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Abstract

Vocabulary expansion (VE) is the de-facto approach to language adaptation of large lan-
guage models (LLMs) by adding new tokens and continuing pre-training on target data.
While this is effective for base models trained on unlabeled data, it poses challenges for chat
models trained to follow instructions through labeled conversation data. Directly adapting
the latter with VE on target unlabeled data may result in forgetting chat abilities. While
ideal, target chat data is often unavailable or costly to create for low-resource languages,
and machine-translated alternatives are not always effective. To address this issue, previous
work proposed using a base and chat model from the same family. This method first adapts
the base LLM with VE on target unlabeled data and then converts it to a chat model by
adding a chat vector (CV) derived from the weight difference between the source base and
chat models. We propose ElChat, a new language adaptation method for chat LLMs that
adapts a chat model directly on target unlabeled data, without a base model. It elicits chat
abilities by injecting information from the source chat model. ElChat offers more robust
and competitive target language and safety performance while achieving superior English,
chat, and instruction-following abilities compared to CV.1

1 Introduction

Vocabulary expansion (VE) is the de-facto approach to adapting large language models (LLMs) in a target
language (Cui et al., 2024; Fujii et al., 2024; Choi et al., 2024). It typically consists of two main steps: (i) new
tokens are added to the model vocabulary by expanding the input embedding and output head matrices; and
(ii) continual pre-training on target data to learn the input and output embeddings of the new tokens (Cui
et al., 2024; Fujii et al., 2024; Choi et al., 2024; Tejaswi et al., 2024; Mundra et al., 2024, inter alia). VE
is important because LLMs including chat models often perform poorly in languages underrepresented in
the training data (Geng et al., 2025; Huang et al., 2024). Moreover, target language tokenization suffers
from overfragmentation due to the heavy reliance on data and vocabulary from particular languages (e.g.
English), resulting to more inference steps especially in low-resource languages (Ahia et al., 2023; Petrov
et al., 2023; Ali et al., 2024). For example, processing a text sequence in Amharic requires 3.48x more
inference steps using the default Qwen2.5 (Yang et al., 2024), without VE.

While VE is effective for base models trained on unlabeled data, its application poses significant challenges
when the LLM at hand is a chat model trained to follow instructions through labeled conversation data.
Ideally, we need access to target chat data to effectively adapt chat models. However, this is often unavailable
or costly to create for low-resource languages, including the acquisition of human feedback (Huang et al.,
2024). Alternatively, machine-translated chat data are not consistently effective (Tao et al., 2024).

To address this issue, Huang et al. (2024) proposed chat vector (CV), a method to obtain a chat model
in the target language with access to target unlabeled data only. CV first adapts the base LLM with VE
on target unlabeled data and then converts it to a chat model by adding a chat vector derived from the
weight difference between the source base and chat models. However, this requires access to base and chat
models from the same family that might not always be available, hindering its applicability. For example,

1Our anonymous code is available as supplementary material.
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the Phi-3 (Abdin et al., 2024a) and Phi-4 (Abdin et al., 2024b) do not provide base models due to safety
reasons.2 Similarly, Velvet3, EXAONE-3.54, and Trillion (Han et al., 2025) models are available only as a
chat model. Crucially, it is completely to the discretion of developers to decide whether they publish both
base and chat variants.
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Figure 1: Chat LLM language adaptation with Chat
Vector (Huang et al., 2024) and ElChat (ours).

In this paper, we propose ElChat, a new language
adaptation method for chat LLMs that adapts a
chat model directly on target unlabeled data, elim-
inating the need for a base model (Figure 1). We
hypothesize that direct adaptation of a source chat
model with VE on target unlabeled data negatively
impacts its chat and instruction-following abilities
by altering its parametric knowledge. However, we
posit that these can still be recovered. For this pur-
pose, ElChat leverages information from the source
chat model to elicit chat abilities through two key
mechanisms. First, we employ model merging to
integrate distinct parametric knowledge from the
source and target models (Wortsman et al., 2022;
Yadav et al., 2023; Yu et al., 2024; Goddard et al.,
2024). We hypothesize that model merging helps
restore the chat and instruction-following abilities
of the source model while preserving the target lan-
guage performance achieved by the target model.
Second, we reuse the weights of special tokens from
the source model. For example, tokens that mark
the start of a conversation turn should be crucial
for activating the instruction-following ability as they are used to structure raw input into chat format.
However, direct adaptation on target unlabeled data may degrade their functionality as they are modified
during VE. To mitigate this, we copy these token weights directly from the source model to the target model.

We investigate the efficacy of ElChat by experimenting with two popular chat models across seven typo-
logically diverse languages. Our evaluation includes safety, chat, and instruction-following performance.
Additionally, we also assess target and source language task performance and target language inference
speed. Our key contributions are as follows:

• We propose ElChat that adapts a chat model directly on target unlabeled data, eliminating the need
for (i) a base model and (ii) target chat data.

• ElChat achieves better chat and instruction-following abilities and source language performance than
CV. It is also competitive and more robust (i.e. consistently outperforming the source chat model)
in the target language and safety tasks compared to CV (§5.2, §5.3, §5.1).

• Despite model modifications, ElChat achieves comparable target inference speedups across models
and tasks, matching the performance of the adapted VE and CV models (§6).

2 Related Work

2.1 Cross-lingual Vocabulary Adaptation

The most popular approach to adapting LLMs to a target language is by expanding their vocabulary (VE)
with tokens from the target language (Balachandran, 2023; Larcher et al., 2023; Pipatanakul et al., 2023;

2https://huggingface.co/microsoft/phi-4/discussions/4
3https://huggingface.co/Almawave/Velvet-14B
4https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4
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Lin et al., 2024; Cui et al., 2024; Kim et al., 2024; Fujii et al., 2024; Choi et al., 2024; Nguyen et al., 2024;
Tejaswi et al., 2024; Mundra et al., 2024).

