
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

THINK THRICE BEFORE YOU ACT: PROGRESSIVE
THOUGHT REFINEMENT IN LARGE LANGUAGE MOD-
ELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have demonstrated that
progressive refinement, rather than providing a single answer, results in more
accurate and thoughtful outputs. However, existing methods often rely heavily
on supervision signals to evaluate previous responses, making it difficult to ef-
fectively assess output quality in more open-ended scenarios. Additionally, these
methods are typically designed for specific tasks, which limits their generalization
to new domains. To address these limitations, we propose Progressive Thought
Refinement (PTR), a framework that enables LLMs to progressively refine their
responses. PTR operates in two phases: (1) Thought data construction stage: We
propose a weak and strong model collaborative selection strategy to build a high-
quality progressive refinement dataset to ensure logical consistency from thought
to answers, and the answers are gradually refined in each round. (2) Thought-Mask
Fine-Tuning Phase: We design a training structure to mask the "thought" and adjust
loss weights to encourage LLMs to refine prior thought, teaching them to implicitly
understand "how to improve" rather than "what is correct." Experimental results
show that PTR significantly enhances LLM performance across ten diverse tasks
(avg. from 49.6% to 53.5%) without task-specific fine-tuning. Notably, in more
open-ended tasks, LLMs also demonstrate substantial improvements in the quality
of responses beyond mere accuracy, suggesting that PTR truly teaches LLMs to
self-improve over time. Our project’s source code and datasets are available at
https://anonymous.4open.science/r/PTR_LLM

1 INTRODUCTION

“Think thrice before you act.”

— Confucius

Recent advancements in large language models (LLMs) have highlighted that progressive refinement
is more important than simply providing a single answer (Yang et al., 2023b; Madaan et al., 2023b).
Humans often rely on a combination of two thinking systems to solve problems, known as System 1
and System 2 (Kahneman, 2011). System 1 facilitates quick, intuitive responses but often lacks the
depth required to handle complex reasoning tasks. In contrast, System 2 engages in progressive refine-
ment, gradually improving a solution by starting with a rough approximate thought and iteratively
adding detail and accuracy. Recent work, such as GPT-o1 (OpenAI, 2024), demonstrates that LLMs
perform better by adopting progressive thought refinement. This approach leads to more accurate and
thoughtfully considered outcomes, similar to how the human brain processes complex tasks.

Progressive refinement ability is imperative for LLMs because it significantly enhances the quality of
responses by gradually improving accuracy and depth. Previous methods heavily rely on supervision
signals, such as correctness assessments, to assess response quality. For example, labeled datasets with
feedback are used to fine-tune models as verifiers (Han et al., 2024; Havrilla et al., 2024; Welleck et al.,
2023), facilitating self-assessment and iterative improvement. Additionally, Reinforcement Learning
(RL) reward functions are also employed to guide models toward generating better answers (Chen

1

https://anonymous.4open.science/r/PTR_LLM


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

et al., 2024; Yuan et al., 2024; Rosset et al., 2024a; Akyurek et al., 2023). However, evaluating answers
based on supervision signals has limitations, as annotators often struggle to provide accurate labels
without clear, comprehensive criteria. This is particularly challenging in open-ended tasks, such as
text generation and summarizing, where the distinction between “correct” and “incorrect” is blurred,
making it difficult to define and evaluate response quality.

Due to significant variations in supervision signals and evaluation criteria across tasks, previous
self-improvement approaches have primarily aimed to enhance accuracy within specific domains.
Examples include enabling LLMs to self-debug for improved code generation (Chen et al., 2023; Tony
et al., 2024; Liang et al., 2023) and solving math problems through progressive step validation (Wang
et al., 2023a; Lightman et al., 2023; Uesato et al., 2022a). These methods often rely on task-
specific pipelines or reward models, making generalization difficult. The key limitation is that errors
addressed in one domain may not apply to other tasks, since different tasks exhibit varying error
types. Consequently, transferring these approaches to new tasks often fails (Tian et al., 2024) , and
models trained with these methods have limited generalization capabilities, struggling to improve
performance beyond their training domains.

To address these challenges, we introduce PTR (Progressive Thought Refinement), a framework
specifically designed to stimulate the model’s intrinsic refinement ability. Our PTR method comprises
a progressive refinement dataset construction phase and a weighted thought-mask fine-tuning phase.
During the progressive refinement dataset construction phase, we obtain queries from open-domain
datasets and employ a weak-strong model collaborative selection strategy to construct high-quality
thoughts and refined answers dataset.

This strategy not only ensures improvement from thoughts to answers but also eliminates the need
for accurate labels. In the fine-tuning phase, we employ weighted thought-mask fine-tuning to
teach LLMs to implicitly understand “how to improve” rather than supervising them with “what is
correct”. Specifically, we reformulate the masked data structure and redesign the loss of weighting to
encourage LLMs to improve responses based on previous thoughts and ensuring logical consistency
between the thought process and the final answer.

Our experimental results show that LLMs trained with PTR can improve the quality of their previous
answers across ten tasks, including knowledge reasoning, code generation, mathematical reasoning,
comprehension, summarizing, and text generation. The average performance across these tasks
improved from 49.6% to 53.5%, with a significant improvement on the MMLU task, where accu-
racy increased from 57.1% to 64.1% for Qwen2-8B. Notably, these improvements occur without
task-specific fine-tuning, demonstrating that our method activates the model to learn progressive
refinement from the PTR dataset. Moreover, in more open-ended tasks, LLMs have also demonstrated
further improvements in answer quality and formatting beyond correctness.

Our contributions are threefold:

• We propose the PTR method to stimulate models’ progressive refinement abilities and
enhance generalization across various tasks without additional task-specific fine-tuning.

• We design an efficient weak-strong model collaborative selection strategy to construct
high-quality PTR datasets without extra feedback.

• We introduce a novel weighted thought-mask fine-tuning method to instill general progressive
refinement capabilities in LLMs.

2 RELATED WORK

Progressive Refinement with External Feedback Existing work often relies on external tools
or stronger LLMs to provide feedback for refinement. For example, external tools are used to
critique and provide feedback on the primary model’s responses (Yang et al., 2023a; Chen et al.,
2023; Charalambous et al., 2023; Nijkamp et al., 2023; Yao et al., 2022; Gou et al., 2023). Models
have improved their code generation capabilities by leveraging error messages from the Python
interpreter (Wang et al., 2023b) and by teaching large language models to debug and explain their
own code, allowing them to identify and fix errors without human feedback (Chen et al., 2023).
Similarly, compiler feedback has been utilized in code generation (Chen et al., 2024; Olausson
et al., 2023). Additionally, some approaches utilize criticisms or constraints generated by stronger

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: Illustration Our approaches. (A) Pipeline of our progressive refinement Dataset construction.
We first prepare queries from the general open domain datasets, and pre-processing queries in three
steps. Then we use a strong weak model collaborative selection strategy to generate thoughts and
answers for each query. We also implement In-context Learning (ICL) and Consistency Filtering
to ensure the quality of the thought process. (B) The illustration of Weighted Thought Masking
Fine-tuning. Aiming at training the model to produce a better response in the next attempt and ensure
logical consistency during the thought process. The difference between our method and IFT is that
we use thought-mask techniques to ask model to generate better responses. (C) Pipeline of our PTR.
Given a query Q, LLMs think progressively and refine their responses based on their own previous
thought and refinement instruction. LLMs refined its mistakes on the second attempt, as well as gave
a more thoughtful answer at a later iteration.

models (Pan et al., 2023; Du et al., 2023; Bai et al., 2022; Huang et al., 2023a), such as using a
strong model to verify the correctness of another model’s math solutions (Wang et al., 2023a), thereby
relying on external information sources to guide improvements. Although models can self-correct
through external feedback (Pan et al., 2023), this approach does not fully tap into their intrinsic
progressive refinement capabilities. Moreover, it requires task-specific feedback models or tools,
increasing the cost of adapting to a broader range of tasks. Furthermore, current LLMs struggle
to self-correct reasoning errors without external feedback (Huang et al., 2023b). Our work aims
to unlock the model’s inherent Progressive Refinement ability, enabling it to perform progressive
refinement across all domains without relying on external tools.

Prompting for Progressive Refinement Various Prompting methods have been introduced to enhance
Progressive Refinement, such as prompting LLMs to generate explanations and self-correct code (Li
et al., 2023a), or encouraging them to generate alternative solutions and revision suggestions (Zhang
et al., 2024). Some methods iteratively improve outputs by generating feedback through task-specific
prompts (Madaan et al., 2023a), or guide models to generate fine-grained feedback in mathematical
problem-solving, further enhancing solution accuracy and quality (Xue et al., 2023). The Reflexion
method enables language models to operate effectively in specific environments by allowing them
to reflect and adjust their actions when encountering errors (Shinn et al., 2023b). However, these
approaches often require carefully designed, task-specific prompts or even oracle ground-truth
answers (Shinn et al., 2023a), making LLMs highly sensitive to evaluating response and achieving
optimal performance (Wu et al., 2024a). Without external tools, LLMs have limited self-correction
capabilities when relying solely on prompting (Huang et al., 2023b; Zheng et al., 2024).

Fine-Tuning for Progressive Refinement In current progressive refinement work, fine-tuning
typically relies on reward models or verifiers to assess the accuracy of model outputs based on

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

predefined criteria (Wang et al., 2023a; Lightman et al., 2023; Uesato et al., 2022a). For instance,
some research focuses on improving the model’s ability to identify and correct mistakes (Han et al.,
2024), while others progressively validate solutions, such as in solving math problems (Uesato et al.,
2022b). Additionally, reinforcement learning (RL) (Chen et al., 2024; Yuan et al., 2024; Rosset et al.,
2024a; Akyurek et al., 2023) has been applied to align model outputs with correct responses. For
example, researchers create preference-based datasets to align outputs with human values and reduce
harmful content (Wang et al., 2024; Rosset et al., 2024b). Similarly, ROUGE has been used as a
reward function in text summarizing tasks to optimize generated summaries (Akyurek et al., 2023).
While these methods effectively train models, they focus on building task-specific datasets and reward
functions tailored to particular objectives. In contrast, our approach redefines the fine-tuning objective
to bolster the model’s capacity for progressive refinement. Rather than relying on domain-specific
datasets, our model is trained to iteratively enhance its responses—starting from initial thoughts and
evolving toward increasingly refined answers.

3 PROGRESSIVE THOUGHT REFINEMENT FRAMEWORK

Our proposed framework, Progressive Thought Refinement (PTR), comprises two stages, as illus-
trated in Figure 1: (1) Progressive Thought Refinement Dataset Construction and (2) Progressive
Weighted Thought-Mask Fine-tuning. The primary objective of this framework is to enhance models’
progressive refinement abilities, enabling them to handle diverse and unfamiliar tasks without relying
on task-specific fine-tuning. Since fine-tuning models for every task is impractical, our approach uti-
lizes general queries, thoughts, and answers to help models comprehend progressive refinement. This
strategy gradually improves their capacity to tackle complex tasks through progressive refinement.

3.1 PROGRESSIVE THOUGHT REFINEMENT DATASET CONSTRUCTION

In the first stage, we construct a progressive refinement dataset that includes Queries, Thoughts, and
Answers. The Thoughts capture a sequence of different reasoning attempts, which may be varied,
incomplete, or even incorrect, reflecting the model’s initial exploration of the problem. In contrast,
the Answers provide more confident and well-reasoned responses. This structured approach helps the
model implicitly understand the difference between initial thoughts and improved answers, enabling
it to generate more thoughtful and in-depth responses over time.

