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Abstract

Contrastive learning is a powerful framework for learning discriminative representations from
image-text pairs. Despite its success, its theoretical foundations, especially when the image-text
pair exhibits misalignment, remain underexplored. This paper provides the first theoretical analysis
of contrastive learning under data misalignment, proving how the ground-truth modality-paired
features are amplified while spurious features are suppressed through the training dynamics analysis.
Specifically, we study two nonlinear encoders trained jointly with a contrastive loss and demonstrate
that noisy (or misaligned) data pairs result in mixed representations and degrade the model’s
generalization ability. In contrast, recaptioning and filtering improve the data alignment, which in
turn purifies the features learned by neurons and subsequently enhances generalization. Our analysis
identifies feature purity as a key factor in the success of contrastive learning and offers insights
into how data quality and training procedures impact representation learning and downstream
generalization. Theoretical insights are supported by experiments on standard benchmarks.
Keywords: Contrastive Learning, Training Dynamics, Feature Learning, Generalization Guarantees

1. Introduction
Vision-language models (VLMs) achieve strong results in tasks like image captioning and retrieval
by contrastively aligning image-text pairs. Leading methods such as CLIP [16] and SimVLM [23]
train dual encoders on large-scale web data, pulling matched pairs closer in a shared embedding
space. These models are highly effective in zero-shot settings without task-specific tuning. However,
web-sourced captions often include irrelevant or spurious content, weakening cross-modal alignment.
For instance, [15] highlights an image of a Mercedes-Benz paired with a caption describing its
price and leather seats—details not visually inferable from the image. Such misalignments degrade
representation quality and generalization. To address this, many works [2, 6, 8, 15, 17, 20, 21] use
text generation models to rewrite captions during training. Methods like LaCLIP [6] and BLIP [12]
improve both caption quality and diversity, leading to better model performance.

Despite empirical success, the theory behind VLM pretraining and recaptioning remains under-
developed. Key open questions include:
How do contrastively trained VLMs learn aligned features and enable zero-shot inference? How
does text recaptioning on noisy image-text pairs provably enhance generalization performance?

Prior theoretical studies either assume convergence to optimal solutions [7, 9, 11, 27], or focus
on simplified settings—e.g., unimodal or linear models [4, 14, 24]. None address training dynamics
under misalignment or the effect of recaptioned text on feature quality.

Contributions. We present the first theoretical analysis of how text recaptioning improves
zero-shot generalization in VLMs under modality misalignment. First, we analyze the training
dynamics of multimodal contrastive learning with two ReLU networks, extending prior results
beyond linear or unimodal settings. Second, we formalize a misalignment model in which spurious
or missing features entangle the learned representations and degrade generalization. Third, we prove
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that recaptioning and filtering reduce spurious correlations and enhance semantic relevance, leading
to improved representations and out-of-domain performance.

2. Problem Formulation and Algorithm
VLMs are pre-trained on large-scale web datasets of paired images and texts using dual encoders: an
image encoder fW and a text encoder hV, parameterized by weights W and V. Contrastive learning
pulls positive pairs close and pushes apart negative ones. Let S be the index set of image-text pairs
(xp, yp). A pair (xp, yp) is positive, while (xp, yn) with p ̸= n is negative. Training minimizes a
spectral loss over these pairs.

L(f, h) =
∑
p∈S

−⟨f(xp), h(yp)⟩+
∑

n∈S\{p}

(⟨f(xn), h(yp)⟩)2

2τ
+

∑
n∈S\{p}

(⟨f(xp), h(yn)⟩)2

2τ

 (1)

where the hyper-parameter τ > 0 is referred as the temperature.

2.1. Training Framework
Let S = Sh ∪ Sw include human-annotated high-quality image-text pairs with indices in Sh and
noisy web low-quality dataset with indices in Sw. Due to the inherently noisy nature of web data,
the learned embeddings from (1) may be suboptimal. To address this, many methods [6, 12] use
rewritten text to enhance image-text pair quality and diversity. Though implementations differ, most
follow a similar four-stage framework:

(S1) Image-text contrastive pre-training (ITCP) on raw data: The image encoder f and text
encoder h are trained using the image-text pairs {(xp, yp)}p∈S by minimizing the contrastive loss as
in (1). Let W and V denote the learned weights in f and h. We then estimate the image and text
embeddings of (xp, yp) by z′xp

= fW(xp) and z′yp = hV(yp). Due to the low-quality data in Sw

when training the encoders, these estimations might not be accurate.
(S2) Generating text captions: The high-quality data pairs in Sh are used to finetune an image-

grounded text decoder G, which maps an image xp to text through G(xp). Then, the learned G is
applied to every image xp in Sw to generate a synthetic caption ŷp = G(xp). Next, the estimated
text embedding of ŷp is computed as ẑyp = hV(ŷp) = hV(G(xp)), where V represents the weights
of h learned from Stage S1.

(S3) Filtering: For every (xp, yp) ∈ Sw, we compute the cosine similarity between the image
embedding z′xp

and the text embeddings of the original caption z′yp and the synthetic caption ẑyp . If
(z′xp

, ẑyp) yields higher similarity than (z′xp
, z′yp), we replace (xp, yp) with (xp, ŷp). Let S̃w denote

the index set of selected data pairs. By filtering out noisy captions in Sw and replacing them with
better-aligned synthetic ones, S̃w forms a cleaner dataset for training.

(S4) ITCP on filtered data: The image encoder f and text encoder h are trained by minimizing
the contrastive loss in (1), repeating the procedure from Stage 1 (S1) with the only difference being
that the original dataset S is replaced by S̃ = Sh ∪ S̃w. The resulting loss is denoted by L̃(f, h).
Let W̃ and Ṽ denote the resulting learned weights. f

W̃
and g

Ṽ
can produce improved embeddings

compared with fW and gV.

2.2. Downstream Tasks
As a demonstration of the performance of the learned model (f

W̃
, g

Ṽ
), we consider a downstream

image classification task in a zero-shot setting. We consider a K-classification problem for any
constant K ≥ 2. Each class label is associated with a given text prompt yk, where k ∈ [K]. For any
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image x with its ground-truth label lx ∈ [K], the zero-shot predicted label by the pre-trained models
(f

W̃
, g

Ṽ
) is computed as argmaxk∈[K]⟨fW̃(x), g

Ṽ
(yk)⟩. This approach follows the typical setting

of zero-shot classification takes [4, 10, 12].

3. Technical Assumptions and Setups
We introduce a set of assumptions that are either derived conceptually from the real data distribution
or follow existing approaches in contrastive learning theory.

3.1. Backbone of the Encoders
We use a two-layer neural network with ReLU activation functions as the image and text encoder,
respectively. Formally, we have

Definition 1 The image encoder fW : Rd1 → Rm and text encoder hV : Rd1 → Rm is

f(x) = (f1(x), . . . , fm(x))
⊤ ∈ Rm, with fi(x) = σ (⟨wi, x⟩ − bi)− σ (−⟨wi, x⟩ − bi) , (2)

h(y) = (h1(y), . . . , hm(y))
⊤ ∈ Rm, with hi(y) = σ (⟨vi, y⟩ − bi)− σ (−⟨vi, y⟩ − bi) , (3)

where σ is ReLU function, and W = [w1, w2, . . . , wm]⊤, V = [v1, v2, . . . , vm]⊤ ∈ Rm×d1 .

3.2. Data Model for ITCP
Assumption 1 (Sparse coding model for image-text pairs) Each image-text pair (xp, yp), p ∈ S,
is generated i.i.d. from the following sparse coding form:

xp = Mzxp
+ ξxp

, yp = Hzyp
+ ξyp

, (4)

where xp, yp ∈ Rd1 , zxp , zyp ∈ Rd, and d1 = poly(d). We assume:
(a) Image dictionary: M = [M1, . . . ,Md] ∈ Rd1×d is column-orthonormal.
(b) Text dictionary: H = [H1, . . . ,Hd] ∈ Rd1×d is column-orthonormal.
(c) Additive noise: ξxp , ξyp ∼ N (0, σ2

ξId1) with ω(1/d1) ≤ σ2
ξ ≤ O

(√
log d/d1+c0

)
.

(d) Sparse latent vector: zxp = (z1xp
, . . . , zdxp

) with zjxp ∈ {0,±1}, where |zjxp | ∼ Bernoulli(Cz/d).
We introduce Assumptions 2 and 3 to capture the characteristics of the dataset S = Sh ∪ Sw.
Notably, high-quality pairs in Sh may be significantly fewer than low-quality pairs in Sw, with
|Sh| = Θ(d2) and |Sw| = poly(d)≫ ω(d2). For high-quality data Sh, we assume learnable latent
feature, consistent with the common assumption in prior work [4] that focuses exclusively on such
data in contrastive learning.

Assumption 2 (High-quality image-text pairs) Every high-quality image-text pair (xp, yp) with
p ∈ Sh shares the learnable latent feature, i.e., zxp = zyp , where zxp and zyp denote the shared
feature representations underlying the image and text, respectively.

Compared to high-quality pairs in Sh, low-quality pairs in Sw suffer from modality misalignment,
modeled as either spurious image-text correlations or missing text descriptions.

Assumption 3 (Low-quality image-text pairs) There exists a constant Cs ∈ (ω( 1
log d), 1/2) such

that for every low-quality pair (xp, yp) in Sw and every image feature Mj (j ∈ [d]) in xp, we have

Pr
(
zj

′

yp
= zjxp

| |zjxp
| = 1

)
= Cs, Pr

(
zjyp

= 0 | |zjxp
| = 1

)
= Cs, (5)

where the first term in (5) is the probability that a text feature Hj′ (j′ ̸= j) is spuriously correlated
to the image feature Mj , and the second term is the probability that Hj is missing in the text while
the image feature Mj exists.
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3.3. Image-Grounded Text Decoder G in Stage (S2)
Recall that G is employed in Stage (S2) to generate synthetic text captions. In practice, the core
idea behind the widely adopted approaches [12, 22, 26] is to train the encoder-decoder model G and
leverage the high-quality image-text pairs Sh to improve its performance. In this paper, we consider
a simplified form of G, given by:

G(xp) = VTσ(Wxp), (6)

where σ denotes the ReLU function. The parameters W and V are learned by solving

min
W,V

LC =
∑
p∈Sh

1

2

∥∥VTσ(Wxp)− yp
∥∥2
2
, (7)

initialized at W and V, using SGD with step size η. Although G in (6) is a conceptual simplification,
where σ(Wxp) acts as the encoder and VT as the decoder, it serves as a realistic abstraction to
illustrate the underlying advantages of synthetic text caption generation.

4. Main Results
4.1. Feature Purity Improvements in Converged Models via Recaptioned Data
We first characterize the training dynamics and convergence of solving (1) using SGD in Stage S1
and S4 in Sec 2.1. Let L∗ and L̃∗ denote the optimal values of the contrastive loss on the raw dataset
S and the filtered dataset S̃, respectively. Note that (W,V) and (W̃, Ṽ) are the converged weights
from contrastive training on S and S̃ in stage S1 and S4, respectively.

Theorem 2 (Convergence of ITCP) Suppose Assumptions 1 to 3 hold. Let the model complexity
be m = d1.01, initialized at w(0)

i , v
(0)
i ∼ N (0, σ2

0Id1), where σ2
0 = Θ

(
1

d1poly(d)

)
. After T =

Θ
(
d2 log d

)
iterations with batch size B = Ω(d) and η = O(1), the returned weights achieve a loss

that is sufficiently close to the optimal loss in Stage S1 and Stage S4, respectively, i.e.,

(L(fW, hV)− L∗)/ |L∗| ≤ o(1), (L̃(f
W̃
, hṼ)− L̃∗)/

∣∣∣L̃∗
∣∣∣ ≤ o(1). (8)

Remark 3 Theorem 2 demonstrates that SGD iterations can converge to weights that achieve a near
optimal loss of (1), respectively. This result is of independent interest, as existing training dynamics
and convergence analyses for contrastive loss are limited to linear networks. Here, we extend such
analysis to nonconvex optimization settings where the network contains nonlinear ReLU activations.

Theorem 4 (Unsuccessful learning of ITCP on raw data S with low feature purity in Stage S1)
For each neuron pair (w̄i, v̄i) in (W,V), there exists a spurious feature pair (j, j′) ∈ [d] such that

w̄i = αi,jMj + αi,j′Mj′ + ri, v̄i = αi,jHj + αi,j′Hj′ + si (9)

where α2
i,j , α

2
i,j′ = Θ

(
∥w̄i∥22 + ∥v̄i∥22

)
and ∥ri∥22, ∥si∥22 ≤ O((∥w̄i∥22 + ∥v̄i∥22)/d). Moreover, for

every spuriously correlated pair (j, j′), there exist at least Ω(1) neuron pairs (w̄i, v̄i) that primarily
learn the mixed feature pair (Mj ,Hj), (Mj′ ,Hj′).

Remark 5 Theorem 4 shows that ITCP on raw data yields low feature purity. Each neuron pair
(w̄i, v̄i) learns a mixture of features, with Mj entangled with Mj′ and likewise for Hj and Hj′ . Thus,
the learned weights W and V fail to separate features j and j′, degrading downstream performance.
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Theorem 6 (Spurious feature suppression and relevant feature preservation by recaption) Af-
ter T = Θ(d log d) steps of SGD, the decoder G in (6), finetuned by solving (7), converges to weights
(Ŵ, V̂) with expected loss LC ≤ Θ(1/d). The recaptioned texts in S̃w are computed by ŷp = G(xp).
Then for any index j ∈ [d] such that |zjxp | = 1, the decoder output satisfies:

Pr(zjŷp
= 1 | |zjxp

| = 1) ≥ 1−Θ(1/d) , Pr(zj
′

ŷp
= 1 | |zjxp

| = 1) ≤ Θ(1/d) , ∀j′ ̸= j. (10)

Remark 7 After captioning and filtering, the text in S̃w contains fewer spurious features and more
aligned pairs than in raw data Sw. Under Assumption 3, the spurious feature probability drops from
Cs to Θ(1/d), while the chance of retaining all aligned features increases from Cs to 1−Θ(1/d).
The resulting dataset S̃ = Sh ∪ S̃w thus provides better-aligned pairs for contrastive learning,
leading to higher feature purity. We next show how ITCP trained on S̃ improves purity.

