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Abstract

Object-centric representations form the basis of human perception and enable
us to reason about the world and to systematically generalize to new settings.
Currently, most machine learning work on unsupervised object discovery focuses
on slot-based approaches, which explicitly separate the latent representations of
individual objects. While the result is easily interpretable, it usually requires the
design of involved architectures. In contrast to this, we propose a distributed
approach to object-centric representations: the Complex AutoEncoder. Following a
coding scheme theorized to underlie object representations in biological neurons, its
complex-valued activations represent two messages: their magnitudes express the
presence of a feature, while the relative phase differences between neurons express
which features should be bound together to create joint object representations.
We show that this simple and efficient approach achieves better reconstruction
performance than an equivalent real-valued autoencoder on simple multi-object
datasets. Additionally, we show that it achieves competitive unsupervised object
discovery performance to a SlotAttention model on two datasets, and manages to
disentangle objects in a third dataset where SlotAttention fails – all while being
7-70 times faster to train.

1 Introduction

Object discovery plays a crucial role in human perception. It allows us to interact seamlessly with
our environment, reason about it, and to generalize systematically to new settings. To achieve this,
our brains have overcome the binding problem (Greff et al., 2020): even though biological neural
networks exhibit (relatively) fixed connections, they can flexibly and dynamically bind information
belonging to separate entities.

Currently, most work dedicated to solving the binding problem in machine learning focuses on
slot-based approaches (Hinton et al., 2018; Burgess et al., 2019; Greff et al., 2019; Lin et al., 2020;
Locatello et al., 2020; Kipf et al., 2021). Here, the latent representations are explicitly separated into
“slots” which learn to represent different objects. These slots are highly interpretable; however, the
introduction of a separate object-centric representation module in a model that otherwise does not
exhibit object-centric features causes a number of problems. For one, it usually requires the design
of involved architectures with iterative procedures, elaborate structural biases, and intricate training
schemes to achieve a good separation of object features into slots. Moreover, this separation is often
achieved by limiting the information flow and expressiveness of the model, leading to failure cases for
complex objects, e.g. with textured surfaces (Karazija et al., 2021). Finally, since all slots are created
at the same level of representation, this approach cannot inherently represent part-whole hierarchies.
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Figure 1: We propose the Complex AutoEncoder (CAE) – a simple and efficient object discovery
approach leveraging complex-valued activations in an autoencoding architecture. Given a complex-
valued input whose magnitude represents the input image and whose phase is set to a fixed value, the
model learns to reconstruct the input image, and to represent the disentangled object identities in its
phase values in an unsupervised way.

To overcome these issues of slot-based approaches, we take inspiration from the temporal correlation
hypothesis from neuroscience (Singer, 2009) and design a model that learns representations of
objects that are distributed across and embedded in the entire architecture. The temporal correlation
hypothesis describes a coding scheme used by biological neurons to overcome the binding problem.
Essentially, it posits that each neuron sends two types of messages: (1) whether a certain feature is
present or not, encoded by the discharge frequency or rate code, and (2) which other neurons to bind
information to, encoded by the synchronicity of firing patterns.

Following Reichert & Serre (2014), we abstract away these two messages requiring binary spikes and
temporal dynamics by making use of complex-valued activations in artificial neural networks. This
allows each neuron to represent the presence of a feature through the complex number’s magnitude,
and to bind this feature to other neurons’ features by aligning its phase value with theirs. Reichert
& Serre (2014) applied this coding scheme to a deep Boltzmann machine trained with real-valued
activations to create object-centric representations at test-time, which required 10s-100s of iterations
to settle to an output configuration. In contrast to this, we apply this coding scheme to a modern
convolutional autoencoder, and train this model end-to-end with complex-valued activations. Through
a careful setup of each layer, this allows us to create phases representative of object identity within a
single forward-pass through the model – significantly increasing the efficiency and practicality of our
approach.

Inspired by the temporal correlation hypothesis, we propose the Complex AutoEncoder (CAE, Fig-
ure 1), an object discovery model that leverages complex-valued activations in a standard autoencoder.
In the CAE, we use the magnitude of the complex-valued reconstructions to train the model using a
standard mean squared error loss, and the phase values for the unsupervised creation of pixel-accurate
segmentation masks. Overall, this leads to an approach in which the object-centric representations
are embedded in and distributed across the entire architecture. Our contributions are as follows:

• We show how the coding scheme described by the neuroscientific temporal correlation hypothesis
can be applied to modern deep artificial neural networks in an efficient and effective way by
introducing the Complex AutoEncoder (CAE).

• We show that the CAE creates more accurate reconstructions than its real-valued counterpart on
simple multi-object datasets, indicating that it makes effective use of its complex-valued activations
to represent different objects.

• We show that the CAE achieves competitive or substantially better object discovery performance
on simple multi-object datasets compared to SlotAttention (Locatello et al., 2020), a state-of-the-art
slot-based approach, while being 7-70 times faster to train.

2 The Temporal Correlation Hypothesis

The Complex AutoEncoder takes inspiration from neuroscience, where the temporal correlation
hypothesis describes a possible mechanism underlying object-centric representations in the brain. In
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Figure 2: The temporal correlation hypothesis. Left: Input image with different objects. Middle:
Implementation of the temporal correlation hypothesis with spiking neurons. Their spiking rate
represents the presence of a feature, while their synchronization represents which features should
be bound together to jointly represent an object. Right: Implementation of the temporal correlation
hypothesis with complex-valued activations. Each complex number z = m · eiφ ∈ C is defined by
its magnitude m and phase φ. This allows for an equivalent representation of feature presence and
synchronization through the magnitude and phase values, respectively.

this section, we will outline this hypothesis, and draw a connection to the complex-valued activations
implemented in our proposed model.