3.1.1 QUERY PREPARATION

To enhance the model’s generalization, we avoid creating domain-specific datasets. Instead, we use
queries from open-domain general datasets (details in Appendix B.6), ensuring the model develops
general refinement abilities rather than specializing in specific areas. Our data preprocessing involves
three key steps. First, we perform data cleaning to remove noise and irrelevant content, such as images
or URLs. Second, to prevent data leakage, we exclude domain-specific testing queries during training.
Finally, we incorporate traditional SFT data (queries and answers) into our dataset to mitigate the risk
of catastrophic forgetting.

3.1.2 THOUGHT-ANSWER PREPARATION

We strategically select weak and strong models to generate sequences of thoughts and improved
answers from an initial query. The objective is to ensure that the final answer is progressively
improved through multiple iterations rather than relying on a single-step response. We also employ
In-Context Learning (ICL) (Dong et al., 2024) and consistency filtering to ensure logical coherence
between thoughts and answers.

Weak-Strong Model Collaborative Selection Criteria To ensure the final answer shows signif-
icant improvement over the initial thought sequence, we adopt a weak-strong model collaborative
selection strategy. Let θw and θs represent the abilities of the weak and strong models, respectively,
with the goal of ensuring θs ≫ θw. We employ three key strategies: Model Parameter Strength,
Model Version (New vs. Old), and Domain-Specific Fine-Tuning. These selection strategies ensure
the quality of the final answer surpasses that of the previous thoughts. Additionally, we validate that
the strong model performs significantly better than the weak model through Wilcoxon significance
tests, as shown in Appendix B.5.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Thought Generation by the Weak Model The weak model generates a sequence of thoughts
based on the input query qi, with ŷ

t
i,w representing the initial thought at the t-th attempt. We denote

the strong model as πstrong,θs and the weak model as πweak,θw . These initial thoughts may contain
errors but provide a foundation for further refinement:

Si, thought = [ŷ1i,w, ŷ2i,w, . . . , ŷti,w] = πweak,θw(⋅ ∣ qi). (3.1)

Multiple weak models can be used to generate these thoughts, or a single weak model can produce
multiple attempts. Since the weak model’s thoughts need not be correct, constructing these thoughts
remains cost-effective.

Answer Refinement by the Strong Model To achieve progressive refinement, we leverage the
strong model to produce increasingly improved answers. We use ICL to ensure logical coherence
between the outputs of the strong and weak models and to avoid randomness. This guides the strong
model to generate better answers based on prior thoughts. Specifically, the strong model takes the
sequence of thoughts Si, thought and query qi as input and generates the final answer ŷi,s,icl:

ŷi,s,icl = πstrong,θs(⋅ ∣ Si, thought, qi). (3.2)

Thoughts-Answer Consistency Filtering To further ensure that the thought process exhibits
logical coherence, we apply consistency filtering to remove inconsistent outputs. If the consistency
score is below a certain threshold, the pair is considered inconsistent and removed, ensuring that only
coherent thought sequences are used for the final output (see Appendix A.1).

3.2 PROGRESSIVE WEIGHTED THOUGHT-MASK FINE-TUNING

In the second stage, we perform weighted thought-mask fine-tuning using the datasets constructed
previously, consisting of the input query qi, the initial thought sequence Si, thought, and the final answer
ŷi,s,icl. Formally, the dataset is represented as:

D̃ = {(qi, Si, thought, ŷi,s,icl)}Ni=1 (3.3)

Thought Mask Mechanism To help the model understand the improvement between the thought
process and the answer—rather than focusing solely on the final answer—we introduce a thought
mask mechanism. This mechanism selectively hides parts of the thought process during training, as
shown in Figure 1 (B). It calculates the loss based only on the accuracy of the refined final answer,
ensuring the model focuses on enhancing the quality of its ultimate response. Additionally, we
provide refinement instructions (e.g., "Please continue thinking and refine your answer") after each
thought process to prompt better refinement in subsequent iterations.

Weighted Supervised Learning We adopt a weighted supervised learning approach that enables
the model to focus on refining its answers by progressively improving its thought process. Specifically,
we perform weighted supervised learning that emphasizes both the accuracy of the final answers and
the logical consistency of the thought process. The loss function optimizes the model in three key
areas: generating accurate final answers, maintaining consistency in reasoning and ensuring that the
model’s confidence increases progressively throughout the thought process.

LPTR(θ) = ∑
(qi,Si,thought,yn)∈D̃

[ − λ1 log Pr(yn ∣ qi, Si,thought; θ)

+ λ2

n

∑
t=2

Fcons(yt, yt−1) + λ3

n

∑
t=1

βt (1 − Pr(yt ∣ qi, Si,thought; θ)) ]. (3.4)

Unlike standard supervised fine-tuning, which trains the model to produce a single response ŷ
given x, −λ1 log Pr(yn ∣ qi, Si,thought; θ) focuses exclusively on the accuracy of the final re-
sponse generated after the thought refinement process. Fcons(yt, yt−1) ensures that the current
response remains logically consistent with the previous thought sequence by computing the Cosi-
neSimilarity with the Sentence-BERT (Reimers & Gurevych, 2019) model (see Appendix A.2).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

(1 − Pr(yt ∣ qi, Si,thought; θ)) represents the model’s uncertainty or error probability at each reason-
ing step, which measures the confidence of the model’s predictions. The term βt represents the
confidence score at each reasoning step, which increases as reasoning progresses to encourage higher
certainty in later steps (see Appendix A.3). Here, λ1, λ2, and λ3 are dynamically adjusted according
to the model’s needs, we set λ1 = 0.8, λ2 = 0.1, and λ3 = 0.1, with their sum weighted to 1. We
also investigate sensitivity analysis and ablation study in Appendix A.5.

4 EXPERIMENTS

The goal of our experiments is to demonstrate the effectiveness of PTR in enabling language models
to progressively enhance their responses. Specifically, we aim to answer the following questions:
(1) Can the PTR method activate the model’s progressive refinement ability? (2) Does our method
demonstrate generalization? (3) Does progressive refinement ability emerge during training? (4) Is
our method robust across different LLMs and instructions? (5) How many iterations are required for
our method to achieve optimal performance?

PTR dataset Our model has trained on our PTR (Progressive Thought Refinement) dataset, derived
queries from the WizardLM dataset (Xu et al., 2023). After thorough cleaning in Section 3.1.1, we
reduced the original dataset from approximately 50k QA pairs to 40k high-quality QA pairs.

Evaluation Tasks In our experiments, we perform generalization over ten datasets across different
tasks. Task size will be showen in (Appendix B.6). For general tasks, we use MMLU (Hendrycks
et al., 2020), and for coding tasks, we use HumanEval (Chen et al., 2021) (abbreviated as H-
Eval). DROP (Dua et al., 2019) is used for comprehension tasks (abbreviated as Comp), and
XSum (Narayan et al., 2018) is applied for summary tasks. We use GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) for math-related tasks. For complex reasoning tasks, we use ARC
and GPQA (Rein et al., 2023). For knowledge reasoning, we utilize Winogrande (Sakaguchi et al.,
2019) (abbreviated as Wino) and CommonsenseQA (Talmor et al., 2019) (abbreviated as Comm).

Evaluation Settings We use greedy decoding (with temperature set to 0) for final generation,
as lower temperature yields better performance shown in Appendix A.4. We utilize zero-shot
prompting (Kojima et al., 2023) for both answer sampling and evaluations, observing that zero-
shot prompting outperforms few-shot prompting for LLMs fine-tuned on specific tasks. All of our
experiments are conducted on workstations equipped with eight NVIDIA A800 PCIe GPUs with
80GB memory, running Ubuntu 20.04.6 LTS and PyTorch 2.0.1.

Baselines We compare our model with base models and prior approaches: (1) Prompt: Directly
prompting the model to refine its answer (Huang et al., 2023b). (2) IFT: Instruction Fine-Tuning
by directly fine-tuning the input-output pairs from strong models on the PRD dataset to show that
improvements are not due to knowledge distillation. (3) RL: Perform one reinforcement learning
training (Wu et al., 2024b) iteration on the PRD dataset to compare with our method. Specifically, we
use the thoughts and answers of the PRD dataset to construct preference data, and prefer model to
produce stronger answers through DPO (Rafailov et al., 2024). We compare these methods on the
PRD dataset under the same settings as in the previous section. Detailed settings are in Appendix B.6.

4.1 CAN THE PTR METHOD ACTIVATE THE MODEL’S PROGRESSIVE REFINEMENT ABILITY?

PTR Activates Progressive Refinement Ability As shown in Table 1, to emphasize the progressive
refinement ability, we conduct tests on a broad range of tasks. The result demonstrates that our PTR
activate models substantially refine their responses across multiple iterations in the majority of tasks.
For instance, in the Qwen2-7B model, accuracy on MMLU increased by 7.0%, from 57.1% (Base
model Prompt Iteration 1) to 64.1% (PTR Iteration 3). On several additional tasks, PTR also showed
improvements, with the average score across all tasks increasing by 3.9%-rising from 49.6% to 53.5%.
However, the Prompting method results show that both two base models degrade in performance
when asked to refine, producing worse answers compared to initial responses. These results indicate
that PTR effectively enables base models to improve based on previous thoughts.

PTR is not Knowledge Distillation We also compare our PTR with simply use strong model
answer to the query by IFT. We find that PTR is not equivalent to knowledge distillation. At the first
iteration, we observe that when models are trained on general datasets rather than domain-specific

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Method Iters
Gene. Code Comp. Sum. Math Reasoning Knowledge

MMLU H-Eval DROP Xsum GSM8k Math ARC GPQA Wino Comm Avg

Acc Pass@1 Acc Sim Acc Acc Acc Acc Acc Acc

Qwen2-7b

Prompt Iter.1 57.1 56.1 20.9 47.3 79.1 48.2 60.6 24.6 66.8 55.7 51.6
Iter.2 50.1 37.6 18.7 43.2 78.4 47.6 37.9 22.3 50.4 42.1 42.8

IFT Iter.1 57.7 50.2 21.1 45.5 75.4 45.6 54.9 22.3 66.8 46.1 48.5
Iter.2 52.4 40.2 17.2 37.9 71.0 43.2 36.6 21.9 62.8 40.3 42.3

RL Iter.1 56.5 48.3 21.7 47.6 71.2 47.3 60.4 20.3 65.0 51.6 48.9
Iter.2 55.1 42.2 20.9 44.3 58.6 44.5 35.3 20.9 63.8 43.5 42.9

PTR(our)
Iter.1 59.2 52.3 19.0 45.9 76.7 47.6 58.6 23.2 66.4 47.9 49.6
Iter.2 64.1 57.2 21.2 49.8 79.6 48.6 62.7 25.6 66.4 54.9 53.0
Iter.3 63.2 57.6 21.5 49.6 79.9 48.9 65.2 25.6 66.8 56.5 53.5

Llama3-8B

Prompt Iter.1 66.4 54.0 47.3 64.5 76.4 25.1 75.1 34.6 67.9 41.6 55.2
Iter.2 34.4 50.1 35.9 62.1 70.5 20.9 56.4 30.1 66.8 43.9 47.1

IFT Iter.1 49.1 38.4 52.8 47.9 55.4 21.3 63.0 34.1 63.3 37.1 46.2
Iter.2 40.4 34.2 24.7 42.9 51.1 18.6 54.4 28.8 62.2 28.7 38.5

