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Abstract

Natural Language Inference (NLI) is a fun-
damental task in natural language processing.
While NLI has developed many sub-directions
such as sentence-level NLI, document-level
NLI and cross-lingual NLI, Cross-Document
Cross-Lingual NLI (CDCL-NLI) remains
largely unexplored. In this paper, we pro-
pose a novel paradigm: CDCL-NLI, which
extends traditional NLI capabilities to multi-
document, multilingual scenarios. To support
this task, we construct a high-quality CDCL-
NLI dataset including 25,410 instances and
spanning 26 languages. To address the lim-
itations of previous methods on CDCL-NLI
task, we further propose an innovative method
that integrates RST-enhanced graph fusion with
interpretability-aware prediction. Our approach
leverages RST (Rhetorical Structure Theory)
within heterogeneous graph neural networks
for cross-document context modeling, and em-
ploys a structure-aware semantic alignment
based on lexical chains for cross-lingual under-
standing. For NLI interpretability, we develop
an EDU (Elementary Discourse Unit)-level at-
tribution framework that produces extractive ex-
planations. Extensive experiments demonstrate
our approach’s superior performance, achiev-
ing significant improvements over both conven-
tional NLI models as well as large language
models. Our work sheds light on the study of
NLI and will bring research interest on cross-
document cross-lingual context understanding,
hallucination elimination and interpretability
inference. Our code and datasets are available
at CDCL-NLI-link for peer review.

1 Introduction

Natural Language Inference (NLI) is a fundamen-
tal task in natural language processing, aiming
to determine the logical relationship between the
given premise and hypothesis pair (Dagan et al.,
2005; MacCartney and Manning, 2009). While
traditional NLI tasks primarily deal with single-
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Figure 1: A CDCL-NLI example. Premise in English
and . The Entailment label requires combining
information from both documents in premise.

Paradigm | Premise Hypothesis Language
Sentence-NLI Sentence Sentence Mono/Multi
Document-NLI Doc Sent/Doc Mono
CDCL-NLI Multi Doc Sentence Multi

Table 1: Comparison of different NLI paradigms.

language, short-text validations (Rodrigo et al.,
2007), document-level NLI (Yin et al., 2021) ex-
pands the scope of NLI to longer contexts.

Table 1 compares different NLI paradigms sys-
tematically, highlighting the progressive evolu-
tion of NLI tasks. Sentence-NLI involves low-
complexity reasoning on short sentence pairs,
evolves from single-language approaches (Bow-
man et al., 2015; Herlihy and Rudinger, 2021) to
multilingual settings (Conneau et al., 2018; Heredia
et al., 2024), and is mainly used for fact verifica-
tion (Wadden et al., 2020; Klemen et al., 2024).
Document-level NLI extends NLI to reasoning
over full-length documents within a single lan-
guage (Wang et al., 2019; Yin et al., 2021), focus-
ing on content comprehension (Yang et al., 2024).

However, the increasing globalization of infor-
mation flow requires even more sophisticated infer-
ence capabilities across both language and doc-
ument boundaries. In this paper, we introduce
Cross-Document Cross-Lingual Natural Language
Inference (CDCL-NLI), a novel paradigm extend-
ing traditional NLI to multi-document and multilin-
gual settings. Figure 1 illustrates that CDCL-NLI
jointly reasons over premise documents in English
and French to verify the hypothesis. The correct
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Entailment prediction relies on integrating comple-
mentary information from both documents.

While CDCL-NLI addresses a real-world task
with broad applications, it faces key challenges:
1) Lack of existing datasets, which necessitates
the construction of new resources to support re-
search. 2) Multilingual Semantic Alignment,
requiring resolution of grammatical and concep-
tual differences across languages while preserv-
ing semantic consistency (Conneau et al., 2020).
3) Cross-Document Structure Alignment, essen-
tial for capturing structural correspondences and
implicit logical relations between documents of
varying complexity (Wang et al., 2021); and 4) In-
terpretability, demanding transparent reasoning
processes and verifiable confidence in inference
outcomes (Bereska and Gavves, 2024).

To address the first challenge, we curated a
CDCL-NLI dataset through collecting diverse
premise documents from GlobeSumm (Ye et al.,
2024), generating hypotheses with GPT-40 (Ope-
nAl, 2024) using customized prompts to ensure
label diversity and balance and manually review-
ing hypotheses and annotated explanations. The
dataset contains 25,410 samples spanning 26 lan-
guages and 370 events.

To address the rest challenges, we proposed a
novel method that comprises three key compo-
nents. 1) Graph Construction Module: This
component promotes semantic alignment by fus-
ing graphs based on lexical chains, effectively
linking semantically related concepts across doc-
uments. 2) Graph Representation Module: Uti-
lizing an RST-enhanced Relation-aware Graph At-
tention Network (RGAT) (Mann and Thompson,
1988; Busbridge et al., 2019), this module supports
structure alignment by capturing hierarchical dis-
course structures and cross-document dependen-
cies through multi-head attention mechanisms. 3)
Interpretability Attribution Module: Leveraging
Elementary Discourse Units (EDUs) (Mann and
Thompson, 1988), this module generates extractive
explanations that significantly enhance model in-
terpretability and provide transparent insights into
its decision-making process.

Extensive experiments on the CDCL-NLI and
DocNLI datasets demonstrate that our method out-
performs conventional NLI approaches and three
state-of-the-art large language models, surpassing
the strongest baseline by 3.5% on our dataset. In
the end, we highlight our main contributions as
follows:

* We propose CDCL-NLI as a new task and
construct a corresponding dataset covering 26
languages with 25,410 high-quality manually-
annotated instances.

* We propose a novel method, which leverages
RST-enhanced graph fusion to align semantic
concepts and discourse structures, and improves
interpretability by generating extractive expla-
nations based on EDUs.

* We conduct extensive experiments, outperform-
ing all the baselines by at least 3.5%.

2 Related Work

2.1 Sentence-level NLI

Monolingual Methods. Sentence-level NLI
benchmarks like SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) have driven model
evolution from ESIM (Chen et al., 2017) to trans-
former architectures (Devlin et al., 2018; Liu et al.,
2019) and recent LLMs (OpenAl, 2023).

Cross-lingual Methods. Cross-lingual NLI re-
lies on datasets like XNLI (Conneau et al., 2018)
(15 languages) and XNLIeu (Heredia et al., 2024)
(European languages). Multilingual models such
as XLM-R (Conneau et al., 2020) and XLM-E (Chi
et al., 2022) enable zero-shot transfer, while align-
ment methods like SoftMV (Hu et al., 2023) and
prompt-based MPT (Qiu et al., 2024) improve
cross-lingual semantic understanding.

Interpretability Mechanisms. Interpretability
uses feature attribution methods like Integrated
Gradients (Sundararajan et al., 2017) and (Huang
et al., 2024) to highlight decision-driving features.
Datasets such as e-SNLI (Camburu et al., 2018)
provide human explanations, supporting explicit
reasoning and interpretability benchmarks.

2.2 Document-level NLI

Datasets and Benchmarks. Document-level
NLI benefits from datasets like DocNLI (Yin et al.,
2021) with over one million instances. Domain-
specific datasets such as ContractNLI (Koreeda and
Manning, 2021) focus on the challenges posed by
long documents and specialized text genres.

Inference Methods. Recent approaches empha-
size discourse structure and long-range dependen-
cies. R2F (Wang et al., 2022) introduces explicit
reasoning extraction, and DocInfer (Mathur et al.,
2022) uses hierarchical encoding to model docu-
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Figure 2: Overview of the CDCL-NLI dataset construc-
tion process and a data example. Premise contains Dy
and D,. Explanation is extracted from premise to en-
hance interpretability.

ment structure, highlighting the need to capture
document-level semantics.

Interpretability Mechanisms. Interpretability
research focuses on evidence extraction and ex-
planation generation. Systems like Evidence-
Net (Chen et al., 2022) and R2F (Wang et al.,
2022) automatically identify evidence to enhance
reasoning transparency. LLM-based approaches
like Chain-of-Thought (Wei et al., 2022) and Re-
thinking(Singh et al., 2024) further enable self-
explanatory reasoning capabilities.

Although prior studies have advanced sentence-
level and document-level NLI, challenges in cross-
document and cross-lingual NLI remain largely
unaddressed. Our work fills this gap by introduc-
ing the CDCL-NLI dataset and proposing an inter-
pretable RST-enhanced graph fusion method.

