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Abstract001

Natural Language Inference (NLI) is a fun-002
damental task in natural language processing.003
While NLI has developed many sub-directions004
such as sentence-level NLI, document-level005
NLI and cross-lingual NLI, Cross-Document006
Cross-Lingual NLI (CDCL-NLI) remains007
largely unexplored. In this paper, we pro-008
pose a novel paradigm: CDCL-NLI, which009
extends traditional NLI capabilities to multi-010
document, multilingual scenarios. To support011
this task, we construct a high-quality CDCL-012
NLI dataset including 25,410 instances and013
spanning 26 languages. To address the lim-014
itations of previous methods on CDCL-NLI015
task, we further propose an innovative method016
that integrates RST-enhanced graph fusion with017
interpretability-aware prediction. Our approach018
leverages RST (Rhetorical Structure Theory)019
within heterogeneous graph neural networks020
for cross-document context modeling, and em-021
ploys a structure-aware semantic alignment022
based on lexical chains for cross-lingual under-023
standing. For NLI interpretability, we develop024
an EDU (Elementary Discourse Unit)-level at-025
tribution framework that produces extractive ex-026
planations. Extensive experiments demonstrate027
our approach’s superior performance, achiev-028
ing significant improvements over both conven-029
tional NLI models as well as large language030
models. Our work sheds light on the study of031
NLI and will bring research interest on cross-032
document cross-lingual context understanding,033
hallucination elimination and interpretability034
inference. Our code and datasets are available035
at CDCL-NLI-link for peer review.036

1 Introduction037

Natural Language Inference (NLI) is a fundamen-038

tal task in natural language processing, aiming039

to determine the logical relationship between the040

given premise and hypothesis pair (Dagan et al.,041

2005; MacCartney and Manning, 2009). While042

traditional NLI tasks primarily deal with single-043

Premise Hypothesis

CDCL-NLI Label

Document1
in English

Document2
in French Entailment

Figure 1: A CDCL-NLI example. Premise in English
and French. The Entailment label requires combining
information from both documents in premise.

Paradigm Premise Hypothesis Language

Sentence-NLI Sentence Sentence Mono/Multi
Document-NLI Doc Sent/Doc Mono
CDCL-NLI Multi Doc Sentence Multi

Table 1: Comparison of different NLI paradigms.

language, short-text validations (Rodrigo et al., 044

2007), document-level NLI (Yin et al., 2021) ex- 045

pands the scope of NLI to longer contexts. 046

Table 1 compares different NLI paradigms sys- 047

tematically, highlighting the progressive evolu- 048

tion of NLI tasks. Sentence-NLI involves low- 049

complexity reasoning on short sentence pairs, 050

evolves from single-language approaches (Bow- 051

man et al., 2015; Herlihy and Rudinger, 2021) to 052

multilingual settings (Conneau et al., 2018; Heredia 053

et al., 2024), and is mainly used for fact verifica- 054

tion (Wadden et al., 2020; Klemen et al., 2024). 055

Document-level NLI extends NLI to reasoning 056

over full-length documents within a single lan- 057

guage (Wang et al., 2019; Yin et al., 2021), focus- 058

ing on content comprehension (Yang et al., 2024). 059

However, the increasing globalization of infor- 060

mation flow requires even more sophisticated infer- 061

ence capabilities across both language and doc- 062

ument boundaries. In this paper, we introduce 063

Cross-Document Cross-Lingual Natural Language 064

Inference (CDCL-NLI), a novel paradigm extend- 065

ing traditional NLI to multi-document and multilin- 066

gual settings. Figure 1 illustrates that CDCL-NLI 067

jointly reasons over premise documents in English 068

and French to verify the hypothesis. The correct 069
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Entailment prediction relies on integrating comple-070

mentary information from both documents.071

While CDCL-NLI addresses a real-world task072

with broad applications, it faces key challenges:073

1) Lack of existing datasets, which necessitates074

the construction of new resources to support re-075

search. 2) Multilingual Semantic Alignment,076

requiring resolution of grammatical and concep-077

tual differences across languages while preserv-078

ing semantic consistency (Conneau et al., 2020).079

3) Cross-Document Structure Alignment, essen-080

tial for capturing structural correspondences and081

implicit logical relations between documents of082

varying complexity (Wang et al., 2021); and 4) In-083

terpretability, demanding transparent reasoning084

processes and verifiable confidence in inference085

outcomes (Bereska and Gavves, 2024).086

To address the first challenge, we curated a087

CDCL-NLI dataset through collecting diverse088

premise documents from GlobeSumm (Ye et al.,089

2024), generating hypotheses with GPT-4o (Ope-090

nAI, 2024) using customized prompts to ensure091

label diversity and balance and manually review-092

ing hypotheses and annotated explanations. The093

dataset contains 25,410 samples spanning 26 lan-094

guages and 370 events.095

To address the rest challenges, we proposed a096

novel method that comprises three key compo-097

nents. 1) Graph Construction Module: This098

component promotes semantic alignment by fus-099

ing graphs based on lexical chains, effectively100

linking semantically related concepts across doc-101

uments. 2) Graph Representation Module: Uti-102

lizing an RST-enhanced Relation-aware Graph At-103

tention Network (RGAT) (Mann and Thompson,104

1988; Busbridge et al., 2019), this module supports105

structure alignment by capturing hierarchical dis-106

course structures and cross-document dependen-107

cies through multi-head attention mechanisms. 3)108

Interpretability Attribution Module: Leveraging109

Elementary Discourse Units (EDUs) (Mann and110

Thompson, 1988), this module generates extractive111

explanations that significantly enhance model in-112

terpretability and provide transparent insights into113

its decision-making process.114

Extensive experiments on the CDCL-NLI and115

DocNLI datasets demonstrate that our method out-116

performs conventional NLI approaches and three117

state-of-the-art large language models, surpassing118

the strongest baseline by 3.5% on our dataset. In119

the end, we highlight our main contributions as120

follows:121

• We propose CDCL-NLI as a new task and 122

construct a corresponding dataset covering 26 123

languages with 25,410 high-quality manually- 124

annotated instances. 125

• We propose a novel method, which leverages 126

RST-enhanced graph fusion to align semantic 127

concepts and discourse structures, and improves 128

interpretability by generating extractive expla- 129

nations based on EDUs. 130

• We conduct extensive experiments, outperform- 131

ing all the baselines by at least 3.5%. 132

2 Related Work 133

2.1 Sentence-level NLI 134

Monolingual Methods. Sentence-level NLI 135

benchmarks like SNLI (Bowman et al., 2015) and 136

MultiNLI (Williams et al., 2018) have driven model 137

evolution from ESIM (Chen et al., 2017) to trans- 138

former architectures (Devlin et al., 2018; Liu et al., 139

2019) and recent LLMs (OpenAI, 2023). 140

Cross-lingual Methods. Cross-lingual NLI re- 141

lies on datasets like XNLI (Conneau et al., 2018) 142

(15 languages) and XNLIeu (Heredia et al., 2024) 143

(European languages). Multilingual models such 144

as XLM-R (Conneau et al., 2020) and XLM-E (Chi 145

et al., 2022) enable zero-shot transfer, while align- 146

ment methods like SoftMV (Hu et al., 2023) and 147

prompt-based MPT (Qiu et al., 2024) improve 148

cross-lingual semantic understanding. 149

Interpretability Mechanisms. Interpretability 150

uses feature attribution methods like Integrated 151

Gradients (Sundararajan et al., 2017) and (Huang 152

et al., 2024) to highlight decision-driving features. 153

Datasets such as e-SNLI (Camburu et al., 2018) 154

provide human explanations, supporting explicit 155

reasoning and interpretability benchmarks. 156

2.2 Document-level NLI 157

Datasets and Benchmarks. Document-level 158

NLI benefits from datasets like DocNLI (Yin et al., 159

2021) with over one million instances. Domain- 160

specific datasets such as ContractNLI (Koreeda and 161

Manning, 2021) focus on the challenges posed by 162

long documents and specialized text genres. 163

Inference Methods. Recent approaches empha- 164

size discourse structure and long-range dependen- 165

cies. R2F (Wang et al., 2022) introduces explicit 166

reasoning extraction, and DocInfer (Mathur et al., 167

2022) uses hierarchical encoding to model docu- 168
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Topic 1
EN
--

------

RU
--

------

FR
--

------
... ...

Premise
FR
--

----

EN
--

----

Hypothesis
Sample

The attackers carefully planned the attack, prepa
ring weapons and a list of targets, demonstrating
premeditation.

Hypothesis Explanation in

Premise

Au total neuf personnes sont mortes fusillées, ce
mercredi 3 mai au matin, dans ... La réaction du go
uvernement… il était armé d'un pistolet de 9 mm,
d'un autre de petit calibre et de quatre cocktail
s L‘assaillant présumé avait planifié la fusillade
pendant un mois et élaboré une liste des enfant
s visés, a déclaré la police dans un communiqué.

Corrected Hypothesis

Extracted
Explanation：

EntailmentLabel

A teenager...Six other children and a teacher were
injured and hospitalized. The young attacker had
two guns and two Molotov cocktails and had plan
ned to... names of children he wanted to kill an
d their classes, he said at a press conference. Ser
bia's Interior Ministry said. A...

