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ABSTRACT

Recent advancements in large language models (LLMs) have demonstrated that
progressive refinement, rather than providing a single answer, results in more
accurate and thoughtful outputs. However, existing methods often rely heavily
on supervision signals to evaluate previous responses, making it difficult to ef-
fectively assess output quality in more open-ended scenarios. Additionally, these
methods are typically designed for specific tasks, which limits their generalization
to new domains. To address these limitations, we propose Progressive Thought
Refinement (PTR), a framework that enables LLMs to progressively refine their
responses. PTR operates in two phases: (1) Thought data construction stage: We
propose a weak and strong model collaborative selection strategy to build a high-
quality progressive refinement dataset to ensure logical consistency from thought
to answers, and the answers are gradually refined in each round. (2) Thought-Mask
Fine-Tuning Phase: We design a training structure to mask the "thought" and adjust
loss weights to encourage LLMs to refine prior thought, teaching them to implicitly
understand "how to improve" rather than "what is correct." Experimental results
show that PTR significantly enhances LLM performance across ten diverse tasks
(avg. from 49.6% to 53.5%) without task-specific fine-tuning. Notably, in more
open-ended tasks, LLMs also demonstrate substantial improvements in the quality
of responses beyond mere accuracy, suggesting that PTR truly teaches LLMs to
self-improve over time. Our project’s source code and datasets are available at
https://anonymous.4open.science/r/PTR_LLM

1 INTRODUCTION

“Think thrice before you act.”

— Confucius

Recent advancements in large language models (LLMs) have highlighted that progressive refinement
is more important than simply providing a single answer (Yang et al., 2023b; Madaan et al., 2023b).
Humans often rely on a combination of two thinking systems to solve problems, known as System 1
and System 2 (Kahneman, 2011). System 1 facilitates quick, intuitive responses but often lacks the
depth required to handle complex reasoning tasks. In contrast, System 2 engages in progressive refine-
ment, gradually improving a solution by starting with a rough approximate thought and iteratively
adding detail and accuracy. Recent work, such as GPT-o1 (OpenAI, 2024), demonstrates that LLMs
perform better by adopting progressive thought refinement. This approach leads to more accurate and
thoughtfully considered outcomes, similar to how the human brain processes complex tasks.

Progressive refinement ability is imperative for LLMs because it significantly enhances the quality of
responses by gradually improving accuracy and depth. Previous methods heavily rely on supervision
signals, such as correctness assessments, to assess response quality. For example, labeled datasets with
feedback are used to fine-tune models as verifiers (Han et al., 2024; Havrilla et al., 2024; Welleck et al.,
2023), facilitating self-assessment and iterative improvement. Additionally, Reinforcement Learning
(RL) reward functions are also employed to guide models toward generating better answers (Chen
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et al., 2024; Yuan et al., 2024; Rosset et al., 2024a; Akyurek et al., 2023). However, evaluating answers
based on supervision signals has limitations, as annotators often struggle to provide accurate labels
without clear, comprehensive criteria. This is particularly challenging in open-ended tasks, such as
text generation and summarizing, where the distinction between “correct” and “incorrect” is blurred,
making it difficult to define and evaluate response quality.

Due to significant variations in supervision signals and evaluation criteria across tasks, previous
self-improvement approaches have primarily aimed to enhance accuracy within specific domains.
Examples include enabling LLMs to self-debug for improved code generation (Chen et al., 2023; Tony
et al., 2024; Liang et al., 2023) and solving math problems through progressive step validation (Wang
et al., 2023a; Lightman et al., 2023; Uesato et al., 2022a). These methods often rely on task-
specific pipelines or reward models, making generalization difficult. The key limitation is that errors
addressed in one domain may not apply to other tasks, since different tasks exhibit varying error
types. Consequently, transferring these approaches to new tasks often fails (Tian et al., 2024) , and
models trained with these methods have limited generalization capabilities, struggling to improve
performance beyond their training domains.

To address these challenges, we introduce PTR (Progressive Thought Refinement), a framework
specifically designed to stimulate the model’s intrinsic refinement ability. Our PTR method comprises
a progressive refinement dataset construction phase and a weighted thought-mask fine-tuning phase.
During the progressive refinement dataset construction phase, we obtain queries from open-domain
datasets and employ a weak-strong model collaborative selection strategy to construct high-quality
thoughts and refined answers dataset.

This strategy not only ensures improvement from thoughts to answers but also eliminates the need
for accurate labels. In the fine-tuning phase, we employ weighted thought-mask fine-tuning to
teach LLMs to implicitly understand “how to improve” rather than supervising them with “what is
correct”. Specifically, we reformulate the masked data structure and redesign the loss of weighting to
encourage LLMs to improve responses based on previous thoughts and ensuring logical consistency
between the thought process and the final answer.

Our experimental results show that LLMs trained with PTR can improve the quality of their previous
answers across ten tasks, including knowledge reasoning, code generation, mathematical reasoning,
comprehension, summarizing, and text generation. The average performance across these tasks
improved from 49.6% to 53.5%, with a significant improvement on the MMLU task, where accu-
racy increased from 57.1% to 64.1% for Qwen2-8B. Notably, these improvements occur without
task-specific fine-tuning, demonstrating that our method activates the model to learn progressive
refinement from the PTR dataset. Moreover, in more open-ended tasks, LLMs have also demonstrated
further improvements in answer quality and formatting beyond correctness.

Our contributions are threefold:

• We propose the PTR method to stimulate models’ progressive refinement abilities and
enhance generalization across various tasks without additional task-specific fine-tuning.

• We design an efficient weak-strong model collaborative selection strategy to construct
high-quality PTR datasets without extra feedback.

• We introduce a novel weighted thought-mask fine-tuning method to instill general progressive
refinement capabilities in LLMs.

2 RELATED WORK

Progressive Refinement with External Feedback Existing work often relies on external tools
or stronger LLMs to provide feedback for refinement. For example, external tools are used to
critique and provide feedback on the primary model’s responses (Yang et al., 2023a; Chen et al.,
2023; Charalambous et al., 2023; Nijkamp et al., 2023; Yao et al., 2022; Gou et al., 2023). Models
have improved their code generation capabilities by leveraging error messages from the Python
interpreter (Wang et al., 2023b) and by teaching large language models to debug and explain their
own code, allowing them to identify and fix errors without human feedback (Chen et al., 2023).
Similarly, compiler feedback has been utilized in code generation (Chen et al., 2024; Olausson
et al., 2023). Additionally, some approaches utilize criticisms or constraints generated by stronger
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Figure 1: Illustration Our approaches. (A) Pipeline of our progressive refinement Dataset construction.
We first prepare queries from the general open domain datasets, and pre-processing queries in three
steps. Then we use a strong weak model collaborative selection strategy to generate thoughts and
answers for each query. We also implement In-context Learning (ICL) and Consistency Filtering
to ensure the quality of the thought process. (B) The illustration of Weighted Thought Masking
Fine-tuning. Aiming at training the model to produce a better response in the next attempt and ensure
logical consistency during the thought process. The difference between our method and IFT is that
we use thought-mask techniques to ask model to generate better responses. (C) Pipeline of our PTR.
Given a query Q, LLMs think progressively and refine their responses based on their own previous
thought and refinement instruction. LLMs refined its mistakes on the second attempt, as well as gave
a more thoughtful answer at a later iteration.

models (Pan et al., 2023; Du et al., 2023; Bai et al., 2022; Huang et al., 2023a), such as using a
strong model to verify the correctness of another model’s math solutions (Wang et al., 2023a), thereby
relying on external information sources to guide improvements. Although models can self-correct
through external feedback (Pan et al., 2023), this approach does not fully tap into their intrinsic
progressive refinement capabilities. Moreover, it requires task-specific feedback models or tools,
increasing the cost of adapting to a broader range of tasks. Furthermore, current LLMs struggle
to self-correct reasoning errors without external feedback (Huang et al., 2023b). Our work aims
to unlock the model’s inherent Progressive Refinement ability, enabling it to perform progressive
refinement across all domains without relying on external tools.

Prompting for Progressive Refinement Various Prompting methods have been introduced to enhance
Progressive Refinement, such as prompting LLMs to generate explanations and self-correct code (Li
et al., 2023a), or encouraging them to generate alternative solutions and revision suggestions (Zhang
et al., 2024). Some methods iteratively improve outputs by generating feedback through task-specific
prompts (Madaan et al., 2023a), or guide models to generate fine-grained feedback in mathematical
problem-solving, further enhancing solution accuracy and quality (Xue et al., 2023). The Reflexion
method enables language models to operate effectively in specific environments by allowing them
to reflect and adjust their actions when encountering errors (Shinn et al., 2023b). However, these
approaches often require carefully designed, task-specific prompts or even oracle ground-truth
answers (Shinn et al., 2023a), making LLMs highly sensitive to evaluating response and achieving
optimal performance (Wu et al., 2024a). Without external tools, LLMs have limited self-correction
capabilities when relying solely on prompting (Huang et al., 2023b; Zheng et al., 2024).

Fine-Tuning for Progressive Refinement In current progressive refinement work, fine-tuning
typically relies on reward models or verifiers to assess the accuracy of model outputs based on
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predefined criteria (Wang et al., 2023a; Lightman et al., 2023; Uesato et al., 2022a). For instance,
some research focuses on improving the model’s ability to identify and correct mistakes (Han et al.,
2024), while others progressively validate solutions, such as in solving math problems (Uesato et al.,
2022b). Additionally, reinforcement learning (RL) (Chen et al., 2024; Yuan et al., 2024; Rosset et al.,
2024a; Akyurek et al., 2023) has been applied to align model outputs with correct responses. For
example, researchers create preference-based datasets to align outputs with human values and reduce
harmful content (Wang et al., 2024; Rosset et al., 2024b). Similarly, ROUGE has been used as a
reward function in text summarizing tasks to optimize generated summaries (Akyurek et al., 2023).
While these methods effectively train models, they focus on building task-specific datasets and reward
functions tailored to particular objectives. In contrast, our approach redefines the fine-tuning objective
to bolster the model’s capacity for progressive refinement. Rather than relying on domain-specific
datasets, our model is trained to iteratively enhance its responses—starting from initial thoughts and
evolving toward increasingly refined answers.