Other methods to language adaptation include full or partial vocabulary replacement with a new target
vocabulary (Ostendorff & Rehm, 2023; Csaki et al., 2023; Da Dalt et al., 2024; Remy et al., 2024; Yamaguchi
et al., 2024a; Dobler & de Melo, 2024; Cahyawijaya et al., 2024), hypernetwork for tokenizer transfer (Minix-
hofer et al., 2024), and adapters for vocabulary alignment (Han et al., 2024). Our work focuses on VE as
it has been widely used recently for mostly base LLM adaptation in languages such as Chinese, Japanese,
Korean, and Persian (Cui et al., 2024; Fujii et al., 2024; Choi et al., 2024; Mahdizadeh Sani et al., 2025, inter
alia.).

2.2 Language Adaptation of Chat Models

Recent work has proposed developing chat models in a target language from source base models. For
example, Toraman (2024) and Zhao et al. (2024a) apply VE to base models using target language chat data,
consisting of 52k samples and 500M tokens, respectively. Bandarkar et al. (2024b) also adapt base models
using 30-40k target language chat data. Their approach also adapts a task-specific (i.e. math) model on
200k English math samples, followed by merging the two models to enhance math performance in the target
language. Alexandrov et al. (2024) iteratively merge models trained on subsets of available target language
data to effectively mitigate catastrophic forgetting. Their method first adapts base models with continual
pre-training (CPT) on target unlabeled language data, followed by instruction tuning on target language
chat data samples. However, this approach requires substantial target language data (at least 50B tokens of
unlabeled data for CPT, and 78K samples of target language chat data) to ensure that each subset contains
sufficient information for effective adaptation. A different approach, proposed by Tao et al. (2024), involves
merging two base models: (1) one supervised fine-tuned on 162k English data samples, and (2) another
trained on at least eight billion tokens of target unlabeled language data. However, it still relies on the
availability of a base model. Geng et al. (2025) propose adapting source chat models directly through a
multi-stage training approach. This method involves target unlabeled data and transfer fine-tuning (i.e.
supervised fine-tuning tasks using translated target chat data.)

The main limitation with this line of work is that it requires access to target chat data (real or translated),
typically in large volumes. Chat data is often unavailable or costly to produce for low-resource languages,
while machine-translated chat data is not always effective for adaptation (Tao et al., 2024). For example,
Burmese, one of our experimental languages, consists only of 472 manually annotated instruction samples
in the Aya Dataset (Singh et al., 2024b). This is insufficient for direct application of VE, as its typical
data requirements are in the order of millions of tokens (Tejaswi et al., 2024), making these methods not
applicable in such settings.

Huang et al. (2024) assumes a language adaptation setting where there is no access to target chat data (real
or translated). This is a more realistic scenario for low-resource languages. For example, Burmese has only
172k target unlabeled language data in MADLAD-400 (Kudugunta et al., 2023) available for adaptation.
Their proposed CV method obtains a target chat model using a source base and a source chat model. This
approach to chat LLM adaptation is the closest to our work.

3 ElChat: Eliciting Chat and Instruction-following Abilities

Similar to Huang et al. (2024), we aim to adapt a chat LLM to a target language, assuming that we only
have access to target unlabeled data and no target chat data (real or translated) at all. Unlike Huang et al.
(2024), our goal is to remove the dependence on a base model that might not always be available and adapt
a chat model directly on target unlabeled data with VE.

To achieve this, we introduce ElChat that consists of three steps: (i) VE on the source chat model using
target unlabeled data to obtain an initial adapted target chat model; (ii) merging the source and target
models; (iii) injecting information from the source to the target by copying tokens that are specific to chat
and instruction-following capabilities.
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We expect that modifying the parametric knowledge of the source model by training on target unlabeled
data in step (i) will improve its target language skills by updating specific areas of the network but negatively
impact its chat and instruction-following abilities due to catastrophic forgetting. To remedy this, we hy-
pothesize that we can elicit the latter through (ii) model merging (Wortsman et al., 2022; Yadav et al., 2023;
Yu et al., 2024; Goddard et al., 2024). It allows the integration of distinct parametric knowledge from the
source and target models without incurring any additional training costs, i.e. chat abilities from the source
and target language knowledge from the target. Finally, in step (3), we restore the representation of special
tokens used in the chat template. We assume this will guide the target model in effectively responding to
user instructions by transferring this information from the source.

Vocabulary Expansion (VE). Given the sole availability of target unlabeled data, we apply VE on the
source chat LLM by expanding its input and output head matrices with new tokens, followed by CPT on
the target data. A key difference between chat and base models is that the former use a chat template.
This includes specific roles (e.g. user, system, or assistant) and has a placeholder for message text in the
prompt (see Appendix A for details). During CPT, we remove the default chat template of the model to
support unlabeled data. During inference, we append it to task-specific prompt templates (see Table 3 for
task-specific prompts).

Source and Target Chat Model Merging (Merge). After VE, we merge the source and target chat
models. We employ a popular merging method: spherical linear interpolation (SLERP) (Goddard et al.,
2024) to merge each layer of the source and adapted models.5 This process excludes the embedding and
language modeling head from merging because the source and target models use different vocabularies.

Copying Special Token and Language Modeling Head Weights (Copy). Special tokens used in a
chat template (e.g. <im_start> in Qwen2.5 to represent the start of a turn) should be critical in supporting
chat and instruction-following abilities of a model (see Appendix A for a full list of special tokens). Although
the embedding and language modeling heads are excluded from merging due to vocabulary differences, leaving
them unchanged may not be optimal for eliciting the chat and instruction-following abilities of the adapted
chat model. Hence, we copy all the special token weights from the source model to the adapted model.

4 Experimental Setup

This section describes the experimental setup in this paper. More details are listed in Appendix A.

4.1 Source Models

We use two state-of-the-art chat models as source: Qwen2.5 7B (Yang et al., 2024); and Llama 3.1 8B (Dubey
et al., 2024), across experiments.