3 CDCL-NLI Task Formulation and
Dataset Construction

As shown in Figure 2, our CDCL-NLI dataset is
constructed through a systematic pipeline involving
stratified random sampling of premise documents
across all topics, LLM-generated hypotheses, and
human verification to ensure data quality. In the
dashed box, the figure shows a CDCL-NLI instance
with a premise of two documents in different lan-
guages, an English hypothesis, a label, and EDU-
based explanations for interpretability.

3.1 Task Formulation

Similar to the traditional NLI task, the goal of
CDCL-NLI is to determine the inference label:

Label € {"Entailment”, "Neutral", ”Conlradiction”},

between a given premise P and hypothesis H.
Specifically, the premise P consists of two doc-

uments D and Do, written in different languages
but discussing the same topic. The hypothesis H

is a sentence-level statement. The task requires
reasoning over the combined information from P
with H to determine their entailment relationship,
involving both cross-document and cross-lingual
premise integration.

3.2 Premise Data Collection

We collect our premises from GlobeSumm (Ye
et al., 2024), a multi-document cross-lingual sum-
marization dataset covering 370 topics across 26
languages. In GlobeSumm, documents for each
topic span diverse media outlets, publication times,
and languages, providing a rich foundation for
cross-document and cross-lingual inference tasks.
We curated CDCL-NLI dataset by stratified ran-
domly selecting documents for each topic to form
premise pairs. To enhance cross-lingual coverage,
we strategically expanded our document collection
through translation. After rigorous quality filtering,
our final dataset consists of high-quality inference
instances covering 26 language combinations. De-
tailed premise establishment criteria and quality
filtering standards are provided in Appendix A.1.

3.3 Hypothesis Generation and Label
Specification

For each pair, we generate hypotheses across three
NLI categories. Initial hypotheses are generated by
GPT-40 (OpenAl, 2024) following specific guide-
lines to ensure balanced label distribution and suf-
ficient reasoning depth. Entailment hypotheses re-
quire joint or consistent support from the premise
documents. Neutral hypotheses are plausible but
neither supported nor contradicted. Contradiction
hypotheses explicitly conflict, focusing on cross-
document inconsistencies. To reduce hallucination,
GPT-4o first generates explanations before final-
izing hypotheses. Detailed prompts and protocols
are included in Appendix A.2.

3.4 Manual Annotation and Quality Control

Our annotation involved two phases: hypothe-
sis verification and EDU-based explanation (Fig-
ure 2). Three graduate students independently la-
beled premise-hypothesis pairs, achieving strong
inter-annotator agreement (Cohen’s x: 0.71-0.82
across classes). For explanations, annotators se-
lected minimal EDU sets supporting their decisions,
with high agreement (Jaccard: 0.91; span overlap:
0.94; conclusion: 1.00). All annotations were rec-
onciled through discussions to ensure quality (see
Appendix A.3).
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Figure 3: Statistic visualization of token length, EDU numbers, label distribution and language composition.

Dataset CD CL Interp. Avg.Tks Labels
MultiNLI X X X 33.7 3
XNLI X v X 50 3
e-SNLI X X v 45.1 3
DocNLI v X X 412 2
CDCL-NLI Vv v v 1,456 3

Table 2: Characteristics of NLI datasets showing cross-
document (CD), cross-lingual (CL), and interpretability
(Interp.) capabilities, along with average tokens per
instance (Avg.Tks) and number of label classes.

3.5 Dataset Statistics

We summarize the key characteristics of different
NLI datasets in Table 2, which shows substan-
tial variations in their cross-document and cross-
lingual capabilities. Our CDCL-NLI dataset con-
sists of 25,410 cross-document, cross-lingual NLI
instances spanning 26 languages and 370 events.
We partitioned the dataset by event topics, yielding
22,200/1,605/1,605 train/dev/test instances with
mutually exclusive event distributions. Figure 3a
shows similar data characteristics across training,
validation, and test sets; Figure 3b depicts token
count variations across consecutive segments; and
Figure 3c illustrates balanced label distributions
(33.3% each) with roughly uniform language dis-
tribution within each label. We provide more infor-
mation about our dataset in Appendix A.4.

4 Our Method: RST-enhanced Graph
Fusion with EDU Level Interpretability

Our approach offers a robust solution for cross-
document and cross-lingual NLI by leveraging
RST-enhanced graph fusion and explanation pre-
diction. As illustrated in Figure 4, the framework
comprises three main components: RST graph con-
struction and fusion module, graph representation
generation module and interpretability and classifi-
cation module.

4.1 RST Graph Construction and Fusion

RST Information Extraction. We employ DM-
RST (Liu et al., 2021), a top-down multilingual
document-level rhetorical structure parsing frame-
work, to extract RST information from the premise
documents. As shown in Figure 5, DM-RST
generates two key features for document D: 1)
EDU boundary indices and 2) RST tree parsing
outputs. By processing these features, we get
D = {EDU,,EDUs,,..., EDU,} and rhetorical
structure tree 7. £2DU; represents the i-th EDU’s
textual content. 7 is formally defined as:

_ (EDU[sHt]vEDU[t+1%u}77'staTtu) ’
37t7u € [1,71], S S t < U,y Tsty Ttu € R 7

where EDU[,_, denotes an EDU group that forms
either a leaf node (when s = t) or a branch node
(when s < t), and r; represents the rhetorical rela-
tion. This tree structure captures both local EDU
relationships and global discourse organization.

Embedding Model. To handle inconsistent cross-
lingual encoding from premise documents in
different languages, we use XLM-RoBERTa-
Large (Conneau et al., 2020) as the base encoder,
which supports over 100 languages and excels at
multilingual semantic representation. For each
EDU; in the RST structure, its initial vector is
hepy, = ¢(EDU;) € RY, where ¢ denotes XLM-
RoBERTa-Large and d = 1024. The hypothesis
vector hyyp,, is computed similarly.

Single Graph Construction. Based on the RST

tree 7, we construct graphs G p, and G p, for each

document D; and D, respectively as shown in Fig-

ure 4. For graph G(V, E, R), we define:

* Node Set V = {v; | EDU},_,y € T}, where
each v; has features: Texty,, ¢,, and Type,,, .

» Edge Set & = {(v;,v)) | vi # vj, (vs,v5,7) €
T}, representing bidirectional edges.
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Figure 4: Our CDCL-NLI framework processes premise (D1, D3) and hypothesis through: 1) RST Graph Con-
struction, merging Gp, and G'p, into G p; 2) Graph Representation via RST-GAT layers; 3) Interpretability and
Classification, extracting node-level explanations while using h¢, and hp,,;,, for final NLI label prediction.
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Figure 5: RST graph construction. The RST mod-
ule first segments text into EDUs(EDU;-EDUy), with
boundaries in blue, and then organizes an RST tree 7
showing discourse relations.

* Relation Set R is from rhetorical relations in 7.
For detailed relations and definitions of node fea-
tures, please refer to the Appendix B.1, B.2.

Graph Fusion. After obtaining heterogeneous

graphs Gp, (Vp,, Ep,, R) and Gp,(Vp,, Ep,, R)

for the premise, we then merge them via lexical

chains to enhance cross-document reasoning by:

* Node Feature Fusion: Vp = Vp, U Vp,, retain-
ing all nodes and features.

* Cross-document Edge: Add bidirectional lex-
ical edges between v; € Vp, and v; € Vp, if
CosineSim(v;, v;) > &, and obtain Ep.!

* Adding Edge Types: Extend R with a new "Lex-
ical" relation R’ to support lexical alignment.
The merged graph Gp(Vp, Ep, R') preserves in-
dividual features while aligning semantics across

documents, effectively supporting CDCL-NLI.

4.2 Graph Representation Generation

Node-level Representation. As shown in Fig-
ure 4, there are two layers of RST-GAT to process
nodes’ features. RST-GAT builds upon the Relation-
aware Graph Attention Network (RGAT) (Bus-
bridge et al., 2019), which extends Graph Attention

'Threshold § is chosen empirically; see Appendix B.3 for
detailed justification.

Network (GAT) (Velickovic et al., 2018) to handle
relation-specific edge types in graphs.