Theorem 8 (Successful learning of ITCP on filtered data S̃ with high feature purity in Stage S4)
Each (w̃i, ṽi) in (W̃, Ṽ) primarily learns some (Mj ,Hj) with j ∈ [d]:

w̃i = α̃i,jMj + r̃i, ṽi = α̃i,jHj + s̃i (11)

where α̃2
i,j = Θ(∥w̃i∥22 + ∥ṽi∥22) and ∥r̃i∥22, ∥s̃i∥22 ≤ O

(
(∥w̃i∥22 + ∥ṽi∥22)/d

)
. For each j ∈ [d], at

least Ω(1) neuron pairs (w̃i, ṽi) primarily learn purified feature pair (Mj ,Hj).

Remark 9 Theorem 8 indicates that the model learned by ITCP on filtered data achieves a pu-
rified representation. Specifically, a neuron pair (w̃i, ṽi) learns one single feature pair (Mj ,Hj),
respectively. As a result, W̃ and Ṽ yield purified representations that effectively separate individual
features, enabling improved downstream performance.

4.2. Performance Comparison on Downstream Tasks
We next compare the performance of the models (fW, gV) and (f

W̃
, g

Ṽ
) on the zero-shot image

classification problem with out-of-domain data described in Appendix B.5.

Theorem 10 (Zero-Shot Image Classification)
For the OOD zero-shot K-class image classification problem, the model (fW, gV) from ITCP

using raw data has a constant failure probability:

Pr

(
arg max

k∈[K]
⟨fW(x), gV(yk)⟩ = lx

)
= 1−Θ(1); . (12)

In contrast, the model (f
W̃

, g
Ṽ

) from ITCP using filtered caption succeeds with high probability:

Pr

(
arg max

k∈[K]
⟨f

W̃
(x), gṼ(yk)⟩ = lx

)
= 1− o(1). (13)

Remark 11 Theorem 10 first shows that the zero-shot performance of (fW, gV) is poor due to
low feature purity, as established in Theorem 4. It further shows that (f

W̃
, g

Ṽ
) achieves accurate

classification, owing to high feature purity from Theorem 8. Notably, this result holds under
distribution shift in the test images.
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The overall structure of the appendix is as follows. Each appendix provides supplementary
information that supports the main content of this document but is not included in the main body to
maintain clarity and flow.

• Appendix A: Experiments
Experiments including both synthetic simulations and CLIP/LaCLIP evaluations on real
datasets.

• Appendix B: Preliminaries
Mathematical preliminaries and notation used throughout the paper. A proof sketch is also
provided to outline the key ideas behind the main results.

• Appendix C: Technical Lemmas
Full statements and proofs of supporting lemmas used in the theoretical analysis.

• Appendix D–J: Proofs and Theoretical Analysis

– Appendix D–F: ITCP on Raw Data (Phase I–III)
Theoretical proof of ITCP across three training phases on raw data.

– Appendix G: Captioning
Theoretical proof of reception using high quality data.

– Appendix H: Filtering
Theoretical proof of filtering noisy caption-text pairs.

– Appendix I: ITCP on Synthetic (Recaptioned) Data
Theoretical proof of training dynamics when using synthetic recaptions.

– Appendix J: Downstream Task Evaluation
Theoretical implications for performance on downstream tasks.
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Appendix A. Experiment
All experiments were conducted on an internal compute cluster using 8 NVIDIA A5000 GPUs with
24 GB memory each, and each run completed within 50 GPU-hours. No large-scale pretraining or
resource-intensive tuning was performed beyond the reported experiments.

A.1. Simulated Experiment

(a) (b) (c) (d)

Figure 1: Performance comparison of ITCP on raw data and filtered (recaptioned) data when the
probability of spurious correlation Cs changes. (a) Number of features that have purified
representation in the model (b) Average magnitude of purified presentations (c) Zero-shot
out-of-domain classification accuracy (d) Silhouette Score with cosine distance.

Experiment Setup. We first validate our results via simulated experiments, using the same
framework from Section 2.1. We adopt a more general spurious correlation model than Assumption 3,
allowing each Mj to be spuriously linked with multiple Hj′ (j′ ̸= j), while keeping the total
spurious correlation probability at Cs. We set d1 = 2500, d = 50, |Sw| = 5000, |Sh| = 1000, and
use m = 80 neurons. Matrices M,H are drawn from standard Gaussians and orthonormalized via
QR decomposition. Sparse codes zx follows Bernoulli(0.1) Noise variance σ2

ξ = 1/d. SGD runs
with batch size 500 and step size 0.001. Downstream evaluation uses 5-way classification with test
zx ∼ Bernoulli(0.2); class codes zyk partition the d-dim space. Results are averaged over 20 trials.
Models (W,V) and (W̃, Ṽ) are trained on raw and filtered data, respectively.

Improved feature representation using filtered (recaptioned) data. We say a weight w̄i

learn a purified representation of Mj if its projection along Mj achieves the largest magnitude and
satisfies |⟨w̄i,Mj⟩|/∥w̄i∥ > 0.5. The same applies to (W̃, Ṽ). Figure 1(a) shows the number of
features Mj (out of d = 50 total features) for which at least one neuron in W (or W̃, respectively)
learns a purified representation. The results show that ITCP trained on filtered data learns purified
representations for nearly all features, even at high spurious correlation levels (Cs = 0.3). In contrast,
ITCP on raw data degrades significantly, with purity dropping faster as Cs increases. Moreover,
Figure 1(b) shows the average of the largest projection magnitudes among neurons that learn purified
features. The magnitude from W̃ (ITCP on filtered data) is consistently higher than that from W,
indicating stronger purified representations. This aligns with Theorems 4, 8 and Remark 9.

Improved zero-shot out-of-domain performace using filtered (recaptioned) data. Figure 1(c)
compares the classification accuracy of both models on zero-shot out-of-domain data. The model
trained on filtered data consistently outperforms the one trained on raw data, with the performance
gap widening as spurious correlations in the raw data increase. We also adopt the widely used
Silhouette Score (SS) with cosine distance [13, 25, 28] to evaluate feature embedding quality in
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different clusters, as shown in Figure 1(d). A higher SS indicates better intra-class alignment and
inter-class orthogonality, reflecting more purified representations. These results verify Theorem 10.

Impact of feature purity. When Cs reaches 0.35 in Figure 1, even the filtered data fails to
maintain full feature purification: the number of neurons learning disentangled representations of
all d = 50 features drops significantly (Figure 1(a)), and the SS (Figure 1(d)) and classification
accuracy (Figure 1(c)) both decline sharply. This highlights that feature purity—the extent to which
each neuron aligns to a single semantic direction—is a key bottleneck in contrastive pretraining and
downstream generalization.

Neurons trained on filtered data exhibit a more concentrated distribution. Figure 2 visualizes
the histograms of |⟨v̄i,Hj⟩|/∥v̄i∥ and |⟨ṽi,Hj⟩|/∥ṽi∥ for all i ∈ [m] and j ∈ [d]. The values of
|⟨ṽi,Hj⟩|/∥ṽi∥ are more concentrated, typically around 0.05 and 0.7. In contrast, the values for
|⟨v̄i,Hj⟩|/∥v̄i∥ are less concentrated. This phenomenon is consistent with Theorem 8, which
indicates that for every Hj , certain neurons ṽi in Ṽ predominately learns Hj . In such cases,
|⟨ṽi,Hj⟩| approaches 1, while |⟨ṽi,Hj′⟩|/∥ṽi∥ approaches 0 for j′ ̸= j. The concentrated values
of 0.05 and 0.7 observed in Figure 2 are due to noise in the data. In contrast, feature alignment is
less significant for V, leading to less concentration of the corresponding values. Similar results are
obtained for image encoder |⟨wi,Mj⟩|, deferred to Figure 3.

Figure 2: Histogram of |⟨v̄i,Hj⟩|/∥v̄i∥ for ITCP on raw data and |⟨ṽi,Hj⟩|/∥ṽi∥ for ITCP on
filtered data (split into two figures to highlight the significant differences in the value
distributions).

Figure 3: Histogram of |⟨w̄i,Mj⟩|/|w̄i| for ITCP on raw data and |⟨w̃i,Mj⟩|/w̃i for ITCP on
filtered data (split into two figures to highlight the significant differences in the value
distributions).

Enhanced class separation of downstream tasks by ITCP with recaptioned data. Figure 4
visualizes the t-distributed stochastic neighbor embedding (t-SNE) of the feature embeddings gen-
erated by the two models, computed as fW(xp) and f

W̃
(xp) for each xp, respectively. The t-SNE

11
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Table 1: Comparison of CLIP and LaCLIP on Accuracy (%) and Silhouette Score.
Food-101 CIFAR-10 Caltech-101 CIFAR-100 Pets STL-10

Model Acc SS Acc SS Acc SS Acc SS Acc SS Acc SS

CC12M CLIP 50.8 0.034 64.9 0.113 77.4 0.225 38.5 0.005 64.1 0.069 91.0 0.195
CC12M LaCLIP 60.7 0.038 75.1 0.157 83.3 0.276 43.9 0.029 72.4 0.070 95.1 0.273

RedCaps CLIP 81.5 0.125 70.4 0.100 72.8 0.210 39.9 −0.002 82.7 0.091 92.8 0.226
RedCaps LaCLIP 85.0 0.175 74.8 0.107 76.4 0.233 40.7 0.011 78.2 0.074 91.4 0.275

LAION CLIP 85.5 0.116 93.0 0.181 91.2 0.258 71.7 0.078 90.1 0.122 97.3 0.223
LAION LaCLIP 86.5 0.148 93.5 0.215 92.4 0.306 73.9 0.108 90.9 0.152 98.4 0.260

method projects the high-dimensional embeddings onto a two-dimensional map. One can see that
the embeddings from different groups are more distinctly separated in the model trained using ITCP
on recaptioned data, indicating that this approach achieves better feature alignment.

(a) Raw (Cs = 0.3) (b) Recaption (Cs =
0.3)

(c) Raw (Cs = 0.5) (d) Recaption (Cs =
0.5)

Figure 4: t-SNE visualization of text embedding with spurious correlation probability Cs.

A.2. Experiments on Practical Data and Models
LaCLIP improves generalization over CLIP via recaption. Tables 1 compare CLIP [16] and
LaCLIP [6], which share the same architecture and datasets, except LaCLIP replaces part of the
original captions with LLM-generated rewrites. “CC12M CLIP” denotes a CLIP model pretrained
on raw CC12M [3], while “CC12M LaCLIP” uses the same model and data but with LLM-rewritten
captions. Other models are obtained similarly using RedCaps [5] and LAION [18] datasets. We
evaluate their zero-shot classification accuracy and Silhouette Scores on various downstream datasets.
LaCLIP generally outperforms CLIP in both metrics, empirically validating that higher-quality
captions improve zero-shot generalization.

Next, we study the feature purity using a CLIP model pretrained on CC3M [19]. Both the image
and text encoders are 12-layer transformers that produce features in R768, which are subsequently
projected into a shared embedding space of R512 through final linear projection layers, as illustrated
in Figure 6. The final linear projection layer has 512 neurons and is functionally aligned with V in
our theoretical model. We now present two key findings from this setting:

Purified neurons enhance generalization. To investigate the effect of feature purity on general-
ization, we prune the neurons in the final linear layer in different ways and evaluate the resulting
zero-shot classification performance. Specifically, we rank the 512 neurons by their average pairwise
absolute cosine similarity to all other neurons, from lowest to highest. The absolute cosine similarity
of neurons vj , vj′ is computed as |⟨vj , vj′⟩|/∥vj∥∥vj′∥ for all j, j′ ∈ {1, 2, . . . , 512}. A lower
average indicates higher feature purity (i.e., more orthogonal representations), while a higher value
suggests feature mixing. We evaluate three pruning strategies: (1) retaining high-purity neurons,
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i.e., with lowest similarity, (2) retaining low-purity neurons, i.e., with highest similarity, and (3)
retaining a random subset of neurons. The number of retained neurons is varied from 200 to 500. As
shown in Figure 5 (a-c,e-g), downstream performance is the best when retaining high-purity neurons,
followed by random selection, with low-purity neurons performing the worst. These results highlight
the critical role of purified features in downstream generalization.

Data misalignment reduces feature purity. To study how image-text misalignment affects
feature purity, we randomly shuffling texts across image-text pairs in CC3M with probability Cm,
as illustrated in Figure 7, thereby introducing a controlled probability of modality misalignment.
We then use the shuffled dataset to fine-tune the last linear projection layer only of the pretrained
CLIP model, freezing other layers. We then compute the cosine similarities of all 512 neuron weight
vectors vj ∈ R768 of the fine-tuned model. Figure 5 (d) reports the average absolute cosine similarity
of all neuron pairs, while (h) presents a histogram of cosine similarity ⟨vj , vj′⟩/(∥vj∥∥vj′∥). One can
see that as Cm increases, the average absolute cosine similarity increases, and the neurons become
less orthogonal to each other and tend to encode mixed representations, resulting in lower feature
purity. This coincides with the decreases classification accuracy in downstream tasks, as shown in
Table 2.

(a) Food-101 Acc. (b) CIFAR-10 Acc. (c) Caltech-101 Acc. (d) Avg. Cos. Sim.

(e) Food-101 SS (f ) CIFAR-10 SS (g) Caltech-101 SS (h) Hist of Cos. Sim.

Figure 5: Left (a–c,e-g): Retaining high-purity neurons outperform random and low-purity neurons
in downstream tasks. More datasets shown in Figure 8. Right(d,h): When Cm increases,
the neurons have higher cosine similarity and reduced feature purity.

CLIP architecture. Figure 6 illustrates the CLIP architecture used in our experiments. Both
image and text inputs are independently encoded by 12-layer transformer backbones, each producing
a 768-dimensional feature vector. These features are then projected into a shared 512-dimensional
embedding space through learned linear projection matrices W ∈ R768×512 and V ∈ R768×512,
corresponding to the image and text encoders in our theorem, defined in Eq. (2). The resulting
embeddings are aligned via a contrastive loss that maximizes similarity for matched image-text pairs
while minimizing similarity for unmatched pairs. This architecture forms the foundation for our
analyses on neuron selection and feature purity in the shared embedding space.
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Figure 6: Architecture of CLIP used in our experiments. Both image and text encoders are 12-layer
transformers that output features in R768, which are then projected into a shared R512

embedding space via final linear projection layers W and V, corresponding to Eq. (2)
and Eq. (3) in our theoretical analysis. Contrastive loss is computed between the resulting
image and text embeddings.