3 PROGRESSIVE THOUGHT REFINEMENT FRAMEWORK

Our proposed framework, Progressive Thought Refinement (PTR), comprises two stages, as illus-
trated in Figure 1: (1) Progressive Thought Refinement Dataset Construction and (2) Progressive
Weighted Thought-Mask Fine-tuning. The primary objective of this framework is to enhance models’
progressive refinement abilities, enabling them to handle diverse and unfamiliar tasks without relying
on task-specific fine-tuning. Since fine-tuning models for every task is impractical, our approach uti-
lizes general queries, thoughts, and answers to help models comprehend progressive refinement. This
strategy gradually improves their capacity to tackle complex tasks through progressive refinement.

3.1 PROGRESSIVE THOUGHT REFINEMENT DATASET CONSTRUCTION

In the first stage, we construct a progressive refinement dataset that includes Queries, Thoughts, and
Answers. The Thoughts capture a sequence of different reasoning attempts, which may be varied,
incomplete, or even incorrect, reflecting the model’s initial exploration of the problem. In contrast,
the Answers provide more confident and well-reasoned responses. This structured approach helps the
model implicitly understand the difference between initial thoughts and improved answers, enabling
it to generate more thoughtful and in-depth responses over time.

3.1.1 QUERY PREPARATION

To enhance the model’s generalization, we avoid creating domain-specific datasets. Instead, we use
queries from open-domain general datasets (details in Appendix B.6), ensuring the model develops
general refinement abilities rather than specializing in specific areas. Our data preprocessing involves
three key steps. First, we perform data cleaning to remove noise and irrelevant content, such as images
or URLs. Second, to prevent data leakage, we exclude domain-specific testing queries during training.
Finally, we incorporate traditional SFT data (queries and answers) into our dataset to mitigate the risk
of catastrophic forgetting.

3.1.2 THOUGHT-ANSWER PREPARATION

We strategically select weak and strong models to generate sequences of thoughts and improved
answers from an initial query. The objective is to ensure that the final answer is progressively
improved through multiple iterations rather than relying on a single-step response. We also employ
In-Context Learning (ICL) (Dong et al., 2024) and consistency filtering to ensure logical coherence
between thoughts and answers.

Weak-Strong Model Collaborative Selection Criteria To ensure the final answer shows signif-
icant improvement over the initial thought sequence, we adopt a weak-strong model collaborative
selection strategy. Let θw and θs represent the abilities of the weak and strong models, respectively,
with the goal of ensuring θs ≫ θw. We employ three key strategies: Model Parameter Strength,
Model Version (New vs. Old), and Domain-Specific Fine-Tuning. These selection strategies ensure
the quality of the final answer surpasses that of the previous thoughts. Additionally, we validate that
the strong model performs significantly better than the weak model through Wilcoxon significance
tests, as shown in Appendix B.5.
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Thought Generation by the Weak Model The weak model generates a sequence of thoughts
based on the input query qi, with ŷ

t
i,w representing the initial thought at the t-th attempt. We denote

the strong model as πstrong,θs and the weak model as πweak,θw . These initial thoughts may contain
errors but provide a foundation for further refinement:

Si, thought = [ŷ1i,w, ŷ2i,w, . . . , ŷti,w] = πweak,θw(⋅ ∣ qi). (3.1)

Multiple weak models can be used to generate these thoughts, or a single weak model can produce
multiple attempts. Since the weak model’s thoughts need not be correct, constructing these thoughts
remains cost-effective.

Answer Refinement by the Strong Model To achieve progressive refinement, we leverage the
strong model to produce increasingly improved answers. We use ICL to ensure logical coherence
between the outputs of the strong and weak models and to avoid randomness. This guides the strong
model to generate better answers based on prior thoughts. Specifically, the strong model takes the
sequence of thoughts Si, thought and query qi as input and generates the final answer ŷi,s,icl:

ŷi,s,icl = πstrong,θs(⋅ ∣ Si, thought, qi). (3.2)

Thoughts-Answer Consistency Filtering To further ensure that the thought process exhibits
logical coherence, we apply consistency filtering to remove inconsistent outputs. If the consistency
score is below a certain threshold, the pair is considered inconsistent and removed, ensuring that only
coherent thought sequences are used for the final output (see Appendix A.1).

3.2 PROGRESSIVE WEIGHTED THOUGHT-MASK FINE-TUNING

In the second stage, we perform weighted thought-mask fine-tuning using the datasets constructed
previously, consisting of the input query qi, the initial thought sequence Si, thought, and the final answer
ŷi,s,icl. Formally, the dataset is represented as:

D̃ = {(qi, Si, thought, ŷi,s,icl)}Ni=1 (3.3)

Thought Mask Mechanism To help the model understand the improvement between the thought
process and the answer—rather than focusing solely on the final answer—we introduce a thought
mask mechanism. This mechanism selectively hides parts of the thought process during training, as
shown in Figure 1 (B). It calculates the loss based only on the accuracy of the refined final answer,
ensuring the model focuses on enhancing the quality of its ultimate response. Additionally, we
provide refinement instructions (e.g., "Please continue thinking and refine your answer") after each
thought process to prompt better refinement in subsequent iterations.

Weighted Supervised Learning We adopt a weighted supervised learning approach that enables
the model to focus on refining its answers by progressively improving its thought process. Specifically,
we perform weighted supervised learning that emphasizes both the accuracy of the final answers and
the logical consistency of the thought process. The loss function optimizes the model in three key
areas: generating accurate final answers, maintaining consistency in reasoning and ensuring that the
model’s confidence increases progressively throughout the thought process.

LPTR(θ) = ∑
(qi,Si,thought,yn)∈D̃

[ − λ1 log Pr(yn ∣ qi, Si,thought; θ)

+ λ2

n

∑
t=2

Fcons(yt, yt−1) + λ3

n

∑
t=1

βt (1 − Pr(yt ∣ qi, Si,thought; θ)) ]. (3.4)

Unlike standard supervised fine-tuning, which trains the model to produce a single response ŷ
given x, −λ1 log Pr(yn ∣ qi, Si,thought; θ) focuses exclusively on the accuracy of the final re-
sponse generated after the thought refinement process. Fcons(yt, yt−1) ensures that the current
response remains logically consistent with the previous thought sequence by computing the Cosi-
neSimilarity with the Sentence-BERT (Reimers & Gurevych, 2019) model (see Appendix A.2).
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(1 − Pr(yt ∣ qi, Si,thought; θ)) represents the model’s uncertainty or error probability at each reason-
ing step, which measures the confidence of the model’s predictions. The term βt represents the
confidence score at each reasoning step, which increases as reasoning progresses to encourage higher
certainty in later steps (see Appendix A.3). Here, λ1, λ2, and λ3 are dynamically adjusted according
to the model’s needs, we set λ1 = 0.8, λ2 = 0.1, and λ3 = 0.1, with their sum weighted to 1. We
also investigate sensitivity analysis and ablation study in Appendix A.5.

4 EXPERIMENTS

The goal of our experiments is to demonstrate the effectiveness of PTR in enabling language models
to progressively enhance their responses. Specifically, we aim to answer the following questions:
(1) Can the PTR method activate the model’s progressive refinement ability? (2) Does our method
demonstrate generalization? (3) Does progressive refinement ability emerge during training? (4) Is
our method robust across different LLMs and instructions? (5) How many iterations are required for
our method to achieve optimal performance?

PTR dataset Our model has trained on our PTR (Progressive Thought Refinement) dataset, derived
queries from the WizardLM dataset (Xu et al., 2023). After thorough cleaning in Section 3.1.1, we
reduced the original dataset from approximately 50k QA pairs to 40k high-quality QA pairs.

Evaluation Tasks In our experiments, we perform generalization over ten datasets across different
tasks. Task size will be showen in (Appendix B.6). For general tasks, we use MMLU (Hendrycks
et al., 2020), and for coding tasks, we use HumanEval (Chen et al., 2021) (abbreviated as H-
Eval). DROP (Dua et al., 2019) is used for comprehension tasks (abbreviated as Comp), and
XSum (Narayan et al., 2018) is applied for summary tasks. We use GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) for math-related tasks. For complex reasoning tasks, we use ARC
and GPQA (Rein et al., 2023). For knowledge reasoning, we utilize Winogrande (Sakaguchi et al.,
2019) (abbreviated as Wino) and CommonsenseQA (Talmor et al., 2019) (abbreviated as Comm).

Evaluation Settings We use greedy decoding (with temperature set to 0) for final generation,
as lower temperature yields better performance shown in Appendix A.4. We utilize zero-shot
prompting (Kojima et al., 2023) for both answer sampling and evaluations, observing that zero-
shot prompting outperforms few-shot prompting for LLMs fine-tuned on specific tasks. All of our
experiments are conducted on workstations equipped with eight NVIDIA A800 PCIe GPUs with
80GB memory, running Ubuntu 20.04.6 LTS and PyTorch 2.0.1.

Baselines We compare our model with base models and prior approaches: (1) Prompt: Directly
prompting the model to refine its answer (Huang et al., 2023b). (2) IFT: Instruction Fine-Tuning
by directly fine-tuning the input-output pairs from strong models on the PRD dataset to show that
improvements are not due to knowledge distillation. (3) RL: Perform one reinforcement learning
training (Wu et al., 2024b) iteration on the PRD dataset to compare with our method. Specifically, we
use the thoughts and answers of the PRD dataset to construct preference data, and prefer model to
produce stronger answers through DPO (Rafailov et al., 2024). We compare these methods on the
PRD dataset under the same settings as in the previous section. Detailed settings are in Appendix B.6.

4.1 CAN THE PTR METHOD ACTIVATE THE MODEL’S PROGRESSIVE REFINEMENT ABILITY?

PTR Activates Progressive Refinement Ability As shown in Table 1, to emphasize the progressive
refinement ability, we conduct tests on a broad range of tasks. The result demonstrates that our PTR
activate models substantially refine their responses across multiple iterations in the majority of tasks.
For instance, in the Qwen2-7B model, accuracy on MMLU increased by 7.0%, from 57.1% (Base
model Prompt Iteration 1) to 64.1% (PTR Iteration 3). On several additional tasks, PTR also showed
improvements, with the average score across all tasks increasing by 3.9%-rising from 49.6% to 53.5%.
However, the Prompting method results show that both two base models degrade in performance
when asked to refine, producing worse answers compared to initial responses. These results indicate
that PTR effectively enables base models to improve based on previous thoughts.