In neuroscience, the binding problem describes the open question of how the brain binds information
flexibly and dynamically within a network of fixed connectivity and segregated processing areas to
give rise to coherent percepts, e.g. for different objects. Only by overcoming the binding problem,
the brain is capable to represent all manner of objects, to attain a compositional understanding of the
world, and to generalize robustly to new environments. While there is an ongoing debate as to their
functional importance (Shadlen & Movshon, 1999; Ray & Maunsell, 2010), various works posit that
the brain uses temporal dynamics to overcome the binding problem (Milner, 1974; Von Der Malsburg
& Schneider, 1986; Singer & Gray, 1995; Engel et al., 1997; Singer, 1999; Fries, 2005; Singer,
2009; Palmigiano et al., 2017). Essentially, these theories postulate that the brain binds information
from different neurons by synchronizing their firing patterns, while desynchronized firing represents
information that ought to be processed separately. There are various manifestations of this theory;
in this work, we will focus on the temporal correlation hypothesis as developed by Singer & Gray
(1995); Singer (2009).

The temporal correlation hypothesis describes how the oscillating behavior of biological neurons
could be used by the brain to overcome the binding problem. It posits that each neuron sends two
messages through its spiking pattern (Figure 2 - Middle): (1) The discharge frequency or rate code of
a neuron encodes whether the feature that it is tuned to is present or not. The real-valued activation of
neurons in artificial neural networks can be interpreted to be the technical implementation of this
message. (2) The relative timing between two neurons’ spikes encodes whether the represented
features of these neurons should be bound together or not. When firing in synchrony, the features
they represent will be evaluated jointly by the target neuron and are thus bound together in a flexible
and dynamic way. Currently, very few works explore the use of this second message type in artificial
neural networks.

There is a broad range of neuroscientific evidence in support of the temporal correlation hypothesis.
For one, oscillating neural activity (i.e. brain waves) is observed across the brain. Gamma waves
in the frequency range between 30 and 60Hz, in particular, occur when paying focussed attention
(Bear et al., 2020). Additionally, their synchronization probabilities correlate well with Gestalt
Principles (Engel et al., 1991; Castelo-Branco et al., 2000), which describe the principles that humans
employ to group perceptual patterns into jointly perceived objects. For example, regular gratings
invoke a maximal synchronization probability, while random dot patterns reduce this probability to its
minimum (Engel et al., 2001). Additionally, circumstantial evidence points toward the coding scheme
described by the temporal correlation hypothesis as a valid mechanism: both this coding scheme and
established learning mechanisms such as Hebbian Learning (Hebb, 1949) and spike-time dependent
plasticity (STDP) (Caporale & Dan, 2008) require neurons to be very sensitive to the precise timing
of spikes. Plus, the temporal correlation hypothesis induces a natural upper limit on the number of

3



objects that can be represented within a single oscillatory cycle, which goes in line with the capacity
restrictions observed in human short-term memory (Cowan, 2001).

In this paper, we take inspiration from the temporal correlation hypothesis to develop a machine
learning approach capable of overcoming the binding problem. Inspired by previous work (Reichert
& Serre, 2014), we abstract away from the spiking nature of biological neural networks and instead
represent the two message types described above with the help of complex numbers (Figure 2 - Right).
As a result, we create an artificial neural network with complex-valued activations z = m · eiφ ∈ C
in which the magnitude m can be interpreted as the rate code emitted by a spiking neuron (message
(1) above) and the phase φ can be used as the mathematical mechanism to capture the temporal
alignment of the firing patterns (message (2) above). In the next section, we will describe the setup
which achieves this.

3 Complex AutoEncoder

We propose the Complex AutoEncoder (CAE) – a model for object discovery that leverages mecha-
nisms inspired by the temporal correlation hypothesis to create distributed object-centric representa-
tions. We start by injecting complex-valued activations into a standard autoencoding architecture
(Section 3.1). Ultimately, we want these complex-valued activations to convey two messages: their
magnitudes should represent whether a feature is present, and their phase values should represent
which features ought to be bound together. In Sections 3.2 and 3.3, we describe the setup of the model
that gives rise to this coding scheme. Using the described mechanisms, after unsupervised training
on a multi-object dataset, CAE’s phase values represent different objects in a scene. In Section 3.4,
we describe how we evaluate these phase values to produce object-wise representations, as well as
pixel-accurate segmentation masks for object discovery.

3.1 Complex-Valued Activations in Autoencoders

To enable an autoencoder to develop object-centric representations, we inject it with complex-valued
activations. In this section, we will describe how we translate between the real-valued inputs
and outputs used for training the model and the complex-valued activations used for representing
object-centric features.