Figure 2: Overview of the CDCL-NLI dataset construc-
tion process and a data example. Premise contains D1

and D2. Explanation is extracted from premise to en-
hance interpretability.

ment structure, highlighting the need to capture169

document-level semantics.170

Interpretability Mechanisms. Interpretability171

research focuses on evidence extraction and ex-172

planation generation. Systems like Evidence-173

Net (Chen et al., 2022) and R2F (Wang et al.,174

2022) automatically identify evidence to enhance175

reasoning transparency. LLM-based approaches176

like Chain-of-Thought (Wei et al., 2022) and Re-177

thinking(Singh et al., 2024) further enable self-178

explanatory reasoning capabilities.179

Although prior studies have advanced sentence-180

level and document-level NLI, challenges in cross-181

document and cross-lingual NLI remain largely182

unaddressed. Our work fills this gap by introduc-183

ing the CDCL-NLI dataset and proposing an inter-184

pretable RST-enhanced graph fusion method.185

3 CDCL-NLI Task Formulation and186

Dataset Construction187

As shown in Figure 2, our CDCL-NLI dataset is188

constructed through a systematic pipeline involving189

stratified random sampling of premise documents190

across all topics, LLM-generated hypotheses, and191

human verification to ensure data quality. In the192

dashed box, the figure shows a CDCL-NLI instance193

with a premise of two documents in different lan-194

guages, an English hypothesis, a label, and EDU-195

based explanations for interpretability.196

3.1 Task Formulation197

Similar to the traditional NLI task, the goal of198

CDCL-NLI is to determine the inference label:199

Label ∈ {"Entailment", "Neutral", "Contradiction"},200

between a given premise P and hypothesis H.201
Specifically, the premise P consists of two doc-202

uments D1 and D2, written in different languages203

but discussing the same topic. The hypothesis H204

is a sentence-level statement. The task requires 205

reasoning over the combined information from P 206

with H to determine their entailment relationship, 207

involving both cross-document and cross-lingual 208

premise integration. 209

3.2 Premise Data Collection 210

We collect our premises from GlobeSumm (Ye 211

et al., 2024), a multi-document cross-lingual sum- 212

marization dataset covering 370 topics across 26 213

languages. In GlobeSumm, documents for each 214

topic span diverse media outlets, publication times, 215

and languages, providing a rich foundation for 216

cross-document and cross-lingual inference tasks. 217

We curated CDCL-NLI dataset by stratified ran- 218

domly selecting documents for each topic to form 219

premise pairs. To enhance cross-lingual coverage, 220

we strategically expanded our document collection 221

through translation.After rigorous quality filtering, 222

our final dataset consists of high-quality inference 223

instances covering 26 language combinations. De- 224

tailed premise establishment criteria and quality 225

filtering standards are provided in Appendix A.1. 226

3.3 Hypothesis Generation and Label 227

Specification 228

For each pair, we generate hypotheses across three 229

NLI categories. Initial hypotheses are generated by 230

GPT-4o (OpenAI, 2024) following specific guide- 231

lines to ensure balanced label distribution and suf- 232

ficient reasoning depth. Entailment hypotheses re- 233

quire joint or consistent support from the premise 234

documents. Neutral hypotheses are plausible but 235

neither supported nor contradicted. Contradiction 236

hypotheses explicitly conflict, focusing on cross- 237

document inconsistencies. To reduce hallucination, 238

GPT-4o first generates explanations before final- 239

izing hypotheses. Detailed prompts and protocols 240

are included in Appendix A.2. 241

3.4 Manual Annotation and Quality Control 242

Our annotation involved two phases: hypothe- 243

sis verification and EDU-based explanation (Fig- 244

ure 2). Three graduate students independently la- 245

beled premise-hypothesis pairs, achieving strong 246

inter-annotator agreement (Cohen’s κ: 0.71–0.82 247

across classes). For explanations, annotators se- 248

lected minimal EDU sets supporting their decisions, 249

with high agreement (Jaccard: 0.91; span overlap: 250

0.94; conclusion: 1.00). All annotations were rec- 251

onciled through discussions to ensure quality (see 252

Appendix A.3). 253
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Figure 3: Statistic visualization of token length, EDU numbers, label distribution and language composition.

Dataset CD CL Interp. Avg.Tks Labels

MultiNLI × × × 33.7 3
XNLI × ✓ × 50 3
e-SNLI × × ✓ 45.1 3
DocNLI ✓ × × 412 2

CDCL-NLI ✓ ✓ ✓ 1,456 3

Table 2: Characteristics of NLI datasets showing cross-
document (CD), cross-lingual (CL), and interpretability
(Interp.) capabilities, along with average tokens per
instance (Avg.Tks) and number of label classes.

3.5 Dataset Statistics254

We summarize the key characteristics of different255

NLI datasets in Table 2, which shows substan-256

tial variations in their cross-document and cross-257

lingual capabilities. Our CDCL-NLI dataset con-258

sists of 25,410 cross-document, cross-lingual NLI259

instances spanning 26 languages and 370 events.260

We partitioned the dataset by event topics, yielding261

22,200/1,605/1,605 train/dev/test instances with262

mutually exclusive event distributions. Figure 3a263

shows similar data characteristics across training,264

validation, and test sets; Figure 3b depicts token265

count variations across consecutive segments; and266

Figure 3c illustrates balanced label distributions267

(33.3% each) with roughly uniform language dis-268

tribution within each label. We provide more infor-269

mation about our dataset in Appendix A.4.270

4 Our Method: RST-enhanced Graph271

Fusion with EDU Level Interpretability272

Our approach offers a robust solution for cross-273

document and cross-lingual NLI by leveraging274

RST-enhanced graph fusion and explanation pre-275

diction. As illustrated in Figure 4, the framework276

comprises three main components: RST graph con-277

struction and fusion module, graph representation278

generation module and interpretability and classifi-279

cation module.280

4.1 RST Graph Construction and Fusion 281

RST Information Extraction. We employ DM- 282

RST (Liu et al., 2021), a top-down multilingual 283

document-level rhetorical structure parsing frame- 284

work, to extract RST information from the premise 285

documents. As shown in Figure 5, DM-RST 286

generates two key features for document D: 1) 287

EDU boundary indices and 2) RST tree parsing 288

outputs. By processing these features, we get 289

D = {EDU1, EDU2, ..., EDUn} and rhetorical 290

structure tree T . EDUi represents the i-th EDU’s 291

textual content. T is formally defined as: 292

T =

{
(EDU[s→t], EDU[t+1→u], rst, rtu) |
s, t, u ∈ [1, n], s ≤ t < u, rst, rtu ∈ R

}
, 293

whereEDU[s→t] denotes an EDU group that forms 294

either a leaf node (when s = t) or a branch node 295

(when s < t), and rst represents the rhetorical rela- 296

tion. This tree structure captures both local EDU 297

relationships and global discourse organization. 298

Embedding Model. To handle inconsistent cross- 299

lingual encoding from premise documents in 300

different languages, we use XLM-RoBERTa- 301

Large (Conneau et al., 2020) as the base encoder, 302

which supports over 100 languages and excels at 303

multilingual semantic representation. For each 304

EDUi in the RST structure, its initial vector is 305

hEDUi = ϕ(EDUi) ∈ Rd, where ϕ denotes XLM- 306

RoBERTa-Large and d = 1024. The hypothesis 307

vector hhypo is computed similarly. 308

Single Graph Construction. Based on the RST 309

tree T , we construct graphs GD1 and GD2 for each 310

document D1 and D2 respectively as shown in Fig- 311

ure 4. For graph G(V,E,R), we define: 312

• Node Set V = {vi | EDU[s→t] ∈ T }, where 313

each vi has features: Textvi , ϕvi , and Typevi . 314

• Edge Set E = {(vi, vj) | vi ̸= vj , (vi, vj , r) ∈ 315

T }, representing bidirectional edges. 316
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Figure 4: Our CDCL-NLI framework processes premise (D1, D2) and hypothesis through: 1) RST Graph Con-
struction, merging GD1

and GD2
into GP ; 2) Graph Representation via RST-GAT layers; 3) Interpretability and

Classification, extracting node-level explanations while using hGp
and hhypo for final NLI label prediction.
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Although the report, which has 
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190.58 point drop in the Dow 
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Figure 5: RST graph construction. The RST mod-
ule first segments text into EDUs(EDU1-EDU6), with
boundaries in blue, and then organizes an RST tree T
showing discourse relations.

• Relation Set R is from rhetorical relations in T .317

For detailed relations and definitions of node fea-318

tures, please refer to the Appendix B.1, B.2.319

Graph Fusion. After obtaining heterogeneous320

graphsGD1(VD1 , ED1 , R) andGD2(VD2 , ED2 , R)321

for the premise, we then merge them via lexical322

chains to enhance cross-document reasoning by:323

• Node Feature Fusion: VP = VD1 ∪ VD2 , retain-324

ing all nodes and features.325

• Cross-document Edge: Add bidirectional lex-326

ical edges between vi ∈ VD1 and vj ∈ VD2 if327

CosineSim(vi, vj) > δ, and obtain EP .1328

• Adding Edge Types: Extend R with a new "Lex-329

ical" relation R′ to support lexical alignment.330

The merged graph GP (VP , EP , R
′) preserves in-331

dividual features while aligning semantics across332

documents, effectively supporting CDCL-NLI.333

4.2 Graph Representation Generation334

Node-level Representation. As shown in Fig-335

ure 4, there are two layers of RST-GAT to process336

nodes’ features. RST-GAT builds upon the Relation-337

aware Graph Attention Network (RGAT) (Bus-338

bridge et al., 2019), which extends Graph Attention339

1Threshold δ is chosen empirically; see Appendix B.3 for
detailed justification.