RL Iter.1 51.8 32.4 46.8 65.9 61.3 22.3 67.6 33.7 62.0 60.1 50.3
Iter.2 39.9 30.2 40.7 40.9 57.3 19.3 55.7 30.6 53.8 55.8 42.4

PTR(our)
Iter.1 59.6 54.0 49.0 62.4 76.4 21.3 73.0 34.1 68.6 60.0 55.8
Iter.2 68.4 55.2 49.0 65.7 79.2 24.7 77.1 36.2 70.1 60.5 58.6
Iter.3 68.6 55.4 48.6 66.1 79.6 24.9 77.0 36.1 67.9 61.3 58.6

Table 1: Main experimental results about our approach and other baselines across various domains.
We experiments on two difference structures LLMs( Qwen2-7b and Llama3-8B ). We also run 2
iteration on different baselines and 3 iteration on our approach. Itertaion 1 means the first answer
to the question, and we construct the format of refining instruction with the previous answer which
is introduced in Method 3.2. We denoted Acc: accuracy. Pass@1:testing on code. Sim: similarity
similared calculated by BGE-m3. These results suggest that our PTR excels at performing well across
multiple attempts. By trading off some accuracy on the first attempt, it significantly enhances the
model’s ability to improve in subsequent iterations.

tasks, its initial performance tends to decline at first. (This performance drop largely stems from
supervised fine-tuning amplifying the initial biases of the base model. When trained on general
datasets, the base models tend to accumulate biases that may not apply to specific domains, leading
to poorer performance on domain-specific tasks.) However, the IFT approach fails to activate the
model’s progressive refinement ability and does not significantly increase the performance after the
first attempts. On CommonsenceQA, The IFT approach does not perform a better response at the
second iteration (40.3%) compared to their first attempt (46.1%). In contrast, PTR approach improves
through iterative attempts without an approach on domain-specific knowledge. This suggests that our
method is not simply distilling knowledge but effectively activating the model to refine outputs and
enhance performance through self-driven iterative improvement.

Refinement beyond Correction Deeper analysis reveals that in open-ended tasks without clear
ground truth, LLMs refine responses to be more thoughtful and comprehensive, regardless of correct-
ness. For example, in the code task shown in Figure 2, the LLM iteratively improves its response
over three iterations, considering additional aspects of the problem. This highlights PTR’s ability to
enhance not just correctness but also the quality and usability of outputs (Shown in Appendix D).

4.2 DOES OUR METHOD DEMONSTRATE GENERALIZATION?

PTR vs. Other Progressive Refinement methods Unlike previous approaches, our method activates
the model’s inherent progressive refinement ability rather than merely boosting accuracy in specific
domains. To validate PTR’s generalization capability, we use datasets with general queries and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

def calculation_average(numbers): # iteration 1
total = sum(numbers)
return total / len(numbers) # returning the output

def calculation_average(numbers): # iteration 2
total = sum(numbers)
return total/len(numbers) if len(numbers) > 0 else None # Adds empty lists check

def calculation_average(numbers): # iteration 3
if not isinstance(numbers, list):

raise TypeError("Input_must_be_a_list") # Introduces type checking
if len(numbers) == 0: # Raises specific errors with informative messages

raise ValueError("List_cannot_be_empty") # Adds protection against empty lists
return sum(numbers)/len(numbers)

Figure 2: Code example shows PTR can refine beyond correction. The PTR goes through three
rounds, providing higher quality response for each iterations. In first interation, model return with
simply output. In second interation, model add more details like considering the empty list. In third
interation, model structured the code and futher add type checking and errors information.

Prompt Iters
General Code Compreh. Summary Math Reasoning Knowledge

MMLU H-Eval DROP Xsum GSM8k Math ARC GPQA Wino* Comm*QA

Acc Pass@1 Acc Rank Acc Acc Acc Acc Acc Acc

Prompt1

Iter.1 58.7 53.9 19.2 46.9 75.1 47.7 50.5 24.6 66.7 46.7
Iter.2 63.4 57.6 20.7 46.6 77.7 48.8 60.6 25.4 66.1 51.5
Iter.3 63.2 57.6 20.9 49.8 79.2 50.2 61.3 24.9 65.9 54.7
Iter.4 63.3 57.6 21.7 49.9 78.1 50.6 62.8 25.6 66.6 55.7

Prompt2

Iter.1 58.7 53.0 19.2 46.6 75.1 47.0 44.5 25.4 66.7 46.7
Iter.2 63.4 52.8 22.1 48.9 77.5 47.2 61.1 25.4 68.8 52.1
Iter.3 62.7 57.9 22.5 49.8 76.8 47.9 59.1 25.6 68.2 50.4
Iter.4 62.8 57.6 22.4 49.6 77.5 47.8 60.0 25.8 67.5 53.1

Prompt3

Iter.1 58.7 52.3 19.2 48.8 75.1 47.5 47.5 23.6 66.7 46.8
Iter.2 63.4 57.6 21.6 48.2 78.3 48.6 59.4 25.6 66.4 50.2
Iter.3 62.9 57.9 21.9 49.6 78.1 48.7 62.1 25.0 67.0 55.0
Iter.4 63.3 57.8 22.3 49.6 77.9 49.6 63.2 25.4 67.2 53.8

Table 2: Results of PTR with different prompts: (1) Assume that this thought could be either correct
or incorrect. Carefully review the thought and provide a better answer. (2) Review your previous
thought and assess whether it’s correct. Then, provide a better response based on your answer. (3)
Regardless of whether your previous thought is correct or not, provide a better answer. Iteration 1
represent the initial answer to the question. Iteration 2 to 4 represent the model’s improvement over
the initial answer. Notibly, the model is not trained with these prompts.

evaluate whether the model can iteratively refine responses across various tasks. As seen in Table 1,
our model refines responses across multiple iterations, significantly improving accuracy across tasks,
and demonstrating effective generalization. We also compare PTR with other progressive refinement
methods like RL to assess generalization. Our results show that methods like RL, when fine-tuned
only on general-domain tasks, fails to activate iterative refinement in specialized tasks, often showing
decreased accuracy. This suggests that our method is more robust in diverse environments, as
it enables the model to iteratively refine its responses without being limited to domain-specific
fine-tuning. By leveraging the model’s inherent progressive refinement capabilities, PTR achieves
consistent improvements across a wide range of tasks.

4.3 IS OUR METHOD ROBUST ACROSS DIFFERENT LLMS AND INSTRUCTIONS?

Prompt Robustness We also evaluated PTR robustness with different prompts and LLMs. Table 2
shows the model’s performance using three different prompts across various tasks, refined over four
iterations. Across all prompts, we find that PTR achieves iterative improvement across different

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

50
00

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Training Steps

20
30
40
50
60
70
80

Pe
rfo

rm
an

ce
 (%

)

(A) Performance Trends
GSM8k
MATH
ARC
GPQA
Wino
Comm
MMLU
DROP
XSum
Huma

GSM
8k
MAT

H
ARC

GPQ
A
Wino

Com
m
MMLU

DROP
XSu

m
Hum

a

Tasks

0
10
20
30
40
50
60
70
80

Pe
rfo

rm
an

ce
 (%

)

(B) Performance Comparison
Base Performance
Initial Performance
Final Performance

GSM
8k
MAT

H
ARC

GPQ
A
Wino

Com
m
MMLU

DROP
XSu

m
Hum

a

Tasks

20
30
40
50
60
70
80

Pe
rfo

rm
an

ce
 (%

)

(C) Distribution Across Tasks

40
00

80
00

12
00

0
16

00
0

20
00

0
22

00
0

24
00

0
26

00
0

27
00

0
28

00
0

29
00

0
30

00
0

Training Steps

GSM8k
MATH

ARC
GPQA
Wino

Comm
MMLU
DROP
XSum
Huma

Ta
sk

s

58 58 53 54 77 67 72 78 77 79 78 80

43 43 44 43 45 45 49 48 49 49 49 49

36 38 37 34 36 36 38 55 58 63 62 65

21 20 20 20 23 16 19 25 25 26 25 26

52 53 53 56 60 60 57 67 67 66 67 67

40 41 40 44 48 41 46 48 54 56 54 55

50 53 61 64 64 64 64 64 64 64 63 64

17 19 22 17 19 18 19 21 21 21 21 22

40 44 44 43 45 50 46 49 48 50 50 50

36 36 35 38 42 44 50 57 58 58 57 57

(D) Heatmap Across Training Steps

20

30

40

50

60

70

Figure 3: Plot A: Multi-line plot showing the performance trends for 10 tasks, with the average
performance (in black) and variance. The overall trend is upward, with the red line highlighting the
point where average performance reaches 46%. Plot B: Bar plot comparing initial, baseline, and final
performance for each task. While initial performance is lower than the baseline, the final performance
surpasses it, indicating that the model has learned and improved from prior iterations. Plot C: Box
plot displaying the performance distribution across tasks. The varying lengths of the bars show the
performance improvement, with longer bars indicating greater improvements across tasks. Plot D:
Heat map representing task performance across training steps. The x-axis represents the training
steps, while the y-axis represents the tasks. The color intensity indicates the model’s performance at
each task and training step, with deeper colors corresponding to better performance.

prompts. Specifically, In the math (GSM8K) tasks, PTR is well-performed(78.1%) compared with
initial responses (75.1%). On reasoning tasks (ARC), PTR see substantial improvements, especially
with Prompts 1 (62.8%) and Prompts 3 (63.2%). DROP tasks also improve steadily, with accuracy
increasing to 22.5% by Iteration 3 in Prompt 2. Our approach enables the model to learn from
previous thoughts, rather than relying on the instruction used during training. This PTR enables the
model to consistently improve its performance on different prompts, demonstrating the robustness of
the PTR mechanism.

LLMs Robustness The table 1 also demonstrates that both Llama3-8B and Qwen2-7B exhibit
robustness across different prompts and tasks. While Llama3-8B often outperforms Qwen2-7B, both
models show consistent improvements with iterative refinement. This robustness ensures that PTR
can be applied effectively to a wide variety of open-source LLMs.

4.4 DOES PROGRESSIVE REFINEMENT ABILITY EXHIBIT EMERGENCE DURING TRAINING?

Overall Performance Figures (A) and (B) show a clear upward trend in performance, as shown in
Figure 3 shown. Notably, after 24,000 training steps (equivalent to 93 million tokens), significant
improvements indicate the emergence of inference capabilities. As training continues, we observe that
the average performance of PTR increases from 40.1% to 55.6%, showing an overall improvement
across different tasks.

Task Complexity and Learning Curve We also find that tasks of varying difficulty exhibit different
emergence timings and improvement rates. Plots (C) and (D) reveal that simpler tasks such as MMLU
and DROP show early and steady improvements around 22,000 steps. More complex inference tasks
such as ARC and GPQA exhibit delayed emergence, with ARC improving from 36.3% to 65.2% and
GPQA from 23.2% to 25.6% after 24,000 steps. This shows that as training continues, the model’s
ability to handle complex reasoning and other tasks significantly improves, showing clear emergent
behavior in different task types.

4.5 HOW MANY THINKING STEPS ARE REQUIRED TO ACHIEVE OPTIMAL PERFORMANCE?

We investigate how iterative thinking steps influence performance across tasks by conducting experi-
ments over ten iterations using the Qwen2-8B model. Figure 4 illustrates performance trends.