Simulating Modality Misalignment via Caption Shuffling. Figure 7 illustrates how modal-
ity misalignment is introduced by randomly shuffling text captions across image-text pairs with
probability Cm, resulting in noisy supervision for contrastive learning.

Figure 7: Simulating Modality Misalignment via Caption Shuffling. Starting from original aligned
image-text pairs, a controlled probability Cm of misalignment is introduced by randomly
shuffling the text captions. This results in noisy pairs that reflect varying levels of spurious
correlations.
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(a) CIFAR-100 Acc. (b) Pets Acc. (c) STL-10 Acc.

(d) CIFAR-100 SS (e) Pets SS (f ) STL-10 SS

Figure 8: Zero-shot classification accuracy (top) and Silhouette Score (bottom) under different
neuron selection strategies for CIFAR-100, Pets, and STL-10 datasets.

Table 2: Accuracy (%) and Silhouette Score of CLIP models finetuned with varying Cm on six
datasets.

Dataset Cm = 0 Cm = 0.1 Cm = 0.3 Cm = 0.5 Cm = 0.8

Acc SS Acc SS Acc SS Acc SS Acc SS

Caltech101 59.7 0.160 48.2 0.124 47.9 0.121 43.6 0.117 44.5 0.115
CIFAR-10 57.9 0.030 50.7 0.012 49.5 0.013 46.5 0.013 44.1 0.011
CIFAR-100 26.4 −0.038 19.5 −0.042 17.8 −0.043 17.4 −0.044 16.2 −0.048
Food-101 12.9 −0.073 10.9 −0.052 10.9 −0.056 11.1 −0.057 11.1 −0.059
Pets 13.9 −0.005 13.3 −0.006 13.2 −0.009 13.4 −0.011 12.6 −0.012
STL-10 86.3 0.164 79.8 0.103 79.2 0.102 78.8 0.100 78.3 0.097

Purified neuron selection enhances generalization. Figure 8 presents additional experimental
results on CIFAR-100, Pets, and STL-10, complementing the main results reported in Figure 5. Due
to space constraints, we include only Food-101, CIFAR-10, and Caltech-101 in the main text. All
experiments follow the same protocol, evaluating zero-shot classification accuracy and Silhouette
Score under different neuron selection strategies. These results consistently support our core finding:
selecting high-purity neurons leads to improved downstream performance across diverse datasets.

Higher shuffling probability leads to reduced generalization and feature purity. Table 2
presents additional experimental results on CLIP models finetuned with different levels of randomly
shuffling probability Cm to simulate spurious correlation, showing that both accuracy and Silhouette
Score consistently decrease as Cm increases.
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Appendix B. Preliminaries

We first restate some important notations used in the Appendix, which are summarized in Table 3.

Table 3: Summary of Notations

Notations Annotation

M ∈ Rd1×d, H ∈ Rd1×d M is the image dictionary matrix, H is the text dictionary matrix.

W ∈ Rm×d1 , V ∈ Rm×d1 W is the weight of image encoder, V is the weight of text encoder.

xp ∈ Rd1 , yp ∈ Rd1 xp and yp represent an image and a text data, respectively.

zxp
, zyp

∈ Rd zxp and zyp are the sparse signals of image and text, respectively. zyk
is the sparse signal for the text prompt yk.

zjxp
, zjyp

zjxp is the j-th coordinate of zxp ; zjyp is the j-th coordinate of zyp .

L, LC L is the loss for ITCP; LC is the loss for Image-grounded Text Decod-
ing.

S = Sh ∪ Sw Sw is the noisy web low-quality dataset; Sh is the human-annotated
high-quality dataset.

S̃ = Sh ∪ S̃w S̃w replaces noisy captions in Sw with synthetic captions.

T1 Phase I of ITCP with b
(t)
i = 0.

T2 Phase II of ITCP with b
(t+1)
i = (1 + η

d )b
(t)
i .

T3 Phase III of ITCP with b
(t+1)
i = b

(T2)
i .

TC Stage of training caption generators.

Sj,sure The set of well-initialized neurons (wi, vi) on features (Mj ,Hj).

B.1. Proof Scratch
Theorem 2 is proven by integrating the convergence analyses in Appendix F and Appendix I.
Appendix F establishes convergence for ITCP on raw data, while Appendix I extends the convergence
result to ITCP on synthetic data. Together, they verify that SGD with ReLU networks achieves
near-optimal contrastive loss on both datasets.

Theorem 4 is proven across Appendix D, Appendix E, and Appendix F. Specifically, Appendix D
models Phase I training (t ≤ T1) and proves that neurons simultaneously align with true features
and spuriously correlated features due to comparable gradient contributions, preventing pure feature
separation. Appendix E analyzes Phase II training (T1 < t ≤ T2) and shows that this spurious
alignment continues to strengthen, as neurons with initial mixed alignment further amplify their
entanglement during continued SGD updates. Appendix F establishes the convergence behavior
during Phase III (T2 < t ≤ T3), showing that the network stabilizes into mixed solutions where each
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neuron represents a combination of multiple features. These detailed stages collectively prove the
failure of purified feature alignment as formalized in Theorem 4.

Theorem 6 is proven across Appendix G and Appendix H. Specifically, Appendix G analyzes
the captioning stage, where the decoder is fine-tuned on clean data to generate synthetic captions.
It proves that for neurons aligned with true features, the alignment towards the true features grows
exponentially while the alignment towards spurious features remains negligible. This ensures that
the synthetic captions preserve relevant features and suppress spurious ones. Appendix H then
formalizes the filtering process, demonstrating that after replacing noisy captions with synthetic ones,
the resulting dataset satisfies much stronger feature purity conditions, with spurious correlations
suppressed to Θ(1/d) and true features preserved with probability 1−Θ(1/d). These results directly
support the purified feature learning described in Theorem 6.

Theorem 8 is proven in Appendix I, which integrates the proofs of Phase I, Phase II, and Phase III
for ITCP on synthetic data. Specifically, Appendix I first establishes in Phase I that purified training
pairs allow neurons aligned with true features to grow exponentially without spurious interference. It
then shows in Phase II that these alignments continue to strengthen while suppressing non-informative
neurons, leading to clear feature separation. Finally, it proves in Phase III that the model converges,
achieving a bounded final loss and dominant true feature alignment. Since the overall proof structure
closely mirrors that of Theorem 4 (which was proven separately across Appendix D, Appendix E,
and Appendix F), we consolidate all stages into a single appendix for brevity and clarity.

Theorem 10 is proven in Appendix J, which analyzes the downstream zero-shot classification.
Appendix J shows that for ITCP on raw data, spurious features cause a constant classification error,
while for ITCP on synthetic data, true and spurious features become separable with high probability,
leading to an o(1) error rate. This directly supports the main text conclusion on downstream
generalization.

B.2. Feature Coupling and Expected Values in Sw

The following Assumption 4 corresponds to the more specific forms of Assumptions 2 and 3 discussed
earlier.

Assumption 4 (High and low quality pairs) The high-quality image-text pairs in Sh have size
|Sh| = Θ(d2). The low-quality image-text pairs in Sw have size |Sw| = poly(d)| ≫ ω(d2).

In Sh, for a positive pair (xp, yp), we assume perfect alignment, meaning zxp = zyp . Conse-
quently, the following holds:

E
[
zjxp

zjyp

]
=

Cz

d
, E

[
zjxp

zj
′

yp

]
= Θ

(
1

d2

)
, j′ ̸= j (14)

To model the misaligned features in low-quality pairs in Sw, where spurious misalignment occurs
at a non-negligible level, we assume [d] can be divided into d/2 disjoint sets, each containing exactly
two entries. Let (j, j′) ⊂ [d] denote one such set, referred to as a “spuriously correlated set.” The
following assumptions capture the nature of spurious and true alignments:

Pr(|zj′yp | = 1 | |zjxp
| = 1) = Θ(1) <

1

2
,

Pr(|zj′yp | = 1 | |zjxp
| = 1) + Pr(|zjyp | = 1 | |zjxp

| = 1) = 1.
(15)
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These assumptions imply that true alignment dominates, with Pr(|zjyp | = 1 | |zjxp | = 1) > 1
2 ,

while spurious alignment exists at a constant percentage level, making it non-negligible. The intuition
behind this assumption is that each feature j is paired with exactly one spuriously correlated feature
j′, ensuring that j is not associated with any other feature j′′ ̸= j′. This design simplifies the analysis
while effectively capturing the key challenges posed by low-quality data.

Then, for a positive pair (xp, yp) with p in Sw, we have:

E
[
zjxp

zjyp

]
+ E

[
zjxp

zj
′

yp

]
=

Cz

d
,

E
[
zjxp

zj
′

yp

]
= Θ

(
1

d

)
<

Cz

2d
.

(16)

where (j, j′) is a spuriously correlated set.
For negative pairs (xp, yq), where p ̸= q, and p, q ∈ S, we have:

E
[
zjxp

zj
′

yq

]
= Θ

(
1

d2

)
, ∀j, j′ ∈ [d]. (17)

In Sw, mismatched text and image pairs are prevalent compared to Sh. For a postive pair (xp, yp),
we assume log(1/c0)

2 log d < Pr(|zj
′

yp | = 1 | |zjxp | = 1) < 1
2 . To model this, we assume that for each

primary feature j ∈ [d], there exists exactly one spurious feature j′ such that j and j′ are uniquely
coupled. This implies that j cannot be associated with any other feature j′′ ̸= j′. Mathematically,
the coupling is defined as:

Pr(|zj′yp | = 1 | |zjxp
| = 1) + Pr(|zjyp | = 1 | |zjxp

| = 1) = 1. (18)

For a positive pair (xp, yp) in Sw, the probabilities of spurious and aligned features are further
constrained:

log(1/c0)

2 log d
< Pr(|zj′yp | = 1 | |zjxp

| = 1) <
1

2
, (19)

The lower bound is established in Lemma 20.
and:

Pr(|zjyp | = 1 | |zjxp
| = 1) = 1− Pr(|zj′yp | = 1 | |zjxp

| = 1). (20)

Under these assumptions, the expected values for the aligned and spurious features are calculated
as follows:

For the aligned feature j, we have:

E
[
zjxp

zjyp

]
= Pr(|zjyp | = 1, |zjxp

| = 1)

= Pr(|zjyp | = 1 | |zjxp
| = 1) · Pr(|zjxp

| = 1)

= Pr(|zjyp | = 1 | |zjxp
| = 1) · Cz

d
.

(21)

For the spurious feature j′, we have:

E
[
zjxp

zj
′

yp

]
= Pr(|zj′yp | = 1, |zjxp

| = 1)

= Pr(|zj′yp | = 1 | |zjxp
| = 1) · Pr(|zjxp

| = 1)

= Pr(|zj′yp | = 1 | |zjxp
| = 1) · Cz

d

(22)
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The total expected value across both aligned and spurious features satisfies:

E
[
zjxp

zjyp

]
+ E

[
zjxp

zj
′

yp

]
=

Cz

d
(23)

Here, j′ denotes the spurious feature associated with j.

B.3. Gradient

The contrastive loss in vision-language models (VLM) is defined as follows:

L(f (t), h(t)) =
∑
p∈S

[
− ⟨f (t)(xp), h

(t)(yp)⟩+
∑

xn∈N′

(
⟨f (t)(xn), h

(t)(yp)⟩
)2

2τ

+
∑

yn∈N′

(
⟨f (t)(xp), h

(t)(yn)⟩
)2

2τ

]
,

(24)

where τ > 0 is a temperature parameter.
We perform stochastic gradient descent (SGD) on this contrastive loss. Let f (t) and h(t) be the

image encoder and text encoder networks at iteration t, respectively. The network parameters are
updated as follows:

w
(t+1)
i ← w

(t)
i − η∇wiL(f

(t), h(t)), (25)

v
(t+1)
i ← v

(t)
i − η∇viL(f

(t), h(t)), (26)

where b
(t)
i , the bias term, is manually tuned during training and thus excluded from gradient updates.

The gradient of L(f (t), h(t)) with respect to w
(t)
i at iteration t is given by:

∇wiL(f
(t), h(t)) =− ⟨v(t)i , yp⟩xp · 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)i ,yp⟩
∣∣∣≥b

(t)
i

+
∑
xn∈N

⟨f (t)(xn), h
(t)(yp)⟩⟨v(t)i , yp⟩xn

τ
· 1∣∣∣⟨w(t)

i ,xn⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)i ,yp⟩
∣∣∣≥b

(t)
i

+
∑
yn∈N

⟨f (t)(xp), h
(t)(yn)⟩⟨v(t)i , yn⟩xp

τ
· 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)i ,yn⟩
∣∣∣≥b

(t)
i

.

(27)
Similarly, the empirical gradient of L(f (t), h(t)) with respect to v

(t)
i is:

∇viL(f
(t), h(t)) =− ⟨w(t)

i , xp⟩yp · 1∣∣∣⟨w(t)
i ,xp⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)i ,yp⟩
∣∣∣≥b

(t)
i

+
∑
xn∈N

⟨f (t)(xn), h
(t)(yp)⟩⟨w(t)

i , xn⟩yp
τ

· 1∣∣∣⟨w(t)
i ,xn⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)i ,yp⟩
∣∣∣≥b

(t)
i

+
∑
yn∈N

⟨f (t)(xp), h
(t)(yn)⟩⟨w(t)

i , xp⟩yn
τ

· 1∣∣∣⟨w(t)
i ,xp⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)i ,yn⟩
∣∣∣≥b

(t)
i

.

(28)
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B.4. Alignment Updates

We analyze how each neuron i ∈ [m] aligns with the feature Mj during each iteration of SGD. The
alignment can be described by the following update rule:

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩ − ⟨∇wiL(f
(t), h(t)),Mj⟩

= ⟨w(t)
i ,Mj⟩+ ηzjxz

j
y⟨v

(t)
i ,Hj⟩+ ηzjxz

j′
y ⟨v

(t)
i ,Hj′⟩ ± Errt.