The Complex AutoEncoder (Figure 1) takes a positive, real-valued input image x ∈ R+ and associates
each pixel with an initial phase φ = 0 ∈ R to create the complex-valued input x′ to the model:

x′ = x · eiφ ∈ C (1)

CAE applies a convolutional encoder fenc and decoder fdec with real-valued parameters θ ∈ R to this
complex-valued input and creates a complex-valued reconstruction ẑ:

ẑ = fdec(fenc(x
′)) ∈ C (2)

To make use of existing deep learning frameworks, we do not apply layers to their complex-valued
inputs directly. Instead, each layer extracts real-valued components (the real and imaginary part, or
the magnitude and phase) from its input and processes them separately, before combining the results
into a complex-valued output. We will describe this process in more detail in the following section.

We create the real-valued reconstruction x̂ by applying fout, a 1 × 1 convolutional layer with
a sigmoid activation function, on the magnitudes of the complex-valued output ẑ of the decoder:
x̂ = fout(|ẑ|) ∈ R+. This allows the model to learn an appropriate scaling and shift of the magnitudes
to better match the input values. The model is trained by comparing this reconstruction to the original
input using a mean squared error loss function L = MSE(x, x̂) ∈ R+ and by using the resulting
gradients to update the model parameters.

Finally, we interpret the phase values φ = arg(z) ∈ [0, 2π) of the complex-valued activations z ∈ C
as object assignments – either to extract object-wise representations from the latent space or to obtain
a pixel-accurate segmentation mask in the output space. Here, arg(z) describes the angles between
the positive real axis and the lines joining the origin and each element in z. In the next section, we
will describe the mechanisms that encourage the model to learn phase values that are representative
of object identity.
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3.2 Phase Alignment of Complex Numbers

For the CAE to accomplish good object discovery performance, the phases of activations representing
the same object should be synchronized, while activations induced by different objects should be
desynchronized. To achieve this, we need to enable the network to assign the same phases to some
activations and different phases to others, and to precisely control phase shifts throughout the network.
We achieve this by following three steps for each network layer fθ ∈ {fenc, fdec} parameterized by
θ ∈ R and applied to the input to that layer z ∈ C:

Synchronization First, we need to encourage the network to synchronize the phase values of
features that should be bound together. This property is achieved naturally through the use of complex
numbers: when adding two complex numbers of opposing phases, they suppress one another or even
cancel one another out (a.k.a. destructive interference). Thus, to preserve features, the network needs
to align their phase values (a.k.a. constructive interference).

Desynchronization Next, we need a mechanism that can desynchronize the phase values. Again,
this is achieved naturally through the use of complex numbers: when adding two complex numbers
with a phase difference of 90◦, for example, the result will lie in between these two numbers and
thus be shifted, i.e. desynchronized by 45◦. On top of this inherent mechanism, we add a second
mechanism that lends the network more control over the precise phase shifts. Specifically, we apply
the weights w ∈ θ of each layer separately to the real and imaginary components of its input:

ψ = fw(z) = fw(Re(z) + Im(z) · i) = fw(Re(z)) + fw(Im(z)) · i ∈ C (3)
Next, we add separate biases bm, bφ ∈ θ to the magnitudes and phases of the resulting complex-
valued representations ψ to create the intermediate magnitudemψ and phase φψ:

mψ = |ψ|+ bm ∈ R
φψ = arg(ψ) + bφ ∈ R (4)

This formulation allows the bias bφ to influence the phase value of each activation directly. Inherently,
this enables the model to learn explicit phase shifts throughout the network and to break the symmetry
created by the equal phase initialization (Equation (1)).

Desynchronization vs. Inhibition Finally, we add a mechanism that enables the model to distin-
guish inhibitory inputs with aligned phases from excitatory inputs with opposing phases. To illustrate:
given weights w and activations a, in the network formulation above it holds that (−w)·a = w ·(−a).
However, in our case, this is not desirable. To enable the model to learn meaningful phase shifts,
it needs to be able to distinguish a negative weight from a negative activation, because one has
an aligned phase and the other does not. Taking inspiration from Reichert & Serre (2014), we
achieve this by taking the absolute value of the activations (−w) · |a| ≠ w · |(−a)|. Thus, we
additionally apply each layer to the magnitude of its input and combine the result withmψ to create
the intermediate valuesmz :

χ = fw(|z|) + bm ∈ R
mz = 0.5 ·mψ + 0.5 · χ ∈ R (5)

3.3 Complex-Valued Activation Function

We propose a new activation function for complex-valued activations to further ensure maximal
control of the network over all phase shifts. To create a layer’s final output z′ , we apply a non-linearity
on the magnitudesmz , but keep the phases φψ unchanged:

z′ = ReLU(BatchNorm(mz)) · eiφψ ∈ C (6)
There are several things to note in this setup. First,mz might contain negative values as a result of
the summation with potentially negative values in the magnitude bias bm (Equation (4)), as well as
potentially negative values in χ (Equation (5)). Nonetheless, it is biased to be positive due to the
usage of absolute values throughout each layer. Second, by applying BatchNormalization (Ioffe &
Szegedy, 2015), we ensure that – at least initially –mz becomes zero-centered and therefore makes
use of the non-linear part of the ReLU activation function. At the same time, BatchNormalization
provides the flexibility to learn to shift and scale these values if appropriate. Finally, the ReLU
non-linearity ensures that the magnitude of z′ is positive and thus prevents any phase flips.
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Input Reconstruction Reconstruction Phase Values Prediction Prediction

AutoEncoder —– Complex AutoEncoder —– SlotAttention

Figure 3: Visual comparison of the performance of the Complex AutoEncoder, a corresponding real-
valued autoencoder and a SlotAttention model on random samples from the test sets of the 2Shapes
(Top), 3Shapes (Middle) and MNIST&Shape (Bottom) datasets. Areas in which objects overlap
are removed before applying k-means on the phase values of the Complex AutoEncoder, resulting
in yellow areas in the predictions which are not evaluated. The Complex AutoEncoder produces
accurate reconstructions and object separations. Note, that the model assigns small magnitudes to the
background, leading to white areas in the phase images and a clear foreground/background separation
in the predictions.