Taking a graph G(V, E, R) as an example, the
initial node embeddings h?/ are obtained as de-
scribed in Section 4.1. Node representations are
then updated through two layers of relation-aware
multi-head attention as follows:
K

>

h) = Tk g Ow, ,niY (1)
reR k=1v;€N;(v3) '

ik

where [ = 1,2. Here, «a, denotes the softmax-
normalized weight of relation r, capturing the rela-
tive importance among relations, while B’Z(li) rep-
resents the attention coefficient over neigh‘boring
nodes, indexed by node pairs (v;,v;), attention
head k, relation r, and layer /. After two layers of
message passing, the resulting node embeddings
are denoted as hy = {hq(jzi) }. The same update pro-
cedure is applied independently to G p,, Gp,, and
G p, producing embeddings hy,, ,hy;, , and hy,,
respectively. Detailed formulations of the attention
weights and parameter configurations are provided
in Appendix B.4.

Graph-level Representation. The global
representation(h¢,,) of the merged graph Gp is
obtained by averaging node features after two
RST-GAT layers. This pooling captures discourse-
level semantics while preserving local rhetorical
relations, enabling effective classification.

Classification Loss. Given the concatenated
graph representation h¢, and hypothesis features
hp,ypo, the classification loss is computed using the
standard cross-entropy (CE) formulation:

Las = CE(y, Softmax(MLP (hg, ® hiyp)) € R3), (2)

where y denotes the ground-truth label and p de-
notes the predicted probability distribution.



Enhanced Triplet Loss. Triplet loss (Weinberger
and Saul, 2006; Schroff et al., 2015) is a met-
ric learning method that encourages the anchor-
positive distance to be smaller than the anchor-
negative distance. Leveraging the structure of our
CDCL-NLI dataset, where each premise aligns
with three hypotheses (entailment, neutral, contra-
diction), we propose a neutral-constrained triplet
loss:

»Clriplel = maX(O, d(a,p) - d(a7 n) + 0)

+ max(0, d(a,neu) — d(a,n) + 0), ©)

where d(z,y) is the Euclidean distance, and
a, p,neu, n denote the premise paired with entail-
ment, neutral, and contradiction hypotheses, re-
spectively. Margins o and 6 enforce the semantic
order: entailment < neutral < contradiction.

4.3 EDU-level Explanation Prediction

For interpretability, we propose an attention-based
method to extract explanation nodes.

Node Importance. Using multi-head attention
weights from the first RST-GAT layer, the impor-
tance score I; of node v; in Gp,, Gp, is

7, (1
L= S en Senmn A @

Let H = [hy,;...;h,,] be node features and
I = [Iy,...,I,)]" importance scores. Weighted
features are H' = I © H, where ® denotes
element-wise product with broadcasting.

Hypothesis-aware Interaction. Given hypoth-
esis embedding hyy,, € R%", attention over
weighted features H’ € R™*4"" produces interac-
tion features:

O = Attention (m%/T) H'. 5)

Feature Fusion and Classification. The model
is optimized by Binary Cross-Entropy (BCE) loss:
N

1 . . /

Lop =5 ; BCE (y;, Sigmoid(MLP([R] & 0,]))) (6)
where y; € {0,1} is ground truth label of node 1,
h! and o; are the weighted and interaction features
for node ¢ respectively.

The total loss combines all components:

Etotal = F}/Eexp + )\(['cls + ‘Ctriplet)7 (7)

where v and \ are balancing hyperparameters set
as 0.2 and 0.8 respectively through grid search on
the validation set.

S Experiments

5.1 Experiment Settings

Metrics. Model evaluation considers classifica-
tion and explanation quality. For classification on
DocNLI (imbalanced), we report Micro F1 and
Weighted F1. On CDCL-NLI dataset, we use
Macro Precision, Macro Recall, and Macro F1
for balanced class performance. Explanation qual-
ity is assessed using BLEU (1-4), ROUGE-1/2/L,
and METEOR.

Baselines.

* Conventional NLI Models: We compare two
well-established models, both trained on our
dataset: DocNLI (Yin et al., 2021), a document-
level NLI model tailored for long texts, and
R2F (Wang et al., 2022), a retrieval-based
framework for document-level NLI. All conven-
tional baselines and our proposed method are
built upon the same underlying pretrained lan-
guage model to ensure fair comparison. Train-
ing details are provided in Appendix C.1.

* Large Language Models: We evaluate three
LLMs: Llama3-8B-Instruct (Meta Al, 2024),
Qwen-3-8B (Qwen, 2025) and GPT-40 (Ope-
nAl, 2024), where the LLaMA and Qwen model
is further fine-tuned with LoRA adapters. All
models are tested in a few-shot setting, with
fine-tuning configurations in Appendix C.2.

5.2 [Experiment Results and Analysis

Main Results and Ablation Study. Table 3
presents a performance comparison of our pro-
posed method against several competitive baselines
on two test sets. TestSet] is a cross-lingual test set
(the original test set of the CDCL-NLI dataset).
TestSet2 is an English-translated version of Test-
Setl, designed to evaluate model robustness in a
cross-document scenario without language barri-
ers, and to quantify the performance degradation
caused by cross-lingual factors. This dual evalu-
ation framework enables a clearer analysis of the
impact of language variation on NLI performance.’

Our model consistently achieves the best re-
sults on both test sets, with macro F1 scores of
68.95% on the cross-lingual set and 70.68% on
the English-translated set, surpassing strong base-
lines such as DocNLI and R2F by notable margins.
The generally higher scores on the English test
set highlight the relative ease of reasoning within

ZUnless noted, all reported test results refer to TestSet1.



TestSet1:Cross-Lingual

TestSet2:English

Model Type Model Precision  Recall FI1 Macro | Precision Recall F1 Macro Trained
Conventional Hypothesis-only 35.78 36.02 35.84 35.89 35.97 36.12 v
Model DocNLI 64.75 64.30 64.46 69.29 68.39 68.70 v
R2F 65.04 65.42 65.42 67.18 68.47 67.13 v
Large Llama-3-8B 45.94 52.62 48.07 51.69 57.98 53.03 v
Language GPT-40 52.50 56.30 54.00 62.50 65.00 64.50 X
Model Qwen3-8B 60.34 56.29 59.86 71.71 67.62 67.34 v
Ours 71.09 70.84 68.95 72.65 72.46 70.68 v
CDCL-NLI - Exp 65.99 67.29 65.86 69.01 69.97 68.79 v
Model - Graph 53.07 57.38 51.37 68.64 64.55 61.71 v
- Exp & Graph 49.15 52.71 48.70 49.15 52.71 53.29 v

Table 3: NLI model performance on cross-lingual (TestSetl) and English (TestSet2) sets. Our full model achieves
the highest F1 scores, showing clear gains from explanation and graph components. Large language models perform
well but are generally outperformed. v indicates training on target data; X means no training. Explanation - Exp.

a single, well-resourced language, in contrast to
the added challenges of cross-lingual understand-
ing, which requires effective language transfer and
alignment. The hypothesis-only baseline, which
trains solely on the hypothesis, attains near-random
performance ( 36% F1), indicating minimal dataset
artifacts in the hypothesis statements.

Among the large language models evaluated in
the few-shot setting, Qwen3-8B achieves the best
performance, with F1 scores of 59.86% on the
cross-lingual set and 67.34% on the English set,
outperforming both GPT-40 and Llama3-8B. Nev-
ertheless, our approach surpasses Qwen3-8B by
9.09% on the cross-lingual set and 3.34% on the
English set, highlighting the effectiveness of our
method. Detailed prompts and zero-shot results
and reported in Appendix D.1, Appendix D.2.

The ablation study highlights the importance of
each component: removing the explanation module
(- Exp) results in a moderate performance drop
of 1.89% on both cross-lingual and English test
sets; removing the graph module (- Graph) causes
a more pronounced decline of 17.58% and 8.97%,
respectively. When both components are removed
(- Exp & Graph), performance sharply decreases
on both test sets, demonstrating that these modules
jointly contribute to the model’s robustness under
different language conditions.

Single-Document vs Cross-Document. To vali-
date the cross-document nature of our dataset, we
compare the performance of models using only
a single document (D1 or D2) against those us-
ing the D1 + D2, as illustrated in Figure 6. The
substantial performance gap—at least a 7% F1 im-
provement—demonstrates that effective inference
requires integrating information from both doc-
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Figure 6: NLI performance using single documents
(D1, D2) versus combined (D1 4+ D2). The F1 gain
confirms the need for cross-document reasoning, with
both documents contributing similarly.

uments. Additionally, the similar F1 scores for
Documenty (63.2%) and Documents (62.8%) in-
dicate that both documents provide equally impor-
tant information, underscoring the necessity of syn-
thesizing evidence from both sources rather than
relying on either alone. Additional results are pre-
sented in Appendix D.3.