(29)

Similarly, for ⟨v(t+1)
i ,Hj⟩, the update rule becomes:

⟨v(t+1)
i ,Hj⟩ = ⟨v(t)i ,Hj⟩ − ⟨∇viL(f

(t), h(t)),Hj⟩

= ⟨v(t)i ,Hj⟩+ ηzjxz
j
y⟨w

(t)
i ,Mj⟩+ ηzjxz

j′
y ⟨w

(t)
i ,Mj′⟩ ± Errt.

(30)

Using Lemma 18, we know that with high probability,
∑

xn∈N
⟨f (t)(xn),h(t)(yp)⟩

τ ≤ O(1d), so in
Eq (27) the sum of second term and third term is always less than the first term, until ⟨f (t)(xn), h

(t)(yp)⟩ =
Θ(d).

The updates for the components ⟨w(t+1)
i ,Mj⟩, ⟨v(t+1)

i ,Hj⟩, ⟨w(t+1)
i ,Mj′⟩, and ⟨v(t+1)

i ,Hj′⟩
(where j′ represents the spurious aligned feature corresponding to j) can be expressed concisely in
matrix form as follows:

⟨w(t+1)
i ,Mj⟩

⟨v(t+1)
i ,Hj⟩

⟨w(t+1)
i ,Mj′⟩

⟨v(t+1)
i ,Hj′⟩

 =


a b 0 c

b a c 0

0 c a b

c 0 b a




⟨w(t)

i ,Mj⟩

⟨v(t)i ,Hj⟩

⟨w(t)
i ,Mj′⟩

⟨v(t)i ,Hj′⟩

± Errt, (31)

where the coefficients are defined as:

a = 1, b = zjxz
j
y · 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)i ,yp⟩
∣∣∣≥b

(t)
i

,

c = zjxz
j′
y · 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)i ,yp⟩
∣∣∣≥b

(t)
i

.

Therefore, we have

⟨w(t)
i ,Mj⟩ = ⟨v(t)i ,Hj⟩ =

(a+ b+ c)t + (a+ b− c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
)

+
(a+ b+ c)t − (a+ b− c)t

4

(
⟨w(0)

i ,Mj′⟩+ ⟨v
(0)
i ,Hj′⟩

) (32)

and

⟨w(t)
i ,Mj′⟩ = ⟨v

(t)
i ,Hj′⟩ =

(a+ b+ c)t + (a+ b− c)t

4

(
⟨w(0)

i ,Mj′⟩+ ⟨v
(0)
i ,Hj′⟩

)
+

(a+ b+ c)t − (a+ b− c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
) (33)
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This matrix representation highlights the interactions between the alignment of true and spurious
features during SGD updates. The diagonal elements a dominate the contribution from existing
alignments, while the off-diagonal terms b, c capture the mutual influence between paired features
and spurious alignments. Note that if c is very small, it indicates that the spurious alignment (j′) has
minimal influence, allowing wi to focus on learning purified features. Conversely, if c is large, the
spurious alignment could significantly interfere with the learning process, hindering the purification
of features. The error term Errt accounts for higher-order noise or unmodeled effects in the update
process.

Assuming a single spurious feature is a simplification for presentation that was made for ease
of presentation in the proof and can be extended to a more general setting without altering the
underlying insights. If each feature j has K−1 spurious correlates, (31) becomes a 2K × 2K matrix,
and Ni = j, j′ in the last sentence of Theorem 4 contains j and other K−1 features. Our analysis
relies on the total spurious feature probability (bounded by Cs), not the number of correlated features,
so as long as the sum of all spurious feature probabilities is upper bounded by Cs, the core
mechanism and insights of the theorem remain unchanged.

B.5. Zero-Shot Generalization on Image Classification
We consider an out-of-domain (OOD) setting for testing images and text prompts as follows.

Image: Each test image x can be approximated by a sparse coding model with dictionary M′,

x = M′z′x + ξx, ∥z′x∥0 = Θ(1), ∥z′x∥max = Θ(1), (34)

where M′ = MP1, and maxi,j |(P1)ij − δij | ≤ O(1/
√
d) . The noise ξx matches the training

distribution (Assumption 1(d)) and δij denotes the Kronecker delta function.
Text: Each class k ∈ [K] has a prompt that has a sparse decomposition

yk = Hz′yk
+ ξyk

, ∥z′yk
∥0 = Θ(1), ∥z′yk

∥max = Θ(1). (35)

If x belongs to class k, then among all K binary vectors z′yk′ , z
′
x is maximally aligned with z′yk ,

∥(z′x)⊤z′yk
∥2 > ∥(z′x)⊤z′yk′∥2, ∀k′ ̸= k (36)

This formulation reflects the intuition that x belongs to class k if its sparse representation is most
similar to the sparse representation of class k’s text prompt.

Appendix C. Technical Lemmas

Definition 12 (Neuron Characterization) Let us define a few notations to characterize each neu-
ron w

(t)
i ’s behavior. For every constant c0 ∈ (0, 1) and γ ∈ (0, 0.1), by choosing c1 = 2+2(1−γ)c0

and c2 = γc0, we define:
1. Let S(t)j,sure ⊆ [m] be those neurons i ∈ [m] satisfying

• ( 1n
∑n

i=1⟨w
(t)
i ,Mj⟩)2 ≥ (c1+c2) log d

d ∥MM⊤w
(t)
i ∥22

• ( 1n
∑n

i=1⟨w
(t)
i ,Mj′⟩)2 < (c1−c2) log d

d ∥MM⊤w
(t)
i ∥22

2. Let S(t)j,pot ⊆ [m] be those neurons i ∈ [m] satisfying
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• ⟨w(t)
i ,Mj⟩2 ≥ (c1−c2) log d

d ∥MM⊤w
(t)
i ∥22

Lemma 13 (Geometry at initialization) We initialize the parameters by w
(0)
i ∼ N (0, σ2

0Id1),

where σ2
0 = Θ

(
1

d1poly(d)

)
. We have with probability ≥ 1− o(1/d3) over the random initialization,

for all j ∈ [d]: ∣∣∣S(0)j,sure

∣∣∣ = Ω
(
d

γ
4
c0
)
=: Ξ1∣∣∣S(0)j,pot

∣∣∣ ≤ O
(
d2γc0

)
=: Ξ2

Proof If g is standard Gaussian, then for every t > 0,

1√
2π

(t)

t2 + 1
e−t2/2 < Pr

g∼N (0,1)
[g > t] <

1√
2π

1

(t)
e−t2/2. (37)

We initialize the parameters by w
(0)
i ∼ N (0, σ2

0Id1), where σ2
0 = Θ

(
1

d1poly(d)

)
. We have

1
n

∑n
i=1⟨w

(0)
i ,Mi⟩ ∼ N

(
0,

σ2
0
n

)
.

Therefore, for every i ∈ m and j ∈ d, we have

p1 = Pr

( 1

n

n∑
i=1

⟨w(0)
i ,Mj⟩

)2

≥ (c1 + c2)
σ2
0

n
log d


= Θ

(
1

log d

)
· 1

d(c1+c2)/2

= Θ

(
1√
log d

)
· 1

d · d(1−γ/2)c0

(38)

p2 = Pr

( 1

n

n∑
i=1

⟨w(0)
i ,Mj′⟩

)2

≥ (c1 − c2)
σ2
0

n
log d


= Θ

(
1

log d

)
· 1

d(c1−c2)/2

= Θ

(
1√
log d

)
· 1

d · d(1−3γ/2)c0

(39)

Let S(0)j,sure ⊆ [m] be those neurons i ∈ [m] satisfying

• ( 1n
∑n

i=1⟨w
(0)
i ,Mj⟩)2 ≥ (c1+c2) log d

d ∥MM⊤w
(0)
i ∥22

• ( 1n
∑n

i=1⟨w
(0)
i ,Mj′⟩)2 < (c1−c2) log d

d ∥MM⊤w
(0)
i ∥22

By concentration with respect to all m choices of i ∈ [m], we know with probability at least
1− o

(
1
d3

)
it satisfies

∣∣∣S(0)j,sure

∣∣∣ = Ω
(
d

γ
4
c0
)

.

Let S(0)j,pot ⊆ [m] be those neurons i ∈ [m] satisfying

• ⟨w(0)
i ,Mj⟩2 ≥ (c1−c2) log d

d ∥MM⊤w
(0)
i ∥22
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By concentration with respect to all m choices of i ∈ [m], we know with probability at least
1− o

(
1
d3

)
it satisfies

∣∣∣S(0)j,pot

∣∣∣ = O
(
d2γc0

)
.

More details of the proof can be found in Lemma B.2 of [1].

Lemma 14 With high probability 1− 1
poly(d) , for every i ∈ [m], the following holds:

Pr

[
(
1

2n

n∑
i=1

⟨w(0)
i ,Mj⟩ − ⟨w(0)

i ,Mj′⟩)2 ≥
1

d

σ2
0

2n
log d

]
≥ 1−O(

1√
d
) (40)

Lemma 15 With high probability 1− 1
poly(d) , for every i ∈ [m], the following holds:

∥MM⊤w
(0)
i ∥

2
2 + ∥HH⊤v

(0)
i ∥

2
2 ∈ 2dσ2

0

[
1− Õ

(
1√
d

)
, 1 + Õ

(
1√
d

)]
. (41)

Proof Let X ∼ χ2
n. By standard properties of the chi-squared distribution, we know that with

probability at least 1− δ,
|X − n| ≤ 2

√
n log(1/δ). (42)

In our case, we consider ∥MM⊤w
(0)
i ∥22+∥HH⊤v

(0)
i ∥22

σ2
0

∼ χ2
2d. Setting δ = 1

poly(d) , we have n = 2d,

and thus, with high probability 1− 1
poly(d) , the following holds:∣∣∣∣∣∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

σ2
0

− 2d

∣∣∣∣∣ ≤ 2
√
2d log(poly(d)). (43)

Rearranging and incorporating the scaling factor σ2
0 , we get:

∥MM⊤w
(0)
i ∥

2
2 + ∥HH⊤v

(0)
i ∥

2
2 ∈ 2dσ2

0

[
1− Õ

(
1√
d

)
, 1 + Õ

(
1√
d

)]
. (44)

Lemma 16 (Noise Projection Bound) For the spurious dense noise ξxp ∼ N (0, σ2
ξId1), where the

variance satisfies ω
(

1
d1

)
≤ σ2

ξ ≤ O
(
1
d

)
, the following holds with high probability 1− e−Ω(d1):

|⟨wi, ξ⟩|2 ≤ O

(
∥wi∥22
d1+c0

)
, ∀i ∈ [m]. (45)

Proof For all j ∈ [d1], by the properties of the Gaussian distribution, we have:

Pr
ξ

[
⟨Mj , ξ⟩2 ≤ O

(
1

d1+c0

)]
≥ 1− e−Ω(d1). (46)

Now, consider the term |⟨wi, ξ⟩|2. We decompose it as:

|⟨wi, ξ⟩|2 =
∑
j∈[d]

|⟨wi,Mj⟩|2 · |⟨Mj , ξ⟩|2 +
∑

j∈[d1]\[d]

|⟨wi,M
⊥
j ⟩|2 · |⟨M⊥

j , ξ⟩|2. (47)

23



CONTRASTIVE LEARNING UNDER DATA MISALIGNMENT

For the first term, since |⟨Mj , ξ⟩|2 ≤ O
(

1
d1+c0

)
with high probability, we have:

∑
j∈[d]

|⟨wi,Mj⟩|2 · |⟨Mj , ξ⟩|2 ≤
∑
j∈[d]

O

(
|⟨wi,Mj⟩|2

d1+c0

)
. (48)

Similarly, for the second term:

∑
j∈[d1]\[d]

|⟨wi,M
⊥
j ⟩|2 · |⟨M⊥

j , ξ⟩|2 ≤
∑

j∈[d1]\[d]

O

(
|⟨wi,M

⊥
j ⟩|2

d1+c0

)
. (49)

Combining these, we have:

|⟨wi, ξ⟩|2 ≤ O

(
∥MM⊤wi∥22

d1+c0
+
∥M⊥M⊥⊤

wi∥22
d1+c0

)
. (50)

Since ∥MM⊤wi∥22 + ∥M⊥M⊥⊤
wi∥22 = ∥wi∥22, we conclude:

|⟨wi, ξ⟩|2 ≤ O

(
∥wi∥22
d1+c0

)
. (51)

Thus, the lemma holds.

Lemma 17 (Tail Bound for Matrix Product) Let Q ∈ Rn×n be a symmetric matrix, and let w, v
be independent zero-mean Gaussian random vectors with covariance matrix In. Define

Z :=
n∑

i,j=1

Qijwivj . (52)

Then, for any δ > 0, the following tail bound holds:

Pr[|Z| ≥ δ] ≤ 4 exp

(
− δ2

4∥Q∥2F + 4δ∥Q∥op

)
. (53)

Lemma 18 (Bound Inner Product) Consider the inner product between the feature vectors at
initialization:

⟨f(x), h(y)⟩ = ⟨Wx,Vy⟩ =
m∑
l=1

w⊤
l xy

⊤vl =
m∑
l=1

d1∑
i,j=1

(x⊤i yj)w
⊤
l vl. (54)

Here, using Lemma 17, Q = xy⊤, with ∥Q∥op = Θ(1), ∥Q∥F = Θ(1) and σ2
0 = Θ

(
1

d1poly(d)

)
.

Then, at initialization (t = 0), the following holds:

Pr[|⟨f (t)(x), h(t)(y)⟩| ≥ Ω(1)] ≤ e−poly(d), (55)
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Lemma 19 (Concentration bound for empirical loss and gradients) There exist N ≥ poly(d)
for some sufficiently large polynomial and all ∥wi∥2 ≤ O(d), i ∈ [m] , it satisfies∣∣∣∣∣∣ 1N

∑
p∈[N ]

L(f (t), h(t); (xp, yp))− E(xp,yp)∈D[L(f
(t), h(t); (xp, yp))]

∣∣∣∣∣∣ ≤ O(
1

d
) (56)

∥∥∥∥∥∥ 1

N

∑
p∈[N ]

∇wiL(f
(t), h(t); (xp, yp))− E(xp,yp)∈D[∇wiL(f

(t), h(t); (xp, yp))]

∥∥∥∥∥∥
2

≤ O(
1

d
) (57)

Proof The proof can be done by trivial VC dimension or Rademacher complexity arguments similarly
to Lemma A.2. [1].