Improvements in the First Three Iterations In the first three iterations, we saw significant improve-
ments in model performance. In the mathematical reasoning task GSM8K, the accuracy improved
from 75.0% in the first iteration to 79.9% in the second iteration. Similarly, the ARC dataset improves

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 4: Performance of PTR over ten iterations across different tasks. The left plots show accuracy
improvements in mathematical reasoning (GSM8K and MATH), reasoning tasks (ARC, GPQA,
Winogrande, CommonsenseQA), comprehension tasks (MMLU, DROP, XSum), and coding tasks
(HumanEval). More details are in Appendix B.7. The dashed line is the baseline of the model. We
can see the performance of most tasks surpass the base line after the two or third iteration. The right
plots show performance over six iterations with radar charts, In this chart, we can clearly find the
performance saturated after the first two iteration as shown in the blue arraies in the figure.

from 58.6% to 65.2% in the third iteration. This shows that PTR quickly refines its problem-solving
through progressive refinement.

After the third iteration, the performance improvements for most tasks stabilize. In GSM8K, the
accuracy fluctuates slightly between the third and tenth iterations, ranging from 79.9% to 80.1%. In
MATH, the accuracy remains around 50.2% to 50.6% after reaching a peak in the second iteration.
This indicates that the marginal gains decrease over time, indicating that the performance ceiling of
the model is converging.

Sustained Performance Without Overfitting PTR performance is saturated after the first two
iterations, and remains stable or improves slightly, with no notable declines. For instance, in DROP
and XSum, accuracy increases from 19.0% and 45.9% to 21.6% and 49.7%, respectively, over ten
iterations.

More Computation for Hard Tasks Complex tasks benefit more from iterative thinking and may
require additional iterations for optimal performance. Accuracy in CommonsenseQA improves
from 47.9% to 58.6% by the eighth iteration, suggesting that tasks with higher cognitive demands
allow PTR to leverage iterative refinement more effectively. While GSM8K reaches near-optimal
performance within a few iterations, tasks like MATH require more computation to achieve substantial
gains, likely due to the challenging nature of logical reasoning involved.

5 CONCLUSION

We propose PTR, an approach designed to stimulate the progressive thought refinement capabilities
inherent in LLMs, allowing them to improve their responses through multiple rounds of iterations.
PTR adopts an annotation-free strategy to gradually build refined thoughts and answers through a
weak and strong models collaborative selection process, and combines thought-answer consistency
filtering to ensure logical coherence. Our weighted thought mask fine-tuning further activates the
model’s internal refinement ability by learning the improvement from initial thoughts to refined
answers. Experimental results show that PTR simply trained with general open-domain datasets, but
significantly improves the model’s progressive refinement capabilities in ten different tasks, including
knowledge reasoning, code generation, and mathematical reasoning, achieving a generalization level
not observed by previous methods.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan, Peter Clark, Derry Tanti Wijaya, and Niket
Tandon. RL4F: Generating natural language feedback with reinforcement learning for repairing
model outputs. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 7716–7733, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.427. URL https://aclanthology.org/2023.acl-long.
427.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Yiannis Charalambous, Norbert Tihanyi, Ridhi Jain, Youcheng Sun, Mohamed Amine Ferrag, and
Lucas C Cordeiro. A new era in software security: Towards self-healing software via large language
models and formal verification. arXiv preprint arXiv:2305.14752, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning,
2024. URL https://arxiv.org/abs/2301.00234.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factual-
ity and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325,
2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large Language Models can Self-Correct with Tool-Interactive Critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Haixia Han, Jiaqing Liang, Jie Shi, Qianyu He, and Yanghua Xiao. Small language model can
self-correct, 2024. URL https://arxiv.org/abs/2401.07301.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi,
Eric Hambro, and Roberta Railneau. Glore: When, where, and how to improve llm reasoning via
global and local refinements. arXiv preprint arXiv:2402.10963, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv.org/abs/2103.03874.

11

https://aclanthology.org/2023.acl-long.427
https://aclanthology.org/2023.acl-long.427
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2401.07301
https://arxiv.org/abs/2103.03874


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010,
2023a.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023b.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205.
11916.

Jierui Li, Szymon Tworkowski, Yingying Wu, and Raymond Mooney. Explaining competitive-level
programming solutions using llms, 2023a. URL https://arxiv.org/abs/2307.05337.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
for evaluating alignment, 2023b. URL https://arxiv.org/abs/2310.05470.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023a. URL https://arxiv.org/abs/2303.17651.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023b.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization, 2018. URL https:
//arxiv.org/abs/1808.08745.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. CodeGen: An Open Large Language Model for Code with Multi-Turn Program
Synthesis. ICLR, 2023.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Is self-repair a silver bullet for code generation? In The Twelfth International Conference on
Learning Representations, 2023.

OpenAI. Learning to reason with llms. 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse self-correction
strategies. arXiv preprint arXiv:2308.03188, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks,
2019. URL https://arxiv.org/abs/1908.10084.

12

https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2307.05337
https://arxiv.org/abs/2310.05470
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1808.08745
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1908.10084


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa benchmark,
2023. URL https://arxiv.org/abs/2311.12022.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024a.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences, 2024b. URL https://arxiv.org/abs/2404.03715.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/
1907.10641.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023a. URL
https://arxiv.org/abs/2303.11366.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning. Advances in Neural
Information Processing Systems, 2023b.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/
abs/1811.00937.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward self-
improvement of llms via imagination, searching, and criticizing, 2024. URL https://arxiv.
org/abs/2404.12253.

Catherine Tony, Nicolás E. Díaz Ferreyra, Markus Mutas, Salem Dhiff, and Riccardo Scandariato.
Prompting techniques for secure code generation: A systematic investigation, 2024. URL https:
//arxiv.org/abs/2407.07064.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022a.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022b. URL https://arxiv.org/abs/2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023a.

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and Heng Ji. Leti: Learning to generate from
textual interactions. arXiv preprint arXiv:2305.10314, 2023b.

Ziqi Wang, Le Hou, Tianjian Lu, Yuexin Wu, Yunxuan Li, Hongkun Yu, and Heng Ji. Enabling
language models to implicitly learn self-improvement, 2024. URL https://arxiv.org/
abs/2310.00898.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct, 2022. URL https://arxiv.org/
abs/2211.00053.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and
Yejin Choi. Generating sequences by learning to self-correct. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=hH36JeQZDaO.

13

https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2404.03715
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2404.12253
https://arxiv.org/abs/2404.12253
https://arxiv.org/abs/2407.07064
https://arxiv.org/abs/2407.07064
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2310.00898
https://arxiv.org/abs/2310.00898
https://arxiv.org/abs/2211.00053
https://arxiv.org/abs/2211.00053
https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai Zhang, and Yanghua Xiao. How easily do
irrelevant inputs skew the responses of large language models? In First Conference on Language
Modeling, 2024a. URL https://openreview.net/forum?id=S7NVVfuRv8.

Ting Wu, Xuefeng Li, and Pengfei Liu. Progress or regress? self-improvement reversal in post-
training, 2024b. URL https://arxiv.org/abs/2407.05013.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023.

Tianci Xue, Ziqi Wang, Zhenhailong Wang, Chi Han, Pengfei Yu, and Heng Ji. Rcot: Detecting
and rectifying factual inconsistency in reasoning by reversing chain-of-thought. arXiv preprint
arXiv:2305.11499, 2023.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023a.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem Proving with Retrieval-Augmented
Language Models. arXiv preprint arXiv:2306.15626, 2023b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying Peng, Jun Wang, Yueting Zhuang, and Weiming
Lu. Self-contrast: Better reflection through inconsistent solving perspectives, 2024. URL https:
//arxiv.org/abs/2401.02009.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on
natural language planning. arXiv preprint arXiv:2406.04520, 2024.

14

https://openreview.net/forum?id=S7NVVfuRv8
https://arxiv.org/abs/2407.05013
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2401.02009
https://arxiv.org/abs/2401.02009


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A METHOD

A.1 SELF-CONSISTENCY FILTERING

In each iteration of thought generation, we apply multiple sampling techniques to generate several
candidate thoughts. These candidate thoughts undergo a consistency check against the final answer
to ensure logical coherence throughout the thought process.

A.1.1 N-SAMPLING FOR THOUGHT GENERATION

For each query qi, we perform n-sampling to generate N candidate thoughts at each step of the
thought generation process. These thoughts denoted as ŷ

t
m, represent the m-th query at the t-th

attempt, and they collectively form the set of potential thought sequences.

To evaluate the consistency between the thought sequences and the final answer, we vectorize the
thoughts and the answer using Sentence-BERT embeddings. Sentence-BERT provides an effective
way to embed both the thought sequences and the final answer into a shared vector space, capturing
semantic similarities between them.

A.2 CONSISTENCY COMPUTE

To evaluate the consistency between the thought sequences and the final answer, we vectorize the
thoughts and the answer using Sentence-BERT embeddings. Sentence-BERT provides an effective
way to embed both the thought sequences and the final answer into a shared vector space, capturing
semantic similarities between them.

The similarity between each thought yt and the prior thought yt−1 is computed using the cosine
similarity between their Sentence-BERT embeddings. The consistency score is designed to capture
how well the current thought yt is consistent with the prior thought yt−1 and how closely it relates to
the final answer.

We define a Consistency Function Fcons(yt, yt−1) as the cosine similarity between the current
thought yt and the prior thought yt−1. The function is computed as:

Fcons(yt, yt−1) = CosineSimilarity(BERT(yt),BERT(yt−1)) (A.1)

Where CosineSimilarity(a, b) is defined as:

CosineSimilarity(a, b) = a ⋅ b

∥a∥∥b∥ (A.2)

Here, a and b are the embeddings of yt and yt−1 respectively, generated by the Sentence-BERT model.
The cosine similarity measures the angle between he two vectors in the embedding space, with values
closer to 1 indicating high similarity and values closer to 0 indicating low similarity.

A.3 DYNAMIC CONFIDENCE ADJUSTMENT:

By introducing a dynamic confidence decay strategy, the model can gradually increase its confidence
during the reasoning process. For example, the confidence βt can increase as the reasoning step t
progresses, instead of staying constant throughout the process. This will allow the model to gain
more confidence as it refines its thoughts and reasoning.

By adjusting the weights of each reasoning step, βt can control how the model’s confidence evolves.
At the initial steps, the model can have a lower confidence since the thought process is still being
refined. As the reasoning progresses, the model should gradually increase its confidence and have
higher confidence at the final step. This can be achieved by adjusting βt dynamically like so:

βt = β0 ⋅ (
t
n) (A.3)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Iter1 Iter2 Iter3
Iteration

48

49

50

51

52

53

Ac
cu

ra
cy

 (%
)

49.60%

53.00%
53.48%

47.60%

50.80%

51.70%

48.50%

51.10% 51.30%

48.10%

51.50%

53.10%

Average Accuracy Comparison for Different Temperature Settings

Fixed Temp = 0
Fixed Temp = 0.4
Fixed Temp = 0.8
Temperature Decay

Figure 5: performance of a model under different temperature settings during inference

where β0 is the initial confidence and n is the total number of reasoning steps. This approach ensures
that the confidence βt increases as reasoning progresses.

A.4 TEMPERATURE ADJUSTMENT

This graph illustrates the performance of a model under different temperature settings during inference,
measured over three iterations in terms of accuracy. The comparison includes four scenarios: fixed
temperature at 0, the fixed temperature at 0.4, fixed temperature at 0.8, and gradually decaying
temperature. The main findings are as follows: The graph clearly shows that setting the temperature
to 0 yields the best performance. A temperature of 0 ensures that the model generates deterministic
outputs at every step, leading to more reliable and stable results. Higher temperatures (such as 0.4
and 0.8) introduce randomness into the process, reducing overall accuracy. The decaying temperature
approach improves accuracy over time but does not surpass the performance of a fixed temperature of
0.