PTR is not Knowledge Distillation We also compare our PTR with simply use strong model
answer to the query by IFT. We find that PTR is not equivalent to knowledge distillation. At the first
iteration, we observe that when models are trained on general datasets rather than domain-specific
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Method Iters
Gene. Code Comp. Sum. Math Reasoning Knowledge

MMLU H-Eval DROP Xsum GSM8k Math ARC GPQA Wino Comm Avg

Acc Pass@1 Acc Sim Acc Acc Acc Acc Acc Acc

Qwen2-7b

Prompt Iter.1 57.1 56.1 20.9 47.3 79.1 48.2 60.6 24.6 66.8 55.7 51.6
Iter.2 50.1 37.6 18.7 43.2 78.4 47.6 37.9 22.3 50.4 42.1 42.8

IFT Iter.1 57.7 50.2 21.1 45.5 75.4 45.6 54.9 22.3 66.8 46.1 48.5
Iter.2 52.4 40.2 17.2 37.9 71.0 43.2 36.6 21.9 62.8 40.3 42.3

RL Iter.1 56.5 48.3 21.7 47.6 71.2 47.3 60.4 20.3 65.0 51.6 48.9
Iter.2 55.1 42.2 20.9 44.3 58.6 44.5 35.3 20.9 63.8 43.5 42.9

PTR(our)
Iter.1 59.2 52.3 19.0 45.9 76.7 47.6 58.6 23.2 66.4 47.9 49.6
Iter.2 64.1 57.2 21.2 49.8 79.6 48.6 62.7 25.6 66.4 54.9 53.0
Iter.3 63.2 57.6 21.5 49.6 79.9 48.9 65.2 25.6 66.8 56.5 53.5

Llama3-8B

Prompt Iter.1 66.4 54.0 47.3 64.5 76.4 25.1 75.1 34.6 67.9 41.6 55.2
Iter.2 34.4 50.1 35.9 62.1 70.5 20.9 56.4 30.1 66.8 43.9 47.1

IFT Iter.1 49.1 38.4 52.8 47.9 55.4 21.3 63.0 34.1 63.3 37.1 46.2
Iter.2 40.4 34.2 24.7 42.9 51.1 18.6 54.4 28.8 62.2 28.7 38.5

RL Iter.1 51.8 32.4 46.8 65.9 61.3 22.3 67.6 33.7 62.0 60.1 50.3
Iter.2 39.9 30.2 40.7 40.9 57.3 19.3 55.7 30.6 53.8 55.8 42.4

PTR(our)
Iter.1 59.6 54.0 49.0 62.4 76.4 21.3 73.0 34.1 68.6 60.0 55.8
Iter.2 68.4 55.2 49.0 65.7 79.2 24.7 77.1 36.2 70.1 60.5 58.6
Iter.3 68.6 55.4 48.6 66.1 79.6 24.9 77.0 36.1 67.9 61.3 58.6

Table 1: Main experimental results about our approach and other baselines across various domains.
We experiments on two difference structures LLMs( Qwen2-7b and Llama3-8B ). We also run 2
iteration on different baselines and 3 iteration on our approach. Itertaion 1 means the first answer
to the question, and we construct the format of refining instruction with the previous answer which
is introduced in Method 3.2. We denoted Acc: accuracy. Pass@1:testing on code. Sim: similarity
similared calculated by BGE-m3. These results suggest that our PTR excels at performing well across
multiple attempts. By trading off some accuracy on the first attempt, it significantly enhances the
model’s ability to improve in subsequent iterations.

tasks, its initial performance tends to decline at first. (This performance drop largely stems from
supervised fine-tuning amplifying the initial biases of the base model. When trained on general
datasets, the base models tend to accumulate biases that may not apply to specific domains, leading
to poorer performance on domain-specific tasks.) However, the IFT approach fails to activate the
model’s progressive refinement ability and does not significantly increase the performance after the
first attempts. On CommonsenceQA, The IFT approach does not perform a better response at the
second iteration (40.3%) compared to their first attempt (46.1%). In contrast, PTR approach improves
through iterative attempts without an approach on domain-specific knowledge. This suggests that our
method is not simply distilling knowledge but effectively activating the model to refine outputs and
enhance performance through self-driven iterative improvement.

Refinement beyond Correction Deeper analysis reveals that in open-ended tasks without clear
ground truth, LLMs refine responses to be more thoughtful and comprehensive, regardless of correct-
ness. For example, in the code task shown in Figure 2, the LLM iteratively improves its response
over three iterations, considering additional aspects of the problem. This highlights PTR’s ability to
enhance not just correctness but also the quality and usability of outputs (Shown in Appendix D).

4.2 DOES OUR METHOD DEMONSTRATE GENERALIZATION?

PTR vs. Other Progressive Refinement methods Unlike previous approaches, our method activates
the model’s inherent progressive refinement ability rather than merely boosting accuracy in specific
domains. To validate PTR’s generalization capability, we use datasets with general queries and
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def calculation_average(numbers): # iteration 1
total = sum(numbers)
return total / len(numbers) # returning the output

def calculation_average(numbers): # iteration 2
total = sum(numbers)
return total/len(numbers) if len(numbers) > 0 else None # Adds empty lists check

def calculation_average(numbers): # iteration 3
if not isinstance(numbers, list):

raise TypeError("Input_must_be_a_list") # Introduces type checking
if len(numbers) == 0: # Raises specific errors with informative messages

raise ValueError("List_cannot_be_empty") # Adds protection against empty lists
return sum(numbers)/len(numbers)

Figure 2: Code example shows PTR can refine beyond correction. The PTR goes through three
rounds, providing higher quality response for each iterations. In first interation, model return with
simply output. In second interation, model add more details like considering the empty list. In third
interation, model structured the code and futher add type checking and errors information.

Prompt Iters
General Code Compreh. Summary Math Reasoning Knowledge

MMLU H-Eval DROP Xsum GSM8k Math ARC GPQA Wino* Comm*QA

Acc Pass@1 Acc Rank Acc Acc Acc Acc Acc Acc

Prompt1

Iter.1 58.7 53.9 19.2 46.9 75.1 47.7 50.5 24.6 66.7 46.7
Iter.2 63.4 57.6 20.7 46.6 77.7 48.8 60.6 25.4 66.1 51.5
Iter.3 63.2 57.6 20.9 49.8 79.2 50.2 61.3 24.9 65.9 54.7
Iter.4 63.3 57.6 21.7 49.9 78.1 50.6 62.8 25.6 66.6 55.7

Prompt2

Iter.1 58.7 53.0 19.2 46.6 75.1 47.0 44.5 25.4 66.7 46.7
Iter.2 63.4 52.8 22.1 48.9 77.5 47.2 61.1 25.4 68.8 52.1
Iter.3 62.7 57.9 22.5 49.8 76.8 47.9 59.1 25.6 68.2 50.4
Iter.4 62.8 57.6 22.4 49.6 77.5 47.8 60.0 25.8 67.5 53.1

Prompt3

Iter.1 58.7 52.3 19.2 48.8 75.1 47.5 47.5 23.6 66.7 46.8
Iter.2 63.4 57.6 21.6 48.2 78.3 48.6 59.4 25.6 66.4 50.2
Iter.3 62.9 57.9 21.9 49.6 78.1 48.7 62.1 25.0 67.0 55.0
Iter.4 63.3 57.8 22.3 49.6 77.9 49.6 63.2 25.4 67.2 53.8

Table 2: Results of PTR with different prompts: (1) Assume that this thought could be either correct
or incorrect. Carefully review the thought and provide a better answer. (2) Review your previous
thought and assess whether it’s correct. Then, provide a better response based on your answer. (3)
Regardless of whether your previous thought is correct or not, provide a better answer. Iteration 1
represent the initial answer to the question. Iteration 2 to 4 represent the model’s improvement over
the initial answer. Notibly, the model is not trained with these prompts.

evaluate whether the model can iteratively refine responses across various tasks. As seen in Table 1,
our model refines responses across multiple iterations, significantly improving accuracy across tasks,
and demonstrating effective generalization. We also compare PTR with other progressive refinement
methods like RL to assess generalization. Our results show that methods like RL, when fine-tuned
only on general-domain tasks, fails to activate iterative refinement in specialized tasks, often showing
decreased accuracy. This suggests that our method is more robust in diverse environments, as
it enables the model to iteratively refine its responses without being limited to domain-specific
fine-tuning. By leveraging the model’s inherent progressive refinement capabilities, PTR achieves
consistent improvements across a wide range of tasks.

4.3 IS OUR METHOD ROBUST ACROSS DIFFERENT LLMS AND INSTRUCTIONS?

Prompt Robustness We also evaluated PTR robustness with different prompts and LLMs. Table 2
shows the model’s performance using three different prompts across various tasks, refined over four
iterations. Across all prompts, we find that PTR achieves iterative improvement across different

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

50
00

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0

Training Steps

20
30
40
50
60
70
80

Pe
rfo

rm
an

ce
 (%

)

(A) Performance Trends
GSM8k
MATH
ARC
GPQA
Wino
Comm
MMLU
DROP
XSum
Huma

GSM
8k
MAT

H
ARC

GPQ
A
Wino

Com
m
MMLU

DROP
XSu

m
Hum

a

Tasks

0
10
20
30
40
50
60
70
80

Pe
rfo

rm
an

ce
 (%

)

(B) Performance Comparison
Base Performance
Initial Performance
Final Performance

GSM
8k
MAT

H
ARC

GPQ
A
Wino

Com
m
MMLU

DROP
XSu

m
Hum

a

Tasks

20
30
40
50
60
70
80

Pe
rfo

rm
an

ce
 (%

)

(C) Distribution Across Tasks

40
00

80
00

12
00

0
16

00
0

20
00

0
22

00
0

24
00

0
26

00
0

27
00

0
28

00
0

29
00

0
30

00
0

Training Steps

GSM8k
MATH

ARC
GPQA
Wino

Comm
MMLU
DROP
XSum
Huma

Ta
sk

s

58 58 53 54 77 67 72 78 77 79 78 80

43 43 44 43 45 45 49 48 49 49 49 49

36 38 37 34 36 36 38 55 58 63 62 65

21 20 20 20 23 16 19 25 25 26 25 26

52 53 53 56 60 60 57 67 67 66 67 67

40 41 40 44 48 41 46 48 54 56 54 55

50 53 61 64 64 64 64 64 64 64 63 64

17 19 22 17 19 18 19 21 21 21 21 22

40 44 44 43 45 50 46 49 48 50 50 50

36 36 35 38 42 44 50 57 58 58 57 57

(D) Heatmap Across Training Steps

20

30

40

50

60

70

Figure 3: Plot A: Multi-line plot showing the performance trends for 10 tasks, with the average
performance (in black) and variance. The overall trend is upward, with the red line highlighting the
point where average performance reaches 46%. Plot B: Bar plot comparing initial, baseline, and final
performance for each task. While initial performance is lower than the baseline, the final performance
surpasses it, indicating that the model has learned and improved from prior iterations. Plot C: Box
plot displaying the performance distribution across tasks. The varying lengths of the bars show the
performance improvement, with longer bars indicating greater improvements across tasks. Plot D:
Heat map representing task performance across training steps. The x-axis represents the training
steps, while the y-axis represents the tasks. The color intensity indicates the model’s performance at
each task and training step, with deeper colors corresponding to better performance.

prompts. Specifically, In the math (GSM8K) tasks, PTR is well-performed(78.1%) compared with
initial responses (75.1%). On reasoning tasks (ARC), PTR see substantial improvements, especially
with Prompts 1 (62.8%) and Prompts 3 (63.2%). DROP tasks also improve steadily, with accuracy
increasing to 22.5% by Iteration 3 in Prompt 2. Our approach enables the model to learn from
previous thoughts, rather than relying on the instruction used during training. This PTR enables the
model to consistently improve its performance on different prompts, demonstrating the robustness of
the PTR mechanism.