4.2 Target Languages and Adaptation Data

We experiment with the following seven typologically diverse languages, assuming that they are likely to
be underrepresented compared to English in the pre-training data of the source models, or entirely absent:
Amharic (Afroasiatic), Bengali (Indo-European), Burmese (Sino-Tibetan), Gujarati (Indo-European), Sin-
hala (Indo-European), Tamil (Dravidian), and Telugu (Dravidian). The ratio of training data in each model
for each source base and chat model has not been explicitly disclosed (Appendix C.2). Note that we do not
consider Latin script target languages as they are less likely to suffer from overfragmentation and usually
benefit less from VE (Yamaguchi et al., 2024b; Tejaswi et al., 2024).

For the CPT part of VE, we use MADLAD-400 (Kudugunta et al., 2023), which consists of highly-filtered
document-level samples sourced from CommonCrawl, and randomly sample 250K language-specific docu-
ments for each language as the target unlabeled data.6

5We also test linear (Wortsman et al., 2022) merging yielding similar results (see Appendix B).
6For languages with less than 250K documents (i.e. Amharic and Burmese), we use the full articles.
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4.3 Vocabulary Expansion

Embedding Initialization. We employ mean initialization (Yao et al., 2021), a popular and simple, yet
effective method in VE (Fujii et al., 2024; Tejaswi et al., 2024; Mundra et al., 2024). The weight of each new
target token is initialized as the average embedding or language modeling head weight of their corresponding
source tokens, obtained using the corresponding source tokenizer.

Continual Pre-training. Following Remy et al. (2024), we train the embedding, LM head, and the top
and bottom two layers of a source model. This approach aims to calibrate only the parts closely related
to the encoding and decoding of the target language (Wendler et al., 2024; Tang et al., 2024; Zhao et al.,
2024b), minimizing changes to the source model while allowing cost-effective tuning.

4.4 Baselines

We compare ElChat against the following baselines:

• Off-the-shelf base (Base) and chat (Chat) models without target language adaptation.

• Base and Chat models adapted using standard VE, denoted by Base+VE and Chat+VE respec-
tively. Note that the latter uses a chat template in inference (see §3).

• CV proposed by Huang et al. (2024), augmenting Base+VE with chat vector using Base and Chat.

For reference, we also experiment with adapting Chat and Base using only CPT on the same target language
data without VE (i.e. no inference speedup in a target language). We provide the results and analysis of
these CPT-only models in Appendix C.1.

4.5 Evaluation Tasks

We evaluate the efficacy of ElChat in safety, chat, and instruction-following performance, and target and
source language performance.

Safety, Chat, and Instruction-Following. Following Cahyawijaya et al. (2024), we conduct safety
evaluation on target data including TruthfulQA (Lin et al., 2022), ToxicGen (Hartvigsen et al., 2022),
and ImplicitHate (ElSherief et al., 2021). We also measure chat and instruction-following abilities in the
source language (English) using IFEval (Zhou et al., 2023), GSM8K (Cobbe et al., 2021) as multi-turn
few-shot, and MT-Bench (Zheng et al., 2023).

Target language evaluation is challenging for instruction-following and chat tasks due to the limited data
availability. LLM-as-a-Judge (Zheng et al., 2023) is also unstable according to Azime et al. (2024) in low-
resource languages. Hence, we use multi-turn MGSM (Shi et al., 2023) for target language evaluation as it
consists of manually translated high-quality data.

Target Language. We use both generative and discriminative target language tasks. For generative tasks,
we use summarization (sum) using XL-SUM (Hasan et al., 2021) and English-to-target machine translation
(mt) using FLORES-200 (NLLB Team et al., 2022). For a discriminative task, we employ multiple-choice
text classification (mc) using Belebele (Bandarkar et al., 2024a) and Global MMLU (gmmlu) (Singh et al.,
2024a) as general target language understanding benchmarks.

Source Language (English). We assess the extent to which the adapted models retain their general
task-solving abilities in English sum, target-to-English mt, and English mc using the same datasets as
those employed for target languages. We also use mmlu (Hendrycks et al., 2021) as an English language
understanding benchmark.

Following Ahia et al. (2023), we use 500 random samples for generative tasks: sum and mt. The rest use
the full test sets for evaluation.
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4.6 Evaluation Metrics

Task Performance. We report the standard metrics for each task: accuracy for mc, gmmlu, mmlu,
TruthfulQA, and IFEval (strict prompt), and exact match for GSM8K and MGSM. For MT-Bench,
we use the mean score over two turns across all questions. Adhering to the standard protocol in LightE-
val (Fourrier et al., 2023), each score is determined using Flow-Judge-v0.1 and follows a Likert-5 scale. For
sum and mt, we primarily use chrF (Popović, 2015).7 For ToxicGen and ImplicitHate, we use safety
score, which is the percentage of likeliness of the model producing benign over harmful sentences, following
Cahyawijaya et al. (2024).

We report average zero- and three-shot performance across three different runs for sum and mt, respectively.
For the remaining tasks, we report single-run zero-shot performance for IFEval, MT-Bench, Toxic-
Gen and ImplicitHate, three-shot performance for mc, TruthfulQA, five-shot performance for gmmlu,
mmlu, GSM8K, and MGSM as these tasks are deterministically evaluated with temperature set to zero.

Inference Efficiency. VE offers inference speedups in a target language compared to source models (Te-
jaswi et al., 2024; Mundra et al., 2024; Yamaguchi et al., 2024b). To quantify this, we measure the number
of tokens generated per second (tokens/s) (Hong et al., 2024).

5 Task Performance

5.1 Safety, Chat, and Instruction-following
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Figure 2: Aggregated mean performance (↑) across
seven target languages for each model on safety, chat,
and instruction-following tasks. Full results are in the
Appendix (Tables 7 and 8).

Safety. Figure 2 (a) shows the aggregated mean
performance in safety tasks across the seven tar-
get languages. We first observe that ElChat out-
performs CV in TruthfulQA for both Qwen2.5
and Llama 3.1. In particular, it substantially helps
Llama 3.1, achieving 13-point gains over CV on av-
erage. We speculate that CV may be less effective
for classification tasks as reflected in its performance
on other discriminative target language tasks (§5.2).