Network (GAT) (Velickovic et al., 2018) to handle 340

relation-specific edge types in graphs. 341

Taking a graph G(V,E,R) as an example, the 342

initial node embeddings h0
V are obtained as de- 343

scribed in Section 4.1. Node representations are 344

then updated through two layers of relation-aware 345

multi-head attention as follows: 346

h
(l)
vi = 1

|R|
∑
r∈R

αr · 1
K

K∑
k=1

∑
vj∈Nr(vi)

β
r,(l)
ij,k Wr,kh

(l−1)
vj (1) 347

where l = 1, 2. Here, αr denotes the softmax- 348

normalized weight of relation r, capturing the rela- 349

tive importance among relations, while βr,(l)ij,k rep- 350

resents the attention coefficient over neighboring 351

nodes, indexed by node pairs (vi, vj), attention 352

head k, relation r, and layer l. After two layers of 353

message passing, the resulting node embeddings 354

are denoted as hV = {h(2)
vi }. The same update pro- 355

cedure is applied independently to GD1 , GD2 , and 356

GP , producing embeddings hVD1
,hVD2

, and hVP
, 357

respectively. Detailed formulations of the attention 358

weights and parameter configurations are provided 359

in Appendix B.4. 360

Graph-level Representation. The global 361

representation(hGP
) of the merged graph GP is 362

obtained by averaging node features after two 363

RST-GAT layers. This pooling captures discourse- 364

level semantics while preserving local rhetorical 365

relations, enabling effective classification. 366

Classification Loss. Given the concatenated 367

graph representation hGp and hypothesis features 368

hhypo, the classification loss is computed using the 369

standard cross-entropy (CE) formulation: 370

Lcls = CE(y,Softmax(MLP(hGp ⊕ hhypo)) ∈ R3), (2) 371

where y denotes the ground-truth label and p de- 372

notes the predicted probability distribution. 373
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Enhanced Triplet Loss. Triplet loss (Weinberger374

and Saul, 2006; Schroff et al., 2015) is a met-375

ric learning method that encourages the anchor-376

positive distance to be smaller than the anchor-377

negative distance. Leveraging the structure of our378

CDCL-NLI dataset, where each premise aligns379

with three hypotheses (entailment, neutral, contra-380

diction), we propose a neutral-constrained triplet381

loss:382

Ltriplet = max(0, d(a, p)− d(a, n) + σ)

+max(0, d(a, neu)− d(a, n) + θ),
(3)383

where d(x, y) is the Euclidean distance, and384

a, p, neu, n denote the premise paired with entail-385

ment, neutral, and contradiction hypotheses, re-386

spectively. Margins σ and θ enforce the semantic387

order: entailment < neutral < contradiction.388

4.3 EDU-level Explanation Prediction389

For interpretability, we propose an attention-based390

method to extract explanation nodes.391

Node Importance. Using multi-head attention392

weights from the first RST-GAT layer, the impor-393

tance score Ii of node vi in GD1 , GD2 is394

Ii =
1
K

∑K
k=1

∑
r∈R

∑
vj∈N in

r (vi)
β
r,(1)
ji,k . (4)395

Let H = [hv0 ; . . . ;hvn ] be node features and396

I = [I0, . . . , In]
⊤ importance scores. Weighted397

features are H ′ = I ⊙ H , where ⊙ denotes398

element-wise product with broadcasting.399

Hypothesis-aware Interaction. Given hypoth-400

esis embedding hhypo ∈ Rdout , attention over401

weighted features H ′ ∈ Rn×dout produces interac-402

tion features:403

O = Attention
(
hhypoH

′⊤
√
dout

)
H ′. (5)404

Feature Fusion and Classification. The model405

is optimized by Binary Cross-Entropy (BCE) loss:406

Lexp =
1

N

N∑
i=1

BCE
(
yi,Sigmoid(MLP([h′

i ⊕ oi]))
)

(6)407

where yi ∈ {0, 1} is ground truth label of node i,408

h′
i and oi are the weighted and interaction features409

for node i respectively.410

The total loss combines all components:411

Ltotal = γLexp + λ(Lcls + Ltriplet), (7)412

where γ and λ are balancing hyperparameters set413

as 0.2 and 0.8 respectively through grid search on414

the validation set.415

5 Experiments 416

5.1 Experiment Settings 417

Metrics. Model evaluation considers classifica- 418

tion and explanation quality. For classification on 419

DocNLI (imbalanced), we report Micro F1 and 420

Weighted F1. On CDCL-NLI dataset, we use 421

Macro Precision, Macro Recall, and Macro F1 422

for balanced class performance. Explanation qual- 423

ity is assessed using BLEU (1-4), ROUGE-1/2/L, 424

and METEOR. 425

Baselines. 426

• Conventional NLI Models: We compare two 427

well-established models, both trained on our 428

dataset: DocNLI (Yin et al., 2021), a document- 429

level NLI model tailored for long texts, and 430

R2F (Wang et al., 2022), a retrieval-based 431

framework for document-level NLI. All conven- 432

tional baselines and our proposed method are 433

built upon the same underlying pretrained lan- 434

guage model to ensure fair comparison. Train- 435

ing details are provided in Appendix C.1. 436

• Large Language Models: We evaluate three 437

LLMs: Llama3-8B-Instruct (Meta AI, 2024), 438

Qwen-3-8B (Qwen, 2025) and GPT-4o (Ope- 439

nAI, 2024), where the LLaMA and Qwen model 440

is further fine-tuned with LoRA adapters. All 441

models are tested in a few-shot setting, with 442

fine-tuning configurations in Appendix C.2. 443

5.2 Experiment Results and Analysis 444

Main Results and Ablation Study. Table 3 445

presents a performance comparison of our pro- 446

posed method against several competitive baselines 447

on two test sets. TestSet1 is a cross-lingual test set 448

(the original test set of the CDCL-NLI dataset). 449

TestSet2 is an English-translated version of Test- 450

Set1, designed to evaluate model robustness in a 451

cross-document scenario without language barri- 452

ers, and to quantify the performance degradation 453

caused by cross-lingual factors. This dual evalu- 454

ation framework enables a clearer analysis of the 455

impact of language variation on NLI performance.2 456

Our model consistently achieves the best re- 457

sults on both test sets, with macro F1 scores of 458

68.95% on the cross-lingual set and 70.68% on 459

the English-translated set, surpassing strong base- 460

lines such as DocNLI and R2F by notable margins. 461

The generally higher scores on the English test 462

set highlight the relative ease of reasoning within 463

2Unless noted, all reported test results refer to TestSet1.
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Model Type Model TestSet1:Cross-Lingual TestSet2:English TrainedPrecision Recall F1 Macro Precision Recall F1 Macro

Conventional
Model

Hypothesis-only 35.78 36.02 35.84 35.89 35.97 36.12 ✓
DocNLI 64.75 64.30 64.46 69.29 68.39 68.70 ✓

R2F 65.04 65.42 65.42 67.18 68.47 67.13 ✓

Large
Language

Model

Llama-3-8B 45.94 52.62 48.07 51.69 57.98 53.03 ✓
GPT-4o 52.50 56.30 54.00 62.50 65.00 64.50 ×

Qwen3-8B 60.34 56.29 59.86 71.71 67.62 67.34 ✓

CDCL-NLI
Model

Ours 71.09 70.84 68.95 72.65 72.46 70.68 ✓
- Exp 65.99 67.29 65.86 69.01 69.97 68.79 ✓

- Graph 53.07 57.38 51.37 68.64 64.55 61.71 ✓
- Exp & Graph 49.15 52.71 48.70 49.15 52.71 53.29 ✓

Table 3: NLI model performance on cross-lingual (TestSet1) and English (TestSet2) sets. Our full model achieves
the highest F1 scores, showing clear gains from explanation and graph components. Large language models perform
well but are generally outperformed. ✓ indicates training on target data; × means no training. Explanation - Exp.