LLMs Robustness The table 1 also demonstrates that both Llama3-8B and Qwen2-7B exhibit
robustness across different prompts and tasks. While Llama3-8B often outperforms Qwen2-7B, both
models show consistent improvements with iterative refinement. This robustness ensures that PTR
can be applied effectively to a wide variety of open-source LLMs.

4.4 DOES PROGRESSIVE REFINEMENT ABILITY EXHIBIT EMERGENCE DURING TRAINING?

Overall Performance Figures (A) and (B) show a clear upward trend in performance, as shown in
Figure 3 shown. Notably, after 24,000 training steps (equivalent to 93 million tokens), significant
improvements indicate the emergence of inference capabilities. As training continues, we observe that
the average performance of PTR increases from 40.1% to 55.6%, showing an overall improvement
across different tasks.

Task Complexity and Learning Curve We also find that tasks of varying difficulty exhibit different
emergence timings and improvement rates. Plots (C) and (D) reveal that simpler tasks such as MMLU
and DROP show early and steady improvements around 22,000 steps. More complex inference tasks
such as ARC and GPQA exhibit delayed emergence, with ARC improving from 36.3% to 65.2% and
GPQA from 23.2% to 25.6% after 24,000 steps. This shows that as training continues, the model’s
ability to handle complex reasoning and other tasks significantly improves, showing clear emergent
behavior in different task types.

4.5 HOW MANY THINKING STEPS ARE REQUIRED TO ACHIEVE OPTIMAL PERFORMANCE?

We investigate how iterative thinking steps influence performance across tasks by conducting experi-
ments over ten iterations using the Qwen2-8B model. Figure 4 illustrates performance trends.

Improvements in the First Three Iterations In the first three iterations, we saw significant improve-
ments in model performance. In the mathematical reasoning task GSM8K, the accuracy improved
from 75.0% in the first iteration to 79.9% in the second iteration. Similarly, the ARC dataset improves
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Figure 4: Performance of PTR over ten iterations across different tasks. The left plots show accuracy
improvements in mathematical reasoning (GSM8K and MATH), reasoning tasks (ARC, GPQA,
Winogrande, CommonsenseQA), comprehension tasks (MMLU, DROP, XSum), and coding tasks
(HumanEval). More details are in Appendix B.7. The dashed line is the baseline of the model. We
can see the performance of most tasks surpass the base line after the two or third iteration. The right
plots show performance over six iterations with radar charts, In this chart, we can clearly find the
performance saturated after the first two iteration as shown in the blue arraies in the figure.

from 58.6% to 65.2% in the third iteration. This shows that PTR quickly refines its problem-solving
through progressive refinement.

After the third iteration, the performance improvements for most tasks stabilize. In GSM8K, the
accuracy fluctuates slightly between the third and tenth iterations, ranging from 79.9% to 80.1%. In
MATH, the accuracy remains around 50.2% to 50.6% after reaching a peak in the second iteration.
This indicates that the marginal gains decrease over time, indicating that the performance ceiling of
the model is converging.

Sustained Performance Without Overfitting PTR performance is saturated after the first two
iterations, and remains stable or improves slightly, with no notable declines. For instance, in DROP
and XSum, accuracy increases from 19.0% and 45.9% to 21.6% and 49.7%, respectively, over ten
iterations.

More Computation for Hard Tasks Complex tasks benefit more from iterative thinking and may
require additional iterations for optimal performance. Accuracy in CommonsenseQA improves
from 47.9% to 58.6% by the eighth iteration, suggesting that tasks with higher cognitive demands
allow PTR to leverage iterative refinement more effectively. While GSM8K reaches near-optimal
performance within a few iterations, tasks like MATH require more computation to achieve substantial
gains, likely due to the challenging nature of logical reasoning involved.

5 CONCLUSION

We propose PTR, an approach designed to stimulate the progressive thought refinement capabilities
inherent in LLMs, allowing them to improve their responses through multiple rounds of iterations.
PTR adopts an annotation-free strategy to gradually build refined thoughts and answers through a
weak and strong models collaborative selection process, and combines thought-answer consistency
filtering to ensure logical coherence. Our weighted thought mask fine-tuning further activates the
model’s internal refinement ability by learning the improvement from initial thoughts to refined
answers. Experimental results show that PTR simply trained with general open-domain datasets, but
significantly improves the model’s progressive refinement capabilities in ten different tasks, including
knowledge reasoning, code generation, and mathematical reasoning, achieving a generalization level
not observed by previous methods.
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A METHOD

A.1 SELF-CONSISTENCY FILTERING

In each iteration of thought generation, we apply multiple sampling techniques to generate several
candidate thoughts. These candidate thoughts undergo a consistency check against the final answer
to ensure logical coherence throughout the thought process.

A.1.1 N-SAMPLING FOR THOUGHT GENERATION

For each query qi, we perform n-sampling to generate N candidate thoughts at each step of the
thought generation process. These thoughts denoted as ŷ

t
m, represent the m-th query at the t-th

attempt, and they collectively form the set of potential thought sequences.

To evaluate the consistency between the thought sequences and the final answer, we vectorize the
thoughts and the answer using Sentence-BERT embeddings. Sentence-BERT provides an effective
way to embed both the thought sequences and the final answer into a shared vector space, capturing
semantic similarities between them.

A.2 CONSISTENCY COMPUTE

To evaluate the consistency between the thought sequences and the final answer, we vectorize the
thoughts and the answer using Sentence-BERT embeddings. Sentence-BERT provides an effective
way to embed both the thought sequences and the final answer into a shared vector space, capturing
semantic similarities between them.

The similarity between each thought yt and the prior thought yt−1 is computed using the cosine
similarity between their Sentence-BERT embeddings. The consistency score is designed to capture
how well the current thought yt is consistent with the prior thought yt−1 and how closely it relates to
the final answer.

We define a Consistency Function Fcons(yt, yt−1) as the cosine similarity between the current
thought yt and the prior thought yt−1. The function is computed as:

Fcons(yt, yt−1) = CosineSimilarity(BERT(yt),BERT(yt−1)) (A.1)

Where CosineSimilarity(a, b) is defined as:

CosineSimilarity(a, b) = a ⋅ b

∥a∥∥b∥ (A.2)

Here, a and b are the embeddings of yt and yt−1 respectively, generated by the Sentence-BERT model.
The cosine similarity measures the angle between he two vectors in the embedding space, with values
closer to 1 indicating high similarity and values closer to 0 indicating low similarity.

A.3 DYNAMIC CONFIDENCE ADJUSTMENT:

By introducing a dynamic confidence decay strategy, the model can gradually increase its confidence
during the reasoning process. For example, the confidence βt can increase as the reasoning step t
progresses, instead of staying constant throughout the process. This will allow the model to gain
more confidence as it refines its thoughts and reasoning.

By adjusting the weights of each reasoning step, βt can control how the model’s confidence evolves.
At the initial steps, the model can have a lower confidence since the thought process is still being
refined. As the reasoning progresses, the model should gradually increase its confidence and have
higher confidence at the final step. This can be achieved by adjusting βt dynamically like so:

βt = β0 ⋅ (
t
n) (A.3)
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Figure 5: performance of a model under different temperature settings during inference

where β0 is the initial confidence and n is the total number of reasoning steps. This approach ensures
that the confidence βt increases as reasoning progresses.

A.4 TEMPERATURE ADJUSTMENT

This graph illustrates the performance of a model under different temperature settings during inference,
measured over three iterations in terms of accuracy. The comparison includes four scenarios: fixed
temperature at 0, the fixed temperature at 0.4, fixed temperature at 0.8, and gradually decaying
temperature. The main findings are as follows: The graph clearly shows that setting the temperature
to 0 yields the best performance. A temperature of 0 ensures that the model generates deterministic
outputs at every step, leading to more reliable and stable results. Higher temperatures (such as 0.4
and 0.8) introduce randomness into the process, reducing overall accuracy. The decaying temperature
approach improves accuracy over time but does not surpass the performance of a fixed temperature of
0.

A.5 SENSITIVITY ANALYSIS

Table 3: Performance of different hyperparameter configurations across iterations.

Ratio Iteration MMLU H-Eval GSM8k ARC Comm Avg
1 60.9% 51.2% 76.8% 63.1% 48.5% 60.1%

1 0 0 2 62.3% 53.0% 76.7% 65.2% 52.9% 62.0%
3 62.7% 52.4% 78.3% 66.4% 55.1% 63.0%

1 60.9% 51.8% 74.8% 61.3% 48.2% 59.4%
0.9 0.05 0.05 2 62.6% 55.5% 78.4% 64.3% 54.1% 63.0%

3 62.5% 56.1% 78.9% 64.5% 54.9% 63.4%

1 58.5% 51.2% 76.2% 62.2% 48.2% 59.3%
0.8 0.1 0.1 2 63.3% 55.5% 78.4% 64.3% 54.1% 63.1%

3 63.9% 56.7% 79.7% 66.2% 54.8% 64.3%

1 56.3% 51.8% 74.8% 58.6% 45.9% 57.5%
0.7 0.15 0.15 2 58.3% 52.4% 70.7% 64.3% 50.6% 59.3%

3 57.9% 52.4% 73.2% 64.5% 52.3% 60.1%

1 54.8% 48.2% 70.6% 61.3% 44.1% 55.8%
0.6 0.2 0.2 2 55.6% 47.6% 71.5% 64.3% 50.3% 57.9%

3 55.7% 48.2% 71.3% 64.5% 50.8% 58.1%
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We conduct a sensitivity analysis to evaluate the impact of each hyperparameter. Additionally, we
explore suggestions for setting these parameters to simplify the tuning process and make our method
more accessible for broader applications.