A.5 SENSITIVITY ANALYSIS

Table 3: Performance of different hyperparameter configurations across iterations.

Ratio Iteration MMLU H-Eval GSM8k ARC Comm Avg
1 60.9% 51.2% 76.8% 63.1% 48.5% 60.1%

1 0 0 2 62.3% 53.0% 76.7% 65.2% 52.9% 62.0%
3 62.7% 52.4% 78.3% 66.4% 55.1% 63.0%

1 60.9% 51.8% 74.8% 61.3% 48.2% 59.4%
0.9 0.05 0.05 2 62.6% 55.5% 78.4% 64.3% 54.1% 63.0%

3 62.5% 56.1% 78.9% 64.5% 54.9% 63.4%

1 58.5% 51.2% 76.2% 62.2% 48.2% 59.3%
0.8 0.1 0.1 2 63.3% 55.5% 78.4% 64.3% 54.1% 63.1%

3 63.9% 56.7% 79.7% 66.2% 54.8% 64.3%

1 56.3% 51.8% 74.8% 58.6% 45.9% 57.5%
0.7 0.15 0.15 2 58.3% 52.4% 70.7% 64.3% 50.6% 59.3%

3 57.9% 52.4% 73.2% 64.5% 52.3% 60.1%

1 54.8% 48.2% 70.6% 61.3% 44.1% 55.8%
0.6 0.2 0.2 2 55.6% 47.6% 71.5% 64.3% 50.3% 57.9%

3 55.7% 48.2% 71.3% 64.5% 50.8% 58.1%

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

We conduct a sensitivity analysis to evaluate the impact of each hyperparameter. Additionally, we
explore suggestions for setting these parameters to simplify the tuning process and make our method
more accessible for broader applications.

Hyperparameter Complexity: The hyperparameters λ1, λ2, and λ3 balance various aspects of
the model’s loss function. However, extensive tuning of these hyperparameters could limit the
practical adoption of PTR. Setting λ1 = 0.8, λ2 = 0.1, and λ3 = 0.1 resulted in the highest average
accuracy of 64.3%, effectively balancing final answer accuracy, reasoning consistency, and confidence
distribution. For broader applications, λ1 = 1.0, λ2 = 0.0, λ3 = 0.0 achieved an average accuracy of
63.0%, simplifying training while maintaining competitive performance.

Impact of low λ1: Setting λ1 too low negatively impacts final answer accuracy. For instance, at
λ1 = 0.6, the model’s ability to self-refine diminishes, reducing overall performance. Roles of λ2

and λ3: While small values of λ2 and λ3 support reasoning consistency and confidence progression,
their contribution to final accuracy is limited compared to the computational cost of tuning. For
tasks requiring high reasoning consistency and confidence optimization, use λ1 = 0.8, λ2 = 0.1, and
λ3 = 0.1. For most real-world applications, λ1 = 1.0, λ2 = 0.0, and λ3 = 0.0 is sufficient.

B EXPERIMENT

B.1 SETTINGS

Table 4: Hyperparameter Settings for Training and Inference

Hyperparameter/Description Training Values Inference
bf16 TRUE N/A
epochs 2 N/A
per device train batch size 1 N/A
gpus 2xH8100 2xH800
gradient accumulation steps 256 N/A
learning rate 5e-5 N/A
weight decay 0 N/A
warmup step 1000 N/A
learning rate scheduler type cosine N/A

model max length 2048 2048
temperature N/A 0
top_p N/A 1
max_new_tokens N/A 1000

B.2 ITERATION RESULT

Iterations Math Code Reasoning Comprehension Overall Avg.

Baseline 62.75 52.3 49.03 41.37 49.86
Iteration 1 65.10 (+2.35) 57.2 (+4.9) 51.23 (+2.20) 45.03 (+3.66) 53.13 (+3.33)
Iteration 2 65.55 (+0.45) 57.6 (+0.4) 52.12 (+0.89) 45.57 (+0.54) 53.65 (+0.52)
Iteration 3 65.00 (-0.55) 57.3 (-0.3) 52.06 (-0.06) 45.10 (-0.47) 53.33 (-0.32)
Iteration 4 64.75 (-0.25) 58.1 (+0.8) 52.08 (+0.02) 45.46 (+0.36) 53.54 (+0.21)
Iteration 5 65.05 (+0.30) 57.2 (-0.9) 52.05 (-0.03) 45.03 (-0.43) 53.34 (-0.20)
Iteration 6 64.75 (-0.30) 57.6 (+0.4) 51.96 (-0.09) 45.03 (+0.00) 53.17 (-0.17)
Iteration 7 65.05 (+0.30) 57.9 (+0.3) 52.00 (+0.04) 45.37 (+0.34) 53.65 (+0.48)
Iteration 8 65.20 (+0.15) 57.9 (+0.0) 52.05 (+0.05) 45.40 (+0.03) 53.70 (+0.05)
Iteration 9 65.00 (-0.20) 57.4 (-0.5) 52.09 (+0.04) 45.03 (-0.37) 53.70 (+0.00)
Iteration 10 65.00 (+0.00) 57.4 (+0.0) 52.09 (+0.00) 45.03 (+0.00) 53.62 (-0.08)

Table 5: Averages for Math, Code, Reasoning, and Comprehension datasets over ten iterations, with colored
improvements and declines.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Iterations GSM8k MATH ARC GPQA Winogrande

Baseline 76.7 48.8 58.6 23.2 66.4
Iteration 1 79.6 (+2.9) 50.6 (+1.8) 62.7 (+4.1) 25.6 (+2.4) 65.6 (-0.8)
Iteration 2 79.9 (+0.3) 51.2 (+0.6) 65.2 (+2.5) 25.6 (+0.0) 66.2 (+0.6)
Iteration 3 79.2 (-0.7) 50.8 (-0.4) 64.5 (-0.7) 25.5 (-0.1) 66.2 (+0.0)
Iteration 4 78.9 (-0.3) 50.6 (-0.2) 65.2 (+0.7) 25.8 (+0.3) 66.3 (+0.1)
Iteration 5 79.9 (+1.0) 50.2 (-0.4) 66.3 (+1.1) 25.6 (-0.2) 65.9 (-0.4)
Iteration 6 79.3 (-0.6) 50.2 (+0.0) 65.4 (-0.9) 25.3 (-0.3) 65.8 (-0.1)
Iteration 7 80.1 (+0.8) 50.0 (-0.2) 64.3 (-1.1) 24.9 (-0.4) 66.0 (-0.2)
Iteration 8 79.8 (-0.3) 50.6 (+0.6) 65.2 (+0.9) 25.2 (+0.3) 66.2 (+0.0)
Iteration 9 79.5 (-0.3) 50.2 (-0.4) 65.3 (-0.2) 25.4 (+0.2) 66.3 (+0.1)
Iteration 10 79.5 (+0.0) 50.2 (+0.0) 65.3 (+0.0) 25.4 (+0.0) 66.3 (+0.0)

Iterations CommonsenseQA MMLU DROP XSum HumanEval

Baseline 47.9 59.2 19.0 45.9 52.3
Iteration 1 54.9 (+7.0) 64.1 (+4.9) 21.2 (+2.2) 49.8 (+3.9) 57.2 (+4.9)
Iteration 2 56.5 (+1.6) 63.2 (-0.9) 21.5 (+0.3) 49.6 (+0.2) 57.6 (+0.4)
Iteration 3 56.5 (+0.0) 63.1 (-0.1) 21.5 (+0.0) 48.7 (-0.9) 57.3 (-0.3)
Iteration 4 56.6 (+0.1) 63.0 (-0.1) 21.4 (-0.1) 49.5 (+0.8) 58.1 (+0.8)
Iteration 5 54.9 (-1.7) 62.6 (-0.4) 21.2 (-0.2) 49.6 (+0.0) 57.2 (-0.9)
Iteration 6 55.2 (+0.3) 62.5 (-0.1) 21.1 (-0.1) 49.3 (-0.3) 57.6 (+0.4)
Iteration 7 58.6 (+3.4) 63.1 (+0.6) 21.4 (+0.3) 49.6 (+0.0) 57.9 (+0.3)
Iteration 8 57.5 (-1.1) 63.3 (+0.2) 21.6 (+0.2) 49.7 (+0.1) 57.9 (+0.0)
Iteration 9 57.7 (+0.2) 63.5 (+0.2) 21.6 (+0.0) 49.3 (-0.4) 57.4 (-0.5)
Iteration 10 57.7 (+0.0) 63.5 (+0.0) 21.6 (+0.0) 49.3 (+0.0) 57.4 (+0.0)

Table 6: Results across ten iterations for different datasets, with improvements and declines.

B.3 EFFECTIVENESS OF THE THOUGHT-MASK STRATEGY

We conducted experiments with and without the masking strategy, and the results clearly showed
that the mask improves performance. The thought-mask guides the model’s attention during training,
helping it refine answers based on prior reasoning steps. Without the mask, the model tends to
compute immature or incorrect intermediate thoughts, leading to worse initial responses.

The IFT method removes the thought process and directly fine-tunes the input with the strong model’s
answer. This approach demonstrates that our data construction format is not merely a distillation of
the strong model’s abilities but instead successfully triggers the model’s self-refinement capabilities.
Basic distillation does not yield significant improvements on specific tasks or enable continuous
self-improvement, further validating the effectiveness of our method.

Table 7: Performance Comparison with and without Thought-Mask Strategy

Method MMLU H-Eval DROP Xsum GSM8k Math ARC GPQA Wino Comm AVE
Mask 49.9% 48.8% 17.2% 41.1% 67.4% 42.1% 56.3% 19.4% 61.8% 45.1% 44.9%

55.1% 49.4% 19.5% 40.9% 71.1% 43.8% 62.9% 20.8% 58.4% 50.3% 47.2%

UnMask 59.2% 52.4% 19.0% 45.9% 76.7% 47.6% 58.6% 23.2% 66.4% 47.9% 49.7%
64.1% 57.2% 21.2% 49.8% 79.9% 48.6% 62.7% 25.6% 66.4% 54.9% 53.0%

B.4 COMPARISON WITH PRIOR WORKS ON REFINEMENT METHODS OR APPROACHES WITH
VERIFIERS

B.4.1 REFINEMENT METHODS OVERVIEW

Self-refine Madaan et al. (2023a) Self-refine does not require training but relies on standard
answers to assist reasoning. It uses specific math-refine prompts to guide a base model in critiquing
and revising its mistakes.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 8: Performance Comparison on GSM8K and MATH

Method GSM8K MATH
Self-refine iteration1 79.1 48.7
With ground truth iteration2 81.3 50.1
Without ground truth iteration2 74.7 48.4

Pair Self Correction iteration1 77.7 48.2
Pair Self Correction iteration2 80.1 49.5

Reward-model Verifier iteration1 80.0 48.1
Reward-model Verifier iteration2 81.7 49.2

Ours iteration1 76.7 47.6
Ours iteration2 79.9 48.9

• With ground truth: The model checks the correctness of its response only if the initial answer
is wrong. If incorrect, it generates a new response in a second iteration and stops as soon as
the correct answer is predicted.

• Without ground truth: The model always refines its answer without verifying correctness.