3.4 Creating Discrete Object Assignments from Continuous Phase Values

To evaluate the object-centricity of the complex-valued activations of the CAE, we create discrete
object assignments for each feature by applying a clustering procedure to the phase values. This
allows us to extract object-wise representations from the latent space, as well as pixel-accurate
segmentation masks from the complex-valued reconstructions. We group the phase values into k
clusters, where k corresponds to the number of objects in the input plus one for the background.
Note that this is only required for the evaluation of the CAE. During training, CAE learns continuous
object assignments through its phase values and therefore does not require k to be set in advance.

Before applying k-means to cluster the phase values, we apply two pre-processing steps. First, we
account for the circular nature of the phase values by mapping them onto a unit circle. This prevents
values close to 0 and 2π from being assigned to different clusters despite representing similar angles.
Then, we scale features by a factor of 10 ·m if their corresponding magnitude m < 0.1, to account
for the fact that the phase values of complex numbers with small magnitudes become increasingly
random. As a result of this scaling, these features will fall within the unit circle, close to the origin.
In our experiments, we find that they tend to be assigned their own cluster and usually represent the
background. Finally, we apply k-means and interpret the resulting cluster assignment for each phase
value as the predicted object assignment.

4 Results

In this section, we evaluate whether the Complex AutoEncoder can learn to create meaningful phase
separations representing different objects in an unsupervised way. We will first describe the general
setup of our experiments, before investigating the results across three simple multi-object datasets.
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Table 1: MSE and ARI scores (mean ± standard error across 8 seeds) for the Complex AutoEncoder,
its real-valued counterpart (AutoEncoder) and a SlotAttention model in three simple multi-object
datasets. The proposed Complex AutoEncoder achieves better reconstruction performance than
its real-valued counterpart on all three datasets. Additionally, its object discovery performance is
competitive to SlotAttention on the 2Shapes and 3Shapes datasets while requiring 5-50 times fewer
training steps. Finally, the CAE manages to disentangle the objects in the MNIST&Shape dataset,
where SlotAttention fails.

Dataset Model Steps MSE ↓ ARI+BG ↑ ARI-BG ↑

2Shapes
Complex AutoEncoder 10000 3.322e-04 ± 1.583e-06 0.999 ± 0.000 1.000 ± 0.000

AutoEncoder 10000 5.565e-04 ± 2.900e-04 – –
SlotAttention 500000 1.419e-04 ± 1.410e-04∗ 0.812 ± 0.081 1.000 ± 0.000

3Shapes
Complex AutoEncoder 100000 1.313e-04 ± 2.020e-05 0.976 ± 0.002 1.000 ± 0.000

AutoEncoder 100000 8.568e-04 ± 9.878e-05 – –
SlotAttention 500000 1.827e-04 ± 3.125e-05∗ 0.107 ± 0.008 0.997 ± 0.001

MNIST&Shape
Complex AutoEncoder 10000 3.185e-03 ± 1.514e-04 0.783 ± 0.004 0.971 ± 0.011

AutoEncoder 10000 5.792e-03 ± 5.553e-04 – –
SlotAttention 500000 5.438e-03 ± 1.607e-04∗ 0.047 ± 0.013 0.089 ± 0.028

∗The reconstruction performance of SlotAttention is not comparable due to the use of a different autoencoding setup.

4.1 Setup

Datasets We evaluate the Complex AutoEncoder on three grayscale datasets: 2Shapes, 3Shapes,
and MNIST&Shape. For each of these datasets, we generate 50,000 training images and 10,000
images for validation and testing, respectively. All images contain 32 × 32 pixels. The 2Shapes
dataset represents the easiest setting, with two randomly placed objects (□,△) in each image. The
3Shapes dataset contains a third randomly placed object (▽) per image. This creates a slightly
more complex setting due to the higher object count, the two similar shapes (△,▽), and stronger
overlap between objects. Finally, the MNIST&Shape dataset combines an MNIST digit (LeCun et al.,
2010) and a randomly placed shape (□ or ▽) in each image. This creates a challenging setting with
more diverse objects. For evaluating the object discovery performance, we generate pixel-accurate
segmentation masks for all images. More details in Appendix A.1.

Model & Training We make use of a fairly standard convolutional autoencoder architecture, as
presented in Lippe (2021) (details in Appendix A.1). We train the model using Adam (Kingma & Ba,
2015) and a batch-size of 64 for 10,000 – 100,000 steps depending on the dataset. Within the first
500 steps of training, we linearly warm up the learning rate (Goyal et al., 2017) to its final value of
1e−3. All experiments are implemented in PyTorch (Paszke et al., 2019) and were run on a single
Nvidia GTX 1080Ti. To ensure the comparability of run-times between models, all experiments were
run on the same machine and with the same underlying training and data-loading scripts.