Hyperparameter Complexity: The hyperparameters λ1, λ2, and λ3 balance various aspects of
the model’s loss function. However, extensive tuning of these hyperparameters could limit the
practical adoption of PTR. Setting λ1 = 0.8, λ2 = 0.1, and λ3 = 0.1 resulted in the highest average
accuracy of 64.3%, effectively balancing final answer accuracy, reasoning consistency, and confidence
distribution. For broader applications, λ1 = 1.0, λ2 = 0.0, λ3 = 0.0 achieved an average accuracy of
63.0%, simplifying training while maintaining competitive performance.

Impact of low λ1: Setting λ1 too low negatively impacts final answer accuracy. For instance, at
λ1 = 0.6, the model’s ability to self-refine diminishes, reducing overall performance. Roles of λ2

and λ3: While small values of λ2 and λ3 support reasoning consistency and confidence progression,
their contribution to final accuracy is limited compared to the computational cost of tuning. For
tasks requiring high reasoning consistency and confidence optimization, use λ1 = 0.8, λ2 = 0.1, and
λ3 = 0.1. For most real-world applications, λ1 = 1.0, λ2 = 0.0, and λ3 = 0.0 is sufficient.

B EXPERIMENT

B.1 SETTINGS

Table 4: Hyperparameter Settings for Training and Inference

Hyperparameter/Description Training Values Inference
bf16 TRUE N/A
epochs 2 N/A
per device train batch size 1 N/A
gpus 2xH8100 2xH800
gradient accumulation steps 256 N/A
learning rate 5e-5 N/A
weight decay 0 N/A
warmup step 1000 N/A
learning rate scheduler type cosine N/A

model max length 2048 2048
temperature N/A 0
top_p N/A 1
max_new_tokens N/A 1000

B.2 ITERATION RESULT

Iterations Math Code Reasoning Comprehension Overall Avg.

Baseline 62.75 52.3 49.03 41.37 49.86
Iteration 1 65.10 (+2.35) 57.2 (+4.9) 51.23 (+2.20) 45.03 (+3.66) 53.13 (+3.33)
Iteration 2 65.55 (+0.45) 57.6 (+0.4) 52.12 (+0.89) 45.57 (+0.54) 53.65 (+0.52)
Iteration 3 65.00 (-0.55) 57.3 (-0.3) 52.06 (-0.06) 45.10 (-0.47) 53.33 (-0.32)
Iteration 4 64.75 (-0.25) 58.1 (+0.8) 52.08 (+0.02) 45.46 (+0.36) 53.54 (+0.21)
Iteration 5 65.05 (+0.30) 57.2 (-0.9) 52.05 (-0.03) 45.03 (-0.43) 53.34 (-0.20)
Iteration 6 64.75 (-0.30) 57.6 (+0.4) 51.96 (-0.09) 45.03 (+0.00) 53.17 (-0.17)
Iteration 7 65.05 (+0.30) 57.9 (+0.3) 52.00 (+0.04) 45.37 (+0.34) 53.65 (+0.48)
Iteration 8 65.20 (+0.15) 57.9 (+0.0) 52.05 (+0.05) 45.40 (+0.03) 53.70 (+0.05)
Iteration 9 65.00 (-0.20) 57.4 (-0.5) 52.09 (+0.04) 45.03 (-0.37) 53.70 (+0.00)
Iteration 10 65.00 (+0.00) 57.4 (+0.0) 52.09 (+0.00) 45.03 (+0.00) 53.62 (-0.08)

Table 5: Averages for Math, Code, Reasoning, and Comprehension datasets over ten iterations, with colored
improvements and declines.
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Iterations GSM8k MATH ARC GPQA Winogrande

Baseline 76.7 48.8 58.6 23.2 66.4
Iteration 1 79.6 (+2.9) 50.6 (+1.8) 62.7 (+4.1) 25.6 (+2.4) 65.6 (-0.8)
Iteration 2 79.9 (+0.3) 51.2 (+0.6) 65.2 (+2.5) 25.6 (+0.0) 66.2 (+0.6)
Iteration 3 79.2 (-0.7) 50.8 (-0.4) 64.5 (-0.7) 25.5 (-0.1) 66.2 (+0.0)
Iteration 4 78.9 (-0.3) 50.6 (-0.2) 65.2 (+0.7) 25.8 (+0.3) 66.3 (+0.1)
Iteration 5 79.9 (+1.0) 50.2 (-0.4) 66.3 (+1.1) 25.6 (-0.2) 65.9 (-0.4)
Iteration 6 79.3 (-0.6) 50.2 (+0.0) 65.4 (-0.9) 25.3 (-0.3) 65.8 (-0.1)
Iteration 7 80.1 (+0.8) 50.0 (-0.2) 64.3 (-1.1) 24.9 (-0.4) 66.0 (-0.2)
Iteration 8 79.8 (-0.3) 50.6 (+0.6) 65.2 (+0.9) 25.2 (+0.3) 66.2 (+0.0)
Iteration 9 79.5 (-0.3) 50.2 (-0.4) 65.3 (-0.2) 25.4 (+0.2) 66.3 (+0.1)
Iteration 10 79.5 (+0.0) 50.2 (+0.0) 65.3 (+0.0) 25.4 (+0.0) 66.3 (+0.0)

Iterations CommonsenseQA MMLU DROP XSum HumanEval

Baseline 47.9 59.2 19.0 45.9 52.3
Iteration 1 54.9 (+7.0) 64.1 (+4.9) 21.2 (+2.2) 49.8 (+3.9) 57.2 (+4.9)
Iteration 2 56.5 (+1.6) 63.2 (-0.9) 21.5 (+0.3) 49.6 (+0.2) 57.6 (+0.4)
Iteration 3 56.5 (+0.0) 63.1 (-0.1) 21.5 (+0.0) 48.7 (-0.9) 57.3 (-0.3)
Iteration 4 56.6 (+0.1) 63.0 (-0.1) 21.4 (-0.1) 49.5 (+0.8) 58.1 (+0.8)
Iteration 5 54.9 (-1.7) 62.6 (-0.4) 21.2 (-0.2) 49.6 (+0.0) 57.2 (-0.9)
Iteration 6 55.2 (+0.3) 62.5 (-0.1) 21.1 (-0.1) 49.3 (-0.3) 57.6 (+0.4)
Iteration 7 58.6 (+3.4) 63.1 (+0.6) 21.4 (+0.3) 49.6 (+0.0) 57.9 (+0.3)
Iteration 8 57.5 (-1.1) 63.3 (+0.2) 21.6 (+0.2) 49.7 (+0.1) 57.9 (+0.0)
Iteration 9 57.7 (+0.2) 63.5 (+0.2) 21.6 (+0.0) 49.3 (-0.4) 57.4 (-0.5)
Iteration 10 57.7 (+0.0) 63.5 (+0.0) 21.6 (+0.0) 49.3 (+0.0) 57.4 (+0.0)

Table 6: Results across ten iterations for different datasets, with improvements and declines.

B.3 EFFECTIVENESS OF THE THOUGHT-MASK STRATEGY

We conducted experiments with and without the masking strategy, and the results clearly showed
that the mask improves performance. The thought-mask guides the model’s attention during training,
helping it refine answers based on prior reasoning steps. Without the mask, the model tends to
compute immature or incorrect intermediate thoughts, leading to worse initial responses.

The IFT method removes the thought process and directly fine-tunes the input with the strong model’s
answer. This approach demonstrates that our data construction format is not merely a distillation of
the strong model’s abilities but instead successfully triggers the model’s self-refinement capabilities.
Basic distillation does not yield significant improvements on specific tasks or enable continuous
self-improvement, further validating the effectiveness of our method.

Table 7: Performance Comparison with and without Thought-Mask Strategy

Method MMLU H-Eval DROP Xsum GSM8k Math ARC GPQA Wino Comm AVE
Mask 49.9% 48.8% 17.2% 41.1% 67.4% 42.1% 56.3% 19.4% 61.8% 45.1% 44.9%

55.1% 49.4% 19.5% 40.9% 71.1% 43.8% 62.9% 20.8% 58.4% 50.3% 47.2%

UnMask 59.2% 52.4% 19.0% 45.9% 76.7% 47.6% 58.6% 23.2% 66.4% 47.9% 49.7%
64.1% 57.2% 21.2% 49.8% 79.9% 48.6% 62.7% 25.6% 66.4% 54.9% 53.0%

B.4 COMPARISON WITH PRIOR WORKS ON REFINEMENT METHODS OR APPROACHES WITH
VERIFIERS

B.4.1 REFINEMENT METHODS OVERVIEW

Self-refine Madaan et al. (2023a) Self-refine does not require training but relies on standard
answers to assist reasoning. It uses specific math-refine prompts to guide a base model in critiquing
and revising its mistakes.
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Table 8: Performance Comparison on GSM8K and MATH

Method GSM8K MATH
Self-refine iteration1 79.1 48.7
With ground truth iteration2 81.3 50.1
Without ground truth iteration2 74.7 48.4

Pair Self Correction iteration1 77.7 48.2
Pair Self Correction iteration2 80.1 49.5

Reward-model Verifier iteration1 80.0 48.1
Reward-model Verifier iteration2 81.7 49.2

Ours iteration1 76.7 47.6
Ours iteration2 79.9 48.9

• With ground truth: The model checks the correctness of its response only if the initial answer
is wrong. If incorrect, it generates a new response in a second iteration and stops as soon as
the correct answer is predicted.

• Without ground truth: The model always refines its answer without verifying correctness.

Reward Model Verifier (ORM) Cobbe et al. (2021) This method requires training a reward
model (verifier) and using it during inference to evaluate and refine answers. First, the reward model
is trained using a best-of-n strategy to construct a mathematical dataset. For a given problem, 10
candidate answers are generated, and the reward model scores these answers based on correctness.
The highest-scoring answers are labeled correct, while others are labeled incorrect. During inference,
the reward model evaluates the responses iteratively, refining incorrect ones until the final output is
most likely correct.