Reward Model Verifier (ORM) Cobbe et al. (2021) This method requires training a reward
model (verifier) and using it during inference to evaluate and refine answers. First, the reward model
is trained using a best-of-n strategy to construct a mathematical dataset. For a given problem, 10
candidate answers are generated, and the reward model scores these answers based on correctness.
The highest-scoring answers are labeled correct, while others are labeled incorrect. During inference,
the reward model evaluates the responses iteratively, refining incorrect ones until the final output is
most likely correct.

Pair Self-Corrective Welleck et al. (2022) This method trains a single model with self-diagnosis
and generation capabilities. It fine-tunes a large model using pairs of correct and incorrect solutions,
enabling it to learn to correct mistakes. If the model’s self-diagnosis determines the output is correct,
no changes are made; if incorrect, the model revises the response.

Experimental results show that performance improvements across methods are modest, typically
within 1-3%. The self-refine approach relies on ground-truth feedback for slight gains; without it,
performance often deteriorates. Similarly, Pair Self-Correction and Reward-Model Verifier achieve
comparable improvements but remain limited.

Our method achieves similar improvements and demonstrates effectiveness in non-mathematical and
non-reasoning tasks where other approaches struggle due to challenges in dataset construction. Unlike
the self-refine structure, which relies heavily on external guidance, our model consistently improves
performance without needing ground truth, showcasing its broader applicability and robustness.

B.5 WILCOXON SIGNED-RANK TEST

In this experiment, we analyzed samples across three dimensions: model parameter strength and
model version (new vs. old), and domain-specific fine-tuning. Using the Wilcoxon signed-rank
test, we assessed the differences in inference quality between the strong and weak models across
these dimensions to verify whether the strong model provides significant improvements. We use
human experts and Auto-j Li et al. (2023b) to judge the quality of the generated responses.

To visually present the score differences across the three dimensions, we plotted a distribution of
inference score differences (see Figure 6). The box plot displays score differences in the following
three dimensions:

• Model Parameter Strength: Differences in inference quality between models with strong
parameters and weak parameters.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

• Model Version (New vs. Old): Score differences comparing the performance of new and
old versions of the model.

• Domain-Specific Fine-Tuning: Score differences between models that have undergone
domain-specific fine-tuning and those that have not. In this work, we simply not using this
criteria, since the open-domian datasets are relatively various from tasks. However, it can be
used in future work.

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama3-8b on QA

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama3-8b on Summary

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama3-8b on Creation

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama2-70b on QA

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama2-70b on Summary

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama2-70b on Creation

Model weak Model strong
0

2

4

6

8

10
Codeqwen2-7b vs Qwen2-7b on Code

Model weak Model strong
0

2

4

6

8

10
Mathqwen2-7b vs Qwen2-7b on Math

Model weak Model strong
0

2

4

6

8

10
MetaMath-7b vs Llama2-7b on Math

Sc
or

es
 (0

-1
0)

Model

Wilcoxon signed-rank test

Figure 6: Boxplot of score differences across model parameters, model version, and fine-tuning. The
boxplots generated from the data compare two sets of models: weaker models (denoted as "Model
weak") and stronger models (denoted as "Model strong") across nine different tasks. The comparisons
involve different models such as Llama3-70b vs. Llama3-8b, Llama3-70b vs. Llama2-70b, and
Codeqwen2-7b vs. Qwen2-7b on tasks like QA, Summary, Creation, Math, and Code.

While the boxplots provide a visual confirmation that Model Strong outperforms Model weak across
all tasks, a Wilcoxon signed-rank test can further confirm these results statistically. Based on the
boxplots, we would expect the p-values from this test to be significantly less than 0.05, indicating that
the differences in performance between Model Weak and Model strong are statistically significant.

Table 9: Wilcoxon Signed-Rank Test Results for Model Comparisons

Task Weak Model Strong Model p-value Significance Sample Size z-score

QA Llama3-8b Llama3-70b < 0.05 Significant 100 22.96
Summary Llama3-8b Llama3-70b < 0.05 Significant 100 20.35
Creation Llama3-8b Llama3-70b < 0.05 Significant 100 21.85

QA Llama2-70b Llama3-70b < 0.05 Significant 110 19.24
Summary Llama2-70b Llama3-70b < 0.05 Significant 110 18.76
Creation Llama2-70b Llama3-70b < 0.05 Significant 110 19.57

Code Qwen2-7b Codeqwen2-7b < 0.05 Significant 120 23.67
Math Qwen2-7b Mathqwen2-7b < 0.05 Significant 130 21.43
Math Llama2-7b MetaMath-7b < 0.05 Significant 130 22.02

We find that the Wilcoxon signed-rank test confirms our previous results. 1) Larger model sizes
(e.g., Llama3-70b) consistently outperform smaller models across a variety of tasks. 2) Fine-tuning
for specific domains (such as coding or math) provides significant performance improvements. 3)
newer model versions (e.g., Llama3 vs. Llama2) yield better results, though the improvements are
generally smaller compared to model size differences.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

The analysis of the boxplots clearly demonstrates that stronger models significantly outperform their
weaker counterparts across all tasks. These findings suggest that both model size and fine-tuning for
specific domains play crucial roles in improving model performance. The Wilcoxon signed-rank test,
if conducted, is expected to support these visual findings, confirming the statistical significance of the
observed differences.

B.6 SETTING DETAILS

Open-domain Datasets

• WizardLM Xu et al. (2023) is an instruction dataset built with the EVOL-INSTRUCT method.
EVOL-INSTRUCT utilizes CHATGPT to augment the complexity of the same queries in Alpaca
and ShareGPT. We denote these two subsets as WizardLM(Alpaca) and WizardLM(ShareGPT) for
clarification.1

Data Filtering In this section, we provide details about the open-domain datasets used for query
preparation. These datasets were chosen for their generalizability and diversity of content, ensuring
the model is exposed to a wide range of topics and query types. Our selection process was guided by
the following criteria:

• Data Cleaning Pipeline: The cleaning process involved removing noise such as HTML tags,
non-alphanumeric characters, and duplicate entries. We applied frequency-based filtering to
exclude long-tail queries and low-frequency phrases that are unlikely to contribute to the model’s
refinement abilities.

• Final Dataset Size: After applying all filtering and cleaning steps, the final dataset consisted of
approximately 40k high-quality, open-domain query-answer pairs.

Eval Tasks Choice We deploy a benchmark to evaluate whether our approach can activate the
model’s progressive refinement capabilities, enabling it to think and iterate across various dimensions.
This comprehensive benchmark encompasses eight categories and eleven tasks, rigorously assessing
language models on multiple dimensions including basic perception, mathematics, coding,
summarization, continuation, question answering, and experimentation.

In our experiments, we utilized eleven widely recognized and diverse datasets from various domains
to comprehensively cover different skills and abilities. For general cognitive abilities, we used
the MMLU dataset Hendrycks et al. (2020), which spans tasks from junior high to professional
exams. Code comprehension and problem-solving were evaluated using the HumanEval dataset Chen
et al. (2021), while reading comprehension and reasoning were assessed through the DROP dataset
Dua et al. (2019). The XSum dataset Narayan et al. (2018) was used for summarization tasks, and
mathematical reasoning was tested using the MATH Hendrycks et al. (2021) and GSM8K Cobbe
et al. (2021) datasets. Complex reasoning was evaluated with the GPQA dataset Rein et al. (2023).
For knowledge representation and common-sense reasoning, we utilized Winogrande Sakaguchi et al.
(2019) and CommonsenseQA Talmor et al. (2019). Finally, creative reasoning was tested using the
HellaSwag dataset Zellers et al. (2019). Unlike other refinement approaches Wang et al. (2024), we
do not partition the evaluation datasets for fine-tuning. Instead, we perform fine-tuning on general
domain data. To verify the generalization of the model’s progressive refinement capabilities, we
evaluate it on 11 unseen evaluation datasets.

Metrics In our evaluation framework, for objective questions, we assess answer correctness using
the Accuracy metric. For coding problems, we employ the pass@1 metric to gauge the effectiveness
of solutions. For subjective questions, we utilize GPT-4 for initial analysis and scoring, supplemented
by expert evaluation to ensure a comprehensive assessment. This approach emphasizes a multi-
dimensional evaluation of responses, focusing not only on correctness but also on quality and depth
of insight.

1We use the WizardLM in https://huggingface.co/datasets/WizardLM/WizardLM_
evol_instruct_V2_196k.

21

https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k
https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

2 4 6 8 10
Iterations

77

78

79

80

Ac
cu

ra
cy

 (%
)

GSM8k (Math)

GSM8k
GSM8k Baseline

2 4 6 8 10
Iterations

49.0

49.5

50.0

50.5

Ac
cu

ra
cy

 (%
)

MATH (Math)

MATH
MATH Baseline

2 4 6 8 10
Iterations

60

62

64

66

Ac
cu

ra
cy

 (%
)

ARC (Reasoning)

ARC
ARC Baseline

2 4 6 8 10
Iterations

23.5

24.0

24.5

25.0

25.5

Ac
cu

ra
cy

 (%
)

GPQA (Reasoning)

GPQA
GPQA Baseline

2 4 6 8 10
Iterations

48

50

52

54

56

58

Ac
cu

ra
cy

 (%
)

CommonsenseQA (Knowledge)

CommonsenseQA
CommonsenseQA Baseline

2 4 6 8 10
Iterations

59

60

61

62

63

64

Ac
cu

ra
cy

 (%
)

MMLU (General)

MMLU
MMLU Baseline

2 4 6 8 10
Iterations

19.0

19.5

20.0

20.5

21.0

21.5

Ac
cu

ra
cy

 (%
)

DROP (Comprehension)

DROP
DROP Baseline

2 4 6 8 10
Iterations

46

47

48

49

Ac
cu

ra
cy

 (%
)

XSum (Summary)

XSum
XSum Baseline

2 4 6 8 10
Iterations

54

56

58

Ac
cu

ra
cy

 (%
)

HumanEval (Coding)

HumanEval
HumanEval Baseline

Figure 7: Performance of PTR over ten iterations across different tasks. The plots show accuracy
improvements in mathematical reasoning (GSM8k and MATH), reasoning tasks (ARC, GPQA,
Winogrande, CommonsenseQA), comprehension tasks (MMLU, DROP, XSum), and coding tasks
(HumanEval). Baseline performance is indicated by dashed lines.

B.7 ITERATION

collaspe of post training During the fine-tuning process, the model’s weights begin to adjust from
the pre-trained base model weights. Initially, the new task or data introduces signals that differ
significantly from what the base model has learned. As a result, the model needs time to adapt to
the new data distribution and task requirements, which may cause performance to drop initially,
sometimes even below the base model’s performance.

Disruptions from gradient updates: During the initial phase of fine-tuning, the model’s weights are
updated, which can cause instability in the model’s predictions. As the model attempts to find new
optimal weights, the performance may fluctuate or degrade temporarily.

Interference from different domains or tasks: When the fine-tuning task differs significantly from
the base model’s pre-training data in terms of distribution or objectives, the model may "forget" some
of the general knowledge learned during pre-training. This rapid weight adjustment can initially harm
performance until the model adapts to the new task.

Convergence and stability: During the initial phase of fine-tuning, the model’s weights are updated,
which can cause instability in the model’s predictions. As the model attempts to find new optimal
weights, the performance may fluctuate or degrade temporarily. However, as training continues, the
model begins to strike a balance between retaining general knowledge and learning task-specific
information, which eventually leads to performance improvements.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

C PROMPTS

C.1 PROMPTS FOR PROGRESSIVE REFINEMENT

PTRenables LLMs to progressive refinement, asks LLMs to improve responses without any supervi-
sion.