a single, well-resourced language, in contrast to464

the added challenges of cross-lingual understand-465

ing, which requires effective language transfer and466

alignment. The hypothesis-only baseline, which467

trains solely on the hypothesis, attains near-random468

performance ( 36% F1), indicating minimal dataset469

artifacts in the hypothesis statements.470

Among the large language models evaluated in471

the few-shot setting, Qwen3-8B achieves the best472

performance, with F1 scores of 59.86% on the473

cross-lingual set and 67.34% on the English set,474

outperforming both GPT-4o and Llama3-8B. Nev-475

ertheless, our approach surpasses Qwen3-8B by476

9.09% on the cross-lingual set and 3.34% on the477

English set, highlighting the effectiveness of our478

method. Detailed prompts and zero-shot results479

and reported in Appendix D.1, Appendix D.2.480

The ablation study highlights the importance of481

each component: removing the explanation module482

(- Exp) results in a moderate performance drop483

of 1.89% on both cross-lingual and English test484

sets; removing the graph module (- Graph) causes485

a more pronounced decline of 17.58% and 8.97%,486

respectively. When both components are removed487

(- Exp & Graph), performance sharply decreases488

on both test sets, demonstrating that these modules489

jointly contribute to the model’s robustness under490

different language conditions.491

Single-Document vs Cross-Document. To vali-492

date the cross-document nature of our dataset, we493

compare the performance of models using only494

a single document (D1 or D2) against those us-495

ing the D1 + D2, as illustrated in Figure 6. The496

substantial performance gap—at least a 7% F1 im-497

provement—demonstrates that effective inference498

requires integrating information from both doc-499

Precision Recall F1 Macro
0.4

0.5

0.6

0.7

0.8
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e 
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Qwen3 D1+D2
CDCL   D1+D2

Figure 6: NLI performance using single documents
(D1, D2) versus combined (D1 + D2). The F1 gain
confirms the need for cross-document reasoning, with
both documents contributing similarly.

uments. Additionally, the similar F1 scores for 500

Document1 (63.2%) and Document2 (62.8%) in- 501

dicate that both documents provide equally impor- 502

tant information, underscoring the necessity of syn- 503

thesizing evidence from both sources rather than 504

relying on either alone. Additional results are pre- 505

sented in Appendix D.3. 506

Cross-Lingual Generalization. To further as- 507

sess the robustness and generalization of our ap- 508

proach, we conduct cross-lingual transfer experi- 509

ments in a challenging scenario where the training 510

and testing languages are distinct. Specifically, we 511

select five typologically and geographically diverse 512

languages—Spanish, Russian, French, Italian, and 513

English—to ensure comprehensive coverage and 514

to reflect real-world multilingual settings. For each 515

source language, we translate the data into all tar- 516

get languages, resulting in 20 transfer directions. 517

Models are trained on one language and evaluated 518

on a different target language, with no overlap be- 519

tween training and test languages. As shown in 520

Table 4, our method consistently outperforms the 521
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F1 Scores on Target Language (Ours vs. R2F)

ES→RU ES→FR ES→IT ES→EN
55.53/25.03 58.28/27.31 54.68/29.31 57.94/34.21

RU→ES RU→FR RU→IT RU→EN
52.83/46.26 46.67/35.50 50.89/39.77 49.67/47.78

FR→ES FR→RU FR→IT FR→EN
50.31/43.25 56.6/22.24 58.65/39.32 49.67/47.22

IT→ES IT→RU IT→FR IT→EN
53.72/36.01 57.19/36.21 53.17/37.22 56.67/47.21

EN→ES EN→RU EN→FR EN→IT
60.31/49.94 51.27/32.46 60.28/30.80 55.11/38.33

Table 4: Cross-lingual performances (macro F1 scores)
of our method and R2F. Source languages are colored.
Spanish (ES), Russian (RU), French (FR), Italian (IT)
and English (EN). Our method demonstrates superior
generalization across languages compared to baselines.

BLEU

ROUGE-1

ROUGE-2

ROUGE-L

METEOR

0.300.400.500.60

Dataset
CDCL
DocNLI

Method
Ours
R2F

Figure 7: Explainability comparison between our
method and R2F on CDCL-NLI and DocNLI datasets
using BLEU, ROUGE (1/2/L), and METEOR metrics.
Our method consistently outperforms R2F across all
metrics and datasets.

R2F baseline across most transfer directions, of-522

ten by substantial margins. R2F is chosen as it523

improves upon DocNLI for cross-document rea-524

soning. These results demonstrate the effectiveness525

of our approach in synthesizing information from526

cross-lingual document pairs and its strong trans-527

ferability to diverse language pairs, validating the528

design of our experimental setup and the broad529

applicability of our method in multilingual cross-530

document NLI tasks.531

Interpretability Study. To evaluate our532

method’s effectiveness, we compared it against533

the R2F baseline using five standard metrics534

(ROUGE-1/2/L, BLEU, METEOR) on both CDCL535

and DocNLI datasets. As shown in Figure 7, our536

method (solid line) consistently outperforms r2f537

(dashed line) across all metrics on both datasets.538

The improvements are particularly pronounced539

in ROUGE-L, where our method achieves 0.34540

versus 0.30 on CDCL-NLI and 0.50 versus 0.37541

on DocNLI, demonstrating enhanced capability542

Method Dev Test
W. F1 Mi. F1 W. F1 Mi. F1

DocNLI 88.05 86.25* 87.09 85.06*
R2F 90.18* 89.15 89.16* 87.86
Ours 91.58 88.61 90.30 88.47

Table 5: Performance comparison on the document-
level DocNLI. Results marked with * are from our re-
production. Weighted F1 -W. F1, Micro F1 - Mi. F1

in preserving structural coherence. It is worth 543

noting that the interpretability data for DocNLI 544

was provided by R2F. 545

Comparison on DocNLI Dataset. We evaluate 546

the generalization of our method on the DocNLI 547

dataset using weighted and micro F1 metrics. As 548

shown in Table 5, our approach achieves state-of- 549

the-art weighted F1, outperforming both the Doc- 550

NLI baseline and R2F, but slightly underperforms 551

R2F on micro F1. This is mainly due to class im- 552

balance between training and evaluation sets, and 553

R2F’s advantage on the simpler reasoning tasks 554

common in DocNLI, while our method is opti- 555

mized for more complex reasoning. These results 556

suggest that balanced sampling or improved adapt- 557

ability could further boost performance. 558

6 Conclusion 559

This work systematically investigates CDCL-NLI, 560

addressing key challenges in cross-document rea- 561

soning and multilingual understanding. We in- 562

troduce a novel CDCL-NLI dataset spanning 26 563

languages and comprising 25,410 meticulously 564

annotated instances. And we propose an RST- 565

enhanced graph fusion mechanism with explana- 566

tion prediction. Through extensive experiments 567

and analyses, we demonstrate that our method ef- 568

fectively captures both structural and semantic in- 569

formation across documents and languages. Specif- 570

ically, the RST-enhanced graph fusion mechanism 571

and explanation prediction component not only 572

improve model interpretability but also enhance 573

performance, as validated by our ablation stud- 574

ies. Our empirical findings provide several key 575

insights: 1) integrating rhetorical structure sig- 576

nificantly improves the graph model’s ability to 577

capture document-level discourse information; 2) 578

reasoning cross-document is necessary and our 579

method has strong cross-lingual reasoning capa- 580

bility; and 3) the EDU-level attribution method has 581

a beneficial effect on classification and could gen- 582

erate explanations aligned with human reasoning. 583
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Limitations584

Our current framework is constrained to reason-585

ing between pairs of documents, while real-world586

scenarios often involve multiple documents across587

diverse topics. This limitation points to valuable588

directions for future research in multi-document589

multi-lingual inference.590

Ethics Statement591

All data in our proposed dataset are collected from592

publicly available sources with respect for privacy593

and copyright. We have removed any personally594

identifiable information during preprocessing. The595

dataset is intended for research purposes only, and596

we advise users to be aware of potential biases597

present in the original data.598
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A Dataset Details838

A.1 Premise Establishment Criteria839

To ensure the quality and reliability of our CDCL-840

NLI dataset, we establish the following criteria for841

premise selection:842

• Content Parallelism: The document pairs must843

discuss the same topic while being naturally844

written in their respective languages, rather than845

being translations of each other. This ensures846

authentic cross-lingual reasoning scenarios.847

• Information Complementarity: While main-848

taining topic consistency, documents in differ-849

ent languages should present complementary850

perspectives or details, enabling meaningful851

cross-document inference tasks.852

• Language Distribution: Premise document853

pairs are randomly sampled from different lan-854

guages to reflect real-world cross-lingual scenar-855

ios. Each pair must consist of documents in two856

distinct languages, ensuring the dataset captures 857

authentic cross-lingual reasoning challenges. 858

These criteria ensure that our dataset captures 859

genuine cross-lingual reasoning challenges while 860

maintaining natural language expression across dif- 861

ferent languages. 862

A.2 CDCL-NLI Label Definitions and 863

Hypothesis Generation 864

Label Definitions. We define three inference la- 865

bels for CDCL-NLI, considering various evidence 866

distribution scenarios across documents: 867

• Entailment: The hypothesis is supported when 868

either: 869

– Evidence from both documents jointly 870

supports the hypothesis through cross- 871

document reasoning, or 872

– One document provides sufficient support- 873

ing evidence while the other document con- 874

tains no contradicting information 875

In both cases, the conclusion must be logically 876

derivable without requiring external knowledge. 877

• Contradiction: The hypothesis is contradicted 878

when either: 879

– Information from either document directly 880

contradicts the hypothesis, or 881

– The combined information from both doc- 882

uments leads to a logical conclusion that 883

contradicts the hypothesis, or 884

– The two documents present mutually contra- 885

dictory evidence regarding the hypothesis 886

• Neutral: The relationship is neutral when: 887

– Neither document alone nor their combina- 888

tion provides sufficient evidence to support 889

or contradict the hypothesis, or 890

– The documents contain only partially rel- 891

evant information that doesn’t allow for a 892

definitive conclusion, or 893

– The hypothesis introduces new information 894

or claims that go beyond what can be veri- 895

fied from the documents 896

These definitions account for the complex nature 897

of cross-document reasoning, where evidence may 898

be distributed asymmetrically across documents 899

and require different levels of information integra- 900

tion for reaching conclusions. 901

Hypothesis Creation. To generate high-quality 902

hypotheses for our CDCL-NLI dataset, we de- 903

signed a structured prompt for GPT-4o that speci- 904

fied detailed requirements for each label. The com- 905

plete prompt template is reproduced in Figure 12. 906
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This prompt design requires GPT-4o to generate907