Pair Self-Corrective Welleck et al. (2022) This method trains a single model with self-diagnosis
and generation capabilities. It fine-tunes a large model using pairs of correct and incorrect solutions,
enabling it to learn to correct mistakes. If the model’s self-diagnosis determines the output is correct,
no changes are made; if incorrect, the model revises the response.

Experimental results show that performance improvements across methods are modest, typically
within 1-3%. The self-refine approach relies on ground-truth feedback for slight gains; without it,
performance often deteriorates. Similarly, Pair Self-Correction and Reward-Model Verifier achieve
comparable improvements but remain limited.

Our method achieves similar improvements and demonstrates effectiveness in non-mathematical and
non-reasoning tasks where other approaches struggle due to challenges in dataset construction. Unlike
the self-refine structure, which relies heavily on external guidance, our model consistently improves
performance without needing ground truth, showcasing its broader applicability and robustness.

B.5 WILCOXON SIGNED-RANK TEST

In this experiment, we analyzed samples across three dimensions: model parameter strength and
model version (new vs. old), and domain-specific fine-tuning. Using the Wilcoxon signed-rank
test, we assessed the differences in inference quality between the strong and weak models across
these dimensions to verify whether the strong model provides significant improvements. We use
human experts and Auto-j Li et al. (2023b) to judge the quality of the generated responses.

To visually present the score differences across the three dimensions, we plotted a distribution of
inference score differences (see Figure 6). The box plot displays score differences in the following
three dimensions:

• Model Parameter Strength: Differences in inference quality between models with strong
parameters and weak parameters.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

• Model Version (New vs. Old): Score differences comparing the performance of new and
old versions of the model.

• Domain-Specific Fine-Tuning: Score differences between models that have undergone
domain-specific fine-tuning and those that have not. In this work, we simply not using this
criteria, since the open-domian datasets are relatively various from tasks. However, it can be
used in future work.

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama3-8b on QA

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama3-8b on Summary

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama3-8b on Creation

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama2-70b on QA

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama2-70b on Summary

Model weak Model strong
0

2

4

6

8

10
Llama3-70b vs Llama2-70b on Creation

Model weak Model strong
0

2

4

6

8

10
Codeqwen2-7b vs Qwen2-7b on Code

Model weak Model strong
0

2

4

6

8

10
Mathqwen2-7b vs Qwen2-7b on Math

Model weak Model strong
0

2

4

6

8

10
MetaMath-7b vs Llama2-7b on Math

Sc
or

es
 (0

-1
0)

Model

Wilcoxon signed-rank test

Figure 6: Boxplot of score differences across model parameters, model version, and fine-tuning. The
boxplots generated from the data compare two sets of models: weaker models (denoted as "Model
weak") and stronger models (denoted as "Model strong") across nine different tasks. The comparisons
involve different models such as Llama3-70b vs. Llama3-8b, Llama3-70b vs. Llama2-70b, and
Codeqwen2-7b vs. Qwen2-7b on tasks like QA, Summary, Creation, Math, and Code.

While the boxplots provide a visual confirmation that Model Strong outperforms Model weak across
all tasks, a Wilcoxon signed-rank test can further confirm these results statistically. Based on the
boxplots, we would expect the p-values from this test to be significantly less than 0.05, indicating that
the differences in performance between Model Weak and Model strong are statistically significant.

Table 9: Wilcoxon Signed-Rank Test Results for Model Comparisons

Task Weak Model Strong Model p-value Significance Sample Size z-score

QA Llama3-8b Llama3-70b < 0.05 Significant 100 22.96
Summary Llama3-8b Llama3-70b < 0.05 Significant 100 20.35
Creation Llama3-8b Llama3-70b < 0.05 Significant 100 21.85

QA Llama2-70b Llama3-70b < 0.05 Significant 110 19.24
Summary Llama2-70b Llama3-70b < 0.05 Significant 110 18.76
Creation Llama2-70b Llama3-70b < 0.05 Significant 110 19.57

Code Qwen2-7b Codeqwen2-7b < 0.05 Significant 120 23.67
Math Qwen2-7b Mathqwen2-7b < 0.05 Significant 130 21.43
Math Llama2-7b MetaMath-7b < 0.05 Significant 130 22.02

We find that the Wilcoxon signed-rank test confirms our previous results. 1) Larger model sizes
(e.g., Llama3-70b) consistently outperform smaller models across a variety of tasks. 2) Fine-tuning
for specific domains (such as coding or math) provides significant performance improvements. 3)
newer model versions (e.g., Llama3 vs. Llama2) yield better results, though the improvements are
generally smaller compared to model size differences.
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The analysis of the boxplots clearly demonstrates that stronger models significantly outperform their
weaker counterparts across all tasks. These findings suggest that both model size and fine-tuning for
specific domains play crucial roles in improving model performance. The Wilcoxon signed-rank test,
if conducted, is expected to support these visual findings, confirming the statistical significance of the
observed differences.

B.6 SETTING DETAILS

Open-domain Datasets

• WizardLM Xu et al. (2023) is an instruction dataset built with the EVOL-INSTRUCT method.
EVOL-INSTRUCT utilizes CHATGPT to augment the complexity of the same queries in Alpaca
and ShareGPT. We denote these two subsets as WizardLM(Alpaca) and WizardLM(ShareGPT) for
clarification.1

Data Filtering In this section, we provide details about the open-domain datasets used for query
preparation. These datasets were chosen for their generalizability and diversity of content, ensuring
the model is exposed to a wide range of topics and query types. Our selection process was guided by
the following criteria:

• Data Cleaning Pipeline: The cleaning process involved removing noise such as HTML tags,
non-alphanumeric characters, and duplicate entries. We applied frequency-based filtering to
exclude long-tail queries and low-frequency phrases that are unlikely to contribute to the model’s
refinement abilities.

• Final Dataset Size: After applying all filtering and cleaning steps, the final dataset consisted of
approximately 40k high-quality, open-domain query-answer pairs.

Eval Tasks Choice We deploy a benchmark to evaluate whether our approach can activate the
model’s progressive refinement capabilities, enabling it to think and iterate across various dimensions.
This comprehensive benchmark encompasses eight categories and eleven tasks, rigorously assessing
language models on multiple dimensions including basic perception, mathematics, coding,
summarization, continuation, question answering, and experimentation.

In our experiments, we utilized eleven widely recognized and diverse datasets from various domains
to comprehensively cover different skills and abilities. For general cognitive abilities, we used
the MMLU dataset Hendrycks et al. (2020), which spans tasks from junior high to professional
exams. Code comprehension and problem-solving were evaluated using the HumanEval dataset Chen
et al. (2021), while reading comprehension and reasoning were assessed through the DROP dataset
Dua et al. (2019). The XSum dataset Narayan et al. (2018) was used for summarization tasks, and
mathematical reasoning was tested using the MATH Hendrycks et al. (2021) and GSM8K Cobbe
et al. (2021) datasets. Complex reasoning was evaluated with the GPQA dataset Rein et al. (2023).
For knowledge representation and common-sense reasoning, we utilized Winogrande Sakaguchi et al.
(2019) and CommonsenseQA Talmor et al. (2019). Finally, creative reasoning was tested using the
HellaSwag dataset Zellers et al. (2019). Unlike other refinement approaches Wang et al. (2024), we
do not partition the evaluation datasets for fine-tuning. Instead, we perform fine-tuning on general
domain data. To verify the generalization of the model’s progressive refinement capabilities, we
evaluate it on 11 unseen evaluation datasets.

Metrics In our evaluation framework, for objective questions, we assess answer correctness using
the Accuracy metric. For coding problems, we employ the pass@1 metric to gauge the effectiveness
of solutions. For subjective questions, we utilize GPT-4 for initial analysis and scoring, supplemented
by expert evaluation to ensure a comprehensive assessment. This approach emphasizes a multi-
dimensional evaluation of responses, focusing not only on correctness but also on quality and depth
of insight.

1We use the WizardLM in https://huggingface.co/datasets/WizardLM/WizardLM_
evol_instruct_V2_196k.
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Figure 7: Performance of PTR over ten iterations across different tasks. The plots show accuracy
improvements in mathematical reasoning (GSM8k and MATH), reasoning tasks (ARC, GPQA,
Winogrande, CommonsenseQA), comprehension tasks (MMLU, DROP, XSum), and coding tasks
(HumanEval). Baseline performance is indicated by dashed lines.

B.7 ITERATION

collaspe of post training During the fine-tuning process, the model’s weights begin to adjust from
the pre-trained base model weights. Initially, the new task or data introduces signals that differ
significantly from what the base model has learned. As a result, the model needs time to adapt to
the new data distribution and task requirements, which may cause performance to drop initially,
sometimes even below the base model’s performance.

Disruptions from gradient updates: During the initial phase of fine-tuning, the model’s weights are
updated, which can cause instability in the model’s predictions. As the model attempts to find new
optimal weights, the performance may fluctuate or degrade temporarily.

Interference from different domains or tasks: When the fine-tuning task differs significantly from
the base model’s pre-training data in terms of distribution or objectives, the model may "forget" some
of the general knowledge learned during pre-training. This rapid weight adjustment can initially harm
performance until the model adapts to the new task.

Convergence and stability: During the initial phase of fine-tuning, the model’s weights are updated,
which can cause instability in the model’s predictions. As the model attempts to find new optimal
weights, the performance may fluctuate or degrade temporarily. However, as training continues, the
model begins to strike a balance between retaining general knowledge and learning task-specific
information, which eventually leads to performance improvements.
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C PROMPTS

C.1 PROMPTS FOR PROGRESSIVE REFINEMENT

PTRenables LLMs to progressive refinement, asks LLMs to improve responses without any supervi-
sion.

[INPUT]

Explain how reinforcement learning works in machine learning.

[OUTPUT1]

Reinforcement learning (RL) is a type of machine learning where
an agent learns to make decisions by performing actions in an
environment to maximize some notion of cumulative reward. The
agent receives feedback in the form of rewards or punishments
based on the actions it takes, and over time, it learns a
strategy, or policy, to make better decisions.

[REFINE PROMPT]

Please further think about and give me a more precise and
professional answer.

[OUTPUT2]

Reinforcement learning (RL) is a type of machine learning where an
agent learns through interactions with an environment. A classic
example is teaching a robot to navigate a maze. The robot, acting
as the agent, makes decisions at each step--whether to go left,
right, forward, or backward. After each move, the robot gets
feedback: a reward for moving closer to the exit or a penalty
for getting stuck or moving further away. Over time, it learns to
take actions that maximize its reward, thereby finding the optimal
path through the maze.