Baselines We compare the CAE to two baseline models. First, we compare it against its real-
valued counterpart. This autoencoder uses the same general architecture and training procedure, but
does not employ complex-valued activations or any of the mechanisms described in Section 3.2. It
does, however, apply BatchNormalization before each ReLU as we have found that this improves
performance in the real domain as well.

The second model we compare against is an autoencoding architecture with SlotAttention (Locatello
et al., 2020). SlotAttention is an iterative attention mechanism that produces k slots which learn to
represent individual objects in the input. This model has achieved impressive unsupervised object
discovery results on simple 2D and 3D datasets, and was recently shown to also perform well on
more realistic textured video datasets in a weakly-supervised setting (Kipf et al., 2021). The details
for the implementation of this model are in Appendix A.1.

Metrics We use three metrics to evaluate and compare the performance of the CAE against the
baselines. We measure the reconstruction performance in terms of mean squared error (MSE). To
assess the object discovery performance, we compute Adjusted Rand Index (ARI) scores (Rand,
1971; Hubert & Arabie, 1985). ARI measures clustering similarity, where a score of 0 indicates
chance level and a score of 1 indicates a perfect match. We utilize ARI in two ways. First, following
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Figure 4: Phase separation in the CAE. Top: Out-
put phase images. Bottom: Plotting every output
value in the complex plane and applying the same
color coding as above. The phases of the three
objects are almost maximally misaligned. Inter-
estingly, areas in which the objects overlap get
assigned intermediate phase values.

Figure 5: Investigating object-centricity of the
latent features in the CAE. Columns 1 & 4: input
images. Columns 2-3 & 5-6: object-wise recon-
structions. By clustering features created by the
encoder according to their phase values, we can
extract representations of the individual objects
and reconstruct them separately.

previous work (Greff et al., 2019; Locatello et al., 2020), we evaluate “ARI-BG” where we exclude
the background labels from the evaluation. Additionally, we assess “ARI+BG” which evaluates the
performance on all pixels. One thing to note here is that a model can achieve relatively high ARI+BG
scores by assigning all pixels to the same label – thus, this score is only meaningful in conjunction
with a high ARI-BG score to ensure good object separation. For both ARI scores, we remove areas in
which objects overlap from the evaluation, as they are ambiguous in the grayscale setting.

4.2 Evaluation

First, we compare the quantitative performance of CAE against the two baselines in Table 1.

Reconstruction Performance The Complex AutoEncoder achieves a better reconstruction than its
real-valued counterpart (AutoEncoder) on all three multi-object datasets. This illustrates that the CAE
makes effective use of its complex-valued activations to create a better disentanglement of object
features.

Object Discovery Performance When comparing the object discovery performance of the Complex
AutoEncoder against SlotAttention, we make three observations: (1) Both models achieve (near)
perfect ARI-BG scores on the 2Shapes and 3Shapes datasets. (2) On all datasets, CAE achieves
considerably better ARI+BG scores indicating a more accurate separation of foreground and back-
ground. (3) On the MNIST&Shape dataset, the Complex AutoEncoder achieves an almost perfect
ARI-BG score, while SlotAttention’s performance is close to chance level. Overall, this shows that
the Complex AutoEncoder achieves strong object discovery performance. On top of this, despite its
simple and efficient design, it can overcome the challenges set by the MNIST&Shape dataset (high
diversity in object shapes and relatively large object sizes), while SlotAttention cannot.

Object-Centric Representations To evaluate whether the CAE creates object-centric representa-
tions throughout the model, we apply the clustering procedure as described in Section 3.4 on the latent
features created by the encoder. Then, we input the individual clusters into the decoder and fine-tune
it to reconstruct separate objects. As shown in Figure 5, this procedure allows us to create accurate
reconstructions of the individual objects. This indicates that the phase values are representative of
object identity throughout the model, and that they allow us to extract object-wise representations in
an unsupervised way.

Training Time As can be seen from Table 1, CAE requires between 10,000 and 100,000 training
steps to achieve these results. SlotAttention, on the other hand, requires 500,000 training steps (see
Figure 6 in the Appendix for training curves). Additionally, each training step of SlotAttention takes
on average 1.4 times longer compared to a training step of the Complex AutoEncoder, due to its
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iterative attention procedure as well as additional architectural details required to make the model
work. Overall, this results in a training time of just under 8 minutes for the Complex AutoEncoder
when trained for 10,000 steps and over 9 hours for SlotAttention. Thus, depending on the dataset,
CAE can be trained between 7-70 times faster than SlotAttention.

Qualitative Evaluation In Figure 3, we show exemplary outputs of the three compared models for
each dataset (for more results, see Appendix A.2). These outputs highlight the accurate reconstructions
and object separations that the Complex AutoEncoder produces. When looking more closely at
the phase separation created by the Complex AutoEncoder as shown in Figure 4, we find that it
assigns almost maximally distant phase values to the different objects. Interestingly, the phase values
of overlapping areas tend to fall in between the phase values of the individual objects. Since it
is ambiguous in the 3Shapes dataset, which object is in the foreground and which one is in the
background, this shows that the model accurately expresses the uncertainty that it encounters in these
overlapping areas.

Table 2: Sensitivity Analysis on the 2Shapes dataset (mean ±
standard error across 8 seeds). We find that there are several
crucial components that are required to enable the Complex
AutoEncoder to separate objects in its output phase values.