Lemma 20 (Misalignment Probability Bound) The probability of spurious alignment satisfies:

log
(

1
2γc0

)
2 log d1

d

< Pr(|zjyp | = 1 | |zj′xp
| = 1) <

1

2
. (58)

Proof By concentration over all m choices of i ∈ [m], we find that with probability at least 1−o
(

1
d3

)
,

the number of neurons satisfying:(
1

n

n∑
i=1

⟨wi,Mj⟩

)2

< (c1 + 4c2)
σ2
0

n
log d (59)

is o(1).
In addition, for all neurons, we have:

max
(
⟨w(T1)

i ,Mj′⟩2
)
≤ c1 + 3c2

2

log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2
. (60)

Define:

∆(T1) =
(a+ b− c)T1

4

∣∣∣⟨w(0)
i ,Mj⟩+ ⟨v(0)i ,Hj⟩ − ⟨w(0)

i ,Mj′⟩ − ⟨v
(0)
i ,Hj′⟩

∣∣∣ . (61)

Thus:

⟨w(T1)
i ,Mj′⟩2 =

∣∣∣max
(
⟨w(T1)

i ,Mj′⟩
)
−∆(T1)

∣∣∣2 ≥ c1 − c2
2

log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2
. (62)

We begin by expressing a+ b− c and a+ b+ c as functions of P1 = Pr(|zjyp | = 1 | |zj
′

xp | = 1)

and P2 = Pr(|zjyp | = 1 | |zjxp | = 1), where P1 + P2 = 1:

a+ b− c = 1− ηλ+ η
(P1 − P2)Cz log log d

d
, (63)
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a+ b+ c = 1− ηλ+ η
(P1 + P2)Cz log log d

d
. (64)

Using Eq (62), Eq (32) and Eq (33), we derive:

(a+ b− c)2T1

(a+ b+ c)2T1
≤

(√
c1 + 3c2

2
−
√

c1 − c2
2

)2

≤ 2c22. (65)

Substituting back, we find:
log
(

1
2γc0

)
2 log d1

d

< P1 <
1

2
. (66)

For example, setting c0 = 0.1, γ = 0.005, d = 100, and d1 = 10000, we calculate:

1

4
≤ Pr(|zjyp | = 1 | |zj′xp

| = 1) <
1

2
. (67)

This concludes the proof by bounding Pr(|zjyp | = 1 | |zj
′

xp | = 1) under the given conditions.

Appendix D. ITCP on Raw Data I

In this section we analyze Phase I of ITCP on Raw Data as the training iterations t ≤ T1, where

T1 = Θ
(
d log d

η

)
is the iteration when all ∥w(T1)

i ∥22+∥v(T1)i ∥22
2 ≥ ∥w(0)

i ∥22 + ∥v
(0)
i ∥22. When t ≤ T1, we

set b(t)i = 0. For every neuron i ∈ [m], the weights wi and vi exhibit an increase in alignment along
the direction of informative features M and H, while showing negligible increase in alignment along
the direction of noise features M⊥ and H⊥.

Based on subsection B.2, we have Pr(|zjyp | = 1 | |zj
′

xp | = 1) = Θ(1), so E
[
zjxz

j
y

]
and

E
[
zjxz

j′
y

]
both in Θ

(
1
d

)
. In this case, w(t+1)

i is jointly influenced by Mj and Mj′ , with both features
contributing comparably to the updates.

To simplify our analysis, we consider the worse case where Pr(|zj
′

yp | = 1 | |zjxp | = 1) =

Pr(|zjyp | = 1 | |zjxp | = 1) = 1
2 such that E

[
zjxz

j
y

]
= E

[
zjxz

j′
y

]
= Cz

2d , so using Eq (32), Eq (33) and

b
(t)
i = 0, we have

⟨w(t)
i ,Mj⟩ =

(a+ b+ c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v

(0)
i ,Hj′⟩

)
(68)

⟨w(t)
i ,Mj′⟩ =

(a+ b+ c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v

(0)
i ,Hj′⟩

)
(69)

This represents the worst-case scenario as the contributions of the aligned feature E
[
zjxz

j
y

]
and the spurious feature E

[
zjxz

j′
y

]
are identical. Under real circumstances, we expect E

[
zjxz

j
y

]
<

E
[
zjxz

j′
y

]
, which would result in ⟨w(t+1)

i ,Mj⟩ > ⟨w(t+1)
i ,Mj′⟩. However, in this worst-case
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scenario, the equality of contributions prevents the network from prioritizing purified features,
resulting in equal magnitudes for ⟨w(t+1)

i ,Mj⟩ and ⟨w(t+1)
i ,Mj′⟩, thereby hindering effective

feature separation.
We first provide a lower bound for ∥MM⊤w

(t)
i ∥22 for iterations t ≤ t1. From Eq (122) and

Eq (69) we have:

∥MM⊤w
(t)
i ∥

2
2 =

d∑
i=1

[
(a+ b+ c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
)
+

(a+ b+ c)t

4

(
⟨w(0)

i ,Mj′⟩+ ⟨v0i ,Hj′⟩
)]2

=

(
1 +

ηCz

d

)2t ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

8
(70)

∥M⊥(M⊥)⊤w
(t)
i ∥

2
2≤
(
1 +

1

poly(d)

)
∥M⊥(M⊥)⊤w

(0)
i ∥

2
2. (71)

The detailed proof of Eq (71) can be found in Hypothesis C.4 of [24].
A similar result holds for ∥HH⊤v

(t)
i ∥22 and ∥H⊥(H⊥)⊤v

(t)
i ∥22.

Eq (70) and Eq (71) shows that the image and text dictionary features M,H can grow exponen-
tially, while the noisy features M⊥,H⊥ remain almost unchanged when t ≤ T1.

For M⊥
j where j ∈ [d1] \ [d], using Eq (71), we obtain:

|⟨w(t+1)
i ,M⊥

j ⟩|2 ≤ O

(
1

d1

)
∥w(0)

i ∥
2
2 ≤ O

(
1

d1

)
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2
. (72)

This result demonstrates that the noisy features M⊥
j experience nearly no increase during this phase,

remaining insignificant in their contribution to the alignment of wi.

D.1. Lower Bound of Alignment for i ∈ Sj,sure

This section provides a analysis of the alignment growth for neurons i ∈ Sj,sure. Specifically, we
demonstrate that for every j ∈ [d], if i ∈ Sj,sure, the alignment ⟨Mj , w

(t)
i ⟩2 and its spurious alignment

⟨M′
j , w

(t)
i ⟩2 increase exponentially when t ≤ T1.

We now prove the lower bound of |⟨w(T1)
i ,Mj⟩|2 for i ∈ Sj,sure:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj′⟩+ ⟨w
(0)
i ,Mj′⟩+ ⟨v

(0)
i ,Hj⟩

4

)2

♢
≥
(
1 + η

Cz

d

)2T1

· (c1 + c2) log d

d
·
∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

8

♡
=

(c1 + c2) log d

d
·
∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2

♣
≥ (c1 + c2) log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22 − ∥w

(0)
i ∥22 − ∥v

(0)
i ∥22

2

♠
>

(1 + c0 − γc0) log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2
(73)
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In♢ we use Definition 12. In♡ we use Eq (70). In♣ we use ∥w(T1)
i ∥22+∥v(T1)i ∥22

2 ≥ ∥w(0)
i ∥22+∥v

(0)
i ∥22.

In ♠ we use c1 + c2 > 2(1 + c0 − γc0).
Similarly, |⟨w(T1)

i ,Mj′⟩|2 have the same lower bound.

D.2. Upper Bound of Alignment for i /∈ Sj,pot

In this subsection, we analyze the alignment of neuron i /∈ Sj,pot with the feature Mj and provide an
upper bound for |⟨w(T1)

i ,Mj⟩|2. While neurons i /∈ Sj,pot still exhibit exponential growth in their
alignment, their weaker initialization results in significantly smaller alignment compared to neurons
in Sj,sure, limiting their contribution to learning the feature Mj .

To establish the bound, we begin with the following expression:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj′⟩+ ⟨w
(0)
i ,Mj′⟩+ ⟨v

(0)
i ,Hj⟩

4

)2

♢
≤
(
1 + η

Cz

d

)2T1

· (c1 − c2) log d

d
·
∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

8

=
(c1 − c2) log d

d
·
∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2
.

(74)
Here, in ♢, we use Lemma 12, which captures the reduced alignment for neurons outside Sj,pot.
Similar to the analysis for i ∈ Sj,sure, the alignment strength for i /∈ Sj,pot is weaker, as c1 − c2

is less than 2(1 + c0 − γc0), leading to:

|⟨w(T1)
i ,Mj⟩|2 <

(1 + c0 − 3γc0) log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2
. (75)

This inequality highlights the slower alignment for neurons outside Sj,pot, distinguishing their
behavior from neurons in Sj,sure. Consequently, i /∈ Sj,pot contributes less significantly to the
alignment of Mj , reinforcing the importance of initial affinity for effective alignment.

D.3. Summary

At this stage (t ≤ T1), we do not consider the worst-case scenario where the probability bounds for
feature coupling satisfy

log(1/c0)

2 log d
< Pr(|zj′yp | = 1 | |zjxp

| = 1) <
1

2
< Pr(|zjyp | = 1 | |zjxp

| = 1) < 1

(as assumed in SubSection B.2). Thus, we summarize the results when t ≤ T1 as follows:
1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 > |⟨w(T1)

i ,Mj′⟩|2 >
(1 + c0 − γc0) log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2
, (76)

where j′ represents the corresponding spurious alignment feature.
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2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 <

(1 + c0 − 3γc0) log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2
. (77)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O

(
1

d1

)
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2
. (78)

These results demonstrate that when t ≤ T1, all features in M increase, but the alignment
for i ∈ Sj,sure, including the corresponding spurious alignment, grows significantly larger due to
favorable initialization. In contrast, noisy features M⊥ remain unchanged.

Appendix E. ITCP on Raw Data II

The Phase II of ITCP on Raw Data is defined as the training iterations T1 < t ≤ T2, where
T2 − T1 = Θ

(
d log d

η

)
.

At the beginning of this phase, we set the bias threshold as:

b
(T1)
i =

√
(1 + c0 − 2γc0) log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2
. (79)

During training, the bias threshold is iteratively updated as:

b
(t+1)
i =

(
1 +

η

d

)
b
(t)
i , (80)

until all neurons satisfy:
∥w(T2)

i ∥22 ≥ Ω(d)∥w(T1)
i ∥22. (81)

In this phase, the dynamics of alignment vary depending on whether a neuron belongs to Sj,sure
or not:

• For i /∈ Sj,pot: The weights wi and vi show negligible alignment growth with both the
informative features Mj , Hj and the noise features M⊥, H⊥. This is due to their weaker
initialization, as shown in Phase I, and the effect of the indicator function when t ≥ T1 which
prevents them from being activated. As a result, their capacity to learn meaningful alignments
during this phase is significantly limited.

• For i ∈ Sj,sure: The weights wi and vi exhibit continued alignment growth with the informative
features Mj , Hj . Additionally, their alignment with the corresponding spurious features Mj′ ,
Hj′ also increases due to their strong initialization, as shown in Phase I, and the effect of the
indicator function when t ≥ T1, which ensures they are always activated.

By the end of this stage (t = T2), the weights wi, vi will predominantly focus on the features
Mj , Hj if i ∈ Sj,sure, while largely ignoring the features Mj , Hj if i /∈ Sj,pot, as well as the noise
features M⊥, H⊥. This separation lays the foundation for the Phase II of ITCP on Raw Data, where
spurious alignments are expected to further diminish due to the dominance of true feature alignments.

Similarly to the proof of t ≤ T1 To simplify our analysis, we still consider the worse case where
Pr(|zj

′
yp | = 1 | |zjxp | = 1) = Pr(|zjyp | = 1 | |zjxp | = 1) = 1

2 such that E
[
zjxz

j
y

]
= E

[
zjxz

j′
y

]
= Cz

2d .
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E.1. Alignment for i ∈ Sj,sure

This section provides a analysis of the alignment growth for neurons i ∈ Sj,sure. Specifically, we
demonstrate that for every j ∈ [d], if i ∈ Sj,sure, the alignment ⟨Mj , w

(t)
i ⟩2 and its spurious alignment

⟨M′
j , w

(t)
i ⟩2 increase exponentially when T1 < t ≤ T2.

For i ∈ Sj,sure, using Lemma 16, the following holds with high probability 1 − e−Ω(d1) when
T1 < t ≤ T2 : ∣∣∣⟨w(t)

i , ξ⟩
∣∣∣2 ≤ O


∥∥∥w(t)

i

∥∥∥2
2

d1+c0

 < b
(t)
i (82)

Therefore, with high probability 1− e−Ω(d1), using Eq (76) and Eq (79) the indicator function
satisfies the condition when t = T1:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

= 1, (83)

we can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

]
=

Cz

d
. (84)

Using Eq (116) we know that
(
1 + ηCz

2d

)
>
(
1 + η

d

)
and using Eq (31) we have

|⟨w(t+1)
i ,Mj⟩| > (1 +

η

d
)b

(t)
i = b

(t+1)
i . (85)

This implies that when t > T1, the alignment strength of informative features surpasses the updated
bias threshold b

(t)
i . Consequently, the indicator functions become consistently activated T1 < t ≤ T2

such that
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

= 1, (86)

Using Eq (31), the weight dynamics for |⟨w(t+1)
i ,Mj⟩| can be expressed as when T1 < t ≤ T2:

|⟨w(t+1)
i ,Mj⟩| =

(
1 + η

Cz

d

)(⟨w(t)
i ,Mj⟩+ ⟨v(t)i ,Hj′⟩+ ⟨w

(t)
i ,M⊥

j ⟩+ ⟨v
(t)
i ,Hj⟩

4

)
. (87)

Similarly, |⟨w(T1)
i ,Mj′⟩|2 have the same result.