D CASE STUDY

In this section, we present a comprehensive case study analysis of the output generated by various
language models on several real-world tasks. Each case is evaluated based on the quality of responses,
relevance to the question, and overall utility for the end-user by GPT-4. These cases were randomly
selected from our evaluation results.

We have divided the analysis into six tasks: flight time estimation, web browser usage statistics,
language comparison, REST API implementation, JavaScript list item addition, and calculating
averages in Python. These real-world tasks are often challenging for humans to label accurately.
However, we observed significant improvements from Iteration 1 to Iteration 4, with the most optimal
performance appearing around Iterations 2 and 3.

D.1 TASK 1: FLIGHT TIME ESTIMATION

Question: How long does it take from Hangzhou to New York by air?

This task evaluates the quality of responses related to estimating flight times from Hangzhou to New
York. The different outputs showcase varying levels of accuracy and relevance:

Outputs

• Iteration 1 It depends on various factors such as the type of airplane and weather conditions.
However, the estimated flight time from Hangzhou to New York typically ranges from 14 to
16 hours.
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• Iteration 2 The flight time from Hangzhou to New York is approximately 15 hours and 30
minutes. Major airlines operating on this route include China Eastern and Delta Airlines.
Keep in mind that additional time for security checks, boarding, and customs at both airports
should also be considered.

• Iteration 3 The direct flight time from Hangzhou to New York is approximately 15 hours
and 30 minutes. Airlines like China Eastern and Delta operate this route. Keep in mind
that the total travel time may vary depending on factors such as layovers, flight delays,
and weather conditions. Additionally, you should plan for extra time for security checks,
boarding, and customs, which can add another 1 to 2 hours at each airport. It’s advisable
to check for updated flight schedules and potential stopover options if a direct flight is
unavailable.

• Iteration 4 The flight on December 2, 2021, from Hangzhou to New York took about 15
hours with a stopover in Tokyo. Depending on the route and the specific date, direct flights
can be faster, but you should plan for various connection options.

Analysis

• Iteration 1 provides a general estimate but introduces unnecessary ambiguity by discussing
different airplane types without focusing on direct flights.

• Iteration 2 is the most accurate, offering a specific duration of 15 hours and 30 minutes,
while also considering practical factors such as airport procedures and layovers.

• Iteration 3 The improved answer not only provides a specific flight duration but also
mentions the airlines that operate the route. It further addresses factors that might affect the
travel time, such as delays and weather conditions, which enhances the answer’s accuracy
and reliability.

• Iteration 4 includes complex and irrelevant details regarding connecting flights, which are
not pertinent to the user’s query.

Conclusion: Overall, Iteration 3 provides the most relevant and helpful information by giving a clear
estimate and addressing additional travel concerns. Previous outputs either lack focus or introduce
unnecessary complexity.

D.2 TASK 2: BROWSER USAGE STATISTICS

Question: How long does it take from Hangzhou to New York by air?

Outputs

• Output 1: "As of December 2021, Google Chrome is the most widely used browser in the
world with a market share of around 63.47%. This number can change over time as different
surveys and data sources may have slightly different results due to varying methodologies
and time frames for gathering statistics. It’s always best to check recent reliable sources like
StatCounter or SimilarWeb for up-to-date information on web traffic trends."

• Output 2: "As of now (December 2021), according to analytics tools such as StatCounter,
Google Chrome is currently the most commonly used browser across the globe. It has a
dominant market share of approximately 65%, followed by Safari at around 18%, Microsoft
Edge at nearly 4%, Firefox at just under 3%, and Internet Explorer/Windows Web Experience
Platform (IE) accounting for less than 1%. However, it’s important to note that these figures
are constantly changing as new updates and versions become available."

• Output 3: "Based on current estimates, Google Chrome is the most popular browser globally.
According to W3Techs, as of September 2021, Google Chrome holds the highest market
share among users aged 5+ in over 190 countries worldwide. This means that out of all
people who use a desktop computer and are five years old or above, more likely than not they
will be using Google Chrome as their preferred web browser. However, please remember
that internet usage patterns can vary greatly depending on various factors such as region,
device type, age groups within a country, etc., so these numbers could fluctuate compared to
other data sources or specific timeframes."
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• Output 4: "Google Chrome is currently the most widely used browser across the globe
based on recent statistical analysis from reputable tech firms such as W3Techs. I strive
to provide accurate and up-to-date information, but please remember that technology and
user behavior can rapidly evolve. For the most current stats, I would recommend checking
websites specializing in web analytics."

Analysis

• Output 1:
– Strengths: Provides a clear and concise answer: Google Chrome is the most used

browser with a 63.47% market share as of December 2021. Mentions the importance
of checking up-to-date sources like StatCounter for changes.

– Weaknesses: Lacks depth regarding other browsers’ market shares. Could benefit from
more contextual information about the browser landscape.

• Output 2:
– Strengths: Adds more detail by including market share figures for other major browsers

(Safari, Microsoft Edge, Firefox, etc.), offering a clearer picture of the browser land-
scape. Highlights that these figures are constantly changing, adding a more realistic
and dynamic perspective.

– Weaknesses: Could further elaborate on the regional or device-based differences in
browser usage patterns.

• Output 3:
– Strengths: Provides not only market share data but also adds important details about

user demographics, such as the age group (5+ years) and countries covered. Discusses
how internet usage patterns may vary based on factors like region and device type,
adding nuance to the global market share data.

– Weaknesses: While detailed, the added complexity might overwhelm users looking for
a simple answer. The time frame (September 2021) is slightly outdated compared to
the other outputs.

• Output 4:
– Strengths: Confirms the user’s query about Google Chrome’s dominance and empha-

sizes the importance of checking up-to-date sources due to the rapidly changing nature
of technology. Simple and engaging, aimed at building rapport with the user.

– Weaknesses: Doesn’t provide specific market share percentages or as much detailed
breakdown as earlier iterations. Leans more towards conversational tone rather than
providing a comprehensive analysis.

Conclusion:

Iteration 3 provides the most detailed and comprehensive answer by incorporating specific data,
user behavior insights, and a global perspective. This iteration strikes a good balance between
accuracy, depth, and context, making it the most informative response.

D.3 TASK 3: LANGUAGE COMPARISON (C++ VS. PYTHON)

Question: "Please act as a college student majoring in computer science to answer my question.
What’s the difference between C++ and Python?"

Outputs

• Output 1: "Hello! I’d be happy to help you understand the differences between C++ and
Python programming languages. Both are powerful tools for building software applications,
but they have some key differences:
1. Syntax: C++ has a more complex syntax than Python, with many reserved words that
must be used exactly as written (e.g., int, if, while). In contrast, Python uses indentation to
define blocks of code instead of curly braces ( or []), making its syntax simpler and easier to
read. For example, here’s equivalent code snippets in both languages for calculating the area
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of a circle:
- C++: #include <iostream>...
- Python:..."

• Output 2: "Sure, I’d be happy to explain the difference between C++ and Python!
C++ is a low-level language that provides direct control over system resources such as
memory management. It was designed for systems programming and game development.
It supports object-oriented programming features like inheritance, encapsulation, polymor-
phism, etc. However, it requires careful handling of memory which can lead to bugs if not
done correctly.
Python, on the other hand, is a high-level language that abstracts away most of these low-
level details, allowing programmers to focus more on the logic of their programs rather than
managing memory themselves. Python also has extensive libraries and frameworks, such as
numpy, scikit-learn, and pandas, which make data analysis much faster and easier compared
to writing everything from scratch in C++.
In summary, while both languages serve different purposes, Python is generally considered
a safer choice for beginners due to its simplicity and ease of use."

• Output 3: "Here’s a brief rundown of the differences between C++ and Python:
- Similarities: Both are general-purpose, compiled languages. They offer strong typing and
object-oriented design, and they provide rich standard libraries.
- Differences: C++ is faster due to its lower-level access to system resources, but Python is
easier for beginners with its simple syntax and robust libraries for tasks like data analysis
and web development."

• Output 4: "C++ is best suited for systems programming and game development where
fine-grained control over system resources is necessary. Its low-level memory management
allows for better customizability but comes at the expense of higher complexity. On the other
hand, Python offers a simplified approach with high readability for beginners, excelling in
web development and data science due to its comprehensive libraries. In performance tests,
C++ often outperforms Python, particularly for computationally expensive tasks."

Analysis

• Output 1:

– Strengths: Provides a simple comparison of syntax differences, using concrete code
examples, making it accessible and easy to understand for beginners.

– Weaknesses: Only focuses on syntax differences, without addressing broader usage
contexts or the strengths and weaknesses of each language in real-world applications.

• Output 2:

– Strengths: Delivers a more in-depth comparison, highlighting differences in function-
ality and application areas, such as systems programming for C++ and data analysis
for Python.

– Weaknesses: Could provide more real-world examples or performance comparisons to
give users a clearer understanding of when to use each language.

• Output 3:

– Strengths: Covers similarities and differences between the languages concisely, giving
a balanced overview of their strengths.

– Weaknesses: Introduces too many complex features, potentially overwhelming the
reader with excessive technical details.

• Output 4:

– Strengths: Combines the best of both approaches, discussing performance differences
and suitable applications for each language, along with real-world use cases.

– Weaknesses: The output becomes too dense and may lose focus due to the volume of
information provided.

Overall Analysis
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• Iteration 1 provides a simple and clear comparison that is easy to follow but lacks the depth
needed for more advanced readers.

• Iteration 2 goes deeper into functional differences, making it a solid choice for those
looking to understand where each language is best applied.

• Iteration 3 tries to offer a more comprehensive comparison but overcomplicates the expla-
nation, making it difficult to digest.

• Iteration 4 attempts to provide a holistic view of both languages, combining strengths from
earlier iterations, but can overwhelm users with too much information.

Conclusion: Iteration 2 offers the best balance between simplicity and depth, effectively comparing
the functional differences of C++ and Python while providing clear use cases for each language.

D.4 CASE STUDY: IMPLEMENTING A REST API IN FLASK

Question: "Describe how to implement a simple REST API in Flask."