In contrast, CV often surpasses ElChat in Toxi-
Gen and ImplicitHate for both models, with dif-
ferences of up to 6 points, e.g. in ToxiGen with
Qwen2.5. This is primarily due to the use of Merge
instead of Copy in ElChat (see Table 8). Specifi-
cally, ElChat without Copy follows similar trends to
ElChat, while ElChat without Merge exhibits simi-
lar trends to Chat+VE and CV. This is intuitive, as
merging a model with the lowest target safety per-
formance (i.e. Chat) with Chat+VE can degrade
safety performance.

We finally find that ElChat, CV, and Chat+VE out-
perform the Chat baseline across tasks and models,
with gains ranging from 1.4 (TruthfulQA with
Llama 3.1 using ElChat) to 20 points (TruthfulQA with Qwen2.5 using ElChat). The only exceptions
are CV and Chat+VE in TruthfulQA, where they underperform Chat by 11 and 14 points, respectively.
This instability highlights the advantage of ElChat, as it consistently enhances safety performance over Chat
across tasks.

7Although chrF has been a widely used metric for sum and mt (Ebrahimi et al., 2023; Remy et al., 2024, inter alia), we also
show ROUGE-L (Lin, 2004) for sum and chrF++ (Popović, 2017) for mt in Appendix B.
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Table 1: MGSM performance in
Bengali (bn) and Telugu (te) by
model.

(a) Qwen2.5 7B

Model EM
bn te

Chat .23 .06
CV .60 .27
Chat+VE .39 .27

ElChat (Ours) .46 .35

(b) Llama 3.1 8B

Model EM
bn te

Chat .30 .12
CV .31 .24
Chat+VE .26 .28

ElChat (Ours) .51 .41

Chat and Instruction-following. Figure 2 (b) shows the aggregated
mean performance across chat and instruction-following tasks in English
(source). We first analyze the extent to which ElChat impacts perfor-
mance on chat and instruction-following tasks compared to the Chat
baseline. Note that some performance degradation is inevitable, as adapt-
ing Chat to target unlabeled data inherently affects the source chat and
instruction-following abilities (§3).

As anticipated, we find that ElChat exhibits performance degradation
across tasks and models compared to the Chat baseline. However, the
extent of this degradation varies depending on the model, task, and adap-
tation approach. For example, ElChat achieves comparable performance
on GSM8K but experiences reductions of 16 and 0.57 points on IFEval
and MT-Bench, respectively. Despite these drops, ElChat successfully
improves instruction-following performance compared to the respective
adapted model, Chat+VE. It demonstrates improvements of 14 and 13
points over Chat+VE for Qwen2.5 and Llama 3.1, respectively. These
results indicate that ElChat can inject instruction-following capabilities
into the adapted model.

We next observe that ElChat generally outperforms CV across tasks and
models in five out of six cases, with performance differences ranging from
9.5 points (IFEval with Llama 3.1) to 25 points (GSM8K with Llama
3.1). This suggests that ElChat is more effective than CV in enhancing
both chat and instruction-following abilities.

Finally, ElChat’s performance advantage extends to target language tasks. Table 1 shows model performance
in MGSM (covering Bengali and Telugu). Overall, ElChat surpasses both CV and the original chat model,
Chat, in three and four out of four cases, respectively. Notably, ElChat significantly improves Telugu
performance by 29 points with both Qwen2.5 and Llama 3.1. Additionally, while CV enhances Bengali
performance by just 1 point over Chat in Llama 3.1, ElChat achieves a substantial 21-point gain. These
results further support the superiority of ElChat over CV.

5.2 Target Language

Figure 3 (left) shows the aggregated mean performance across seven languages for all source and adapted
target models in target language.

We note that ElChat consistently outperforms its source chat model (Chat) across all models and tasks. This
improvement is particularly notable in generative tasks (i.e. sum and mt), with gains ranging from 8 points
(Llama 3.1 on mt) to 20 points (Qwen2.5 on mt). While ElChat generally maintains competitive performance
(within 3 points) compared to Chat+VE, it exhibits slightly reduced performance (up to 5.9 points with
Qwen2.5 on mc) in discriminative tasks (i.e. mc and gmmlu) and mt with Llama 3.1. These results suggest
that ElChat can overall preserve the target language performance, while the model modifications do not
substantially degrade performance.

We further observe that ElChat demonstrates competitive performance with CV, with each method out-
performing the other in half of the evaluated cases. However, CV notably underperforms both the source
base and chat models in the two discriminative tasks (i.e. mc and gmmlu) with Llama 3.1. Thus, although
ElChat and CV achieve similar overall performance, our method is more likely to yield improvements in
target language tasks.

5.3 Source Language (English)

Figure 3 (right) shows the aggregated mean performance across seven languages for all source and adapted
target models in English tasks. ElChat generally underperforms the source Chat baseline. However, the
degree of performance degradation varies considerably depending on the task and model similar to §5.1. For
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Figure 3: Aggregated mean performance across seven target languages for each model (error bars indicate
95% confidence interval). Full results are in Tables 9 and 10.
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Figure 4: Aggregated mean inference speedup (tokens/s) across seven target languages. The value next to
each bar represents the speedup ratio over Chat. Full results are in the Appendix (Tables 13 and 14).

instance, with Llama 3.1, ElChat exhibits substantial performance drops of 7 and 18 points on mmlu and
mt, respectively. In contrast, the performance degradation observed with Qwen2.5 is less pronounced, with a
maximum decrease of 1.6 points on mmlu. Interestingly, ElChat even demonstrates a 6.7-point improvement
on mt with Qwen2.5. This improvement likely stems from two key factors: (1) ElChat’s effective utilization
of source tokens (95%) during generation, compared to other approaches (i.e. Base+VE, CV, and Chat+VE)
that achieve at most 71% source token utilization; and (2) its successful early stopping, generating a similar
number of tokens (33) as Chat (see Figures 6 and 7 in the Appendix).