E.2. Alignment for i /∈ Sj,pot

In this section, we analyze the alignment behavior for neurons i /∈ Sj,pot. Specifically, we demonstrate
that for every j ∈ [d], if i /∈ Sj,pot, the alignment ⟨Mj , w

(t)
i ⟩2 exhibits negligible growth during the

interval T1 < t ≤ T2.
For i /∈ Sj,pot, using Eq (156), Eq (79) and Eq (76), we have with high probability 1− e−Ω(d1),

similarly to the proof of i ∈ Sj,sure, the indicator function satisfies the condition when t = T1:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

= 0, (88)

30



CONTRASTIVE LEARNING UNDER DATA MISALIGNMENT

We can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

]
≤ o

(
1

d2

)
. (89)

Using Eq (116) we know that
(
1 + o( η

d2
)
)
<
(
1 + η

d

)
and using Eq (31) we have

|⟨w(t+1)
i ,Mj⟩| < (1 +

η

d
)b

(t)
i = b

(t+1)
i . (90)

This implies that when t > T1, the alignment strength of informative features does not surpass the
updated bias threshold b

(t)
i . Consequently, the indicator functions become consistently not activated

T1 < t ≤ T2 such that
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

= 0, (91)

Using Eq (31), the weight dynamics for |⟨w(t+1)
i ,Mj⟩| can be expressed as when T1 < t ≤ T2:

|⟨w(t+1)
i ,Mj⟩| ≤

(
1 + o

( η

d2

))t(⟨w(T1)
i ,Mj⟩+ ⟨v(T1)

i ,Hj′⟩+ ⟨w
(T1)
i ,Mj′⟩+ ⟨v

(T1)
i ,Hj⟩

4

)
(92)

Because
(
1 + o

( η
d2

))T2 ≤ 1 + o
(
1
d

)
, the growth in |⟨w(T2)

i ,Mj⟩| is negligible. Consequently, we
have:

|⟨w(T2)
i ,Mj⟩|2 ≤

(
1 + o

(
1

d

))
|⟨w(T1)

i ,Mj⟩|2. (93)

E.3. Summary

When T2 = Θ
(
d log d

η

)
, we know

(
1 + ηCz

d

)T2
= poly(d). Using Eq (76), we can ensure that when

all neurons satisfy the following condition:

∥w(T2)
i ∥2 ≥ Ω(d)∥w(T1)

i ∥2, (94)

we terminate the training process at T2 = Θ
(
d log d

η

)
. This ensures that the alignment has sufficiently

progressed for effective learning.
Thus, using Eq (93) and Eq (71) we have

|⟨w(T2)
i ,Mj⟩|2 + |⟨w(T2)

i ,Mj′⟩|2 = ∥w(T2)
i ∥22 −

∑
j∈[d],j /∈Ni

⟨w(T2)
i ,Mj⟩2 −

∑
j∈[d1]\[d]

⟨w(T2)
i ,M⊥

j ⟩2

≥ ∥w(T2)
i ∥22 − (1 + o(

1

d
))(∥w(T1)

i ∥22 − |⟨w
(T1)
i ,Mj⟩|2 − |⟨w(T1)

i ,Mj′⟩|2)

≥ ∥w(T2)
i ∥22 − ∥w

(T1)
i ∥22 − o(

∥w(T1)
i ∥22
d

)

(95)
Thus, at this stage (T1 < t ≤ T2), we do not consider the worst-case scenario where the

probability bounds for feature coupling satisfy

log(1/c0)

2 log d
< Pr(|zj′yp | = 1 | |zjxp

| = 1) <
1

2
< Pr(|zjyp | = 1 | |zjxp

| = 1) < 1
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We summarize the results when T1 < t ≤ T2 as follows:
1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(T2)
i ,Mj⟩|2 > |⟨w(T2)

i ,Mj′⟩|2 ≥
1

4

∥w(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(96)

where j′ represents the corresponding spurious alignment feature.
2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 ≤ O(

1

d
) ·
∥w(T2)

i ∥22 + ∥v
(T2)
i ∥22

2
(97)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O

(
1

d1

)
·
∥w(T2)

i ∥22 + ∥v
(T2)
i ∥22

2
. (98)

These results demonstrate that when T1 < t ≤ T2, the alignment for i ∈ Sj,sure, including the
corresponding spurious alignment, grows significantly larger. In contrast, the alignment strength for
i /∈ Sj,pot and noisy features M⊥ remains unchanged. Similar results also hold for vi.

Appendix F. ITCP on Raw Data III Convergence

In the previous section, we demonstrated that for t ≤ T2, the neurons (wi, vi) are sparsely activated
and remain consistently activated for i ∈ Sj,sure. Building on this result, this section establishes the
convergence of these neurons to sparse solutions, providing a detailed analysis of their behavior
during Phase III of ITCP on Raw Data. The following theorem outlines the convergence guarantees
under these conditions.

The Phase III of ITCP on Raw Data is defined as the training iterations T2 < t ≤ T3, where
T3 − T2 = Θ(d). At the beginning of this phase, we fix the bias threshold as b

(t)
i = bT2

i for
T2 < t ≤ T3. Because b

(T2)
i =

(
1 + η

d

)Θ(d log d/η)
b
(T1)
i , it is easy to know that for t ≥ T2, only

when (xp, yp) and (xn, yn) contain the true feature j and its corresponding spurious feature j′, the
indicator functions remain consistently activated for i ∈ Sj,sure.

Consequently, using Eq (24), Eq (27), and Eq (28), the loss function L becomes convex with
respect to wi and vi independently when (xp, yp) and (xn, yn) contain the true feature j and its
corresponding spurious feature j′ .

At the end of Phase II, using Eq (81), we know that ∥w(T2)
i ∥2 ≥ Ω(d). Consequently, we cannot

only consider −⟨f (t)(xp), h
(t)(yp)⟩, and the error term Errt becomes non-negligible.

Specifically, based on Eq (24), it can be observed that the term −⟨f (t)(xp), h
(t)(yp)⟩ is convex

and li,j,1 = ∥xp∥2∥yp∥2 = Θ(1)-smooth. This ensures that the true features contribute consistently
to the optimization process.

Additionally, Li,j,2 =
(⟨f (t)(xn),h(t)(yp)⟩)

2

2τ is also convex, and we further establish its smoothness
to provide a rigorous understanding of its behavior.

To analyze the li,j,2-smoothness, we aim to find an upper bound that satisfies:

∥∇wi,viL2(wi,1, vi,1)−∇wi,viL2(wi,2, vi,2)∥2 ≤ li,j,2∥(wi,1 − wi,2, vi,1 − vi,2)∥2. (99)
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The gradient difference for wi is given by:

∥∇wi
Li,j,2(wi,1, vi,1)−∇wi

Li,j,2(wi,2, vi,2)∥2 =

∥∥∥ (x⊤W⊤
1 V1y

)
x(vi,1y)

⊤ −
(
x⊤W⊤

2 V2y
)
x(vi,2y)

⊤
∥∥∥
2

2τ

≤ lwi,1

2τ
∥wi,1 − wi,2∥2 +

lwi,2

2τ
∥vi,1 − vi,2∥2,

(100)
where lwi,1 = ∥xn∥22∥yp∥22∥vi,1∥2∥vi,2∥2 ≤ O(d) and lwi,2 = ∥xn∥22∥yp∥22

(
∥vi,1∥2∥wi,2∥2 +

∥wi,1∥2∥vi,1∥2
)
≤ O(d).

Similarly, the gradient difference for vi is:

∥∇viLi,j,2(wi,1, vi,1)−∇viLi,j,2(wi,2, vi,2)∥2 ≤
lvi,1
2τ
∥wi,1 − wi,2∥2 +

lvi,2
2τ
∥vi,1 − vi,2∥2,

(101)
where lvi,1 ≤ O(d) and lvi,2 ≤ O(d).

Combining the results, we find:

li,j,2 =

√
l2wi,1

+ l2wi,2
+ l2vi,1 + l2vi,2

2τ
≤ O(1). (102)

Thus, the total smoothness constant is:

li,j = li,j,1 + li,j,2 = Θ(1). (103)

These results demonstrate that the loss function L remains convex and li,j-smooth for neurons
(wi, vi) when (xp, yp) and (xn, yn) contain the true feature j and its corresponding spurious feature
j′ during Phase III of ITCP on Raw Data, ensuring their convergence to sparse solutions while
maintaining consistency in their activation patterns.

We verify that the following inequality holds

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )

+
〈
∇Lj(w

(t)
i , v

(t)
i ),

(
w

(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)〉
+

li,j
2

∥∥∥(w(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)∥∥∥2
(104)

Let L = maxi∈m(li,j/(2τ)) = Θ(1) and η = 1
L to ensure a monotonic decrease, plug Eq (25)

and Eq (26) into Eq (178), we have

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )− η

2
∥∇Lj(w

(t)
i , v

(t)
i )∥2. (105)

Under our data assumptions for Sw and conclusion in Eq (96) , we define w∗
i = α∗

i,jMj +
α∗
i,j′Mj′ , v

∗
i = α∗

i,jHj + α∗
i,j′Hj′ . Thus, Lj(w

∗
i , v

∗
i ) captures both the alignment with the true

feature Mj ,Hj and the spurious feature Mj′ ,Hj′ , representing the minimal loss achievable under
the influence of both true and spurious features in the optimization process. Using Eq (81), we know
w

(T2)
i = Θ(d), so Lj(w

∗
i , v

∗
i ) = −Θ(d).

By the property of smoothness, we have

∥∇Lj(w
(t)
i , v

(t)
i )∥22 ≥

2

L

(
Lj(w

(t)
i , v

(t)
i )− Lj(w

∗
i , v

∗
i )
)

(106)
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Take the telescope sum of from T2 to T3, we have

1

T3 − T2

T3∑
t=T2

Lj(w
(t)
i , v

(t)
i )≤Lj(w

∗
i , v

∗
i ) +

L2∆0

T3 − T2

♢
≤ Lj(w

∗
i , v

∗
i ) + Θ(1)

(107)

where ∆0 = Lj(w
(T1)
i , v

(T1)
i )−Lj(w

∗
i , v

∗
i ) = Θ(d). In ♢, we use T3− T2 = Θ(d), and L = Θ(1) .

Generalized to every j ∈ d, the same convergence holds for all i ∈ Sj,sure when (xp, yp) and
(xn, yn) contain feature j, j′. For all (xp, yp) and (xn, yn) in Sw, the following inequality holds:

1

T3 − T2

T3∑
t=T2

L(f (T3), h(T3)) ≤ L(f∗, h∗) + Θ(1). (108)

As a result, the relative difference is bounded by:

L(f (T3), h(T3))− L(f∗, h∗)

|L(f∗, h∗)|
≤ Θ

(
1

d

)
. (109)

F.1. Summary

ITCP trained on raw data S undergoes Stages D–F. After T = Θ(d2 log d) SGD iterations with batch
size B = Ω(d) and learning rate η = O(1), the resulting weights (W,V) minimize the contrastive
loss in Eq. (1) up to a vanishing relative error:

L(fW, hV)− L∗

|L∗|
≤ o(1). (110)

However, each neuron pair (w̄i, v̄i) in (W,V), for i ∈ [m], predominantly encodes a mixture of
features indexed by a subset Ni ⊆ [d], with |Ni| ≥ 2. Specifically, we have:

w̄i =
∑
j∈Ni

αi,jMj +
∑

j∈[d]\Ni

βi,jMj +
∑

j∈[d1]\[d]

γi,jM
⊥
j ,

v̄i =
∑
j∈Ni

αi,jHj +
∑

j∈[d]\Ni

βi,jHj +
∑

j∈[d1]\[d]

γi,jH
⊥
j ,

(111)

where α2
i,j = Θ(∥w̄i∥22 + ∥v̄i∥22), and the interference from other features is small: βi,j/αi,j ≤

O(1/
√
d), γi,j/αi,j ≤ O(1/

√
d1).

Moreover, for every spuriously correlated feature pair (j, j′) satisfying Assumption 3, there exists
at least an Ω(1) many of neurons i ∈ [m] with Ni = {j, j′}, indicating the prevalence of feature
mixing due to data misalignment.

Appendix G. Captioning

In this stage, the model fine-tunes the pre-trained encoder parameters W and V to obtain the updated
parameters Ŵ and V̂ through Image-Text Contrastive Pre-training (ITCP) on raw data.
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Given an image-text pair (xp, yp) in Sw, the decoder generates synthetic captions ŷp = V̂Tσ(Ŵxp),
where σ(·) denotes the activation function. The Image-Grounded Text Decoder, initialized with W
and V from the pre-trained encoders, is fine-tuned on Sh by minimizing the following loss function:

LC = E(xp,yp)∈Sh

[
1

2

∥∥VTσ(Wxp)− yp
∥∥2
2

]
, (112)

where ∥ · ∥2 denotes the Euclidean norm. This fine-tuning process refines the model to generate
captions that are more closely aligned with the target text data in Sh.

During the captioning, we sample a batch of image-text pairs S(t)
h = {(xp, yp)}Bp=1 ⊆ Sh. We

perform stochastic gradient descent on LC . At each iteration, we update as

w
(t+1)
i ← w

(t)
i − η∇wiL

(t)
C (113)

v
(t+1)
i ← v

(t)
i − η∇viL

(t)
C (114)

At the beginning of this phase, we set the bias threshold as:

b
(0)
i =

√
∥w(T2)

i ∥22 − ∥w
(T1)
i ∥22

2
(115)

During training, the bias threshold is iteratively updated as:

b
(t+1)
i =

(
1 +

η

d

)
b
(t)
i , (116)

The gradient of LC with respect to w
(t)
i , v(t)i , W, and V at iteration t is given by:

∇
w

(t)
i

LC = v
(t)
i (yp −VTWxp)x

T
p · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

(117)

∇
v
(t)
i

LC = w
(t)
i xp(yp −VTWxp)

T · 1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

(118)

The alignment can be described by the following update rule:

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩ − ⟨∇wiLC ,Mj⟩

= ⟨w(t)
i ,Mj⟩+ η · tr(v(t)⊤i (yp −VTWxp)x

T
pMj · 1|⟨wi,xp⟩|≥b

(t)
i

)
(119)

⟨v(t+1)
i ,Hj⟩ = ⟨v(t)i ,Hj⟩ − ⟨∇viLC ,Hj⟩

= ⟨v(t)i ,Hj⟩+ η · tr(w(t)⊤
i xp(yp −VTWxp)

THj · 1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

)
(120)
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G.1. Alignment for i ∈ Sj,sure

This section analyzes the alignment growth for neurons i ∈ Sj,sure. Specifically, we show that when
t ≤ TC , the alignment with the true feature Mj grows exponentially if xp contains the true feature
Mj . In contrast, the alignment with the spurious feature Mj′ exhibits negligible growth, even for
neurons i ∈ Sj,sure. Specially,

1. For the true feature Mj , based on the result in Eq (96) and the bias threshold in Eq (115), the
indicator functions are always activated. This ensures that the neuron can consistently increase its
alignment in the direction of the true feature Mj .