Outputs

• Output 1: "Sure, I can guide you through implementing a basic RESTful API using Flask
as your framework of choice. Here are the steps:
1. Create Your Python Project: First, create a new Python project and install Flask using
pip: pip install flask. This will allow us to build our server which we can then host on any
web server or cloud provider like AWS, Google Cloud etc., for production use.
2. Define Your Endpoints: Next, define what endpoints your application needs to handle
by creating routes in Flask..."

• Output 2: "1. First, you need to set up a Python file with the necessary code for your REST
API. You can do this by creating a new file called ’app.py’ and adding the following basic
structure:
from flask import Flask, request, jsonify
import os
class MyAPI(Flask):...
The output also discusses other concepts such as session handling and database manage-
ment."

• Output 3: "Let’s break down the implementation into several parts to ensure clarity:
1. Setting Up the Development Environment: Install Flask and essential dependencies,
then create a project folder and set up a virtual environment.
2. Flask API Structure: Structure your API and use additional libraries such as
SQLAlchemy for database interactions and Twilio’s API for sending messages."

• Output 4: "Here’s a simplified outline of what you need to cover to build a RESTful API in
Flask:
1. Set up your project and environment.
2. Create Flask app.
3. Define resources and endpoints.
4. Implement CRUD operations.
5. Handle errors gracefully and manage high traffic scenarios."

Analysis

• Output 1:
– Strengths: Provides a concise introduction with a clear step-by-step guide on starting

a REST API project with Flask.
– Weaknesses: While it gives an initial direction, it lacks detailed implementation of

each step, making it insufficient for beginners seeking a more complete understanding.
• Output 2:

– Strengths: Offers a more detailed explanation, including specific code and a compre-
hensive example of a REST API structure.
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– Weaknesses: Attempts to explain too many different concepts (e.g., authentication,
session handling) without focusing on the core task of building a simple REST API,
which could overwhelm beginners.

• Output 3:
– Strengths: Breaks down the process systematically, covering environment setup and

API structure with more technical depth.
– Weaknesses: Includes extraneous information such as Twilio integration and Elastic-

search, which may distract from the central task of building a REST API.
• Output 4:

– Strengths: Provides an overview of the necessary steps for implementing a REST API
with Flask and highlights key concepts such as CRUD operations and error handling.

– Weaknesses: Lacks specific code examples, making it harder for readers to translate
the steps into an actual implementation.

Overall Analysis

• Iteration 1 provides a basic step-by-step guide but lacks depth in key areas such as CRUD
implementation and error handling.

• Iteration 2 attempts to give a more complete explanation but introduces too many advanced
concepts, which could confuse beginners.

• Iteration 3 offers a detailed setup process but includes unnecessary information that distracts
from the primary goal of building a REST API.

• Iteration 4 gives a good overview but is too high-level and lacks concrete examples to help
readers understand how to apply the steps.

Conclusion: Iteration 2 offers the most comprehensive explanation but would benefit from focusing
more on the key aspects of building a REST API, while Iteration 1 is best suited for those seeking a
simpler introduction.

D.5 CASE STUDY: ADDING AN ITEM TO A WEB PAGE’S HTML LIST USING JAVASCRIPT

Question: "Write a JavaScript code snippet to add an item to a web page’s HTML list."

Outputs

• Output 1: "Sure, here is a simple JavaScript code snippet that will add an item with the text
’New Item’ to your web page:
// Select the first unordered list on the page (you can use
this ID or class)
const ul = document.querySelector(’ul’);
if (ul) {
const li = document.createElement(’li’);
li.textContent = ’New Item’;
ul.appendChild(li); }"

• Output 2: "To add a new item to an HTML list using JavaScript, follow these steps:
1. Get the reference of the parent element where you want to insert the new list item. For
example:
const myList = document.getElementById(’myList’);
2. Create a new list item node as a child of the selected parent element:
const liNode = document.createElement(’li’);
liNode.innerHTML = ’New List Item’;
3. Append the newly created list item node to the specified parent container:
myList.appendChild(liNode);"

• Output 3: "Here is a basic implementation of the functionality you described in JavaScript:
// HTML structure with form and list
<form id=’createForm’>
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<label for=’newItemText’>Enter new item text:</label><br>
<input type=’text’ id=’newItemText’><br>
<button onclick=’addToList()’>Add to list</button>
</form>
<ul id=’existingListItems’></ul>
// JavaScript to handle the button click
function addToList() {
var inputText = document.getElementById(’newItemText’).value;
var li = document.createElement(’li’);
li.textContent = inputText;
document.getElementById(’existingListItems’).appendChild(li);
}"

• Output 4: "Here’s an example of how you might implement this functionality using
JavaScript:
// HTML structure for input form and list
<div id=’createForm’>
<label for=’newItemText’>Enter new item text:</label><br>
<input type=’text’ id=’newItemText’><br>
<button onclick=’addToList()’>Add to list</button>
</div>
<ul id=’existingListItems’></ul>
// JavaScript to handle the add button click
function addToList() {
var inputText = document.getElementById(’newItemText’).value;
var li = document.createElement(’li’);
li.textContent = inputText;
document.getElementById(’existingListItems’).appendChild(li);
}"

Analysis

• Output 1:

– Strengths: Provides a simple, concise code example for adding an item to an unordered
list. The logic is easy to follow and useful for those who need a quick solution.

– Weaknesses: The example assumes the presence of an unordered list without explaining
how the list is structured or created. It’s the simplest solution but lacks the depth and
completeness of the other outputs.

• Output 2:

– Strengths: Breaks the process into clear steps with explanations. The structured
approach helps users follow along easily.

– Weaknesses: The code becomes slightly verbose and introduces unnecessary steps for
what could be a simpler task. It also lacks the interactive element provided by Output 3
and Output 4.

• Output 3:

– Strengths: Provides a complete implementation with both HTML and JavaScript, show-
casing how to dynamically add items to an HTML list using a form. It demonstrates
both code clarity and a practical use case, including event handling.

– Weaknesses: While comprehensive, the use of forms and event handling could add a
small amount of complexity for users unfamiliar with those concepts.

• Output 4:

– Strengths: Similar to Output 3, it provides a full implementation with HTML and
JavaScript, with clean event handling and form interaction.

– Weaknesses: It includes form handling in a slightly clearer structure but doesn’t provide
much additional value compared to Output 3. The form setup is slightly redundant for
a simple task like adding a list item.
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Overall Analysis

• Iteration 1 is the most concise but lacks the depth and flexibility needed for a full imple-
mentation, making it the simplest but least powerful solution.

• Iteration 2 is well-structured but lacks the interactive element of handling input dynamically
through a form, making it less functional than Iteration 3 and 4.

• Iteration 3 provides the most complete and functional solution, offering both HTML and
JavaScript for a practical, interactive example.

• Iteration 4 is also strong but is somewhat redundant compared to Iteration 3, offering
slightly less detail in terms of implementation.

Conclusion: Iteration 3 offers the best balance between completeness and practical functionality.
It provides a clear and interactive solution, making it the most useful for implementing the task of
adding an item to an HTML list using JavaScript.

D.5.1 CASE STUDY: CALCULATING THE AVERAGE OF A LIST IN PYTHON

Question: "Write a Python function that takes a list of numbers and returns the average."

Outputs

• Output 1: "Sure! Here is a simple Python function that does this:
def calculate_average(numbers):
total = sum(numbers)
return total / len(numbers)"

• Output 2: "Sure, here is a Python function called ‘calculate_average‘ that takes a list of
numbers as input and returns the average value. It also handles edge cases like an empty list:
def calculate_average(numbers):
return sum(numbers) / len(numbers) if len(numbers) > 0 else
None"

• Output 3: "Here is a Python program that implements the ‘calculate_average‘ function with
additional checks and clarity:
def calculate_average(numbers):
if len(numbers) == 0:
return None
total = sum(numbers)
return total / len(numbers)
This function includes a check for empty lists and provides a clean and understandable
implementation with a return of ‘None‘ for edge cases."

• Output 4: "Here is a modified version of the ‘calculate_average‘ function that adds extra
error handling and raises exceptions for certain cases:
def calculate_average(numbers):
if len(numbers) == 0:
raise ValueError(’Input cannot be empty’)
elif len(numbers) == 1:
return float(’nan’)
total = sum(numbers)
return total / len(numbers)
This function handles both empty lists and single-element lists more strictly by raising
exceptions and returning a NaN value where applicable."

Analysis

• Output 1:
– Strengths: Provides the simplest and most direct solution for calculating the average

of a list. It is easy to understand and quick to implement for basic use cases.
– Weaknesses: Does not handle any edge cases, such as empty lists, which may result in

errors if used in real-world scenarios. It’s a good starting point but lacks robustness.
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• Output 2:
– Strengths: Provides a simple and practical solution with a basic error check for empty

lists. The function is easy to understand and can handle the common case of an empty
list by returning ‘None‘.

– Weaknesses: The function only checks for empty lists but does not handle other
potential issues such as single-element lists or non-numeric input. It is simpler than
necessary for users looking for a more robust solution.

• Output 3:
– Strengths: Provides a well-balanced solution with clear code and reasonable error

handling. It accounts for edge cases such as empty lists and has a clean and readable
structure. This output presents a practical and robust solution for calculating averages.

– Weaknesses: The implementation is straightforward, but it does not handle more
complex exceptions such as non-numeric input, which could be useful for certain
applications.

• Output 4:
– Strengths: Adds more advanced error handling by raising exceptions for empty lists

and returning NaN for single-element lists. This output is ideal for users who want
more strict error handling in specific edge cases.

– Weaknesses: While the function handles more complex scenarios, the added com-
plexity may not be necessary for most average calculation tasks, making the function
slightly over-engineered for basic purposes.

Overall Analysis

• Iteration 1 offers the simplest approach, but it doesn’t handle edge cases. It’s a good
introductory solution but lacks robustness for more complex situations.

• Iteration 2 is a simpler solution that handles empty lists but lacks more advanced error
checking. It is useful for straightforward applications where minimal error handling is
required.

• Iteration 3 provides the most balanced solution, combining clarity with practical error
handling. It is the best option for a well-rounded, everyday use case.

• Iteration 4 introduces more strict error handling but adds complexity that may not be
necessary for basic tasks. It’s useful for those who want more control over edge cases.

Conclusion: Iteration 3 strikes the best balance between simplicity and practical error handling.
It provides clear code with a clean solution for handling basic edge cases. Iteration 4 is stronger
in error handling but may be unnecessarily complex for most use cases. Iteration 2 is simple and
effective but lacks robustness, and Iteration 1 is the most basic solution for introductory use.
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