evidence explaining the reasoning behind each hy-908

pothesis, which significantly reduces hallucination909

and improves alignment with the source documents.910

The structured output format facilitates automated911

processing while ensuring that each hypothesis is912

accompanied by clear justification of its entailment913

category. The generated hypotheses were subse-914

quently reviewed by human annotators to ensure915

quality and adherence to the specified criteria.916

A.3 Data Quality Assessment917

Explanation Annotation Guidelines. We estab-918

lish the following principles for EDU-based expla-919

nation annotation:920

1. Minimal Sufficiency: Annotators should select921

the minimal set of EDUs that are necessary and922

sufficient to support the inference conclusion,923

avoiding redundant or irrelevant units.924

2. Cross-document Coverage: Selected EDUs925

must include evidence from both premise doc-926

uments when the inference requires cross-927

document reasoning, ensuring the explanation928

captures cross-lingual interactions.929

3. Logical Completeness: The selected EDUs930

should form a complete logical chain that clearly931

demonstrates how the inference conclusion is932

reached.933

Quality Metrics. We measured CDCL-NLI934

dataset using multiple metrics as shown in Table 6935

The explanation component of our annotations936

was evaluated using three complementary metrics,937

all showing exceptional improvement after recon-938

ciliation:939

• EDU Selection achieved 91% Jaccard similarity,940

indicating strong consensus on evidence selec-941

tion942

• Span Coverage reached 94% overlap ratio,943

demonstrating precise identification of relevant944

text spans945

• Explanation Consistency achieved perfect align-946

ment (1.00), ensuring logical coherence in rea-947

soning948

Our annotation quality assessment demonstrated949

strong reliability across all NLI categories. The950

inter-annotator agreement measured by Cohen’s κ951

showed substantial initial agreement (0.71-0.75)952

and improved significantly after reconciliation953

(0.79-0.82). Specifically:954

• Entailment labels achieved the highest final955

agreement (κ = 0.82)956

• Contradiction cases showed strong consensus 957

(κ = 0.81) 958

• Neutral instances, while slightly lower, main- 959

tained robust agreement (κ = 0.79) 960

Through our rigorous quality control and filter- 961

ing process, we refined our dataset from an initial 962

collection of 27,750 potential instances to 25,410 963

high-quality inference pairs. This 8.4% reduction 964

reflects our commitment to maintaining high stan- 965

dards in both label accuracy and explanation qual- 966

ity, ensuring the dataset’s reliability for both classi- 967

fication and interpretability research. 968

A.4 Data Information 969

Language Distribution. Figure 8 illustrates the 970

language distribution of our dataset, where Span- 971

ish (15.3%), Russian (10.4%), and French (8.4%) 972

represent the top three most frequent languages, 973

while languages like Hebrew, Czech, and Hindi 974

each accounts for approximately 1-2% of the data. 975

This distribution not only reflects the imbalanced 976

nature of multilingual usage in real-world scenarios 977

but also ensures broad coverage of linguistic phe- 978

nomena, enabling the study of diverse cross-lingual 979

inference patterns. 980

Figure 8: Language distribution of CDCL-NLI dataset.

Language Pair Distribution. As shown in Fig- 981

ure 9a, the dataset exhibits diverse language combi- 982

nations across 24 languages. Spanish demonstrates 983

the highest interaction frequency with other lan- 984

guages, particularly evident in Spanish-Russian 985

(224 instances) and Spanish-Portuguese (178 in- 986

stances) pairs. The heat map reveals several inter- 987

esting patterns: 988

• Most language pairs maintain a balanced bidirec- 989

tional relationship, with similar instance counts 990

12



Category Description (Metric) Init. Final

Entailment (Cohen’s κ) 0.75 0.82
NLI Label Neutral (Cohen’s κ) 0.71 0.79

Contradiction (Cohen’s κ) 0.74 0.81

EDU Selection (Jaccard Sim.) 0.76 0.91
Explanation Span Coverage (Overlap Ratio) 0.81 0.94

Explanation Consistency (Align.) 0.85 1.00

Table 6: Dataset quality assessment results.

in both directions991

• Romance languages (Spanish, French, Por-992

tuguese, Italian) show stronger interconnections993

• Less-resourced languages like Albanian and994

Macedonian have fewer cross-lingual pairs995

• Russian and Spanish serve as central hub lan-996

guages, connecting with most other languages in997

the dataset998

EDU Count Distribution by Language Pair.999

The violin plot in Figure 9b illustrates the distribu-1000

tion of Elementary Discourse Units (EDUs) across1001

the top language pairs. Several key observations1002

emerge:1003

• Most language pairs show a median EDU count1004

between 80 and 120 units1005

• The distributions are generally symmetric, indi-1006

cating consistent EDU patterns regardless of the1007

source language1008

• Romance language pairs (Romanian-Spanish,1009

Portuguese-Spanish, Italian-Spanish) exhibit sim-1010

ilar EDU distribution patterns1011

• Some pairs, particularly those involving Spanish1012

as one of the languages, show wider distributions,1013

suggesting more diverse discourse structures1014

• The violin shapes indicate that extreme EDU1015

counts (very low or very high) are relatively rare1016

across all language pairs1017

This analysis suggests that while the dataset1018

maintains diverse language coverage, it also pre-1019

serves consistent discourse complexity across dif-1020

ferent language combinations.1021

B Graph Construction Details1022

B.1 Relation Types1023

RST Graph Construction with Selected Relation1024

Types. In constructing individual RST graphs for1025

each document, we select a subset of relation types1026

to focus on the most salient discourse and seman-1027

tic connections. Specifically, we use the follow-1028

ing relation types: Temporal, Summary, Condition, 1029

Contrast, Cause, Background, Elaboration, Expla- 1030

nation, and lexical chains. This selection balances 1031

coverage and complexity, ensuring that the result- 1032

ing graph captures essential discourse relations and 1033

key semantic links without introducing excessive 1034

sparsity or noise. The inclusion of lexical chains 1035

further strengthens semantic cohesion by linking 1036

related words and expressions across different seg- 1037

ments. 1038

Graph Fusion with Extended Relation Types. 1039

During the fusion of RST graphs from multi- 1040

ple documents, we expand the set of relation 1041

types to include a broader range of discourse 1042

and organizational structures. The extended set 1043

comprises: Temporal, TextualOrganization, Joint, 1044

Topic-Comment, Comparison, Condition, Contrast, 1045

Evaluation, Topic-Change, Summary, Manner- 1046

Means, Attribution, Cause, Background, Enable- 1047

ment, Explanation, Same-Unit, Elaboration, and 1048

Lexical chains. This comprehensive set allows for 1049

richer cross-document alignment by capturing di- 1050

verse forms of rhetorical and semantic relationships. 1051

Both in single-document and fused graphs, these 1052

relations serve as edge types in the construction 1053

of the Relation-aware Graph Attention Network 1054

(RGAT), enabling the model to effectively encode 1055

complex discourse and semantic structures. 1056

B.2 Node Feature Definition 1057

Specifically, for leaf nodes, we define: 1058

ϕ(vi) = ϕ(EDUs),Textvi = EDUs,Typevi = 1. 1059

For branch nodes, we define: 1060

ϕ(vi) =
1

2
(ϕ(vj) + ϕ(vk)), 1061

1062Textvi = Textvj ⊕ Textvk ,Typevi = 0, 1063

where vj , vk are the children of vi, and ⊕ denotes 1064

concatenation. For completeness, we provide the 1065
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(a) Heat map of premise language combinations across the
dataset.

(b) Distributions of EDU counts across top-20 language pairs.

Figure 9: Statistic visualization of language pair distributions and their EDU characteristics.

detailed formulas for the relation-level and node-1066

level attention mechanisms used in updating node1067

embeddings.1068

B.3 Justification of the Cross-Document Edge1069

Threshold δ1070

The threshold δ for adding cross-document lexi-1071

cal edges is set to 0.8 based on empirical analysis1072

balancing sparsity and relevance of edges. We eval-1073

uated different threshold values on a validation set1074

using the following metrics:1075

• Edge Sparsity: Higher thresholds reduce the1076

number of edges, leading to sparser graphs that1077

help avoid noise.1078

• Semantic Relevance: Lower thresholds intro-1079

duce more edges but may include irrelevant or1080

weakly related node pairs.1081

• Downstream Task Performance: We observed1082

that δ = 0.8 achieves the best trade-off, maximiz-1083

ing performance on the target task (e.g., accuracy1084

or F1 score).1085

Figure 10 shows the impact of varying δ on edge1086

count and task performance, confirming the choice1087

of 0.8 as a reasonable and effective threshold.1088

B.4 Graph Attention Formulas1089

Relation Weight. The relation importance1090

weights αr are learnable parameters normalized1091

by softmax:1092

αr =
exp(wr)∑

r′∈R exp(wr′)
,1093

where wr is a trainable scalar parameter for rhetor-1094

ical relation r.1095

Figure 10: Effect of threshold δ on graph sparsity and
task performance. Edge count (blue) decreases as δ
increases, while task performance (red) peaks at δ =
0.8 (dashed line), providing optimal balance between
relevant connections and noise reduction.