Name MSE ARI-BG

Complex AutoEncoder 3.322e-04 ± 1.583e-06 1.000 ± 0.000

– fout 2.462e-03 ± 1.458e-03 0.939 ± 0.039

– χ 3.227e-03 ± 5.013e-04 0.074 ± 0.068

– BatchNorm 6.165e-02 ± 2.228e-02 0.373 ± 0.137

Complex Weights 5.465e-04 ± 8.980e-05 0.122 ± 0.101

Sensitivity Analysis We evaluate
the influence of certain hyperparame-
ters on the performance of the Com-
plex AutoEncoder in Table 2. We find
that there are several crucial compo-
nents to the CAE without which it
cannot achieve a meaningful phase
separation: the χ term (Equation (5))
that ensures that desynchronized in-
puts influence a layer’s output differ-
ently from inhibitive ones; applying
BatchNormalization within the activa-
tion function (Equation (6)); and the
use of real-valued weights instead of
complex-valued ones. Additionally, we find that the final 1× 1 convolutional layer fout that creates
the real-valued reconstruction from the magnitudes of the complex-valued outputs improves the
model’s performance. Finally, we observe that the bottleneck size has relatively little influence on the
performance of the Complex AutoEncoder (Figure 7 in the Appendix). This indicates that the CAE
does need to restrict the expressivity of the model to create disentangled object representations.

5 Related Work

Object Discovery There is a broad range of approaches attempting to solve the binding problem in
artificial neural networks (see Greff et al. (2020) for a great overview). However, most works focus
on one particular representational format for objects: slots. These slots create an explicit separation
of the latent representations for different objects. Additionally, they create an explicit separation
between a specialized object-centric representation part of the model and non-object-centric parts that
merely support the former, for example, through encoding and decoding functionality. In contrast
to this, the Complex AutoEncoder embeds object-centricity into the entire architecture and creates
distributed object-centric representations.

To create slot-based object-centric representations, different mechanisms have been proposed to
overcome the binding problem, i.e. to break the symmetry between the representations of different
objects in a network of fixed weights. One way to break this symmetry is by enforcing an order along
a certain axis. This can be achieved by imposing an order on the slots (Eslami et al., 2016; Burgess
et al., 2019; Engelcke et al., 2020), by assigning slots to particular spatial coordinates (Santoro et al.,
2017; Lin et al., 2020), or by learning specialized slots for different object types (Hinton et al., 2011,
2018). Approaches that create the most general slot representations do not enforce any such order, but
require iterative procedures to break the symmetries instead (Greff et al., 2019; Goyal et al., 2021).
SlotAttention (Locatello et al., 2020; Kipf et al., 2021), which falls into this final category, breaks
the symmetry between slots through an iterative attention mechanism. It embeds this object-centric
representation mechanism into an autoencoding architecture, requiring special attention on the design
of the decoder (Singh et al., 2021). Alternative unsupervised training methods for SlotAttention with
e.g. contrastive learning remain restricted to simplistic environments (Löwe et al., 2020).
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Object Discovery with Complex-Valued Networks A variety of research has explored different
activation functions, training regimes, and applications for complex-valued neural networks (see
Bassey et al. (2021) for a review). Despite this, there has been little research on the use of complex-
valued networks for object discovery. The earliest works in this direction are by Mozer et al. (1992);
Zemel et al. (1995). Their architectures learn to assign different phase values to different objects
through a supervised training procedure. The biological plausibility of this approach is reduced
by the usage of complex-valued weights. Rao et al. (2008); Rao & Cecchi (2010, 2011) propose
a complex-valued neural network with real-valued weights. By training their network on images
of individual objects, they enable it to separate overlapping objects of the same type on the test
images. This method relies on Hebbian Learning and sparse coding, which leads to a winner-takes-all
dynamic: a single neuron in the highest layer gets activated for each specific object type. Finally,
Reichert & Serre (2014) train a deep Boltzmann machine on datasets similar to the ones presented
here. In contrast to our method, they train the network with real-valued activations and weights and
inject complex-valued activations only at test time.

All these methods initialize the complex-valued inputs to their networks with the magnitude of the
input images, but with random phase values. As a result, they require iterative procedures with
10s-100s of iterations to settle to an output configuration. In contrast to that, the proposed Complex
AutoEncoder initializes all phase values with a fixed value and – through a careful design of its
layer-wise operations – only requires a single forward-pass through the model. This greatly improves
the efficiency and practicality of complex-valued neural networks for object discovery.

6 Conclusion

Summary We present the Complex AutoEncoder – an object discovery approach implementing
distributed object-centric representations. Taking inspiration from the temporal correlation hypothesis
from neuroscience, we develop a neural network that leverages complex-valued activations. As
a result, the activation’s magnitudes encode feature information and their phases encode object
affiliation. We show that this approach achieves highly competitive object discovery results on simple
multi-object datasets while being substantially faster to train.

Limitations and Future Work The proposed Complex AutoEncoder constitutes a first step to-
wards efficient distributed object-centric representation learning, but some limitations remain. Most
importantly, due to the limited range of the phase values, object discovery approaches using complex-
valued activations can only represent a small number of objects at a time. Additionally, we find
that the phase values of different objects are interdependent and thus require the same set of objects
or object-types to be present in each image to create reliable phase separations. Finally, it remains
unclear how complex-valued networks for object discovery could be applied to RGB images. These
restrictions currently prevent these approaches from being applied to more complex multi-object
datasets. Nonetheless, the Complex AutoEncoder provides an important step forward by proposing a
simple and efficient non-iterative design, that, for the first time, was shown to achieve competitive
results to a slot-based approach in simple multi-object datasets. It remains an intriguing direction
for future research to overcome the limitations described above and to uncover the full potential of
distributed object-centric representation learning approaches.