Comparing ElChat and Chat+VE, we find that ElChat generally yields better or comparable performance
across models and tasks, with the exception of mt with Llama 3.1. This improvement suggests that ElChat
can generally alleviate catastrophic forgetting not only in chat and instruction-following tasks (§5.1) but also
in source language tasks by injecting the source chat information into Chat+VE.

Conversely, CV exhibits poor performance on English tasks, typically falling short of ElChat in six out of eight
cases. Moreover, the benefits of catastrophic forgetting mitigation are not consistently observed with CV,
as it only outperforms its adapted base model, Base+VE, in three out of eight cases. This result somewhat
contrasts with Huang et al. (2024), who highlight the benefits of using CV to mitigate catastrophic forgetting
and improve knowledge retention and language ability. We speculate that modifying models through simple
arithmetic operations, as in CV, may be less robust than our method. These results suggest that ElChat
more effectively integrates target language abilities while mitigating performance degradation across chat,
instruction-following, and source English tasks compared to CV.

6 Inference Efficiency

VE offers inference speedups on target language tasks by reducing text overfragmentation (§4.6). Since
ElChat and CV involve modifications to model weights, they may increase the generation of source tokens,
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[User] టౌలా ఒక బేకరీకి వెళిల్, వివిధ రకాţన పేసీట్ర్లను కొనుగోలు చేసిం-
ది. ఆమె డజను $68 ఖరీదుతో 3 డజనల్ డోనట్‍ లను, డజను $80 డాలరుల్
ఖరీదుతో 2 డజనల్ మినీ కప్‍ కేకులను, డజను $55 ఖరీదుతో 6 డజనల్ మినీ
చీజ్‍ కేక్‍ లను కొనుగోలు చేసింది. మొతత్ం ఖరుచ్ ఎంత?
Toula went to a bakery and bought a variety of pastries. She bought 3
dozen donuts for $68 a dozen, 2 dozen mini cupcakes for $80 a dozen,
and 6 dozen mini cheesecakes for $55 a dozen. What was the total cost?
→[ElChat] మినీ చీజ్‍ కేక్‍ లు 6*55=330 డాలరుల్ ఖరీదుతో 6 డజనల్ కొను-
గోలు చేయబడాడ్ యి. మినీ కప్‍ కేకులు 2*80=160 డాలరుల్ ఖరీదుతో 2 డజనల్
కొనుగోలు చేయబడాడ్ యి. డోనట్‍ లు 3*68=204 డాలరుల్ ఖరీదుతో 3 డజ-
నల్ కొనుగోలు చేయబడాడ్ యి. మొతత్ం ఖరుచ్ 330+160+204=694 డాలరుల్ .
సమాధానం 694.
Mini cheesecakes were purchased at a cost of 6*55=330 dollars, 6 dozen.
Mini cupcakes were purchased at a cost of 2*80=160 dollars, 2 dozen.
Donuts were purchased at a cost of 3*68=204 dollars, 3 dozen. Total
cost was 330+160+204=694 dollars. Answer is 694.

(a) Correct answer - Correct reasoning

[User] রায়ান তঁার বাগােন একিদেন 2িট ফুল লািগেয়েছন। 15 িদন পের,
যিদ 5িট না েবেড় ওেঠ তেব েমাট কিট ফুল থাকেব?
Ryan planted 2 flowers in his garden in one day. After 15 days, if 5 do
not grow, how many flowers will be left in total?
→[ElChat] রায়ান তঁার বাগােন 1 িদেন 2িট ফুল লািগেয়েছন। 15 িদন পের
িতিন 2 * 15 = 30িট ফুল লািগেয়েছন। িতিন 5িট ফুল লািগেয়েছন না। তাই
তঁার বাগােন েমাট 30 - 5 = 25িট ফুল থাকেব। উত্তর হল 25।
Ryan planted 2 flowers in his garden in 1 day. After 15 days he planted
2 * 15 = 30 flowers. He did not plant 5 flowers. So there will be a total
of 30 - 5 = 25 flowers in his garden. The answer is 25.

(b) Correct answer - Wrong reasoning

Figure 5: Output examples on MGSM. We use Google Translate for translation. Few-shot demonstrations
(conversation history) are omitted due to space constraints.

potentially slowing inference compared to Chat+VE and Base+VE. Furthermore, the inference efficiency
of CV with VE has not been previously studied. Therefore, we investigate the inference efficiency of both
methods. Figure 4 shows the aggregated mean inference speedups across seven languages and three target
tasks.

Overall, both ElChat and CV achieve comparable speedups to their respective adapted models, Chat+VE
and Base+VE, demonstrating 2.0x to 6.0x speedups over the source chat model, Chat. The largest drop is
observed between ElChat and Chat+VE on the mt task with Qwen2.5 (0.4x). This likely happens because
ElChat frequently terminates generation early (see Table 7), resulting in fewer generated tokens (and thus
a smaller numerator in the tokens/second calculation). In summary, these results suggest that the model
modifications introduced by ElChat and CV do not negatively impact the inference speedups provided by
VE.

7 Analysis

To better understand the behavior of ElChat, we perform an ablation in chat and instruction-following tasks
using Llama 3.1. We also conduct a qualitative analysis using mgsm to gain further insights.

Table 2: Mean performance across languages for chat and
instruction-following tasks using Llama 3.1. Ablation results in
other tasks are available in Appendix B.

