VLMs,
ViTamin and MobileCLIP, to enhance their compositional understanding. ViTamin introduces a vision
model that combines convolutional and transformer-based approaches to maintain high feature resolution
and scalability, achieving superior performance in downstream tasks compared to previously mentioned mod-
els. MobileCLIP, on the other hand, leverages reinforced training and knowledge transfer from robust CLIP
encoders and an image captioning model and significantly enhances performance in downstream tasks, such
as zero-shot image-to-text and text-to-image retrieval. The results in Table 1 demonstrate the effective-
ness of incorporating our compositional alignment module on the top of these models in achieving higher
image-to-text and text-to-image retrieval performance.

4.4 Compositional Benchmarks

We use two benchmarks to evaluate the compositional capabilities of our method. The ARO benchmark Yuk-
sekgonul et al. (2022) is designed to evaluate VLMs’ ability to understand various attributes, relationships,
and orderings. We utilize two parts of the ARO benchmark: 1) VG-Attribution: This benchmark involves
binary classification tasks where each image is paired with two captions. One caption correctly describes two
objects along with their attributes, while the other caption is incorrect because it swaps the attributes of the
objects. The models’ ability to identify the correct caption is assessed, thereby evaluating their attribute-
binding capability. 2) VG-Relation: Similar to VG-Attribution, this part also consists of binary classification
tasks. For each image, there is one correct caption and one incorrect one. The correct caption describes two
objects and their relationship, whereas in the incorrect caption, the objects are swapped. This task measures
the models’ ability to accurately understand relationships and orderings between objects in images.

10



Under review as submission to TMLR

Table 2: Results on compositional benchmarks, including attribute binding (VG-Att), subject-object binding
(VG-Rel), and SVO-Probes.

Method VG-Rel VG-Att SVO
Probes

CLIP-ViT-B/32 58.82 61.05 67.63
CLIP-ViT-B/32 + ComAlign 61.95 66.60 70.07
Relative Gain 3.13 5.55 2.44
COCA-ViT-B/32 42.30 57.80 72.47
COCA-ViT-B/32 + ComAlign 63.46 61.36 72.60
Relative Gain 21.16 3.56 0.13
NegClip-ViT-B/32 78.61 68.98 72.41
NegClip-ViT-B/32 + ComAlign 79.49 71.79 72.60
Relative Gain 0.88 2.81 0.19
CLIP-ViT-L/14 60.98 60.96 70.81
CLIP-ViT-L/14 + ComAlign 59.53 65.90 74.01
Relative Gain -1.45 4.94 3.2
ViTamin-B-LTT 38.59 55.06 72.37
ViTamin-B-LTT + ComAlign 41.41 63.23 72.79
Relative Gain 2.82 8.17 0.42
MobileCLIP-B 53.67 65.78 73.84
MobileCLIP-B + ComAlign 55.54 70.21 74.12
Relative Gain 1.87 4.43 0.28

SVO-Probes Hendricks & Nematzadeh (2021) is another benchmark designed to evaluate VLMs’ understand-
ing of relationships and attributes. The benchmark comprises a dataset of paired images labeled as positive
or negative, accompanied by a positive caption and a positive and negative triplet. Each positive caption
contains the subject, verb, and object present in its positive triplet, while each negative triplet differs in
one of these three parts from the positive triplet. To create a negative caption, we replace positive triplets
in the caption with their negative counterpart, which enables the assessment of the model’s understanding
in both entity recognition (subject, object replacement) and relational understanding (verb replacement) by
matching the images with their corresponding positive or negative captions in a binary retrieval task.

We applied our method to CLIP-ViT-B/32, CLIP-ViT-L/14, CoCa, NegCLIP, ViTamin-B-LTT, and
MobileCLIP-B and evaluated their performance on the specified compositional benchmarks. As shown in
Table 2, we observe general performance improvements, with only a few exceptions. These enhancements are
attributed to the fine-grained components we constructed during training. The entity components enhance
the models’ ability to bind objects with their attributes, while the relational components improve their
understanding of relationships. Notably, the improvement gap is typically higher in the VG-Attribution
benchmark compared to the VG-Relation benchmark. This difference may be because VG-Relation also
assesses the models’ capability to recognize order, which is not addressed by our method.

4.5 Zero-shot Classification

We evaluated our proposed method on five different zero-shot classification datasets across multiple base
VLMs, with the results presented in Appendix A.1. As demonstrated by the results, our method enhances
the performance of base VLMs in compositional understanding and related tasks. Importantly, it does not
negatively impact or reduce the performance of these models on other downstream tasks, such as zero-shot
classification.