2. For the spurious feature Mj′ , based on the result in Eq (96) and the bias threshold in Eq (115),
the indicator functions remain non-activated. This prevents the neuron from increasing its alignment
in the direction of the spurious feature Mj′ .

The details of proof as follow:
Using Eq (95), we know

∥w(T2)
i ∥22 − ∥w

(T1)
i ∥22 ≥ |⟨w

(T2)
i ,Mj⟩|2 + |⟨w(T2)

i ,Mj′⟩|2 ≥ ∥w
(T2)
i ∥22 − ∥w

(T1)
i ∥22 − o(

∥w(T1)
i ∥22
d

)

(121)
Using Eq (32) and Eq (33), we have

⟨w(t)
i ,Mj⟩ − ⟨w(t)

i ,Mj′⟩ =
(a+ b− c)t

2

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩ − ⟨w(0)
i ,Mj′⟩ − ⟨v(0)i ,Hj′⟩

)
+ Errt

(122)
Using Eq (40) and (a+ b− c)T1+T2 ≥ Ω(d2), with high probability 1−O( 1√

d
) we have,

|⟨w(T2)
i ,Mj⟩|2 − |⟨w(T2)

i ,Mj′⟩|2 ≥ Ω(
∥w(T1)

i ∥22
d

) (123)

Therefore, with high probability 1−O( 1√
d
) we have

|⟨w(T2)
i ,Mj⟩|2 >

∥w(T2)
i ∥22 − ∥w

(T1)
i ∥22

2
> |⟨w(T2)

i ,Mj′⟩|2 (124)

We set b(0)i =

√
∥w(T2)

i ∥22−∥w(T1)
i ∥22

2 , and using Eq (124), so similarly to the proof of Eq (86) we
can prove:

1. For i ∈ Sj,sure and xp contain the true feature Mj , with high probability 1 − O( 1√
d
) the

indicator functions become consistently activated 0 ≤ t ≤ TC such that:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 1 (125)

2. For i ∈ Sj,sure and xp contain the corresponding spurious aligned feature Mj′ , with high
probability 1−O( 1√

d
) the indicator functions become consistently activated 0 ≤ t ≤ TC such that:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 0 (126)

3. For i /∈ Sj,pot and M⊥
j where j ∈ [d1] \ [d], we have:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 0 (127)
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For the residual loss in Eq (119) and Eq (120), we bound the difference if 1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 1:

Hjz
j
xp
zjyp

♢
≥ (yp −VTWxp)x

T
pMj · 1|⟨wi,xp⟩|≥b

(t)
i

= (Hjz
j
xp
zjyp −

m∑
i=1

⟨vi,Hj⟩⟨wi,Mj⟩Hjz
j
xp
zjyp) · 1⟨wi,xp⟩≥b

♡
≥ Hjz

j
xp
zjyp −O(dγc0)⟨vi,Hj⟩⟨wi,Mj⟩Hjz

j
xp
zjyp

(128)

In ♢, we employ the approximation ypx
⊤
p Mj ≈ Hjz

j
xpz

j
yp , based on the observation that zjxpz

j′
yp ≪

zjxpz
j
yp when j ̸= j′. In ♡, we utilize Eq (38). There are at most O(dγc0) neurons capable of learning

Mj , which satisfy the condition 1⟨wi,xp⟩≥b.
For i ∈ Sj,sure and for xp contain Mj , using Eq (128), Eq (119) and Eq (126) we have:

⟨w(t+1)
i ,Mj⟩ ≥ ⟨w(t)

i ,Mj⟩+ η · tr
(
v
(t)
i · (1− α2

t )HjE
[
zjxp

zjyp

])
≥ ⟨w(t)

i ,Mj⟩+ η
Cz(1− α2

t )

d
⟨v(t)i ,Hj⟩,

(129)

Similar to Eq (32), we have

|⟨w(t)
i ,Mj⟩| ≥

(
1 + η

Cz · (1− α2
t )

d

)t
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
2

)
(130)

Similarly, for i ∈ Sj,sure and xp contain the corresponding spurious aligned feature Mj′ , because
Pr[1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

= 0] ≥ 1−O( 1√
d
), we have

⟨w(t+1)
i ,Mj′⟩ ≤ ⟨w

(t)
i ,Mj′⟩+O(

η

d1.5
)⟨v(t)i ,Hj′⟩ (131)

and

|⟨w(t)
i ,Mj′⟩| ≤

(
1 +O(

η

d1.5
)
)t(⟨w(T2)

i ,Mj′⟩+ ⟨v
(T2)
i ,Hj′⟩

2

)
(132)

At TC = Θ
(
d log(d)

η

)
, we have:

|⟨w(TC)
i ,Mj⟩|

|⟨w(TC)
i ,Mj′⟩|

>

(
1 + η

Cz ·(1−α2
t )

d

)TC

(
1 +O( η

d1.5
)
)TC

≥ Ω(d) (133)

Therefore, we summarize that when t = TC , the alignment with the true feature Mj dominates,
satisfying:

|⟨w(TC)
i ,Mj⟩|

|⟨w(TC)
i ,Mj′⟩|

≥ Ω(d), (134)

highlighting the significant separation between the true feature Mj and the spurious feature Mj′

for neurons i ∈ Sj,sure. A similar result holds for vi, where the alignment with the true feature Hj

similarly dominates over the spurious feature Hj′ .
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G.2. Convergence

For i ∈ Sj,sure, when xp, yp contains the true feature j, the indicator functions remain consistently ac-
tivated. Consequently, the loss function LC becomes convex with respect to wi and vi independently.
We verify that the following inequality holds

LC,j(w
(t+1)
i , v

(t+1)
i ) ≤ LC,j(w

(t)
i , v

(t)
i )

+
〈
∇LC,j(w

(t)
i , v

(t)
i ),

(
w

(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)〉
+

li
2

∥∥∥(w(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)∥∥∥2
(135)

where li = O(Czd
2γc0)(

∥∥∥v(t)i

∥∥∥2
2
∥xp∥22 +

∥∥∥v(t)i

∥∥∥2
2
∥xp∥22) = Θ(1). This means LC,j(w

(t)
i , v

(t)
i ) is

li-smooth for all i ∈ Sj,sure when xp, yp contains the true feature j. Let L = maxi∈m(li) = Θ(1)
Let η = 1

L to ensure a monotonic decrease, plug Eq (117) and Eq (118) into Eq (135), we have

LC,j(w
(t+1)
i , v

(t+1)
i ) ≤ LC,j(w

(t)
i , v

(t)
i )− η

2
∥∇LC,j(w

(t)
i , v

(t)
i )∥2. (136)

By the property of smoothness, we have

∥∇LC,j(w
(t)
i , v

(t)
i )∥22 ≥

2

L

(
LC,j(w

(t)
i , v

(t)
i )− LC,j(w

∗
i , v

∗
i )
)
. (137)

Take the telescope sum of from 0 to TC , we have

1

TC

TC∑
t=0

LC,j(w
(t)
i , v

(t)
i )≤LC,j(w

∗
i , v

∗
i ) +

L2∆0

TC

♢
≤ LC,j(w

∗
i , v

∗
i ) + Θ(

1

d
)

♡
= Θ(

1

d
)

(138)

where ∆0 = LC,j(w
(0)
i , v

(0)
i ) − LC,j(w

∗
i , v

∗
i ). In ♢, we use TC = Θ(d), and ∥w(t)

i ∥22 =

∥v(t)i ∥22 = Θ(1). In ♡, we use w∗
i = α∗

i,jMj , V
∗
i = α∗

i,jHj and LC,j(w
∗
i , v

∗
i ) = Θ(1d) if xp contains

the true feature Mj .
Therefore, for all j ∈ d and all (xp, yp) ∈ Sh, when TC = Θ(d2), we can ensure

LC = E(xp,yp)∈Sh

[
1

2

∥∥VTσ(Wxp)− yp
∥∥2
2

]
≤ Θ(

1

d
) (139)

G.3. Summary

After TC iterations, the parameters W and V are updated to WTC = Ŵ and VTC = V̂, respectively,
using the dataset Sh. The generated caption is given by:

ŷp = V̂Tσ(Ŵxp), (140)
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where the expected loss satisfies:

E
[
1

2
∥ŷp − yp∥22

]
= LC ≤ Θ

(
1

d

)
. (141)

1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(TC)
i ,Mj⟩|2 = Θ(1)

∥∥∥w(TC)
i

∥∥∥2
2

(142)

and
|⟨w(TC)

i ,M′
j⟩|2 ≤ O(

1

d
)
∥∥∥w(TC)

i

∥∥∥2
2

(143)

where j′ represents the corresponding spurious alignment feature.
2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 ≤ O(

1

d
)
∥∥∥w(TC)

i

∥∥∥2
2

(144)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O(
1

d1
)
∥∥∥w(TC)

i

∥∥∥2
2

(145)

Appendix H. Filtering

During filtering, we sample the synthetic image-text pair (xp, ŷp) in Ŝw and the corresponding
image-text pair (xp, yp) in Sw. The image encoder f and text encoder h trained on raw data are
employed to obtain the corresponding embeddings.

z′xp
= f(xp), ẑyp = h(ŷp), z′yp = h(yp) (146)

Then, we calculate the cosine similarity of ⟨z′xp
, ẑyp⟩ and ⟨z′xp

, z′yp⟩, and select the image-text pair
with higher cosine similarity denoted as (x, ỹ). In this way, we replace the noisy pairs in Sw with
synthetic pairs in Ŝw. The resulting dataset is denoted as S̃ = S̃w ∪ Sh.

The decoder generates synthetic captions ŷp = V̂Tσ(Ŵxp). Using Eq (141), for each data pair
(xp, yp) which contain feature (Mj ,Hj) in Sh we have

E(xp,yp)

[
Ej∈d

[
1

2

∥∥∥Hjz
j
ŷp
−Hjz

j
yp

∥∥∥2
2

]
||zjyp
| = 1

]
≤ E(xp,yp)

[
1

2
∥ŷp − yp∥22 ||z

j
yp
| = 1

]
= LC ≤ Θ(

1

d
)

(147)
Therefore, using ∥Hj∥2 = 1 and zxp = zyp in Sh, we have

Exp,j∈d

[
zjŷpz

j
xp
||zjxp
| = 1

]
≥ 1−Θ(

1

d
) (148)

Base on Assumption 4 zjxp ∼ Bernoulli
(
Cz
d

)
, we have

Pr(zjŷp = 1 | |zjxp
| = 1) ≥ 1−Θ(

1

d
) (149)
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Using Eq (134) and Eq (149), we have

Pr(zj
′

ŷp
= 1 | |zjxp

| = 1) ≤ Θ(
1

d
) (150)

Therefore, after replace all noisy text yp in Sw by synthetic caption ŷp in Ŝw

1. for a positive pair (xp, yp), we have

E
[
zjx̃p

zjỹp

]
= Θ(

1

d
), E

[
zjx̃p

zj
′

ỹp

]
= Θ

(
1

d2

)
, ∀j′ ̸= j. (151)

2. for negative pairs (xp, yq), where p ̸= q, we have:

E
[
zjxp

zj
′

yq

]
= Θ

(
1

d2

)
, ∀j, j′ ∈ [d]. (152)

Appendix I. ITCP on Synthetic (Recaptioned) Data

During ITCP on Raw Data, we use a noisy dataset S. Based on SubSection B.2, we have E
[
zjxz

j
y

]
and E

[
zjxz

j′
y

]
both in Θ

(
1
d

)
. In this scenario, for i ∈ Sj,sure, w(t)

i is jointly influenced by Mj

and Mj′ , with both features contributing comparably to the updates. However, during ITCP on
recaptioned data, we sample image-text pairs from the dataset S̃. Using Eq. (151), we find that
E
[
zjx̃p

zj
′

ỹp

]
= Θ

(
1
d2

)
. In this case, for i ∈ Sj,sure, w(t)

i is influenced solely by Mj , without
interference from spurious features, ensuring purified representations.

The only difference between ITCP on Raw Data and Data lies in the E
[
zjx̃p

zj
′

ỹp

]
; all other training

processes remain largely the same. Therefore, we simplify our proof accordingly.

I.1. Phase I of ITCP on Synthetic Data

The Phase I of ITCP on Data is defined as the training iterations t ≤ T1, where T1 = Θ
(
d log d

η

)
is

the iteration when all ∥w(T2)
i ∥22 = 2∥w(0)

i ∥22. Before T1, we set b(t)i = 0. For every neuron i ∈ [m],
the weights wi, vi will mostly ignore the noise features M⊥, H⊥ and learn to emphasize the features
M, H.

If Pr(|zjyp | = 1 | |zj
′

xp | = 1) < 0.1, we have E
[
zjxz

j
y

]
≫ E

[
zjxz

j′
y

]
and (a+b+c)t ≈ (a+b−c)t.

In this case, w(t+1)
i is predominantly influenced by Mj , with minimal contributions from Mj′ . The

updates are thus primarily driven by the single feature Mj , ensuring that spurious interactions from
Mj′ are negligible.

∥MM⊤w
(t)
i ∥

2
2 =

d∑
i=1

[
(a+ b+ c)t

2

(
⟨w(t)

i ,Mj⟩+ ⟨v(t)i ,Hj⟩
)]2

=

(
1 +

ηCz

d

)2t ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

4
.