[INPUT]

Explain how reinforcement learning works in machine learning.

[OUTPUT1]

Reinforcement learning (RL) is a type of machine learning where
an agent learns to make decisions by performing actions in an
environment to maximize some notion of cumulative reward. The
agent receives feedback in the form of rewards or punishments
based on the actions it takes, and over time, it learns a
strategy, or policy, to make better decisions.

[REFINE PROMPT]

Please further think about and give me a more precise and
professional answer.

[OUTPUT2]

Reinforcement learning (RL) is a type of machine learning where an
agent learns through interactions with an environment. A classic
example is teaching a robot to navigate a maze. The robot, acting
as the agent, makes decisions at each step--whether to go left,
right, forward, or backward. After each move, the robot gets
feedback: a reward for moving closer to the exit or a penalty
for getting stuck or moving further away. Over time, it learns to
take actions that maximize its reward, thereby finding the optimal
path through the maze.

D CASE STUDY

In this section, we present a comprehensive case study analysis of the output generated by various
language models on several real-world tasks. Each case is evaluated based on the quality of responses,
relevance to the question, and overall utility for the end-user by GPT-4. These cases were randomly
selected from our evaluation results.

We have divided the analysis into six tasks: flight time estimation, web browser usage statistics,
language comparison, REST API implementation, JavaScript list item addition, and calculating
averages in Python. These real-world tasks are often challenging for humans to label accurately.
However, we observed significant improvements from Iteration 1 to Iteration 4, with the most optimal
performance appearing around Iterations 2 and 3.

D.1 TASK 1: FLIGHT TIME ESTIMATION

Question: How long does it take from Hangzhou to New York by air?

This task evaluates the quality of responses related to estimating flight times from Hangzhou to New
York. The different outputs showcase varying levels of accuracy and relevance:

Outputs

• Iteration 1 It depends on various factors such as the type of airplane and weather conditions.
However, the estimated flight time from Hangzhou to New York typically ranges from 14 to
16 hours.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

• Iteration 2 The flight time from Hangzhou to New York is approximately 15 hours and 30
minutes. Major airlines operating on this route include China Eastern and Delta Airlines.
Keep in mind that additional time for security checks, boarding, and customs at both airports
should also be considered.

• Iteration 3 The direct flight time from Hangzhou to New York is approximately 15 hours
and 30 minutes. Airlines like China Eastern and Delta operate this route. Keep in mind
that the total travel time may vary depending on factors such as layovers, flight delays,
and weather conditions. Additionally, you should plan for extra time for security checks,
boarding, and customs, which can add another 1 to 2 hours at each airport. It’s advisable
to check for updated flight schedules and potential stopover options if a direct flight is
unavailable.

• Iteration 4 The flight on December 2, 2021, from Hangzhou to New York took about 15
hours with a stopover in Tokyo. Depending on the route and the specific date, direct flights
can be faster, but you should plan for various connection options.

Analysis

• Iteration 1 provides a general estimate but introduces unnecessary ambiguity by discussing
different airplane types without focusing on direct flights.

• Iteration 2 is the most accurate, offering a specific duration of 15 hours and 30 minutes,
while also considering practical factors such as airport procedures and layovers.

• Iteration 3 The improved answer not only provides a specific flight duration but also
mentions the airlines that operate the route. It further addresses factors that might affect the
travel time, such as delays and weather conditions, which enhances the answer’s accuracy
and reliability.

• Iteration 4 includes complex and irrelevant details regarding connecting flights, which are
not pertinent to the user’s query.

Conclusion: Overall, Iteration 3 provides the most relevant and helpful information by giving a clear
estimate and addressing additional travel concerns. Previous outputs either lack focus or introduce
unnecessary complexity.

D.2 TASK 2: BROWSER USAGE STATISTICS

Question: How long does it take from Hangzhou to New York by air?

Outputs

• Output 1: "As of December 2021, Google Chrome is the most widely used browser in the
world with a market share of around 63.47%. This number can change over time as different
surveys and data sources may have slightly different results due to varying methodologies
and time frames for gathering statistics. It’s always best to check recent reliable sources like
StatCounter or SimilarWeb for up-to-date information on web traffic trends."

• Output 2: "As of now (December 2021), according to analytics tools such as StatCounter,
Google Chrome is currently the most commonly used browser across the globe. It has a
dominant market share of approximately 65%, followed by Safari at around 18%, Microsoft
Edge at nearly 4%, Firefox at just under 3%, and Internet Explorer/Windows Web Experience
Platform (IE) accounting for less than 1%. However, it’s important to note that these figures
are constantly changing as new updates and versions become available."

• Output 3: "Based on current estimates, Google Chrome is the most popular browser globally.
According to W3Techs, as of September 2021, Google Chrome holds the highest market
share among users aged 5+ in over 190 countries worldwide. This means that out of all
people who use a desktop computer and are five years old or above, more likely than not they
will be using Google Chrome as their preferred web browser. However, please remember
that internet usage patterns can vary greatly depending on various factors such as region,
device type, age groups within a country, etc., so these numbers could fluctuate compared to
other data sources or specific timeframes."

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

• Output 4: "Google Chrome is currently the most widely used browser across the globe
based on recent statistical analysis from reputable tech firms such as W3Techs. I strive
to provide accurate and up-to-date information, but please remember that technology and
user behavior can rapidly evolve. For the most current stats, I would recommend checking
websites specializing in web analytics."

Analysis

• Output 1:
– Strengths: Provides a clear and concise answer: Google Chrome is the most used

browser with a 63.47% market share as of December 2021. Mentions the importance
of checking up-to-date sources like StatCounter for changes.

– Weaknesses: Lacks depth regarding other browsers’ market shares. Could benefit from
more contextual information about the browser landscape.

• Output 2:
– Strengths: Adds more detail by including market share figures for other major browsers

(Safari, Microsoft Edge, Firefox, etc.), offering a clearer picture of the browser land-
scape. Highlights that these figures are constantly changing, adding a more realistic
and dynamic perspective.

– Weaknesses: Could further elaborate on the regional or device-based differences in
browser usage patterns.

• Output 3:
– Strengths: Provides not only market share data but also adds important details about

user demographics, such as the age group (5+ years) and countries covered. Discusses
how internet usage patterns may vary based on factors like region and device type,
adding nuance to the global market share data.

– Weaknesses: While detailed, the added complexity might overwhelm users looking for
a simple answer. The time frame (September 2021) is slightly outdated compared to
the other outputs.

• Output 4:
– Strengths: Confirms the user’s query about Google Chrome’s dominance and empha-

sizes the importance of checking up-to-date sources due to the rapidly changing nature
of technology. Simple and engaging, aimed at building rapport with the user.

– Weaknesses: Doesn’t provide specific market share percentages or as much detailed
breakdown as earlier iterations. Leans more towards conversational tone rather than
providing a comprehensive analysis.

Conclusion:

Iteration 3 provides the most detailed and comprehensive answer by incorporating specific data,
user behavior insights, and a global perspective. This iteration strikes a good balance between
accuracy, depth, and context, making it the most informative response.

D.3 TASK 3: LANGUAGE COMPARISON (C++ VS. PYTHON)

Question: "Please act as a college student majoring in computer science to answer my question.
What’s the difference between C++ and Python?"

Outputs

• Output 1: "Hello! I’d be happy to help you understand the differences between C++ and
Python programming languages. Both are powerful tools for building software applications,
but they have some key differences:
1. Syntax: C++ has a more complex syntax than Python, with many reserved words that
must be used exactly as written (e.g., int, if, while). In contrast, Python uses indentation to
define blocks of code instead of curly braces ( or []), making its syntax simpler and easier to
read. For example, here’s equivalent code snippets in both languages for calculating the area

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

of a circle:
- C++: #include <iostream>...
- Python:..."

• Output 2: "Sure, I’d be happy to explain the difference between C++ and Python!
C++ is a low-level language that provides direct control over system resources such as
memory management. It was designed for systems programming and game development.
It supports object-oriented programming features like inheritance, encapsulation, polymor-
phism, etc. However, it requires careful handling of memory which can lead to bugs if not
done correctly.
Python, on the other hand, is a high-level language that abstracts away most of these low-
level details, allowing programmers to focus more on the logic of their programs rather than
managing memory themselves. Python also has extensive libraries and frameworks, such as
numpy, scikit-learn, and pandas, which make data analysis much faster and easier compared
to writing everything from scratch in C++.
In summary, while both languages serve different purposes, Python is generally considered
a safer choice for beginners due to its simplicity and ease of use."

• Output 3: "Here’s a brief rundown of the differences between C++ and Python:
- Similarities: Both are general-purpose, compiled languages. They offer strong typing and
object-oriented design, and they provide rich standard libraries.
- Differences: C++ is faster due to its lower-level access to system resources, but Python is
easier for beginners with its simple syntax and robust libraries for tasks like data analysis
and web development."

• Output 4: "C++ is best suited for systems programming and game development where
fine-grained control over system resources is necessary. Its low-level memory management
allows for better customizability but comes at the expense of higher complexity. On the other
hand, Python offers a simplified approach with high readability for beginners, excelling in
web development and data science due to its comprehensive libraries. In performance tests,
C++ often outperforms Python, particularly for computationally expensive tasks."

Analysis

• Output 1:

– Strengths: Provides a simple comparison of syntax differences, using concrete code
examples, making it accessible and easy to understand for beginners.

– Weaknesses: Only focuses on syntax differences, without addressing broader usage
contexts or the strengths and weaknesses of each language in real-world applications.

• Output 2:

– Strengths: Delivers a more in-depth comparison, highlighting differences in function-
ality and application areas, such as systems programming for C++ and data analysis
for Python.

– Weaknesses: Could provide more real-world examples or performance comparisons to
give users a clearer understanding of when to use each language.

• Output 3:

– Strengths: Covers similarities and differences between the languages concisely, giving
a balanced overview of their strengths.

– Weaknesses: Introduces too many complex features, potentially overwhelming the
reader with excessive technical details.

• Output 4:

– Strengths: Combines the best of both approaches, discussing performance differences
and suitable applications for each language, along with real-world use cases.

– Weaknesses: The output becomes too dense and may lose focus due to the volume of
information provided.

Overall Analysis

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

• Iteration 1 provides a simple and clear comparison that is easy to follow but lacks the depth
needed for more advanced readers.

• Iteration 2 goes deeper into functional differences, making it a solid choice for those
looking to understand where each language is best applied.

• Iteration 3 tries to offer a more comprehensive comparison but overcomplicates the expla-
nation, making it difficult to digest.

• Iteration 4 attempts to provide a holistic view of both languages, combining strengths from
earlier iterations, but can overwhelm users with too much information.

Conclusion: Iteration 2 offers the best balance between simplicity and depth, effectively comparing
the functional differences of C++ and Python while providing clear use cases for each language.

D.4 CASE STUDY: IMPLEMENTING A REST API IN FLASK

Question: "Describe how to implement a simple REST API in Flask."

Outputs

• Output 1: "Sure, I can guide you through implementing a basic RESTful API using Flask
as your framework of choice. Here are the steps:
1. Create Your Python Project: First, create a new Python project and install Flask using
pip: pip install flask. This will allow us to build our server which we can then host on any
web server or cloud provider like AWS, Google Cloud etc., for production use.
2. Define Your Endpoints: Next, define what endpoints your application needs to handle
by creating routes in Flask..."