Cross-Lingual Generalization. To further as-
sess the robustness and generalization of our ap-
proach, we conduct cross-lingual transfer experi-
ments in a challenging scenario where the training
and testing languages are distinct. Specifically, we
select five typologically and geographically diverse
languages—Spanish, Russian, French, Italian, and
English—to ensure comprehensive coverage and
to reflect real-world multilingual settings. For each
source language, we translate the data into all tar-
get languages, resulting in 20 transfer directions.
Models are trained on one language and evaluated
on a different target language, with no overlap be-
tween training and test languages. As shown in
Table 4, our method consistently outperforms the



F1 Scores on Target Language (Ours vs. R2F)

—RU —FR —IT —EN
55.53/25.03 58.28/27.31 54.68/29.31 57.94/34.21
—ES —FR —IT —EN
52.83/46.26  46.67/35.50 50.89/39.77 49.67/47.78
—ES —RU —IT —EN
50.31/43.25  56.6/22.24  58.65/39.32  49.67/47.22
—ES —RU —FR —EN
53.72/36.01 57.19/36.21 53.17/37.22 56.67/47.21
—ES —RU —FR —IT
60.31/49.94  51.27/32.46  60.28/30.80  55.11/38.33

Table 4: Cross-lingual performances (macro F1 scores)
of our method and R2F. Source languages are colored.

(=5, (=0, (FR), ()
and (2N). Our method demonstrates superior
generalization across languages compared to baselines.

ROUGE-1 Dataset

CDCL
DocNLI

ROUGE-,

ROUGE-
Method

—— Ours
—— R2F

METEOR

Figure 7: Explainability comparison between our
method and R2F on CDCL-NLI and DocNLI datasets
using BLEU, ROUGE (1/2/L), and METEOR metrics.
Our method consistently outperforms R2F across all
metrics and datasets.

R2F baseline across most transfer directions, of-
ten by substantial margins. R2F is chosen as it
improves upon DocNLI for cross-document rea-
soning. These results demonstrate the effectiveness
of our approach in synthesizing information from
cross-lingual document pairs and its strong trans-
ferability to diverse language pairs, validating the
design of our experimental setup and the broad
applicability of our method in multilingual cross-
document NLI tasks.

Interpretability Study. To evaluate our
method’s effectiveness, we compared it against
the R2F baseline using five standard metrics
(ROUGE-1/2/L., BLEU, METEOR) on both CDCL
and DocNLI datasets. As shown in Figure 7, our
method (solid line) consistently outperforms r2f
(dashed line) across all metrics on both datasets.
The improvements are particularly pronounced
in ROUGE-L, where our method achieves 0.34
versus 0.30 on CDCL-NLI and 0.50 versus 0.37
on DocNLI, demonstrating enhanced capability

Dev Test
Method ‘ W.FI M Fl ‘ W.FI M Fl
DocNLI | 8805  8625% | 87.09 8506
R2F 90.18*  89.15 | 89.16%  87.86
Ours 91.58 88.61 90.30 88.47

Table 5: Performance comparison on the document-
level DocNLI. Results marked with * are from our re-
production. Weighted F1 -W. F1, Micro F1 - Mi. F1

in preserving structural coherence. It is worth
noting that the interpretability data for DocNLI
was provided by R2F.

Comparison on DocNLI Dataset. We evaluate
the generalization of our method on the DocNLI
dataset using weighted and micro F1 metrics. As
shown in Table 5, our approach achieves state-of-
the-art weighted F1, outperforming both the Doc-
NLI baseline and R2F, but slightly underperforms
R2F on micro F1. This is mainly due to class im-
balance between training and evaluation sets, and
R2F’s advantage on the simpler reasoning tasks
common in DocNLI, while our method is opti-
mized for more complex reasoning. These results
suggest that balanced sampling or improved adapt-
ability could further boost performance.

6 Conclusion

This work systematically investigates CDCL-NLI,
addressing key challenges in cross-document rea-
soning and multilingual understanding. We in-
troduce a novel CDCL-NLI dataset spanning 26
languages and comprising 25,410 meticulously
annotated instances. And we propose an RST-
enhanced graph fusion mechanism with explana-
tion prediction. Through extensive experiments
and analyses, we demonstrate that our method ef-
fectively captures both structural and semantic in-
formation across documents and languages. Specif-
ically, the RST-enhanced graph fusion mechanism
and explanation prediction component not only
improve model interpretability but also enhance
performance, as validated by our ablation stud-
ies. Our empirical findings provide several key
insights: 1) integrating rhetorical structure sig-
nificantly improves the graph model’s ability to
capture document-level discourse information; 2)
reasoning cross-document is necessary and our
method has strong cross-lingual reasoning capa-
bility; and 3) the EDU-level attribution method has
a beneficial effect on classification and could gen-
erate explanations aligned with human reasoning.



Limitations

Our current framework is constrained to reason-
ing between pairs of documents, while real-world
scenarios often involve multiple documents across
diverse topics. This limitation points to valuable
directions for future research in multi-document
multi-lingual inference.

Ethics Statement

All data in our proposed dataset are collected from
publicly available sources with respect for privacy
and copyright. We have removed any personally
identifiable information during preprocessing. The
dataset is intended for research purposes only, and
we advise users to be aware of potential biases
present in the original data.
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A Dataset Details

A.1 Premise Establishment Criteria

To ensure the quality and reliability of our CDCL-
NLI dataset, we establish the following criteria for
premise selection:

* Content Parallelism: The document pairs must
discuss the same topic while being naturally
written in their respective languages, rather than
being translations of each other. This ensures
authentic cross-lingual reasoning scenarios.

* Information Complementarity: While main-
taining topic consistency, documents in differ-
ent languages should present complementary
perspectives or details, enabling meaningful
cross-document inference tasks.

* Language Distribution: Premise document
pairs are randomly sampled from different lan-
guages to reflect real-world cross-lingual scenar-
ios. Each pair must consist of documents in two
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distinct languages, ensuring the dataset captures
authentic cross-lingual reasoning challenges.
These criteria ensure that our dataset captures
genuine cross-lingual reasoning challenges while
maintaining natural language expression across dif-
ferent languages.

A.2 CDCL-NLI Label Definitions and
Hypothesis Generation

Label Definitions. We define three inference la-
bels for CDCL-NLI, considering various evidence
distribution scenarios across documents:
* Entailment: The hypothesis is supported when
either:

— Evidence from both documents jointly
supports the hypothesis through cross-
document reasoning, or

— One document provides sufficient support-
ing evidence while the other document con-
tains no contradicting information

In both cases, the conclusion must be logically
derivable without requiring external knowledge.

* Contradiction: The hypothesis is contradicted
when either:

— Information from either document directly
contradicts the hypothesis, or

— The combined information from both doc-
uments leads to a logical conclusion that
contradicts the hypothesis, or

— The two documents present mutually contra-
dictory evidence regarding the hypothesis

* Neutral: The relationship is neutral when:

— Neither document alone nor their combina-
tion provides sufficient evidence to support
or contradict the hypothesis, or

— The documents contain only partially rel-
evant information that doesn’t allow for a
definitive conclusion, or

— The hypothesis introduces new information
or claims that go beyond what can be veri-
fied from the documents

These definitions account for the complex nature
of cross-document reasoning, where evidence may
be distributed asymmetrically across documents
and require different levels of information integra-
tion for reaching conclusions.

Hypothesis Creation. To generate high-quality
hypotheses for our CDCL-NLI dataset, we de-
signed a structured prompt for GPT-40 that speci-
fied detailed requirements for each label. The com-
plete prompt template is reproduced in Figure 12.
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This prompt design requires GPT-40 to generate
evidence explaining the reasoning behind each hy-
pothesis, which significantly reduces hallucination
and improves alignment with the source documents.
The structured output format facilitates automated
processing while ensuring that each hypothesis is
accompanied by clear justification of its entailment
category. The generated hypotheses were subse-
quently reviewed by human annotators to ensure
quality and adherence to the specified criteria.

A.3 Data Quality Assessment

Explanation Annotation Guidelines. We estab-
lish the following principles for EDU-based expla-
nation annotation:

1. Minimal Sufficiency: Annotators should select
the minimal set of EDUs that are necessary and
sufficient to support the inference conclusion,
avoiding redundant or irrelevant units.
Cross-document Coverage: Selected EDUs
must include evidence from both premise doc-
uments when the inference requires cross-
document reasoning, ensuring the explanation
captures cross-lingual interactions.