Hyperparameters. For the model defined in 1096

Equation 1, the following settings are used: The 1097

first layer uses K = 4 attention heads. The second 1098

layer uses K = 1 attention head. Residual con- 1099

nections and dropout with rate 0.1 are applied after 1100

each layer. 1101

Node-level Attention Coefficients. The atten- 1102

tion coefficients βr,(l)ij,k measure the importance of 1103

neighbor node vj to node vi under relation r, head 1104

k, and layer l. They are computed as: 1105

β
r,(l)
ij,k =

exp
(
ψ
(
a
(l)⊤
r,k

[
Wr,kh

(l−1)
vi ∥Wr,kh

(l−1)
vj

]))
∑

vm∈Nr(vi)

exp
(
ψ
(
a
(l)⊤
r,k

[
Wr,kh

(l−1)
vi ∥Wr,kh

(l−1)
vm

])) ,
(8) 1106

where Wr,k is the trainable linear transformation 1107

matrix for relation r and head k, a(l)r,k is the learn- 1108

able attention vector for relation r, head k, and 1109
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layer l, [·∥·] denotes vector concatenation, ψ(·) is1110

the ELU activation function.1111

Additional Details. Each layer uses residual con-1112

nections and dropout with a rate of 0.1 to improve1113

training stability. The first layer uses K = 4 atten-1114

tion heads, while the second layer uses K = 1.1115

C Training Details1116

C.1 Model Training Hyperparameters1117

All the models are implemented in PyTorch and1118

trained on an NVIDIA A100 GPU. To ensure fair1119

comparison and reproducibility of results, all con-1120

ventional baseline models and our model were fine-1121

tuned under consistent experimental settings. As1122

detailed in Table 7, each baseline utilizes the XLM-1123

RoBERTa-large pretrained model as the base ar-1124

chitecture and the AdamW optimizer for training.1125

The learning rates are carefully selected for each1126

model variant to optimize performance, while main-1127

taining a uniform batch size of 16, a maximum in-1128

put sequence length of 512 tokens, and training for1129

20 epochs. These standardized hyperparameters1130

guarantee that performance differences stem from1131

model design rather than training discrepancies,1132

thereby supporting the validity and reproducibility1133

of our comparative evaluation. Specially, for our1134

model, as we split the documents into EDUs, so1135

the maximux length is for one single EDU. By pro-1136

cessing shorter EDUs instead of full documents,1137

our model in long-text scenarios minimizes infor-1138

mation loss, leading to improved performance.1139

C.2 LLM Fine-tuning Hyperparameters1140

For fine-tuning the Llama3-8B-instruct and Qwen3-1141

8B model, we employed LoRA (Low-Rank Adapta-1142

tion) to efficiently adapt the large-scale pretrained1143

model with limited computational resources. The1144

key hyperparameters for LoRA tuning included a1145

rank of 16, which balances adaptation capacity and1146

parameter efficiency, and a dropout rate of 0.1 to1147

mitigate overfitting. The learning rate was set to1148

2 × 10−4 with a linear warmup over the first 5001149

steps, followed by a constant decay. We used a1150

batch size of 64 sequences and capped the maxi-1151

mum input length at 1024 tokens to fully leverage1152

the model’s context window. Training was con-1153

ducted for 10 epochs, which empirically provided1154

a good trade-off between convergence and training1155

cost. These hyperparameters were chosen based on1156

prior LoRA tuning best practices and preliminary1157

experiments to ensure stable and effective adap- 1158

tation of the Llama3-8B-instruct and Qwen3-8B 1159

model. The prompt is shown in Figure 11. 1160

D Additional Experiments 1161

D.1 LLM Few-shot Prompt 1162

As shown in Figure13, one example is provided 1163

to demonstrate how to determine the logical rela- 1164

tionship between the premise and the hypothesis. 1165

The model is instructed to output exactly one of 1166

three labels: entailment, contradiction, or neutral. 1167

This prompt effectively guides the model to under- 1168

stand the task objective and output format, thereby 1169

enhancing its reasoning capability across multiple 1170

languages and documents during the few-shot vali- 1171

dation stage. 1172

D.2 LLM in Zero-shot Scenario 1173

The zero-shot results reported in Table 8 are ob- 1174

tained using the same prompt design as the few- 1175

shot experiments, differing only in the absence of 1176

in-context examples. As expected, all models per- 1177

form worse under the zero-shot setting compared 1178

to their few-shot counterparts, demonstrating the 1179

effectiveness and necessity of providing exemplars 1180

in the prompt for this task. Despite the overall 1181

performance drop, the relative ranking of the three 1182

models remains consistent with the few-shot sce- 1183

nario, with Qwen3-8B achieving the highest scores, 1184

followed by GPT-4o, and then Llama-3-8B. This 1185

consistency indicates that these models’ capabil- 1186

ities in handling the CDCL-NLI task are stable 1187

across different prompting strategies. Moreover, 1188

the results highlight the challenge of zero-shot 1189

cross-document and cross-lingual natural language 1190

inference, emphasizing the importance of prompt 1191

engineering and in-context learning to boost model 1192

performance on complex multilingual and multi- 1193

document reasoning tasks. 1194

D.3 Baseline Evaluation in Single Document 1195

Scenario 1196

To further demonstrate the cross-document char- 1197

acteristic of our dataset, we add this extra exper- 1198

iment to evaluate the performance using either a 1199

single document (Document1 or Document2) as 1200

the premise compared to using the full combined 1201

premise, as summarized in Table 9. The notice- 1202

able improvement in F1 score when both docu- 1203

ments are combined indicates that effective infer- 1204

ence relies on integrating information from multi- 1205
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Baseline Base Model Optimizer LR Batch Size Max Length Epochs

Hypothesis-only XLM-R Large AdamW 3× 10−6 16 512 20
DocNLI XLM-R Large AdamW 3× 10−6 16 512 20
R2F XLM-R Large AdamW 1× 10−6 16 512 20
Ours XLM-R Large AdamW 1× 10−5 16 512(per EDU) 20

Table 7: Training hyperparameters for conventional baseline models and our model. These configurations, including
the consistent use of the XLM-RoBERTa-Large base model and AdamW optimizer, were utilized to ensure
reproducibility and fair comparison.

Fine-tunning Prompt

You are skilled in the NLI task. Given a premise consisting of two documents and a hypothesis,
each with its specified language, your task is to determine the natural language inference (NLI)
relationship between the hypothesis and the premise. Note that the premise and hypothesis may be
in different languages. The output should be one of three labels: Entailment, Contradiction, or
Neutral.
Input format:
Premise 1 (Language: <Lang1>): <Premise1 text>
Premise 2 (Language: <Lang2>): <Premise2 text>
Hypothesis: <Hypothesis text>
Output format:
One of the labels: Entailment, Contradiction, or Neutral
—
Example:
Premise 1 (Language: English): The cat is sitting on the mat.
Premise 2 (Language: French): Le chat est assis sur le tapis.
Hypothesis: The animal is resting on a rug.
Output: Entailment
—
Now, given the input premises and hypothesis, provide the NLI label.

Figure 11: Llama3-8B-Instruct and Qwen3-8B Finetuning Prompt.

ple sources. Additionally, the similar results ob-1206

served between Single Document 1 (54.22% and1207

57.09% F1) and Single Document 2 (54.95% and1208

57.12% F1) imply that each document provides1209

valuable and roughly equal contributions. This fur-1210

ther supports the notion that reasoning in this task1211

benefits from synthesizing evidence across docu-1212

ments rather than focusing on a single source.1213

E Case Study1214

E.1 Our Method Case1215

Our approach employs a multi-stage framework for1216

analyzing complex multi-document multi-lingual1217

NLI scenarios. Take the given example in Fig-1218

ure 13, the Yanaquihua gold mine incident in Con-1219

desuyos, Peru, where a short circuit-induced fire1220

resulted in 27 fatalities among workers trapped1221

within a tunnel, prompting mobilization of local au-1222

thorities and rescue teams. We begin by parsing the 1223

premise documents using Rhetorical Structure The- 1224

ory (RST), which generates hierarchical discourse 1225

trees wherein each node represents an Elementary 1226

Discourse Unit (EDU). These nodes are assigned 1227

unique indices, with their textual content compre- 1228

hensively documented in Tables 10 and 11. 1229

Following RST parsing, we construct individ- 1230

ual discourse graphs for each premise document. 1231

These discrete graphs are subsequently integrated 1232

into a unified premise graph through the establish- 1233

ment of "Lexical" chains that leverage semantic 1234

information and discourse relations to facilitate 1235

enhanced inference. As illustrated in Tables 10 1236

and 11, EDU nodes sharing identical uppercase 1237

character designations indicate the presence of 1238

cross-document “Lexical” chains. This consol- 1239

idated graph representation effectively captures 1240
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Model TestSet1: Cross-Lingual TestSet2: English
Precision Recall F1 Macro Precision Recall F1 Macro

Llama-3-8B 44.00 50.00 46.00 49.00 55.00 50.00
GPT-4o 50.00 54.00 52.00 59.00 62.00 61.00
Qwen3-8B 58.00 54.00 57.00 68.00 64.00 63.00

Table 8: Zero-shot performance of large language models on the CDCL-NLI dataset.