4.6 Ablation Study

We conducted several experiments to evaluate our model’s performance under different hyper-parameters
and ablation conditions. All experiments used CLIP-ViT-B/32 as the base model, trained exclusively on
the Visual Genome and Flickr datasets. The results are reported for the image-to-text and text-to-image
retrieval tasks on the MSCOCO validation split. Furthermore, only the image transformer was trained.

Loss Term Study In this experiment, we examine the effect of fine-grained entity, relation, and global
similarities by removing them from the final loss calculation. In this part, we only prevent the addition of
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Table 3: Ablation study of each loss term (Removal of just loss term) and feature (Removal of loss term
alongside exclusion from the transformer) on MSCOCO Zero-Shot Retrieval.

Base VLM Loss Term MSCOCO (Loss Term) Feature MSCOCO (Feature)
Global Entity Relation I2T R@1 T2I R@1 Global Entity Relation I2T R@1 T2I R@1

ViT-B/32

✓ ✓ ✓ 54.60 37.07 ✓ ✓ ✓ 54.60 37.07
✓ ✓ 52.24 36.50 ✓ ✓ 53.24 35.83
✓ ✓ 52.76 35.19 ✓ ✓ 52.64 35.61
✓ 53.76 36.25 ✓ 52.10 34.14

✓ ✓ 52.26 36.37 ✓ ✓ 52.38 35.16

the similarity term of these parts to the final loss in Eqs. 6 and 7 while still allowing all three features to
attend to each other within the transformer architecture. Additionally, the omitted similarity terms will not
be used during inference. The results can be seen in Table 3.

In the second part of the experiment, in addition to excluding the unchecked terms from the loss function,
we prevent the omitted features from interacting with others within the transformer. By doing so, as seen in
Table 3, we generally observe a further decrease in performance, compared to only removing the loss term.
This indicates that, although fine-grained features are not utilized during inference, their interaction with
global features improves overall alignment. It also highlights the effectiveness of the extracted fine-grained
components and our fine-grained matching methodology.

Network Architecture In this section, we examine the effects of different encoder architectures as alterna-
tives to transformer layers. We experimented with two new architectures: one using fully connected layers
that process both coarse and fine-grained features through a single network and another using two distinct
networks for each feature type. As shown in Table 4, the transformer-based architecture yields superior
results, likely due to its ability to facilitate interactions between different features.

Table 4: Ablation study of Architecture and Number of Transformer Layers on MSCOCO Zero-Shot Re-
trieval.

Architecture
MSCOCO (Architecture) Number of

Layers

MSCOCO (Layers)

I2T R@1 T2I R@1 I2T R@1 T2I R@1

Transformer 54.78 37.60 1 54.78 37.60
FC (shared network) 53.62 35.33 2 54.60 37.07

FC (separate networks) 53.62 34.87 4 28.94 19.71

Network Layers In this experiment, we examined how the size of the appended network affects model
performance. Specifically, we increased the number of layers in the transformer network to enhance its
expressive power. However, as shown in Table 4, increasing the number of layers to four significantly
decreased performance. We believe this is due to the small size of our dataset, which leads to overfitting
when using a larger network.

4.7 Visualization

As illustrated in the similarity matrices of Figure 3, our alignment surpasses CLIP in matching textual and
visual components for both entity and relation. We compute the similarity matrix of five pairs of textual and
visual components for relation and entity using CLIP-ViT-B/32 and our own method. Our method exhibits
superior performance, as evident by the higher values along the diagonal of the matrix. In addition to the
diagonal values, other matrix elements may indicate semantic relevance, and our alignment demonstrates
better performance in matching these.
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Figure 3: Illustration of relational and entity component similarity matrices. Left: CLIP-ViT-B/32, Right:
ComAlign (Ours).

5 Conclusion

In this paper, we proposed an alignment model to enhance the compositional understanding of VLMs while
maintaining the coarse-grained features. Our approach involves extracting fine-grained entity and relational
components and proposing a strategy to match the corresponding components across modalities. We have
shown that it is possible to align the base VLMs using a lightweight network and a relatively small dataset
to utilize their fine-grained and compositional capacity more efficiently. By enhancing the fine-grained and
compositional understanding of VLMs, we improve retrieval, compositional understanding, and downstream
tasks.

Limitations and Future Works Although our method incorporates elements of text structure, it fails to
comprehend the direction of relationships between objects. Furthermore, we do not fully utilize the entire
graph structure; instead, we only match nodes and edges of relational components. Future works can involve
addressing these limitations to potentially improve performance.

References
Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts for

adapting large-scale models. arXiv preprint arXiv:2203.17274, 2022.

Emanuele Bugliarello, Ryan Cotterell, Naoaki Okazaki, and Desmond Elliott. Multimodal pretraining un-
masked: A meta-analysis and a unified framework of vision-and-language berts. Transactions of the
Association for Computational Linguistics, 9:978–994, 2021.