Logical Completeness: The selected EDUs
should form a complete logical chain that clearly
demonstrates how the inference conclusion is
reached.

Quality Metrics. We measured CDCL-NLI
dataset using multiple metrics as shown in Table 6

The explanation component of our annotations
was evaluated using three complementary metrics,
all showing exceptional improvement after recon-
ciliation:

* EDU Selection achieved 91% Jaccard similarity,
indicating strong consensus on evidence selec-
tion

* Span Coverage reached 94% overlap ratio,
demonstrating precise identification of relevant
text spans

* Explanation Consistency achieved perfect align-
ment (1.00), ensuring logical coherence in rea-
soning
Our annotation quality assessment demonstrated

strong reliability across all NLI categories. The

inter-annotator agreement measured by Cohen’s s

showed substantial initial agreement (0.71-0.75)

and improved significantly after reconciliation

(0.79-0.82). Specifically:

* Entailment labels achieved the highest final
agreement (k = 0.82)
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* Contradiction cases showed strong consensus

(k =0.81)

* Neutral instances, while slightly lower, main-

tained robust agreement (x = 0.79)

Through our rigorous quality control and filter-
ing process, we refined our dataset from an initial
collection of 27,750 potential instances to 25,410
high-quality inference pairs. This 8.4% reduction
reflects our commitment to maintaining high stan-
dards in both label accuracy and explanation qual-
ity, ensuring the dataset’s reliability for both classi-
fication and interpretability research.

A.4 Data Information

Language Distribution. Figure 8 illustrates the
language distribution of our dataset, where Span-
ish (15.3%), Russian (10.4%), and French (8.4%)
represent the top three most frequent languages,
while languages like Hebrew, Czech, and Hindi
each accounts for approximately 1-2% of the data.
This distribution not only reflects the imbalanced
nature of multilingual usage in real-world scenarios
but also ensures broad coverage of linguistic phe-
nomena, enabling the study of diverse cross-lingual
inference patterns.

French Russian

ltalian

10.4%
Spanish
Portuguese

15.3%

Arabic
gebipw
Hindi
Macedonian
Danish
Catalan
Hungarian

Polish

English Albanian

Greek
Korean
Finnish
Swedish
man

3:6% 3 4963.25631%

Ukrainian
Turkish

Dutch

tc . Gerl
Romanian Bulgarian

Figure 8: Language distribution of CDCL-NLI dataset.

Language Pair Distribution. As shown in Fig-
ure 9a, the dataset exhibits diverse language combi-
nations across 24 languages. Spanish demonstrates
the highest interaction frequency with other lan-
guages, particularly evident in Spanish-Russian
(224 instances) and Spanish-Portuguese (178 in-
stances) pairs. The heat map reveals several inter-
esting patterns:
* Most language pairs maintain a balanced bidirec-
tional relationship, with similar instance counts



Category Description (Metric) Init. Final
Entailment (Cohen’s k) 0.75 0.82

NLI Label Neutral (Cohen’s k) 0.71  0.79
Contradiction (Cohen’s k) 0.74 0.81

EDU Selection (Jaccard Sim.) 0.76 0.91

Explanation | Span Coverage (Overlap Ratio) 0.81 0.94
Explanation Consistency (Align.) 0.85 1.00

Table 6: Dataset quality assessment results.

in both directions

* Romance languages (Spanish, French, Por-
tuguese, Italian) show stronger interconnections

* Less-resourced languages like Albanian and
Macedonian have fewer cross-lingual pairs

* Russian and Spanish serve as central hub lan-
guages, connecting with most other languages in
the dataset

EDU Count Distribution by Language Pair.

The violin plot in Figure 9b illustrates the distribu-

tion of Elementary Discourse Units (EDUs) across

the top language pairs. Several key observations

emerge:

* Most language pairs show a median EDU count
between 80 and 120 units

* The distributions are generally symmetric, indi-
cating consistent EDU patterns regardless of the
source language

* Romance language pairs (Romanian-Spanish,
Portuguese-Spanish, Italian-Spanish) exhibit sim-
ilar EDU distribution patterns

* Some pairs, particularly those involving Spanish
as one of the languages, show wider distributions,
suggesting more diverse discourse structures

* The violin shapes indicate that extreme EDU
counts (very low or very high) are relatively rare
across all language pairs
This analysis suggests that while the dataset

maintains diverse language coverage, it also pre-

serves consistent discourse complexity across dif-

ferent language combinations.

B Graph Construction Details

B.1 Relation Types

RST Graph Construction with Selected Relation
Types. In constructing individual RST graphs for
each document, we select a subset of relation types
to focus on the most salient discourse and seman-
tic connections. Specifically, we use the follow-
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ing relation types: Temporal, Summary, Condition,
Contrast, Cause, Background, Elaboration, Expla-
nation, and lexical chains. This selection balances
coverage and complexity, ensuring that the result-
ing graph captures essential discourse relations and
key semantic links without introducing excessive
sparsity or noise. The inclusion of lexical chains
further strengthens semantic cohesion by linking
related words and expressions across different seg-
ments.

Graph Fusion with Extended Relation Types.
During the fusion of RST graphs from multi-
ple documents, we expand the set of relation
types to include a broader range of discourse
and organizational structures. The extended set
comprises: Temporal, TextualOrganization, Joint,
Topic-Comment, Comparison, Condition, Contrast,
Evaluation, Topic-Change, Summary, Manner-
Means, Attribution, Cause, Background, Enable-
ment, Explanation, Same-Unit, Elaboration, and
Lexical chains. This comprehensive set allows for
richer cross-document alignment by capturing di-
verse forms of rhetorical and semantic relationships.
Both in single-document and fused graphs, these
relations serve as edge types in the construction
of the Relation-aware Graph Attention Network
(RGAT), enabling the model to effectively encode
complex discourse and semantic structures.

B.2 Node Feature Definition

Specifically, for leaf nodes, we define:
¢(vi) = ¢(EDUj), Text,, = EDU;, Type,,, = 1.

For branch nodes, we define:

1
P(v;) = §(<Z5(Uj) + ¢(vk)),
Text,, = Text,; ® Text,, , Type,, =0,

where v;, vy, are the children of v;, and @ denotes
concatenation. For completeness, we provide the
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Figure 9: Statistic visualization of language pair distributions and their EDU characteristics.

detailed formulas for the relation-level and node-
level attention mechanisms used in updating node
embeddings.

B.3 Justification of the Cross-Document Edge
Threshold §

The threshold ¢ for adding cross-document lexi-
cal edges is set to 0.8 based on empirical analysis
balancing sparsity and relevance of edges. We eval-
uated different threshold values on a validation set
using the following metrics:

* Edge Sparsity: Higher thresholds reduce the
number of edges, leading to sparser graphs that
help avoid noise.

* Semantic Relevance: Lower thresholds intro-
duce more edges but may include irrelevant or
weakly related node pairs.

* Downstream Task Performance: We observed
that 6 = 0.8 achieves the best trade-off, maximiz-
ing performance on the target task (e.g., accuracy
or F1 score).

Figure 10 shows the impact of varying § on edge

count and task performance, confirming the choice

of 0.8 as a reasonable and effective threshold.

B.4 Graph Attention Formulas

Relation Weight. The relation importance
weights o, are learnable parameters normalized
by softmax:

exp(wy)

ZT’GR exp(wr’) 7

where w, is a trainable scalar parameter for rhetor-
ical relation 7.

ap =
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Effect of threshold & on graph sparsity (edge caunt) and downstream task performance

Jask Performance

Metric

Edge Count

06 07 Yo8" 10

Figure 10: Effect of threshold § on graph sparsity and
task performance. Edge count (blue) decreases as
increases, while task performance (red) peaks at § =
0.8 (dashed line), providing optimal balance between
relevant connections and noise reduction.

Hyperparameters. For the model defined in
Equation 1, the following settings are used: The
first layer uses K = 4 attention heads. The second
layer uses K = 1 attention head. Residual con-
nections and dropout with rate 0.1 are applied after
each layer.

Node-level Attention Coefficients. The atten-
tion coefficients B;(,i) measure the importance of
neighbor node v; to node v; under relation r, head
k, and layer [. They are computed as:

) exp(i/)( T [wr, W, kh(l*l)D)
S e (A Wl i)

vm€N (v;)
)

where W, . is the trainable linear transformation

(0

matrix for relation r and head k, a, ;. 1s the learn-
able attention vector for relation r, head k, and



layer [, [-]|-] denotes vector concatenation, #(-) is
the ELU activation function.