Model Single Document1 Single Document2 Combined Documents

DocNLI 54.22 54.95 64.46
R2F 57.09 57.12 65.42

Table 9: F1 Macro scores for different methods across premises with varying numbers of documents.

EDU Text EDU Text

1 7. května 22 řekl prokurátor Giovanni Matos místní televizní
stanici Canal N.

4 Společnost okamžitě nereagovala na žádost o ko-
mentář.

24 jsou 27 obětí,“

7 (Reuters) - 25 „Informace jsou správné,
11 1⃝ Úřadníci uvedli v neděli, že nehoda v malé zlaté

dolině na jihu Peru odnesla život 27 pracovníků.
26 potvrdila je policie v Yanaquihuě,

12 Jedná se o jeden z nejúmrtnějších důležitých
událostí v těžebním průmyslu v tomto jihoamer-
ickém státě.

27 „Jedná se o formální dolinu (...),

15 2⃝ Nehoda se stala v sobotu ráno v těžební společnosti
Yanaquihua, která se nachází v provincii Con-
desuyos v departementu Arequipa.

30 dodal.

17 Zdá se, že došlo ke zkratu, která způsobila požár
uvnitř tunelu,

33 musíme jít

18 uvedla regionální vláda. 34 a zjistit, kde jsou mrtví, jestli je tam bezpečné,
37 3⃝ Regionální vláda Arequipy a ministerstvo vnitra

mobilizovaly policie, zdravotníky a sanitky, aby
pomohly při péči o oběti a jejich záchraně.

35 aby se tam mohli dostat policisté a soudní pra-
covníci

39 Podle statistik peruánského ministerstva těžeb a en-
ergie je toto nejvyšší počet obětí v jediném těžebním
nehodě

36 a provést procedury,“

40 nejméně od roku 2000.

Table 10: Elementary Discourse Units (EDUs) from Document1 with their corresponding Spanish text. Segments
highlighted in green represent evidence supporting the Entailment classification. EDU indexes with circled numbers
1⃝ indicate cross-document "Lexical" chains linking to corresponding EDUs in Document2.

the comprehensive discourse context across the1241

premises, enabling more robust and coherent se-1242

mantic modeling.1243

The classification module processes this unified1244

graph in conjunction with the hypothesis to predict1245

the appropriate NLI label. Concurrently, the expla-1246

nation extraction module identifies a salient subset1247

of nodes within the premise graph that substanti-1248

ate the classification decision. These explanation1249

nodes are visually distinguished through green font1250

highlighting in Tables 10 and 11, explicitly denot-1251

ing their explanatory significance.1252

Our integrated methodology capitalizes on the1253

hierarchical discourse structure inherent in RST1254

parsing and the semantic connectivity across docu- 1255

ments, ensuring that the model’s inference is both 1256

accurate and interpretable. The explicit identifica- 1257

tion of explanation nodes within the discourse struc- 1258

ture facilitates transparent, human-comprehensible 1259

rationales grounded in the premise texts, thereby 1260

advancing the explainability of NLI systems in 1261

complex multi-document, multi-lingual scenarios. 1262

This approach proves particularly valuable when 1263

analyzing intricate real-world situations such as 1264

the Yanaquihua mine disaster, where understand- 1265

ing the causal relationships and contextual factors 1266

is crucial for proper inference. 1267
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EDU Text EDU Text

14 informó el Ministerio Público de ese país. 53 [Al menos siete muertos en Texas
15 1⃝ Al menos 27 personas murieron en Perú 54 tras atropellamiento en una parada de autobús cerca

de un refugio para inmigrantes]
17 y otras dos fueron rescatadas 56 lo que impidió que los mineros pudieran escapar.
18 luego de un incendio el sábado en una mina de oro

en la sureña provincia de Condesuyos,
57 Se informó que

21 Según las primeras investigaciones, la tragedia tuvo
lugar

59 el fuego se propagó de manera muy rápida por las
estructuras de madera que sostienen el yacimiento,

23 2⃝ tras producirse un cortocircuito a 100 metros de la
entrada de la mina Yanaquihua,

60 dedicado a la extracción de oro,

24 conocida como Esperanza I. 61 Medios locales peruanos indicaron que
28 informó el Gobierno regional de Arequipa. 63 27 trabajadores quedaron atrapados en la mina
29 “Se habría producido un cortocircuito 64 tras un incendio.
31 que provocó un incendio en el interior del socavón, 65 Getty Images
32 que habría puesto en riesgo la vida de los traba-

jadores”,
71 James Casquino, alcalde de Yanaquihua, dijo que

33 Medios locales indicaron que 73 el dueño de la mina fue a la comisaría de ese distrito
34 27 trabajadores atrapados habían fallecido por as-

fixia.
75 para pedir ayuda en el rescate de las personas

35 La noche del sábado, el Ministerio del Interior con-
firmó en su cuenta de Twitter el accidente.

76 que se encontraban atrapadas.

38 indicó el tuit. 78 [Mueren varios migrantes en un accidente de auto
en Nuevo México cerca de la frontera]

39 “Personal policial se encuentra en el distrito de
Yanaquihua

79 Las autoridades indicaron que

41 para apoyar en las labores de rescate de los cuerpos
de mineros

80 3⃝ hacia la zona se habían movilizado rescatistas.

42 que fallecieron dentro de un socavón en la provincia
de Condesuyos”,

81 Familiares de las víctimas se reunieron frente a la
comisaría de Yanaquihua

49 Imágenes difundidas en redes sociales mostraban
una gran columna de humo negro proveniente de la
mina,

83 para recabar información sobre la suerte de sus seres
queridos

51 y medios locales indicaron que 84 y exigir a las autoridades que agilizaran las labores
de rescate de los cuerpos.

52 en el momento del cortocircuito había personal tra-
bajando a unos 80 metros de profundidad.

85 El fiscal Giovanni Matos indicó a un medio local
que

87 las tareas en la mina podían demorar 89 porque no se sabía si los equipos de rescatistas
podían ingresar a la mina

23 para retirar los cadáveres. 90 para retirar los cadáveres.
91 [Una tormenta de polvo en Illinois causa múltiples

muertes y decenas de hospitalizados tras choque
masivo]

94 indica la compañía en su página web.

95 La mina pertenece a Yanaquihua S. A. C., una em-
presa

96 que reúne a pequeños productores mineros dedica-
dos a la explotación del oro y otros metales,

Table 11: Elementary Discourse Units (EDUs) from Document2 with their corresponding Spanish text. Segments
highlighted in green represent evidence supporting the Entailment classification. EDU indexes with circled numbers
1⃝ indicate cross-document "Lexical" chains linking to corresponding EDUs in Document1.

E.2 LLM Answer Case1268

As shown in Table 3, Qwen3-8B achieves higher1269

scores compared to Llama3-8B-instruct and the1270

closed-source GPT-4o. One key reason is that we1271

evaluate Qwen3-8B using its thinking (chain-of-1272

thought) mode, as illustrated in Figure 14. We1273

still take the case in validation prompt(Tabel 13) as1274

an example, the model systematically parses each1275

premise, accurately extracts key facts, and performs1276

detailed cross-checking between the articles and1277

the hypothesis. It also demonstrates the ability1278

to handle subtle differences in wording (such as1279

distinguishing between deaths and rescues) and to 1280

resolve potential ambiguities in translation (e.g., 1281

the meaning of "obětí" in Czech). 1282

Nevertheless, our proposed approach still out- 1283

performs Qwen3-8B, primarily due to its ability to 1284

explicitly capture document structure through RST 1285

parsing and cross-document, cross-lingual seman- 1286

tic integration via "Lexical" chains. Moreover, our 1287

method demonstrates superior efficiency with sig- 1288

nificantly lower computational requirements and 1289

faster inference time, making it more practical for 1290

real-world applications while maintaining state-of- 1291

the-art performance. 1292
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Hypothesis Generation Prompt