Model IFEval GSM8K MGSM MT-Bench
CV .38.03 .33.11 .27.03 3.04.20

ElChat .47.04 .58.06 .46.05 2.92.27

– Merge .34.05 .40.18 .37.06 2.53.22

– Copy .39.02 .37.17 .32.04 2.65.23

Ablation. Table 2 shows the impor-
tance of each ElChat component. Re-
moving either of the two components
(§3) significantly reduces performance
across chat and instruction-following
tasks, demonstrating their complemen-
tarity in eliciting ElChat’s abilities. For
instance, ablating the weight copying
(Copy) component, leaving only VE and
model merging, causes performance to
drop by an average of 8 points on IFE-
val, 21 points on GSM8K, 14 points on
MGSM, and 0.27 points on MT-Bench relative to ElChat. This substantially undermines the advantage of
ElChat over CV as it greatly lags behind CV in MT-Bench and shows marginally better performance than
CV with only a few points (up to 4 points on GSM8K) differences in other tasks, unlike at least 9 points
difference observed between ElChat and CV. These results clearly demonstrate that while the individual
components are established techniques, their synergistic effect within a chat model context is non-trivial,
and their combination is essential for ElChat’s strong performance.
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Qualitative Analysis. Figure 5 presents examples of ElChat’s output on MGSM, highlighting both
successes and challenges. Case (a) showcases correct reasoning and answer generation in Telugu. However,
case (b) demonstrates that even when providing a correct answer in Bengali, ElChat can exhibit wrong
reasoning. The misinterpretation of “five flowers do not grow” as “Ryan did not plant five flowers” suggests
a potential limitation in understanding nuanced language. Notably, in the same case, it correctly reasons
in English that “5 did not grow”. Focusing on improving target language abilities further during VE while
mitigating catastrophic forgetting of chat and instruction-following could address this issue. For instance,
making iterative model merging (Alexandrov et al., 2024) applicable to low-resource settings is a potential
avenue for future investigation.

8 Conclusion

We introduced ElChat, a method for directly adapting chat models with VE using unlabeled data, eliminating
the need for a base model and target chat data. To mitigate potential catastrophic forgetting in the adapted
chat models after VE, ElChat elicits chat abilities by injecting information from the source chat model
without requiring further training. Extensive experiments across safety, chat, and instruction-following,
target language, and source language tasks demonstrated that ElChat outperforms the previous state-of-
the-art CV approach in chat and instruction-following, and English tasks while being competitive and more
robust in the target language and safety tasks. These results highlight ElChat’s superior abilities.

Limitations

Continual Pre-training Methods. This paper uses a continual pre-training method proposed by Remy
et al. (2024), which tunes the top and bottom two layers of a model and its embedding and language
modeling head, for efficient and effective target language adaptation. Nonetheless, other continual pre-
training methods exist, including adapter-based training (e.g. LoRA (Hu et al., 2022)) and full fine-tuning.
It would be interesting to extensively investigate the effect of different training methods for future work, but
this is beyond the scope of this paper.

Model Merging Methods. We experiment with linear and SLERP merging as representative model
merging methods for simplicity. More recent methods like TIES (Yadav et al., 2023) and DARE-TIES (Yu
et al., 2024) might perform even better in ElChat. Given the resource constraints, we leave this investigation
for future work.

Languages. This paper covers seven typologically diverse languages, following previous work on language
adaptation that has also tested a similar number of languages. For instance, Minixhofer et al. (2022) tested
eight languages. Note that Huang et al. (2024) used three languages (i.e. Chinese, Traditional Chinese, and
Korean) to verify the effectiveness of CV. Experimenting with more languages is an interesting avenue for
future work but is out of the scope of this paper, given our limited computing capacity.

Chat and Instruction-following Evaluation. Our chat and instruction-following evaluation is mainly
on English data except for MGSM due to the limited availability of manually curated language-specific
evaluation resources. Azime et al. (2024) has also noted the instability of using LLM-as-a-Judge in Amharic,
which is also one of our experimental languages. It would be an interesting avenue to explore more chat
and instruction-following evaluation in target languages for future work. We hope our work inspires the
development of extensive evaluation benchmarks in low-resource languages.

Ethical Considerations

Although we conducted extensive experiments across diverse public datasets to validate the effectiveness of
ElChat, these datasets do not fully represent all real-world scenarios. Therefore, any model derived from or
based on this work should be used with caution.
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A Experimental Setup

A.1 Chat Template and Special Tokens

Model-specific chat templates and special tokens are accessible via the following links:

• Qwen2.5: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/tokenizer_conf
ig.json

• Llama 3.1: https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/blob/main/toke
nizer_config.json

Below are excerpts from the chat templates of each model with placeholders for a prompt and output:

Qwen2.5.

<|im_start|>system
You are Qwen, created by Alibaba Cloud.
You are a helpful assistant.
<|im_end|>
<|im_start|>user
{prompt}
<|im_end|>
<|im_start|>assistant
{output}

Llama 3.1.

<|begin_of_text|>
<|start_header_id|>system
<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024
<|eot_id|>
<|start_header_id|>user
<|end_header_id|>
{prompt}
<|eot_id|>
<|start_header_id|>assistant
<|end_header_id|>
{output}
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A.2 Prompt Template

We translate the English prompt templates provided by Ahia et al. (2023) for sum with a machine translation
API, following Yong et al. (2023). For mt and mc, we formulate a task-specific English prompt, followed by
machine translation for each language. For the remaining tasks, except for MT-Bench, we use the default
templates provided in lm-evaluation-harness (Gao et al., 2023). For MT-Bench, we use the default
template provided in LightEval (Fourrier et al., 2023). Table 3 shows the prompt templates used in our
evaluation. Note that we do not make any changes to the task-specific prompt to allow for a fair comparison
between models with and without a chat template (i.e. Base and Chat, respectively).

Table 4: Hyperparameters for continual pre-training.

Hyperparameters Values

Batch size 32
Number of training steps 30,517
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 512
Learning rate 5e-5
Learning rate scheduler cosine
Warmup steps First 5% of steps
Weight decay 0.01
Attention dropout 0.0
Training precision BF16

Table 5: Parameters for non-greedy generative tasks: mt and sum.