Additional Details. Each layer uses residual con-
nections and dropout with a rate of 0.1 to improve
training stability. The first layer uses K = 4 atten-
tion heads, while the second layer uses K = 1.

C Training Details

C.1 Model Training Hyperparameters

All the models are implemented in PyTorch and
trained on an NVIDIA A100 GPU. To ensure fair
comparison and reproducibility of results, all con-
ventional baseline models and our model were fine-
tuned under consistent experimental settings. As
detailed in Table 7, each baseline utilizes the XLM-
RoBERTa-large pretrained model as the base ar-
chitecture and the AdamW optimizer for training.
The learning rates are carefully selected for each
model variant to optimize performance, while main-
taining a uniform batch size of 16, a maximum in-
put sequence length of 512 tokens, and training for
20 epochs. These standardized hyperparameters
guarantee that performance differences stem from
model design rather than training discrepancies,
thereby supporting the validity and reproducibility
of our comparative evaluation. Specially, for our
model, as we split the documents into EDUs, so
the maximux length is for one single EDU. By pro-
cessing shorter EDUs instead of full documents,
our model in long-text scenarios minimizes infor-
mation loss, leading to improved performance.

C.2 LLM Fine-tuning Hyperparameters

For fine-tuning the Llama3-8B-instruct and Qwen3-
8B model, we employed LoRA (Low-Rank Adapta-
tion) to efficiently adapt the large-scale pretrained
model with limited computational resources. The
key hyperparameters for LORA tuning included a
rank of 16, which balances adaptation capacity and
parameter efficiency, and a dropout rate of 0.1 to
mitigate overfitting. The learning rate was set to
2 x 10~ with a linear warmup over the first 500
steps, followed by a constant decay. We used a
batch size of 64 sequences and capped the maxi-
mum input length at 1024 tokens to fully leverage
the model’s context window. Training was con-
ducted for 10 epochs, which empirically provided
a good trade-off between convergence and training
cost. These hyperparameters were chosen based on
prior LoRA tuning best practices and preliminary
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experiments to ensure stable and effective adap-
tation of the Llama3-8B-instruct and Qwen3-8B
model. The prompt is shown in Figure 11.

D Additional Experiments

D.1 LLM Few-shot Prompt

As shown in Figurel3, one example is provided
to demonstrate how to determine the logical rela-
tionship between the premise and the hypothesis.
The model is instructed to output exactly one of
three labels: entailment, contradiction, or neutral.
This prompt effectively guides the model to under-
stand the task objective and output format, thereby
enhancing its reasoning capability across multiple
languages and documents during the few-shot vali-
dation stage.

D.2 LLM in Zero-shot Scenario

The zero-shot results reported in Table 8 are ob-
tained using the same prompt design as the few-
shot experiments, differing only in the absence of
in-context examples. As expected, all models per-
form worse under the zero-shot setting compared
to their few-shot counterparts, demonstrating the
effectiveness and necessity of providing exemplars
in the prompt for this task. Despite the overall
performance drop, the relative ranking of the three
models remains consistent with the few-shot sce-
nario, with Qwen3-8B achieving the highest scores,
followed by GPT-40, and then Llama-3-8B. This
consistency indicates that these models’ capabil-
ities in handling the CDCL-NLI task are stable
across different prompting strategies. Moreover,
the results highlight the challenge of zero-shot
cross-document and cross-lingual natural language
inference, emphasizing the importance of prompt
engineering and in-context learning to boost model
performance on complex multilingual and multi-
document reasoning tasks.

D.3 Baseline Evaluation in Single Document
Scenario

To further demonstrate the cross-document char-
acteristic of our dataset, we add this extra exper-
iment to evaluate the performance using either a
single document (Document; or Documents) as
the premise compared to using the full combined
premise, as summarized in Table 9. The notice-
able improvement in F1 score when both docu-
ments are combined indicates that effective infer-
ence relies on integrating information from multi-



Baseline Base Model  Optimizer LR Batch Size  Max Length  Epochs
Hypothesis-only XLM-R Large ~AdamW 3 x 1076 16 512 20
DocNLI XLM-R Large AdamW 3 x 107 16 512 20
R2F XLM-R Large AdamW 1 x 1076 16 512 20
Ours XLM-R Large ~AdamW 1 x 107° 16 512(per EDU) 20

Table 7: Training hyperparameters for conventional baseline models and our model. These configurations, including
the consistent use of the XLM-RoBERTa-Large base model and AdamW optimizer, were utilized to ensure

reproducibility and fair comparison.

Fine-tunning Prompt

You are skilled in the NLI task. Given a premise consisting of two documents and a hypothesis,
each with its specified language, your task is to determine the natural language inference (NLI)
relationship between the hypothesis and the premise. Note that the premise and hypothesis may be
in different languages. The output should be one of three labels: Entailment, Contradiction, or
Neutral.

Input format:

Premise 1 (Language: <Langl>): <Premisel text>

Premise 2 (Language: <Lang2>): <Premise2 text>

Hypothesis: <Hypothesis text>
Output format:

Example:

Hypothesis: The animal is resting on a rug.
Output: Entailment

One of the labels: Entailment, Contradiction, or Neutral

Premise 1 (Language: English): The cat is sitting on the mat.
Premise 2 (Language: French): Le chat est assis sur le tapis.

Now, given the input premises and hypothesis, provide the NLI label.

Figure 11: Llama3-8B-Instruct and Qwen3-8B Finetuning Prompt.

ple sources. Additionally, the similar results ob-
served between Single Document 1 (54.22% and
57.09% F1) and Single Document 2 (54.95% and
57.12% F1) imply that each document provides
valuable and roughly equal contributions. This fur-
ther supports the notion that reasoning in this task
benefits from synthesizing evidence across docu-
ments rather than focusing on a single source.

E Case Study
E.1 Our Method Case

Our approach employs a multi-stage framework for
analyzing complex multi-document multi-lingual
NLI scenarios. Take the given example in Fig-
ure 13, the Yanaquihua gold mine incident in Con-
desuyos, Peru, where a short circuit-induced fire
resulted in 27 fatalities among workers trapped
within a tunnel, prompting mobilization of local au-

16

thorities and rescue teams. We begin by parsing the
premise documents using Rhetorical Structure The-
ory (RST), which generates hierarchical discourse
trees wherein each node represents an Elementary
Discourse Unit (EDU). These nodes are assigned
unique indices, with their textual content compre-
hensively documented in Tables 10 and 11.

Following RST parsing, we construct individ-
ual discourse graphs for each premise document.
These discrete graphs are subsequently integrated
into a unified premise graph through the establish-
ment of "Lexical" chains that leverage semantic
information and discourse relations to facilitate
enhanced inference. As illustrated in Tables 10
and 11, EDU nodes sharing identical uppercase
character designations indicate the presence of
cross-document “Lexical” chains. This consol-
idated graph representation effectively captures



Model TestSet1: Cross-Lingual TestSet2: English
Precision Recall F1 Macro | Precision Recall F1 Macro
Llama-3-8B 44.00 50.00 46.00 49.00 55.00 50.00
GPT-40 50.00 54.00 52.00 59.00 62.00 61.00
Qwen3-8B 58.00 54.00 57.00 68.00 64.00 63.00

Table 8: Zero-shot performance of large language models on the CDCL-NLI dataset.

Model  Single Documentl Single Document2 Combined Documents
DocNLI 54.22 54.95 64.46
R2F 57.09 57.12 65.42

Table 9: F1 Macro scores for different methods across premises with varying numbers of documents.

EDU  Text | EDU  Text
1 7. kvétna 22 ekl prokurator Giovanni Matos mistni televizni
stanici Canal N.
4 Spole¢nost okamZité nereagovala na Zadost o ko- | 24 jsou 27 obéti,*
mentar.
7 (Reuters) - 25 ,Informace jsou spravné,
1@ Utadnici uvedli v nedéli, Ze nehoda v malé zlaté | 26 potvrdila je policie v Yanaquihug,
doliné na jihu Peru odnesla Zivot 27 pracovnika.
12 Jednd se o jeden z nejumrtnéj$ich dilezitych | 27 ,,Jednd se o formdln{ dolinu (...),
uddlosti v t€Zebnim primyslu v tomto jihoamer-
ickém state.
15@ Nehoda se stala v sobotu rdno v téZebni spolecnosti | 30 dodal.
Yanaquihua, kterd se nachdzi v provincii Con-
desuyos v departementu Arequipa.
17 Zda se, ze doslo ke zkratu, kterd zptisobila pozar | 33 musime jit
uvnitf tunelu,
18 uvedla regiondlni vlada. 34 a zjistit, kde jsou mrtvi, jestli je tam bezpecné,
37® Regiondlni vlada Arequipy a ministerstvo vnitra | 35 aby se tam mohli dostat policisté a soudni pra-
mobilizovaly policie, zdravotniky a sanitky, aby covnici
pomohly pii péci o obéti a jejich zdchrané.
39 Podle statistik perudnského ministerstva tézeb a en- | 36 a provést procedury,*
ergie je toto nejvyssi pocet obéti v jediném téZebnim
nehodé
40 nejméné od roku 2000.