[Hypothesis Generation Prompt] We are creating a cross-document cross-lingual NLI dataset.
Below are two documents under the event topic: [CATEGORY], treated as one premise in this NLI
task. Based on them, generate hypotheses in three labels. You must strictly follow the instructions:
1. Hypothesis: The hypothesis should be a factual statement based on the content of the articles.
It must be a simple statement and should not contain any explanation or analysis like “this
contradicts” or “this agrees with” or “this is inconsistent with.”
2. Evidence: The evidence section should explain how the hypothesis relates to the articles,
including any contradictions or confirmations, using specific quotes from the articles.
Document Details:
• Document 1: Date: [DATE_1]; Article: [ARTICLE_1]
• Document 2: Date: [DATE_2]; Article: [ARTICLE_2]
[Task 1: Entailment Generation] Generate an Entailment Hypothesis and evidence.
The hypothesis is supported if evidence from both documents together or from one document alone
(without contradiction in the other) logically supports it.
Guidelines:
• Ensure each detail is verifiable by premise
• Include specific facts (dates, names, etc.)
• No speculation—strictly based on facts
Evidence:
• Quote relevant parts from both articles and explain how they jointly support the hypothesis
[Task 2: Neutral Generation] Generate a Neutral Hypothesis and evidence.
One hypothesis is neutral if there is insufficient or only partial evidence in the premise to confirm
or deny it, or if it contains information beyond what the premise verify.
Guidelines:
• Reasonable speculation or expanded related aspects in a reasonable way
• Propose middle ground if there’s conflicting information
Evidence:
• Show partial support from one or both articles without full confirmation
• Explain how the hypothesis goes beyond but stays consistent with the Document content
Remember, A neutral hypothesis should not be directly confirmed by the premise (which would
make it entailed), nor should it contradict the articles (which would make it conflicting).
[Task 3: Conflicting Generation] Generate a Conflicting Hypothesis and evidence.
One hypothesis is contradicted if either document or their combined information directly opposes
it, or if the documents conflict with each other regarding the hypothesis.
Guidelines:
• Negate or reverse key information in premise
• Complex and multi-faceted hypothesis with multiple contradictions
• Try to combine multiple points of contradiction
• Ensure the hypothesis appears reasonable but actually conflicts clearly
Evidence:
• Show which document(s) the hypothesis contradicts and explain specific points
• If applicable, explain why this hypothesis cannot coexist with the premise content
Output in JSON format:
{ "entail_evidence": "...",

"entail_hypothesis": "...",
"neutral_evidence": "...",
"neutral_hypothesis": "...",
"conflict_evidence": "...",
"conflict_hypothesis": "..."}

Figure 12: Hypothesises Generation Prompt.
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Validation Prompt

You are tasked with a cross-document and cross-language Natural Language Inference (NLI) task.
Your goal is to determine the relationship between the "premise" and the "hypothesis". The premise
consists of two documents presented in different languages. Here is one example:

Premise(Document1 in Spanish)

Al menos 27 personas murieron en Perú y otras dos fueron rescatadas luego de un incendio
el sábado en una mina de oro en la sureña provincia de Condesuyos, informó el Ministerio
Público de ese país. Según las primeras investigaciones, la tragedia tuvo lugar tras producirse
un cortocircuito a 100 metros de la entrada de la mina Yanaquihua, conocida como Esperanza
I. “Se habría producido un cortocircuito que provocó un incendio en el interior del socavón,
que habría puesto en riesgo la vida de los trabajadores”, informó el Gobierno regional de
Arequipa. Medios locales indicaron que 27 trabajadores atrapados habían fallecido por asfixia.
La noche del sábado, el Ministerio del Interior confirmó en su cuenta de Twitter el accidente.
Personal policial se encuentra en el distrito de Yanaquihua para apoyar en las labores de
rescate de los cuerpos de mineros que fallecieron dentro de un socavón en la provincia de
Condesuyos. Imágenes difundidas en redes sociales mostraban una gran columna de humo
negro proveniente de la mina, y medios locales indicaron que en el momento del cortocircuito
había personal trabajando a unos 80 metros de profundidad. Se informó que el fuego se
propagó de manera muy rápida por las estructuras de madera que sostienen el yacimiento,
dedicado a la extracción de oro, lo que impidió que los mineros pudieran escapar.James
Casquino, alcalde de Yanaquihua, dijo que el dueño de la mina fue a la comisaría de ese
distrito para pedir ayuda en el rescate de las personas que se encontraban atrapadas.

Premise(Document2 in Czech)

7. května (Reuters) - Úřadníci uvedli v neděli, že nehoda v malé zlaté dolině na jihu Peru
odnesla život 27 pracovníků. Jedná se o jeden z nejúmrtnějších důležitých událostí v těžebním
průmyslu v tomto jihoamerickém státě. Nehoda se stala v sobotu ráno v těžební společnosti
Yanaquihua, která se nachází v provincii Condesuyos v departementu Arequipa. Zdá se, že
došlo ke zkratu, která způsobila požár uvnitř tunelu, uvedla regionální vláda. „Informace jsou
správné, potvrdila je policie v Yanaquihuě, jsou 27 obětí,“ řekl prokurátor Giovanni Matos
místní televizní stanici Canal N. Regionální vláda Arequipy a ministerstvo vnitra mobilizovaly
policii, zdravotníky a sanitky, aby pomohly při péči o oběti a jejich záchraně. Podle statistik
peruánského ministerstva těžeb a energie je toto nejvyšší počet obětí v jediném těžebním
nehodě nejméně od roku 2000. Společnost okamžitě nereagovala na žádost o komentář.

Hypothesis and Label

Hypothesis: "The Yanaquihua gold mine in the province of Condesuyos, Peru, experienced a
fatal incident on a Saturday morning due to a short circuit that caused a fire, leading to the
death of 27 workers trapped inside the tunnel, with local authorities and rescue teams being
mobilized to the site."
Output: entailment

Now, given the following input, output exactly one word indicating the NLI label: neutral,
entailment, or contradiction.
Premise:[Premsise]
Hypothesis: [Hypothesis]
Output the NLI label (neutral/entailment/contradiction):

Figure 13: LLM Validation Prompt.
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Qwen3-8B Reasoning Output

Okay, let’s tackle this NLI task. So, the premise has two articles in Spanish and Czech, and the
hypothesis is in English. I need to determine if the hypothesis is entailed, contradicted, or neutral
based on the premises.
First, I’ll read through the Spanish article. It mentions that on Saturday, there was a fire in a gold
mine in Condesuyos province, caused by a short circuit 100 meters from the entrance. The mine
is called Yanaquihua, known as Esperanza I. They say 27 people died, two were rescued. The
regional government of Arequipa mentioned the short circuit caused the fire, risking workers’ lives.
Local media said 27 trapped workers died of asphyxia. The Ministry of Interior confirmed the
accident on Saturday, and police were there for rescue. The fire spread quickly through wooden
structures, preventing escape. The mine belongs to Yanaquihua S.A.C., a company with small
miners.
Now the Czech article: Officials said the accident in the small gold mine in southern Peru resulted
in 27 deaths. It happened on Saturday morning at the Yanaquihua mine in Condesuyos province,
Arequipa department. A short circuit caused a fire inside the tunnel. The regional government
confirmed 27 victims. The prosecutor Giovanni Matos said the information is correct, and police
are there to find the dead, check safety for rescue teams. Regional government and interior ministry
mobilized police, medics, and ambulances. It’s the highest number of deaths in a single mining
accident since 2000. The company didn’t respond to a comment request.
Hypothesis: The Yanaquihua gold mine in Condesuyos, Peru, had a fatal incident on Saturday
morning due to a short circuit causing a fire, leading to 27 workers’ deaths trapped inside the
tunnel, with local authorities and rescue teams mobilized.
Check each part. The Spanish article says the fire was caused by a short circuit, leading to 27
deaths. The Czech article confirms the same: short circuit causing fire, 27 deaths. Both mention
Saturday morning (the Spanish says "sábado" which is Saturday, and the Czech says "v sobotu
ráno" which is Saturday morning). The mine is Yanaquihua in Condesuyos, Peru. The death count
is 27, and both mention authorities and rescue teams being mobilized. The hypothesis states all
these points. The Spanish article also mentions the mine’s name and the company, which the Czech
article doesn’t, but that’s not conflicting. The hypothesis doesn’t mention the company, so that’s
okay.
Are there any contradictions? The Spanish article mentions two people rescued, but the hypothesis
says 27 died. Wait, the hypothesis says "leading to the death of 27 workers trapped inside the
tunnel." The Spanish article says 27 died and two were rescued. The Czech article says 27 victims,
which could include the two rescued? Wait, maybe not. If two were rescued, then the deaths would
be 27, and the two rescued are alive. So the hypothesis says 27 workers died, which matches the
Spanish article’s 27 deaths. The Czech article says "27 obětí" which is victims, which could be the
27 who died, but maybe the two rescued are not counted as victims? Or maybe the Czech article is
using "obětí" as victims, which could include those who died and those rescued? Wait, in Czech,
"obětí" is victims, usually meaning those who died. But the Spanish article says 27 died and two
rescued. The Czech article says 27 victims, which might be the same 27, but the two rescued might
not be considered victims. So the hypothesis says 27 workers died, which aligns with both articles.
The Czech article says "27 obětí" which is victims, so that’s consistent.
Also, the hypothesis mentions the fire caused by a short circuit, which both articles confirm. The
mobilization of authorities and rescue teams is mentioned in both. The time is Saturday morning
in both. The mine’s name and location are correct.
Therefore, the hypothesis is fully supported by both articles. So the label should be entailed.

Figure 14: Illustration of Qwen3-8B’s chain-of-thought reasoning process. The model systematically analyzes
premise documents by extracting key facts, performing cross-document verification, and resolving translation
ambiguities (e.g., Czech term "obětí"). While this reasoning approach enables Qwen3-8B to outperform other LLMs
like Llama3-8B-instruct and GPT-4o, our RST-based method achieves superior performance through more intuitive
explanations, explicit discourse structure modeling, and cross-lingual semantic integration, all while requiring
significantly lower computational resources and faster processing times.
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