Acknowledgements

We thank Emiel Hoogeboom, T. Anderson Keller, and Joop Pascha for their valuable feedback on the
manuscript.

10



References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

Joshua Bassey, Lijun Qian, and Xianfang Li. A survey of complex-valued neural networks. arXiv
preprint arXiv:2101.12249, 2021.

Mark Bear, Barry Connors, and Michael A Paradiso. Neuroscience: Exploring the Brain, Enhanced
Edition: Exploring the Brain. Jones & Bartlett Learning, 2020.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. MONet: Unsupervised scene decomposition and representation. arXiv
preprint arXiv:1901.11390, 2019.

Natalia Caporale and Yang Dan. Spike timing–dependent plasticity: a hebbian learning rule. Annual
Review of Neuroscience, 31:25–46, 2008.

Miguel Castelo-Branco, Rainer Goebel, Sergio Neuenschwander, and Wolf Singer. Neural synchrony
correlates with surface segregation rules. Nature, 405(6787):685–689, 2000.

Nelson Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage
capacity. Behavioral and brain sciences, 24(1):87–114, 2001.

Andreas K Engel, Peter König, and Wolf Singer. Direct physiological evidence for scene segmentation
by temporal coding. Proceedings of the National Academy of Sciences, 88(20):9136–9140, 1991.

Andreas K Engel, Pieter R Roelfsema, Pascal Fries, Michael Brecht, and Wolf Singer. Role of the
temporal domain for response selection and perceptual binding. Cerebral cortex (New York, NY:
1991), 7(6):571–582, 1997.

Andreas K Engel, Pascal Fries, and Wolf Singer. Dynamic predictions: oscillations and synchrony in
top–down processing. Nature Reviews Neuroscience, 2(10):704–716, 2001.

Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. GENESIS: Generative
scene inference and sampling with object-centric latent representations. International Conference
on Learning Represenations (ICLR), 2020.

SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton,
et al. Attend, infer, repeat: Fast scene understanding with generative models. In Advances in
Neural Information Processing Systems, pp. 3225–3233, 2016.

Pascal Fries. A mechanism for cognitive dynamics: neuronal communication through neuronal
coherence. Trends in cognitive sciences, 9(10):474–480, 2005.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. International Conference on Learning
Represenations (ICLR), 2021.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.
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A Appendix

A.1 Implementation

(Complex) AutoEncoder Table 3 shows the architecture of the Complex AutoEncoder, as well as
its real-valued counterpart.

Table 3: Autoencoder architecture used for the Complex AutoEncoder, as well as the real-valued
autoencoding baseline.

Layer Feature Dimension Kernel Stride Padding Activation Function
(H × W × C) Input / Output

fenc

Conv 16 × 16 × 32 3 2 1 / 0 (Complex-)ReLU
Conv 16 × 16 × 32 3 1 1 / 0 (Complex-)ReLU
Conv 8 × 8 × 64 3 2 1 / 0 (Complex-)ReLU
Conv 8 × 8 × 64 3 1 1 / 0 (Complex-)ReLU
Conv 4 × 4 × 64 3 2 1 / 0 (Complex-)ReLU
Reshape 1 × 1 × 1024 - - - -
Linear 1 × 1 × 64 - - - (Complex-)ReLU

fdec

Linear 1 × 1 × 1024 - - - (Complex-)ReLU
Reshape 4 × 4 × 64 - - - -
TransConv 8 × 8 × 64 3 2 1 / 1 (Complex-)ReLU
Conv 8 × 8 × 64 3 1 1 / 0 (Complex-)ReLU
TransConv 16 × 16 × 32 3 2 1 / 1 (Complex-)ReLU
Conv 16 × 16 × 32 3 1 1 / 0 (Complex-)ReLU
TransConv 32 × 32 × 1 3 2 1 / 1 (Complex-)ReLU

We used the default parameter initialization of PyTorch for all layers, except fout for which we set
the initial weight w = 1 and the initial bias b = 0. Additionally, we initialize all phase-biases bφ
with zero. After the linear layers, we apply Layer Normalization (Ba et al., 2016) instead of Batch
Normalization.

We optimized all hyperparameters, except the number of training steps, on the validation set of the
3Shapes dataset and subsequently applied them for the training on all datasets. Across the board, we
found that each hyperparameter setting that improved the performance of the Complex AutoEncoder
also improved the performance of the real-valued autoencoder and vice versa. As a result, we use the
same hyperparameters to train both models.

To create the object-wise reconstructions in Figure 5, we first cluster the features created by the
encoder fenc by following the procedure described in Section 3.4. Then, we mask out all values
that are not part of a particular cluster with zeros. Finally, we fine-tune the decoder to reconstruct
individual objects given these masked out feature vectors for 10,000 steps using Adam with a learning
rate of 5e−5.