Table 10: Elementary Discourse Units (EDUs) from Document; with their corresponding Spanish text. Segments
highlighted in green represent evidence supporting the Entailment classification. EDU indexes with circled numbers
(D indicate cross-document "Lexical" chains linking to corresponding EDUs in Documents,.

the comprehensive discourse context across the
premises, enabling more robust and coherent se-
mantic modeling.

The classification module processes this unified
graph in conjunction with the hypothesis to predict
the appropriate NLI label. Concurrently, the expla-
nation extraction module identifies a salient subset
of nodes within the premise graph that substanti-
ate the classification decision. These explanation
nodes are visually distinguished through green font
highlighting in Tables 10 and 11, explicitly denot-
ing their explanatory significance.

Our integrated methodology capitalizes on the
hierarchical discourse structure inherent in RST
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parsing and the semantic connectivity across docu-
ments, ensuring that the model’s inference is both
accurate and interpretable. The explicit identifica-
tion of explanation nodes within the discourse struc-
ture facilitates transparent, human-comprehensible
rationales grounded in the premise texts, thereby
advancing the explainability of NLI systems in
complex multi-document, multi-lingual scenarios.
This approach proves particularly valuable when
analyzing intricate real-world situations such as
the Yanaquihua mine disaster, where understand-
ing the causal relationships and contextual factors
is crucial for proper inference.



EDU Text EDU Text
14 informé el Ministerio Publico de ese pafs. 53 [Al menos siete muertos en Texas
15® Al menos 27 personas murieron en Perd 54 tras atropellamiento en una parada de autobus cerca
de un refugio para inmigrantes]
17 y otras dos fueron rescatadas 56 lo que impidi6 que los mineros pudieran escapar.
18 luego de un incendio el sdbado en una mina de oro | 57 Se informé que
en la surefia provincia de Condesuyos,
21 Segtin las primeras investigaciones, la tragedia tuvo | 59 el fuego se propagd de manera muy rapida por las
lugar estructuras de madera que sostienen el yacimiento,
23@ tras producirse un cortocircuito a 100 metros de la | 60 dedicado a la extraccién de oro,
entrada de la mina Yanaquihua,
24 conocida como Esperanza 1. 61 Medios locales peruanos indicaron que
28 informé el Gobierno regional de Arequipa. 63 27 trabajadores quedaron atrapados en la mina
29 “Se habria producido un cortocircuito 64 tras un incendio.
31 que provocé un incendio en el interior del socavén, | 65 Getty Images
32 que habria puesto en riesgo la vida de los traba- | 71 James Casquino, alcalde de Yanaquihua, dijo que
jadores”,
33 Medios locales indicaron que 73 el duefio de la mina fue a la comisaria de ese distrito
34 27 trabajadores atrapados habian fallecido por as- | 75 para pedir ayuda en el rescate de las personas
fixia.
35 La noche del sdbado, el Ministerio del Interior con- | 76 que se encontraban atrapadas.
firmé en su cuenta de Twitter el accidente.
38 indicé el tuit. 78 [Mueren varios migrantes en un accidente de auto
en Nuevo México cerca de la frontera]
39 “Personal policial se encuentra en el distrito de | 79 Las autoridades indicaron que
Yanaquihua
41 para apoyar en las labores de rescate de los cuerpos 8()® hacia la zona se habian movilizado rescatistas.
de mineros
42 que fallecieron dentro de un socavén en la provincia | 81 Familiares de las victimas se reunieron frente a la
de Condesuyos”, comisaria de Yanaquihua
49 Imégenes difundidas en redes sociales mostraban | 83 para recabar informacién sobre la suerte de sus seres
una gran columna de humo negro proveniente de la queridos
mina,
51 y medios locales indicaron que 84 y exigir a las autoridades que agilizaran las labores
de rescate de los cuerpos.
52 en el momento del cortocircuito habia personal tra- | 85 El fiscal Giovanni Matos indicé a un medio local
bajando a unos 80 metros de profundidad. que
87 las tareas en la mina podian demorar 89 porque no se sabia si los equipos de rescatistas
podian ingresar a la mina
23 para retirar los caddveres. 90 para retirar los caddveres.
91 [Una tormenta de polvo en Illinois causa multiples | 94 indica la compafifa en su pagina web.
muertes y decenas de hospitalizados tras choque
masivo]
95 La mina pertenece a Yanaquihua S. A. C., unaem- | 96 que retine a pequeflos productores mineros dedica-
presa dos a la explotacién del oro y otros metales,

Table 11: Elementary Discourse Units (EDUs) from Documents with their corresponding Spanish text. Segments
highlighted in green represent evidence supporting the Entailment classification. EDU indexes with circled numbers
(D indicate cross-document "Lexical” chains linking to corresponding EDUs in Document; .

E.2 LLM Answer Case

As shown in Table 3, Qwen3-8B achieves higher
scores compared to Llama3-8B-instruct and the
closed-source GPT-40. One key reason is that we
evaluate Qwen3-8B using its thinking (chain-of-
thought) mode, as illustrated in Figure 14. We
still take the case in validation prompt(Tabel 13) as
an example, the model systematically parses each
premise, accurately extracts key facts, and performs
detailed cross-checking between the articles and
the hypothesis. It also demonstrates the ability
to handle subtle differences in wording (such as
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distinguishing between deaths and rescues) and to
resolve potential ambiguities in translation (e.g.,
the meaning of "obéti" in Czech).

Nevertheless, our proposed approach still out-
performs Qwen3-8B, primarily due to its ability to
explicitly capture document structure through RST
parsing and cross-document, cross-lingual seman-
tic integration via "Lexical" chains. Moreover, our
method demonstrates superior efficiency with sig-
nificantly lower computational requirements and
faster inference time, making it more practical for
real-world applications while maintaining state-of-
the-art performance.



Hypothesis Generation Prompt

[Hypothesis Generation Prompt] We are creating a cross-document cross-lingual NLI dataset.
Below are two documents under the event topic: [CATEGORY], treated as one premise in this NLI
task. Based on them, generate hypotheses in three labels. You must strictly follow the instructions:
1. Hypothesis: The hypothesis should be a factual statement based on the content of the articles.
It must be a simple statement and should not contain any explanation or analysis like “this
contradicts” or “this agrees with” or “this is inconsistent with.”

2. Evidence: The evidence section should explain how the hypothesis relates to the articles,
including any contradictions or confirmations, using specific quotes from the articles.

Document Details:

e Document 1: Date: [DATE_1]; Article: [ARTICLE_1]

¢ Document 2: Date: [DATE_2]; Article: [ARTICLE_2]

[Task 1: Entailment Generation] Generate an Entailment Hypothesis and evidence.

The hypothesis is supported if evidence from both documents together or from one document alone
(without contradiction in the other) logically supports it.

Guidelines:

» Ensure each detail is verifiable by premise

* Include specific facts (dates, names, etc.)

* No speculation—strictly based on facts

Evidence:

* Quote relevant parts from both articles and explain how they jointly support the hypothesis
[Task 2: Neutral Generation] Generate a Neutral Hypothesis and evidence.

One hypothesis is neutral if there is insufficient or only partial evidence in the premise to confirm
or deny it, or if it contains information beyond what the premise verify.

Guidelines:

* Reasonable speculation or expanded related aspects in a reasonable way

* Propose middle ground if there’s conflicting information

Evidence:

* Show partial support from one or both articles without full confirmation

* Explain how the hypothesis goes beyond but stays consistent with the Document content
Remember, A neutral hypothesis should not be directly confirmed by the premise (which would
make it entailed), nor should it contradict the articles (which would make it conflicting).

[Task 3: Conflicting Generation] Generate a Conflicting Hypothesis and evidence.