Parameters Values

Temperature 0.8
Repetition penalty 1.1
Top k 40
Top p 0.9
Beam width 5
Sampling True
Early stopping True
Maximum number of generated tokens 128

A.3 Implementation Details

Our experimental design is based on the findings from Tejaswi et al. (2024). They report that (1) there are
no significant gains when adding more than 10K tokens to the source vocabulary, and (2) additional CPT in
the order of millions of tokens is sufficient for model adaptation. Given this, we set the vocabulary size of
the auxiliary target language tokenizer |Vaux| to 50K across languages and the number of new target tokens
k to 10K. We train each model for 500M tokens with a batch size of 32, a maximum learning rate of 5e-5,
and a sequence length of 512.

Tokenizer Training. We train tokenizers using Hugging Face Tokenizers.

Preprocessing. We preprocess datasets with Hugging Face Datasets (Lhoest et al., 2021).

Continual Pre-training. We implement our models using PyTorch (Ansel et al., 2024) and Hugging Face
Transformers (Wolf et al., 2020). Table 4 lists the hyperparameters in CPT.
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Model Merging. To ensure a smooth transition between layers, we use a 0.3 : 0.7 = Chat : Chat+VE
mixing ratio for the top and bottom layers of all merged models, favoring Chat+VE as these layers are
adjacent to the embeddings and language modeling head of Chat+VE. For the second top and bottom
layers, we use 0.5 : 0.5 = Chat : Chat+VE, balancing the contributions of Chat and Chat+VE.

Evaluation. We use Hugging Face LightEval8 for evaluation on all tasks except for IFEval, GSM8K
and MGSM. For IFEval, GSM8K, and MGSM, we use lm-evaluation-harness (Gao et al., 2023). To
compute ROUGE-L, we split sentences with an mT5 (Xue et al., 2021) tokenizer as preprocessing following
Maynez et al. (2023) and subsequently call rouge_scorer9 to compute the metric. To compute chrF and
chrF++, we use SacreBLEU (Post, 2018). For safety evaluation, we follow Cahyawijaya et al. (2024) and
use their implementation available on GitHub: https://github.com/IndoNLP/cendol.

Table 5 lists the parameters used during evaluation for generative tasks: mt and sum. To make a fair
comparison, we do not conduct any generation parameter tuning and use the same ones across all approaches.

Hardware. We use either a single NVIDIA A100 (80GB), NVIDIA H100 (80GB), or NVIDIA GH200
(96GB) for CPT. For evaluation, we use a single NVIDIA A100 (80GB) for all Llama 3.1 models and a single
NVIDIA H100 (80GB) for all Qwen2.5 models to ensure accurate measurement of inference efficiency.

Model Links. We list all the source model URLs in the following:

• Qwen2.5 (Chat): https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

• Qwen2.5 (Base): https://huggingface.co/Qwen/Qwen2.5-7B

• Llama 3.1 (Chat): https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

• Llama 3.1 (Base): https://huggingface.co/meta-llama/Llama-3.1-8B

Table 6: MGSM performance in Bengali (bn) and Telugu (te) by model. The experimental settings are the
same as GSM8K. (L) stands for linear merging.

(a) Qwen2.5 7B

Model EM
bn te

Chat .23 .06
CV .60 .27
Chat+CPT .24 .14
Chat+VE .39 .27

ElChat (Ours) .46 .35

(b) Llama 3.1 8B

Model EM
bn te

Chat .30 .12
CV .31 .24
Chat+CPT .12 .02
Chat+VE .26 .28

ElChat (Ours) .51 .41

ElChat \Copy .28 .36
ElChat \Merge .43 .30
ElChat (L) .53 .42

B Results

B.1 Task Performance

• Safety, Chat, and Instruction-following: Tables 7 and 8 provide a detailed breakdown of the
task performance results for Qwen2.5 and Llama 3.1 across safety, chat, and instruction-following
tasks. Table 6 shows the results of Chat+CPT and ElChat-related ablation models in mgsm.

8https://github.com/huggingface/lighteval
9https://github.com/google-research/google-research/tree/master/rouge
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Figure 6: Aggregated average ratio of target tokens in output per sample across seven target languages for
each model (error bars indicate 95% confidence interval).

• Target Language and Source (English): Tables 9 and 10 provide a detailed breakdown of the
task performance results for Qwen2.5 and Llama 3.1 across target language and source (English)
language tasks.

• sum and mt Results with Auxiliary Metrics: Tables 11 and 12 provide a detailed breakdown of
sum and mt performance results, measured by ROUGE-L for sum and chrF++ for mt, for Qwen2.5
and Llama 3.1, respectively.

B.2 Inference Efficiency

Tables 13 and 14 provide a detailed breakdown of the inference efficiency results for Qwen2.5 and Llama 3.1,
respectively.

B.3 Ratio of Target Language Tokens

Figure 6 shows the aggregated mean ratio of target new tokens in output per sample across seven target
languages for each model.

B.4 Number of Generated Tokens

Figure 7 shows the aggregated average number of generated tokens per sample across seven target languages
for each model.

C Analysis and Discussion

C.1 CPT-only vs. VE

Comparing the adapted chat models (Chat+VE and ElChat) with the CPT-only model (Chat+CPT) in
Tables 9 and 10, we observe three key trends: (1) Chat+VE generally performs better than Chat+CPT on
target language tasks across both models; (2) Chat+CPT often outperforms Chat+VE on mt tasks; and
(3) ElChat either matches or surpasses Chat+CPT on nearly all tasks and models, except for Target mc
and gmmlu with Qwen2.5 and target-to-English mt with Llama 3.1. This performance advantage of ElChat
is also confirmed for chat and instruction-following tasks (Tables 6, 7, and 8), where ElChat substantially
outperforms Chat+CPT in almost all cases across languages, tasks, and models.
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Figure 7: Aggregated average number of generated tokens per sample across seven target languages for each
model (error bars indicate 95% confidence interval).

We also observe a similar trend between Base+VE and the CPT-only adapted base model (Base+CPT) in
Tables 9 and 10: Base+VE often outperforms Base+CPT in most of the tasks, while Base+CPT excels in
target-to-English mt across models.