• Output 2: "1. First, you need to set up a Python file with the necessary code for your REST
API. You can do this by creating a new file called ’app.py’ and adding the following basic
structure:
from flask import Flask, request, jsonify
import os
class MyAPI(Flask):...
The output also discusses other concepts such as session handling and database manage-
ment."

• Output 3: "Let’s break down the implementation into several parts to ensure clarity:
1. Setting Up the Development Environment: Install Flask and essential dependencies,
then create a project folder and set up a virtual environment.
2. Flask API Structure: Structure your API and use additional libraries such as
SQLAlchemy for database interactions and Twilio’s API for sending messages."

• Output 4: "Here’s a simplified outline of what you need to cover to build a RESTful API in
Flask:
1. Set up your project and environment.
2. Create Flask app.
3. Define resources and endpoints.
4. Implement CRUD operations.
5. Handle errors gracefully and manage high traffic scenarios."

Analysis

• Output 1:
– Strengths: Provides a concise introduction with a clear step-by-step guide on starting

a REST API project with Flask.
– Weaknesses: While it gives an initial direction, it lacks detailed implementation of

each step, making it insufficient for beginners seeking a more complete understanding.
• Output 2:

– Strengths: Offers a more detailed explanation, including specific code and a compre-
hensive example of a REST API structure.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

– Weaknesses: Attempts to explain too many different concepts (e.g., authentication,
session handling) without focusing on the core task of building a simple REST API,
which could overwhelm beginners.

• Output 3:
– Strengths: Breaks down the process systematically, covering environment setup and

API structure with more technical depth.
– Weaknesses: Includes extraneous information such as Twilio integration and Elastic-

search, which may distract from the central task of building a REST API.
• Output 4:

– Strengths: Provides an overview of the necessary steps for implementing a REST API
with Flask and highlights key concepts such as CRUD operations and error handling.

– Weaknesses: Lacks specific code examples, making it harder for readers to translate
the steps into an actual implementation.

Overall Analysis

• Iteration 1 provides a basic step-by-step guide but lacks depth in key areas such as CRUD
implementation and error handling.

• Iteration 2 attempts to give a more complete explanation but introduces too many advanced
concepts, which could confuse beginners.

• Iteration 3 offers a detailed setup process but includes unnecessary information that distracts
from the primary goal of building a REST API.

• Iteration 4 gives a good overview but is too high-level and lacks concrete examples to help
readers understand how to apply the steps.

Conclusion: Iteration 2 offers the most comprehensive explanation but would benefit from focusing
more on the key aspects of building a REST API, while Iteration 1 is best suited for those seeking a
simpler introduction.

D.5 CASE STUDY: ADDING AN ITEM TO A WEB PAGE’S HTML LIST USING JAVASCRIPT

Question: "Write a JavaScript code snippet to add an item to a web page’s HTML list."

Outputs

• Output 1: "Sure, here is a simple JavaScript code snippet that will add an item with the text
’New Item’ to your web page:
// Select the first unordered list on the page (you can use
this ID or class)
const ul = document.querySelector(’ul’);
if (ul) {
const li = document.createElement(’li’);
li.textContent = ’New Item’;
ul.appendChild(li); }"

• Output 2: "To add a new item to an HTML list using JavaScript, follow these steps:
1. Get the reference of the parent element where you want to insert the new list item. For
example:
const myList = document.getElementById(’myList’);
2. Create a new list item node as a child of the selected parent element:
const liNode = document.createElement(’li’);
liNode.innerHTML = ’New List Item’;
3. Append the newly created list item node to the specified parent container:
myList.appendChild(liNode);"

• Output 3: "Here is a basic implementation of the functionality you described in JavaScript:
// HTML structure with form and list
<form id=’createForm’>

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

<label for=’newItemText’>Enter new item text:</label><br>
<input type=’text’ id=’newItemText’><br>
<button onclick=’addToList()’>Add to list</button>
</form>
<ul id=’existingListItems’></ul>
// JavaScript to handle the button click
function addToList() {
var inputText = document.getElementById(’newItemText’).value;
var li = document.createElement(’li’);
li.textContent = inputText;
document.getElementById(’existingListItems’).appendChild(li);
}"

• Output 4: "Here’s an example of how you might implement this functionality using
JavaScript:
// HTML structure for input form and list
<div id=’createForm’>
<label for=’newItemText’>Enter new item text:</label><br>
<input type=’text’ id=’newItemText’><br>
<button onclick=’addToList()’>Add to list</button>
</div>
<ul id=’existingListItems’></ul>
// JavaScript to handle the add button click
function addToList() {
var inputText = document.getElementById(’newItemText’).value;
var li = document.createElement(’li’);
li.textContent = inputText;
document.getElementById(’existingListItems’).appendChild(li);
}"

Analysis

• Output 1:

– Strengths: Provides a simple, concise code example for adding an item to an unordered
list. The logic is easy to follow and useful for those who need a quick solution.

– Weaknesses: The example assumes the presence of an unordered list without explaining
how the list is structured or created. It’s the simplest solution but lacks the depth and
completeness of the other outputs.

• Output 2:

– Strengths: Breaks the process into clear steps with explanations. The structured
approach helps users follow along easily.

– Weaknesses: The code becomes slightly verbose and introduces unnecessary steps for
what could be a simpler task. It also lacks the interactive element provided by Output 3
and Output 4.

• Output 3:

– Strengths: Provides a complete implementation with both HTML and JavaScript, show-
casing how to dynamically add items to an HTML list using a form. It demonstrates
both code clarity and a practical use case, including event handling.

– Weaknesses: While comprehensive, the use of forms and event handling could add a
small amount of complexity for users unfamiliar with those concepts.

• Output 4:

– Strengths: Similar to Output 3, it provides a full implementation with HTML and
JavaScript, with clean event handling and form interaction.

– Weaknesses: It includes form handling in a slightly clearer structure but doesn’t provide
much additional value compared to Output 3. The form setup is slightly redundant for
a simple task like adding a list item.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Overall Analysis

• Iteration 1 is the most concise but lacks the depth and flexibility needed for a full imple-
mentation, making it the simplest but least powerful solution.

• Iteration 2 is well-structured but lacks the interactive element of handling input dynamically
through a form, making it less functional than Iteration 3 and 4.

• Iteration 3 provides the most complete and functional solution, offering both HTML and
JavaScript for a practical, interactive example.

• Iteration 4 is also strong but is somewhat redundant compared to Iteration 3, offering
slightly less detail in terms of implementation.

Conclusion: Iteration 3 offers the best balance between completeness and practical functionality.
It provides a clear and interactive solution, making it the most useful for implementing the task of
adding an item to an HTML list using JavaScript.

D.5.1 CASE STUDY: CALCULATING THE AVERAGE OF A LIST IN PYTHON

Question: "Write a Python function that takes a list of numbers and returns the average."

Outputs

• Output 1: "Sure! Here is a simple Python function that does this:
def calculate_average(numbers):
total = sum(numbers)
return total / len(numbers)"

• Output 2: "Sure, here is a Python function called ‘calculate_average‘ that takes a list of
numbers as input and returns the average value. It also handles edge cases like an empty list:
def calculate_average(numbers):
return sum(numbers) / len(numbers) if len(numbers) > 0 else
None"

• Output 3: "Here is a Python program that implements the ‘calculate_average‘ function with
additional checks and clarity:
def calculate_average(numbers):
if len(numbers) == 0:
return None
total = sum(numbers)
return total / len(numbers)
This function includes a check for empty lists and provides a clean and understandable
implementation with a return of ‘None‘ for edge cases."

• Output 4: "Here is a modified version of the ‘calculate_average‘ function that adds extra
error handling and raises exceptions for certain cases:
def calculate_average(numbers):
if len(numbers) == 0:
raise ValueError(’Input cannot be empty’)
elif len(numbers) == 1:
return float(’nan’)
total = sum(numbers)
return total / len(numbers)
This function handles both empty lists and single-element lists more strictly by raising
exceptions and returning a NaN value where applicable."

Analysis

• Output 1:
– Strengths: Provides the simplest and most direct solution for calculating the average

of a list. It is easy to understand and quick to implement for basic use cases.
– Weaknesses: Does not handle any edge cases, such as empty lists, which may result in

errors if used in real-world scenarios. It’s a good starting point but lacks robustness.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

• Output 2:
– Strengths: Provides a simple and practical solution with a basic error check for empty

lists. The function is easy to understand and can handle the common case of an empty
list by returning ‘None‘.

– Weaknesses: The function only checks for empty lists but does not handle other
potential issues such as single-element lists or non-numeric input. It is simpler than
necessary for users looking for a more robust solution.

• Output 3:
– Strengths: Provides a well-balanced solution with clear code and reasonable error

handling. It accounts for edge cases such as empty lists and has a clean and readable
structure. This output presents a practical and robust solution for calculating averages.

– Weaknesses: The implementation is straightforward, but it does not handle more
complex exceptions such as non-numeric input, which could be useful for certain
applications.

• Output 4:
– Strengths: Adds more advanced error handling by raising exceptions for empty lists

and returning NaN for single-element lists. This output is ideal for users who want
more strict error handling in specific edge cases.

– Weaknesses: While the function handles more complex scenarios, the added com-
plexity may not be necessary for most average calculation tasks, making the function
slightly over-engineered for basic purposes.

Overall Analysis

• Iteration 1 offers the simplest approach, but it doesn’t handle edge cases. It’s a good
introductory solution but lacks robustness for more complex situations.

• Iteration 2 is a simpler solution that handles empty lists but lacks more advanced error
checking. It is useful for straightforward applications where minimal error handling is
required.

• Iteration 3 provides the most balanced solution, combining clarity with practical error
handling. It is the best option for a well-rounded, everyday use case.

• Iteration 4 introduces more strict error handling but adds complexity that may not be
necessary for basic tasks. It’s useful for those who want more control over edge cases.

Conclusion: Iteration 3 strikes the best balance between simplicity and practical error handling.
It provides clear code with a clean solution for handling basic edge cases. Iteration 4 is stronger
in error handling but may be unnecessarily complex for most use cases. Iteration 2 is simple and
effective but lacks robustness, and Iteration 1 is the most basic solution for introductory use.

31


	Introduction
	related work
	Progressive Thought Refinement Framework
	Progressive Thought Refinement Dataset Construction
	Query Preparation
	Thought-Answer Preparation

	Progressive Weighted Thought-Mask Fine-tuning

	Experiments
	Can the PTR method activate the model's progressive refinement ability?
	Does our method demonstrate generalization?
	Is our method robust across different LLMs and instructions?
	Does progressive refinement ability exhibit emergence during training?
	How many thinking steps are required to achieve optimal performance?

	Conclusion
	Method
	Self-Consistency Filtering
	n-Sampling for Thought Generation

	Consistency Compute
	Dynamic Confidence Adjustment:
	Temperature Adjustment
	Sensitivity Analysis

	Experiment
	settings
	iteration result
	Effectiveness of the Thought-Mask Strategy
	Comparison with Prior Works on Refinement Methods or Approaches with Verifiers
	Refinement Methods Overview

	Wilcoxon signed-rank test
	Setting Details
	Iteration

	Prompts
	Prompts for progressive refinement

	Case Study
	Task 1: Flight Time Estimation
	Task 2: Browser Usage Statistics
	Task 3: Language Comparison (C++ vs. Python)
	Case Study: Implementing a REST API in Flask
	Case Study: Adding an Item to a Web Page's HTML List using JavaScript
	Case Study: Calculating the Average of a List in Python