SlotAttention To implement SlotAttention, we followed the description and hyperparameters
provided by Locatello et al. (2020) as well as their open-source implementation1. We used a hidden
dimension of 64 throughout the model and adjusted the decoding architecture as described in Table 4
as this improved SlotAttention’s performance on our datasets. Besides this final setup that we found
to perform best, we tested the following setups on the validation set of the 3Shapes dataset: the
decoder setup as used by Locatello et al. (2020) for the Tetrominoes and Multi-dSprites datasets (i.e.
spatially broadcast to a resolution of 32× 32 and apply four transposed-convolutional layers), a setup
in which the fourth transposed-convolutional layer in Table 4 is removed from the decoder, as well as
a setup in which the number of channels is halved across all layers. None of these setups learned to
disentangle objects on the MNIST&Shape dataset.

Datasets For our experiments, we generate three grayscale datasets: 2Shapes, 3Shapes, and
MNIST&Shape. All images within these datasets feature a black background and white objects of
differing shapes. In the 2Shapes and 3Shapes datasets, the foreground objects and the background are

1https://github.com/google-research/google-research/tree/master/slot_attention
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Table 4: Architecture used for the Spatial-Broadcast Decoder in the SlotAttention model.

Layer Feature Dimension Kernel Stride Padding Activation Function
(H × W × C) Input / Output

Spatial Broadcast 4 × 4 × 64 - - - -
Position Embedding 4 × 4 × 64 - - -
TransConv 7 × 7 × 64 5 2 2 / 0 ReLU
TransConv 15 × 15 × 64 5 2 2 / 0 ReLU
TransConv 32 × 32 × 64 5 2 2 / 1 ReLU
TransConv 32 × 32 × 64 3 1 1 / 0 ReLU
TransConv 32 × 32 × 2 3 1 1 / 0 ReLU

plain white and plain black, respectively, without noise. In the MNIST&Shape dataset, the digits
exhibit differing grayscale values. All objects are placed in random locations while ensuring that no
part of the object is cut-off at the image boundary.

We use four different object types (□,△,▽, and MNIST digits). The square has an outer side-length
of 13 pixels. Both triangles are isosceles triangles, have a base-length of 17 pixels, and are 9 pixels
high. Both the square’s and the triangles’ outlines have a width of 3 pixels.

For the MNIST&Shape dataset, we resize each MNIST digit to match the input image size of our
dataset (i.e. 32 × 32) before applying it to an image. Then, we label pixels as “digit” when their
value is > −0.8 after normalization to the [−1, 1] range. This threshold ensures that most of the digit
pixels are labeled as such, while minimizing the influence of potentially noisy background pixels. We
follow the original dataset split to create the test images and divide the original training set to get
50,000 MNIST digits for our training set and 10,000 MNIST digits for our validation set.

We scale and shift all inputs to the range [0, 1] for the autoencoding models, and we use an input
range of [−1, 1] for the SlotAttention model.

A.2 Additional Results

Training Curves In Figure 6, we plot the object discovery performance throughout training of the
Complex AutoEncoder and the SlotAttention model on the 2Shapes and 3Shapes datasets. For both
datasets, the SlotAttention model keeps improving in performance throughout its 500,000 training
steps. The Complex AutoEncoder, on the other hand, converges much faster (within 10,000 – 100,000
steps), leading to significantly faster training times.

Sensitivity Analysis Figure 7 shows the influence of the feature dimension that is output by the
CAE’s encoder fenc on the model’s performance. We find that the model achieves strong performance
for a broad range of feature dimensions – indicating that CAE does not require a restricted bottleneck
size to create disentangled object representations.

Additional Qualitative Results We highlight the phase separations created by the Complex
AutoEncoder in Figure 8, and compare all models on the 2Shapes, 3Shapes and MNIST&Shape
datasets in Figures 9, 10 and 11, respectively.
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Figure 6: Training Curves. Plotting the ARI-BG scores on the validation set throughout training on the
2Shapes (Left) and 3Shapes (Right) dataset for the Complex AutoEncoder (CAE) and SlotAttention
model (mean ± standard error across 8 seeds). The CAE achieves comparable or better performance
within 5-50 times fewer training steps compared to the SlotAttention model.
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Figure 7: Influence of the latent dimension on CAE’s performance on the 2Shapes dataset (mean
± standard error across 8 seeds). We find that the model does not require a restricted bottleneck to
create disentangled object representations.
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Figure 8: Phase separation in the Complex AutoEncoder on random test-samples from the 2Shapes
(Top), 3Shapes (Middle) and MNIST&Shape datasets (Bottom). For each sample, we show the
output phase images on top, and the corresponding output values in the complex plane in the bottom
(best viewed in color).

17



Input Reconstruction Reconstruction Phase Values Prediction Prediction

AutoEncoder —– Complex AutoEncoder —– SlotAttention

Figure 9: Visual comparison of the performance of the Complex AutoEncoder, its real-valued
counterpart (AutoEncoder) and the SlotAttention model on random test-samples from the 2Shapes
dataset.
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Input Reconstruction Reconstruction Phase Values Prediction Prediction

AutoEncoder —– Complex AutoEncoder —– SlotAttention

Figure 10: Visual comparison of the performance of the Complex AutoEncoder, its real-valued
counterpart (AutoEncoder) and the SlotAttention model on random test-samples from the 3Shapes
dataset.
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Input Reconstruction Reconstruction Phase Values Prediction Prediction

AutoEncoder —– Complex AutoEncoder —– SlotAttention

Figure 11: Visual comparison of the performance of the Complex AutoEncoder, its real-valued coun-
terpart (AutoEncoder) and the SlotAttention model on random test-samples from the MNIST&Shape
dataset.
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