One hypothesis is contradicted if either document or their combined information directly opposes
it, or if the documents conflict with each other regarding the hypothesis.

Guidelines:

* Negate or reverse key information in premise

e Complex and multi-faceted hypothesis with multiple contradictions

* Try to combine multiple points of contradiction

* Ensure the hypothesis appears reasonable but actually conflicts clearly

Evidence:

* Show which document(s) the hypothesis contradicts and explain specific points

* If applicable, explain why this hypothesis cannot coexist with the premise content

Output in JSON format:

n n

{ "entail_evidence": "...",

" n

"entail_hypothesis”: "...",

n n

"neutral_evidence”: "...",

"neutral_hypothesis”: "...",
D

"conflict_evidence”: "...",
"conflict_hypothesis”: "..."}

Figure 12: Hypothesises Generation Prompt.

19



Validation Prompt

You are tasked with a cross-document and cross-language Natural Language Inference (NLI) task.
Your goal is to determine the relationship between the "premise" and the "hypothesis". The premise
consists of two documents presented in different languages. Here is one example:

Premise(Document] in Spanish)

Al menos 27 personas murieron en Perd y otras dos fueron rescatadas luego de un incendio
el sdbado en una mina de oro en la surefia provincia de Condesuyos, informé el Ministerio
Publico de ese pais. Segtn las primeras investigaciones, la tragedia tuvo lugar tras producirse
un cortocircuito a 100 metros de la entrada de la mina Yanaquihua, conocida como Esperanza
I. “Se habria producido un cortocircuito que provocé un incendio en el interior del socavon,
que habria puesto en riesgo la vida de los trabajadores”, informé el Gobierno regional de
Arequipa. Medios locales indicaron que 27 trabajadores atrapados habian fallecido por asfixia.
La noche del sabado, el Ministerio del Interior confirmo en su cuenta de Twitter el accidente.
Personal policial se encuentra en el distrito de Yanaquihua para apoyar en las labores de
rescate de los cuerpos de mineros que fallecieron dentro de un socavén en la provincia de
Condesuyos. Imégenes difundidas en redes sociales mostraban una gran columna de humo
negro proveniente de la mina, y medios locales indicaron que en el momento del cortocircuito
habia personal trabajando a unos 80 metros de profundidad. Se informé que el fuego se
propagé de manera muy rapida por las estructuras de madera que sostienen el yacimiento,
dedicado a la extraccion de oro, lo que impidié que los mineros pudieran escapar.James
Casquino, alcalde de Yanaquihua, dijo que el duefio de la mina fue a la comisaria de ese
distrito para pedir ayuda en el rescate de las personas que se encontraban atrapadas.

| .

Premise(Document2 in Czech)

7. kvétna (Reuters) - Utadnici uvedli v nedéli, Ze nehoda v malé zlaté dolin& na jihu Peru
odnesla zivot 27 pracovnikd. Jednd se o jeden z nejumrtnéjsich ddlezitych udalosti v tézebnim
prumyslu v tomto jihoamerickém stdté. Nehoda se stala v sobotu rdno v t€Zebni spolecnosti
Yanaquihua, kterd se nachédzi v provincii Condesuyos v departementu Arequipa. Zda se, Ze
doslo ke zkratu, kterd zptisobila poZar uvnitf tunelu, uvedla regiondln{ vlada. ,,Informace jsou
spravné, potvrdila je policie v Yanaquihué, jsou 27 obéti,* fekl prokurdtor Giovanni Matos
mistn{ televizni stanici Canal N. Regionaln{ vlida Arequipy a ministerstvo vnitra mobilizovaly
policii, zdravotniky a sanitky, aby pomohly pfi péci o obéti a jejich zadchrané. Podle statistik

perudnského ministerstva téZeb a energie je toto nejvyssi pocet obéti v jediném tézebnim
nehodé nejméné od roku 2000. Spole¢nost okamZité nereagovala na Zadost o komentaf.

Hypothesis and Label

Hypothesis: "The Yanaquihua gold mine in the province of Condesuyos, Peru, experienced a
fatal incident on a Saturday morning due to a short circuit that caused a fire, leading to the
death of 27 workers trapped inside the tunnel, with local authorities and rescue teams being
mobilized to the site."

Output: entailment

7

Now, given the following input, output exactly one word indicating the NLI label: neutral,
entailment, or contradiction.

Premise:[Premsise]

Hypothesis: [Hypothesis]

Output the NLI label (neutral/entailment/contradiction):

Figure 13: LLM Validation Prompt.
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Qwen3-8B Reasoning Output

Okay, let’s tackle this NLI task. So, the premise has two articles in Spanish and Czech, and the
hypothesis is in English. I need to determine if the hypothesis is entailed, contradicted, or neutral
based on the premises.

First, I’ll read through the Spanish article. It mentions that on Saturday, there was a fire in a gold
mine in Condesuyos province, caused by a short circuit 100 meters from the entrance. The mine
is called Yanaquihua, known as Esperanza I. They say 27 people died, two were rescued. The
regional government of Arequipa mentioned the short circuit caused the fire, risking workers’ lives.
Local media said 27 trapped workers died of asphyxia. The Ministry of Interior confirmed the
accident on Saturday, and police were there for rescue. The fire spread quickly through wooden
structures, preventing escape. The mine belongs to Yanaquihua S.A.C., a company with small
miners.

Now the Czech article: Officials said the accident in the small gold mine in southern Peru resulted
in 27 deaths. It happened on Saturday morning at the Yanaquihua mine in Condesuyos province,
Arequipa department. A short circuit caused a fire inside the tunnel. The regional government
confirmed 27 victims. The prosecutor Giovanni Matos said the information is correct, and police
are there to find the dead, check safety for rescue teams. Regional government and interior ministry
mobilized police, medics, and ambulances. It’s the highest number of deaths in a single mining
accident since 2000. The company didn’t respond to a comment request.

Hypothesis: The Yanaquihua gold mine in Condesuyos, Peru, had a fatal incident on Saturday
morning due to a short circuit causing a fire, leading to 27 workers’ deaths trapped inside the
tunnel, with local authorities and rescue teams mobilized.

Check each part. The Spanish article says the fire was caused by a short circuit, leading to 27
deaths. The Czech article confirms the same: short circuit causing fire, 27 deaths. Both mention
Saturday morning (the Spanish says "sdbado" which is Saturday, and the Czech says "v sobotu
rano" which is Saturday morning). The mine is Yanaquihua in Condesuyos, Peru. The death count
is 27, and both mention authorities and rescue teams being mobilized. The hypothesis states all
these points. The Spanish article also mentions the mine’s name and the company, which the Czech
article doesn’t, but that’s not conflicting. The hypothesis doesn’t mention the company, so that’s
okay.

Are there any contradictions? The Spanish article mentions two people rescued, but the hypothesis
says 27 died. Wait, the hypothesis says "leading to the death of 27 workers trapped inside the
tunnel.” The Spanish article says 27 died and two were rescued. The Czech article says 27 victims,
which could include the two rescued? Wait, maybe not. If two were rescued, then the deaths would
be 27, and the two rescued are alive. So the hypothesis says 27 workers died, which matches the
Spanish article’s 27 deaths. The Czech article says "27 obéti" which is victims, which could be the
27 who died, but maybe the two rescued are not counted as victims? Or maybe the Czech article is
using "obéti" as victims, which could include those who died and those rescued? Wait, in Czech,
"obéti" is victims, usually meaning those who died. But the Spanish article says 27 died and two
rescued. The Czech article says 27 victims, which might be the same 27, but the two rescued might
not be considered victims. So the hypothesis says 27 workers died, which aligns with both articles.
The Czech article says "27 obéti" which is victims, so that’s consistent.

Also, the hypothesis mentions the fire caused by a short circuit, which both articles confirm. The
mobilization of authorities and rescue teams is mentioned in both. The time is Saturday morning
in both. The mine’s name and location are correct.

Therefore, the hypothesis is fully supported by both articles. So the label should be entailed.

\.

Figure 14: Tllustration of Qwen3-8B’s chain-of-thought reasoning process. The model systematically analyzes
premise documents by extracting key facts, performing cross-document verification, and resolving translation
ambiguities (e.g., Czech term "obéti"). While this reasoning approach enables Qwen3-8B to outperform other LLMs
like Llama3-8B-instruct and GPT-40, our RST-based method achieves superior performance through more intuitive
explanations, explicit discourse structure modeling, and cross-lingual semantic integration, all while requiring
significantly lower computational resources and faster processing times.
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