(153)
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i ∈ Sj,sure:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
2

)2

≥
(
1 + η

Cz

d

)2T1

· c1 log d
d

·
∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

4

=
c1 log d

d
·
∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2

≥ c1 log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22 − ∥w

(0)
i ∥22 − ∥v

(0)
i ∥22

2

≥ (1 + c0) log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2

(154)

Because ∥w(T1)
i ∥22+∥v(T1)i ∥22

2 = ∥w(0)
i ∥22 + ∥v

(0)
i ∥22 and c1 > 2(1 + c0)

i /∈ Sj,sure:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
2

)2

≤
(
1 + η

Cz

d

)2T1

· c2 log d
d

·
∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

4

=
c2 log d

d
·
∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2

≤ log d

d
·
∥w(T1)

i ∥22 + ∥v
(T1)
i ∥22

2

(155)

|⟨w(t+1)
i ,M⊥

j ⟩|2 ≤ O( 1
d1
)
∥w(T1)

i ∥22+∥v(T1)i ∥22
2

I.2. Phase II:

The Phase II of ITCP on Synthetic Data is defined as the training iterations T1 ≤ t ≤ T2, where
T2 − T1 = Θ

(
d log d

η

)
is the iteration.

We set b
(t)
i =

√
log d
d ·

∥w(T1)
i ∥22+∥v(T1)i ∥22

2 and b
(t+1)
i = (1 + η

d )b
(t)
i until all ∥∥w(T2)

i ∥2 ≥

Ω(d)∥w(T1)
i ∥2,. In this phase, the weights (wi, vi) will mostly ignore the features Mj , Hj if

i /∈ Sj,sure and the noise features M⊥, H⊥, and learn to emphasize the features Mj , Hj if i ∈ Sj,sure.
For i ∈ Sj,sure, using Lemma 16, the following holds with high probability 1 − e−Ω(d1) when

T1 < t ≤ T2 : ∣∣∣⟨w(t)
i , ξ⟩

∣∣∣2 ≤ O


∥∥∥w(t)

i

∥∥∥2
2

d1+c0

 < b
(t)
i (156)
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Under the assumption that, with high probability, the indicator function satisfies the condition
when t = T1:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

= 1, (157)

we can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

]
=

Cz

d
. (158)

The weight dynamics for |⟨w(t+1)
i ,Mj⟩| can be expressed as:

|⟨w(t+1)
i ,Mj⟩| =

(
1 + η

Cz

d

)(
⟨w(t)

i ,Mj⟩+ ⟨v(t)i ,Hj⟩
2

)
. (159)

Given that
(
1 + ηCz

d

)
>
(
1 + η

d

)
, and ⟨w(t)

i ,Mj⟩+⟨v(t)i ,Hj⟩
2 > b

(t)
i , it follows that:

|⟨w(t+1)
i ,Mj⟩| > b

(t+1)
i . (160)

Thus, with high probability, for t ≤ T2, we have:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

= 1. (161)

so for T1 < t ≤ T2 we have

|⟨w(t+1)
i ,Mj⟩| =

(
1 + η

Cz

d

)t
(
⟨w(T1)

i ,Mj⟩+ ⟨v(T1)
i ,Hj⟩

2

)
(162)

For i /∈ Sj,sure, the projection of weights onto a generic feature ξ at iteration T1 satisfies:

Pr

(
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

= 1

)
≤ o

(
1

d

)
. (163)

We can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

]
= o

(
1

d2

)
. (164)

The weight dynamics for |⟨w(t+1)
i ,Mj⟩| can now be expressed as:

|⟨w(t+1)
i ,Mj⟩| =

(
1 + o

( η

d2

))(⟨w(t)
i ,Mj⟩+ ⟨v(t)i ,Hj⟩

2

)
. (165)

Given that
(
1 + o

( η
d2

))
<
(
1 + η

d

)
, and ⟨w(t)

i ,Mj⟩+⟨v(t)i ,Hj⟩
2 < b

(t)
i , it follows that:

|⟨w(t+1)
i ,Mj⟩| < b

(t+1)
i . (166)
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If |⟨w(T1)
i ,Mj⟩| < b

(T1)
i , then |⟨w(t)

i ,Mj⟩| < b
(t)
i for t ≤ T2. Thus, with high probability, for

t ≤ T2, we have:
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)i ,yp
〉∣∣∣≥b

(t)
i

= 0. (167)

|⟨w(t+1)
i ,Mj⟩| ≤

(
1 + o

( η

d2

))t(⟨w(T1)
i ,Mj⟩+ ⟨v(T1)

i ,Hj⟩
2

)
(168)

There exists T2 = Θ
(
d log d

η

)
such that the following conditions hold:

(
1 + η

Cz

d

)T2

= Θ(d), (169)

indicating that |⟨w(t+1)
i ,Mj⟩| for i ∈ Sj,sure increase iteratively until:

∥w(T2)
i ∥2 ≥ Ω(d)∥w(T1)

i ∥2 (170)

while, for i /∈ Sj,sure, the updates diminish, such that:(
1 + o

( η

d2

))T2

≤ 1 + o

(
1

d

)
, (171)

indicating negligible growth in |⟨w(t+1)
i ,Mj⟩|.

Thus we have

|⟨w(T2)
i ,Mj⟩|2 = ∥w(T2)

i ∥22 −
∑

j∈[d],j /∈Ni

⟨w(T2)
i ,Mj⟩2 −

∑
j∈[d1]\[d]

⟨w(T2)
i ,M⊥

j ⟩2

≥ ∥w(T2)
i ∥22 − (1 + o(1))∥w(T1)

i ∥22 − (1 + o(1))∥w(0)
i ∥

2
2

≥ (1− o(1))∥w(T2)
i ∥22.

(172)

Finally, for i /∈ Sj,sure, we have:

∥w(T2)
i ,Mj∥2 ≤ (1 + o(

1

d
)) ·O

(
∥w(T1)

i ∥2√
d

)
≤ O

(
∥w(T2)

i ∥2√
d

)
, (173)

and for noise components:

|⟨w(T2)
i ,M⊥

j ⟩|2 ≤ O

(
∥w(T2)

i ∥2√
d1

)
. (174)

We summarize the results when T1 < t ≤ T2 as follows:
1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(T2)
i ,Mj⟩|2 > (1− o(1))

∥w(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(175)

without j′ that represents the corresponding spurious alignment feature.
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2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 ≤ O(

1

d
) ·
∥w(T2)

i ∥22 + ∥v
(T2)
i ∥22

2
(176)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O

(
1

d1

)
·
∥w(T2)

i ∥22 + ∥v
(T2)
i ∥22

2
. (177)

Similar results also hold for vi.

I.3. Phase III Convergence of ITCP on Synthetic Data

Similarly to convergence Phase III in ITCP on Raw Data when T2 ≤ t ≤ T3, using Eq (24), Eq (27),
and Eq (28), the loss function L becomes convex with respect to wi and vi independently when
(xp, yp) and (xn, yn) contain the true feature j.

We verify that the following inequality holds

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )

+
〈
∇Lj(w

(t)
i , v

(t)
i ),

(
w

(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)〉
+

li,j
2

∥∥∥(w(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)∥∥∥2
(178)

Let L = maxi∈m(li,j/(2τ)) = Θ(1) and η = 1
L to ensure a monotonic decrease, plug Eq (25)

and Eq (26) into Eq (178), we have

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )− η

2
∥∇Lj(w

(t)
i , v

(t)
i )∥2. (179)

Under our data assumptions for Sw and conclusion in Eq (96) , we define w∗
i = α∗

i,jMj , v
∗
i =

α∗
i,jHj . Thus, Lj(w

∗
i , v

∗
i ) captures both the alignment with the true feature Mj ,Hj and the spu-

rious feature Mj′ ,Hj′ , representing the minimal loss achievable under the influence of both true
and spurious features in the optimization process. Using Eq (81), we know w

(T2)
i = Θ(d), so

Lj(w
∗
i , v

∗
i ) = −Θ(d).

By the property of smoothness, we have

∥∇Lj(w
(t)
i , v

(t)
i )∥22 ≥

2

L

(
Lj(w

(t)
i , v

(t)
i )− Lj(w

∗
i , v

∗
i )
)

(180)

Take the telescope sum of from T2 to T3, we have

1

T3 − T2

T3∑
t=T2

Lj(w
(t)
i , v

(t)
i )≤Lj(w

∗
i , v

∗
i ) +

L2∆0

T3 − T2

♢
≤ Lj(w

∗
i , v

∗
i ) + Θ(1)

(181)

where ∆0 = Lj(w
(T1)
i , v

(T1)
i )− Lj(w

∗
i , v

∗
i ) = Θ(1). In ♢, we use T2 = Θ(d), and L = Θ(1d) .
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Generalized to every j ∈ d, the same convergence holds for all i ∈ Sj,sure when (xp, yp) and
(xn, yn) contain feature j, j′. For all (xp, yp) and (xn, yn) in Sw, the following inequality holds:

1

T3 − T2

T3∑
t=T2

L(f (T3), h(T3)) ≤ L(f∗, h∗) + Θ(1). (182)

I.4. Summary

ITCP trained on recaptioned data S̃ proceeds according to Eq. (1). After T = Θ(d2 log d) SGD
iterations with batch size B = Ω(d) and learning rate η = O(1), the returned weights (W̃, Ṽ)
achieve a contrastive loss that is asymptotically optimal:

L̃(f
W̃
, h

Ṽ
)− L̃∗∣∣∣L̃∗
∣∣∣ ≤ o(1). (183)

Each neuron pair (w̃i, ṽi) in (W̃, Ṽ), for i ∈ [m], primarily encodes a single aligned feature
indexed by a set Ñi ⊆ [d], with |Ñi| = 1. Specifically, we have:

w̃i =
∑
j∈Ñi

α̃i,jMj +
∑

j∈[d]\Ñi

β̃i,jMj +
∑

j∈[d1]\[d]

γ̃i,jM
⊥
j ,

ṽi =
∑
j∈Ñi

α̃i,jHj +
∑

j∈[d]\Ñi

β̃i,jHj +
∑

j∈[d1]\[d]

γ̃i,jH
⊥
j ,

(184)

where α̃2
i,j = Θ(∥w̃i∥22 + ∥ṽi∥22), and the residual terms satisfy β̃i,j/α̃i,j ≤ O(1/

√
d), γ̃i,j/α̃i,j ≤

O(1/
√
d1).

Moreover, for every feature index j ∈ [d], there exists an Ω(1) many of neurons i ∈ [m] such
that Ñi = {j}, indicating that each semantic concept is distinctly captured by dedicated neuron pairs.

Appendix J. Downstream Task

We consider the same zero-shot classification task as in Section B.5, where the image x and the
class-wise text prompts {yk}Kk=1 are given. Each prompt yk corresponds to one of K class labels,
and the goal is to classify x into the class with the best matching prompt.

Each text prompt yk is generated as:

yk = Hz′yk + ξyk , ∥z′yk∥0 = Θ(1), ∥z′yk∥max = Θ(1). (185)

Each test image x is generated as:

x = M′z′x + ξx, ∥z′x∥0 = Θ(1), ∥z′x∥max = Θ(1), (186)

where M′ = MP1, and
max
i,j
|(P1)ij − δij | ≤ O(1/

√
d). (187)

If x belongs to class k, then:∥∥∥(z′x)⊤z′yk∥∥∥2 > ∥∥∥(z′x)⊤z′yk′∥∥∥2 , ∀k′ ̸= k. (188)
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Using Eq. (96) and Eq. (144), let f(x) and h(y) represent the image encoder and text encoder of
ITCP on raw data, respectively. Given a data sample x containing Mj and y containing Hj′ , where
j′ is the spurious feature corresponding to j, it holds with high probability that:〈

f(x)

∥f(x)∥2
,

h(y)

∥h(y)∥2

〉
= Θ(1). (189)

This result implies that the image and text encoders of ITCP on raw data struggle to distinguish
between features j and j′, leading to misclassification caused by spurious correlations.

However, using Eq. (175) and Eq. (176), let f̃(x) and g̃(yk) denote the image and text encoders
of ITCP on recaptioned data. Given x containing Mj and y containing spurious Hj′ , it holds with
high probability 1−Θ

(
1
d

)
that:〈

f̃(x)

∥f̃(x)∥2
,

g̃(y)

∥g̃(y)∥2

〉
≤ Θ

(
1

d

)
. (190)

This result implies that the image and text encoders of ITCP on synthetic data are capable of
effectively distinguishing the true feature from the spurious feature.

Because K = Θ(1) and ∥zyk∥0 = Θ(1), we only have constant class classification and constant
features in images. Thus, we have:

1. For the image encoder f(x) and text encoder h(yk) of ITCP on raw data:

Pr

(
argmax

k
⟨f(x), h(yk)⟩ = kx

)
= 1−Θ(1), (191)

2. For the image encoder f̃(x) and text encoder g̃(yk) of ITCP on synthetic data:

Pr

(
argmax

k
⟨f̃(x), g̃(yk)⟩ = kx

)
= 1− o(1). (192)

46


	Introduction
	Problem Formulation and Algorithm
	Training Framework
	Downstream Tasks

	Technical Assumptions and Setups
	Backbone of the Encoders
	Data Model for ITCP
	Image-Grounded Text Decoder G in Stage (S2)

	Main Results
	Feature Purity Improvements in Converged Models via Recaptioned Data
	Performance Comparison on Downstream Tasks

	Experiment
	Simulated Experiment
	Experiments on Practical Data and Models

	Preliminaries
	Proof Scratch
	Feature Coupling and Expected Values in Sw
	Gradient
	Alignment Updates
	Zero-Shot Generalization on Image Classification

	Technical Lemmas
	ITCP on Raw Data I
	Lower Bound of Alignment for  i Sj, sure 
	Upper Bound of Alignment for  i -.25ex-.25ex-.25ex-.25exSj, pot 
	Summary

	ITCP on Raw Data II
	Alignment for  i Sj, sure 
	Alignment for  i -.25ex-.25ex-.25ex-.25exSj, pot 
	Summary

	ITCP on Raw Data III Convergence
	Summary

	Captioning
	Alignment for  i Sj, sure 
	Convergence
	Summary

	Filtering
	ITCP on Synthetic (Recaptioned) Data
	Phase I of ITCP on Synthetic Data
	Phase II:
	Phase III Convergence of ITCP on Synthetic Data
	Summary

	Downstream Task