Adrian Bulat and Georgios Tzimiropoulos. Lasp: Text-to-text optimization for language-aware soft prompt-
ing of vision & language models. arXiv preprint arXiv:2210.01115, 2022.

Jieneng Chen, Qihang Yu, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Vitamin: Designing scalable
vision models in the vision-language era. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12954–12966, 2024.

Quan Cui, Boyan Zhou, Yu Guo, Weidong Yin, Hao Wu, Osamu Yoshie, and Yubo Chen. Contrastive vision-
language pre-training with limited resources. In European Conference on Computer Vision, pp. 236–253.
Springer, 2022.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan
Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the next gener-
ation of multimodal datasets. Advances in Neural Information Processing Systems, 36, 2024.

13



Under review as submission to TMLR

Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng Liu, Jianfeng Gao, et al. Vision-language pre-
training: Basics, recent advances, and future trends. Foundations and Trends® in Computer Graphics and
Vision, 14(3–4):163–352, 2022.

Yuting Gao, Jinfeng Liu, Zihan Xu, Jun Zhang, Ke Li, Rongrong Ji, and Chunhua Shen. Pyramidclip:
Hierarchical feature alignment for vision-language model pretraining. Advances in neural information
processing systems, 35:35959–35970, 2022.

Zixian Guo, Bowen Dong, Zhilong Ji, Jinfeng Bai, Yiwen Guo, and Wangmeng Zuo. Texts as images
in prompt tuning for multi-label image recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2808–2817, 2023.

Lisa Anne Hendricks and Aida Nematzadeh. Probing image-language transformers for verb understanding.
arXiv preprint arXiv:2106.09141, 2021.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spacy: Industrial-strength
natural language processing in python. 2020. doi: 10.5281/zenodo.1212303. If you use spaCy, please cite
it as below.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal
Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Lud-
wig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/zenodo.5143773. If you use this
software, please cite it as below.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In International conference on machine learning, pp. 4904–4916. PMLR, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and Ser-Nam
Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727. Springer, 2022.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and Li Fei-Fei.
Image retrieval using scene graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3668–3678, 2015.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven Chu Hong
Hoi. Align before fuse: Vision and language representation learning with momentum distillation. Advances
in neural information processing systems, 34:9694–9705, 2021a.

Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu, and Junjie
Yan. Supervision exists everywhere: A data efficient contrastive language-image pre-training paradigm.
arXiv preprint arXiv:2110.05208, 2021b.

Zejun Li, Zhihao Fan, Huaixiao Tou, Jingjing Chen, Zhongyu Wei, and Xuanjing Huang. Mvptr: Multi-level
semantic alignment for vision-language pre-training via multi-stage learning. In Proceedings of the 30th
ACM International Conference on Multimedia, pp. 4395–4405, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755.
Springer, 2014.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna. Crepe: Can
vision-language foundation models reason compositionally? In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10910–10921, 2023.

14

https://doi.org/10.5281/zenodo.5143773


Under review as submission to TMLR

Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision meets language-
image pre-training. In European conference on computer vision, pp. 529–544. Springer, 2022.

Zhengxin Pan, Fangyu Wu, and Bailing Zhang. Fine-grained image-text matching by cross-modal hard
aligning network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 19275–19284, 2023.

Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence
models. In Proceedings of the IEEE international conference on computer vision, pp. 2641–2649, 2015.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PMLR,
2021.

Jintao Rong, Hao Chen, Tianxiao Chen, Linlin Ou, Xinyi Yu, and Yifan Liu. Retrieval-enhanced visual
prompt learning for few-shot classification. arXiv preprint arXiv:2306.02243, 2023.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Sri-
vatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
LAION-5b: An open large-scale dataset for training next generation image-text models. In Thirty-
sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL
https://openreview.net/forum?id=M3Y74vmsMcY.

Ximeng Sun, Ping Hu, and Kate Saenko. Dualcoop: Fast adaptation to multi-label recognition with limited
annotations. Advances in Neural Information Processing Systems, 35:30569–30582, 2022.

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from transformers,
2019.

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace
Ross. Winoground: Probing vision and language models for visio-linguistic compositionality. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5238–5248, 2022.

Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, and Oncel Tuzel. Mo-
bileclip: Fast image-text models through multi-modal reinforced training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15963–15974, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn using
programmable gradient information, 2024.

Bichen Wu, Ruizhe Cheng, Peizhao Zhang, Tianren Gao, Peter Vajda, and Joseph E Gonzalez. Data
efficient language-supervised zero-shot recognition with optimal transport distillation. arXiv preprint
arXiv:2112.09445, 2021.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li,
Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. arXiv preprint
arXiv:2111.07783, 2021.

Yuan Yao, Qianyu Chen, Ao Zhang, Wei Ji, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Pevl: Position-
enhanced pre-training and prompt tuning for vision-language models. arXiv preprint arXiv:2205.11169,
2022.

15

https://openreview.net/forum?id=M3Y74vmsMcY
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Under review as submission to TMLR

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca:
Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917, 2022.

Justin Johnson Kenji Hata Joshua Kravitz Stephanie Chen Yannis Kalantidis Li-Jia Li David A. Shamma
Michael S. Bernstein Li Fei-Fei Yuke Zhu, Oliver Groth. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. IJCV, pp. 32–37, 2017.

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and why
vision-language models behave like bags-of-words, and what to do about it? In The Eleventh International
Conference on Learning Representations, 2022.

Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision language pre-training: Aligning texts with
visual concepts. arXiv preprint arXiv:2111.08276, 2021.

Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision language pre-training: Aligning texts with
visual concepts. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pp. 25994–26009. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/zeng22c.html.

Kun Zhang, Zhendong Mao, Quan Wang, and Yongdong Zhang. Negative-aware attention framework for
image-text matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pp. 15661–15670, 2022.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language
models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

A Appendix

A.1 Zero-shot Classification

In the following section, we conduct an evaluation of our proposed method on the zero-shot image classifi-
cation task using five downstream classification datasets. Since models designed to enhance compositional
understanding typically aim to improve retrieval performance on inputs involving multiple objects, they are
not generally expected to boost performance on classification tasks, which often involve images contain-
ing only a single object. Consequently, in line with the findings reported in Yao et al. (2021); Gao et al.
(2022), if these models do not degrade zero-shot classification performance, the results will be considered
as satisfactory. Table 5 illustrates the results of our alignment method compared to the base VLMs across
these datasets. The results of our zero-shot image classification experiments indicate that our method yields
comparable performance to existing models across various datasets. While we observed improvements in
certain cases, other results showed minimal changes or slight decreases. This discrepancy likely contributes
to the mixed results observed in our zero-shot classification experiments.

To perform classification we create a template for each class and perform retrieval based on these templates.
Similar to the inference process described in Section 3.4, we use a linear combination of the base VLMs’
coarse-grained features and our coarse-grained embeddings to calculate the final similarity score.
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Figure 4: Impact of different values of α1, α2, and β1 on I2T and T2I retrieval on our validation set.

Table 5: Top-1 accuracy of zero-shot image classification on 5 datasets.
Method Cifar10 Cifar100 Caltech101 SUN397 ImageNet
CLIP-ViT-B/32 89.82 63.85 82.53 46.41 57.57
CLIP-ViT-B/32 + ComAlign 89.82 64.35 82.68 47.02 57.92
Relative Gain 0.00 0.50 0.15 0.61 0.35
CLIP-ViT-L/14 95.84 77.15 84.92 69.19 71.01
CLIP-ViT-L/14 + ComAlign 96.02 77.45 85.09 69.88 71.23
Relative Gain 0.18 0.30 0.17 0.69 0.22
COCA-ViT-B/32 93.69 74.27 85.84 65.57 58.68
COCA-ViT-B/32 + ComAlign 93.97 73.88 85.64 65.19 58.22
Relative Gain 0.28 -0.39 -0.20 -0.38 -0.46
NegClip-ViT-B/32 86.05 60.68 78.86 54.64 49.56
NegClip-ViT-B/32 + ComAlign 85.99 60.79 79.04 54.96 49.83
Relative Gain -0.06 0.11 0.18 0.32 0.27
ViTamin-B-LTT 90.71 78.19 87.60 62.13 66.91
ViTamin-B-LTT + ComAlign 95.57 78.36 87.22 62.50 67.25
Relative Gain 4.86 0.17 -0.38 0.37 0.34
MobileCLIP-B 95.72 84.26 89.09 68.34 69.48
MobileCLIP-B + ComAlign 97.80 86.16 88.67 69.12 72.16
Relative Gain 2.08 1.90 -0.42 0.88 2.68

A.2 Hyper-parameter Tuning

Hyper-parameters of Equations 10 and 11 have been tuned utilizing a subset of MS-COCO Training split
accomplished by ViT-B/32 model which trained on VisualGenome and Flickr30k datasets. Our experimented
results are illustrated in Figures 4.

Also, we report the performance of our method under different hyper-parameters in zero-shot image-text
retrieval on MSCOCO. Figure 5 shows the results of using various batch sizes, learning rates, and training
epochs, as well as different coefficients for the coarse-grained contrastive loss.
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Figure 5: Experiments with different coefficients of coarse-grained contrastive loss, learning rate, number of
epochs, and batch sizes on I2T and T2I zero-shot retrieval on MSCOCO.
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