These results somewhat contradict the recent observations (Downey et al., 2023; Yamaguchi et al., 2024a;b)
that CPT-only models often perform better than vocabulary adapted models, possibly due to the robustly
aligned original embeddings. However, Fujii et al. (2024) reported that “the overall impact of vocabulary
expansion on performance is minor.” Further, Dobler & de Melo (2024) also claimed that “we do not see
a clear trend of better performance with or without tokenizer swapping” for their vocabulary adaptation
experiments. We hypothesize that the superiority of CPT is greatly affected by the amount of CPT data,
and it can be more apparent in low-resource settings as in Yamaguchi et al. (2024b), where new embeddings
are likely to be not well aligned.

It is important to note that the CPT-only models (i.e. Base+CPT and Chat+CPT) have no speedups at
all (Tables 13 and 14) as they use the same vocabulary as the source models (i.e. Base and Chat).

C.2 Additional Analysis by Language

We conduct additional analysis of the target language task performance of models by language. Figure 8
presents the aggregated mean performance across three target language tasks (i.e. Target sum, English-
to-target mt, and Target mc). Figure 9 shows the aggregated mean performance across generative target
language tasks (i.e. Target sum and English-to-target mt).

Performance improvements achieved with VE are evident across languages and models. Over-
all, we observe from Figure 8 that ElChat consistently outperforms Base and Chat in all the target languages
across models.

The extent to which adapted chat models improve target language task performance substan-
tially varies by language and model. We observe from Figures 8 and 9 that ElChat substantially
improves their target language performance over Base and Chat across models in Amharic, Burmese (Myan-
mar), and Sinhala. However, its improvement in Bengali remains minimal for both Qwen2.5 and Llama 3.1,
especially in generative tasks (Figure 9). Similarly, for Llama 3.1, the performance gains in Tamil, Telugu,
and Gujarati are less pronounced, particularly in generative tasks (Figure 9). We hypothesize that this dis-
parity strongly correlates with the amount of language-specific data used to train the source chat model. Note
that similar findings have already been reported by Yamaguchi et al. (2024a) and Tejaswi et al. (2024), inter
alia.
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Figure 8: Aggregated mean performance across target language tasks for each model by language (error bars
indicate 95% confidence interval).

How many languages do source chat LLMs support? The exact language coverage of the source
LLMs remains unclear, as none explicitly list their supported languages.

Qwen2.5 (Qwen Team, 2024; Yang et al., 2024) reportedly supports over 29 languages, including Chinese,
English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, and
Arabic. However, none of our target languages are explicitly included in this list.

Llama 3.1 (Dubey et al., 2024) officially supports English, German, French, Italian, Portuguese, Hindi, Span-
ish, and Thai. However, it employs a FastText-based language identification model to categorize documents
into 176 languages during pre-processing, suggesting that some of our target languages may be included in
its pre-training data.

Additionally, Llama 3.1 reportedly utilizes 15T multilingual tokens (Dubey et al., 2024) for pre-training,
while Qwen2.5 uses 18T tokens in total (not exclusively multilingual) (Qwen Team, 2024; Yang et al., 2024).
This suggests that Llama 3.1 likely benefits from exposure to a broader set of languages. The relatively
modest performance improvements observed for Gujarati, Tamil, and Telugu in Llama 3.1 could indicate
that these languages were already present in its training data.

Approximating the language coverage. We can roughly estimate the language coverage of the source
LLMs using MADLAD-400. The rationale is that these open-weight models are generally trained mainly on
a mixture of publicly available data (Gemma Team et al., 2024; Dubey et al., 2024). Given that MADLAD-
400 is sourced from CommonCrawl as mentioned in §4, its data distribution can potentially approximate
the relative coverage of our target languages.

Table 15 presents the data statistics of MADLAD-400 for our target languages. We observe that Burmese,
Amharic, and Sinhala have the fewest articles and total characters in MADLAD-400. Notably, these lan-
guages also exhibit the largest performance gains in our experiments. This suggests a strong correlation
between the size of language-specific data in MADLAD-400 and the effectiveness of VE in task performance.
On the basis of these results, we hypothesize that the two source LLMs used in our experiments might
have been trained on very limited language-specific data, or possibly not at all, for Burmese, Amharic, and
Sinhala. In contrast, Tamil, Telugu, Bengali, and Gujarati each have over 1 million articles, making them at
least 7.4 times larger than the Burmese dataset. This further suggests a higher likelihood of their inclusion
in the pre-training data of the source LLMs.
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Figure 9: Aggregated mean performance across target language generative tasks (sum and mt) for each
model by language (error bars indicate 95% confidence interval).

Table 15: Data size of MADLAD-400 Kudugunta et al. (2023) for each language.

Language Number of articles Number of characters

Tamil 5.6M 10.6B
Telugu 2.5M 5.1B
Bengali 4.3M 4.3B
Gujarati 1.3M 2.1B
Sinhala 788K 1.9B
Amharic 245.2K 509M
Burmese 176.5K 1.3B

D License

This study uses various publicly available models and datasets with different licenses, as detailed below, all
of which permit their use for academic research.

D.1 Models

Qwen2.5 is distributed under Apache License 2.0. Llama 3.1 is licensed under the Llama 3 Community
License Agreement.10

D.2 Datasets

XL-Sum is licensed under CC BY-NC-SA 4.0. Belebele and FLORES-200 are licensed under CC BY-SA 4.0.
MMLU, GSM8K, and ImplicitHate are distributed under the MIT License. MGSM is distributed under CC
BY 4.0. ToxiGen is licensed under Community Data License Agreement - Permissive - Version 2.0. IFEval,
MT-Bench, and TruthfulQA are distributed under Apache License 2.0.

10https://llama.meta.com/llama3/license/
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Table 3: Prompt template for each task and language.

Task Language Template

En-Target mt

English Translate English to {X: a target language}: {sentence} =
Amharic እንግሊዝኛን ወደ አማርኛ ተርጉም: {sentence} =
Bengali ইংেরǬজ েথেক বাংলায় অনুবাদ কর‍ুন: {sentence} =
Burmese အဂင်္ လိပ်မှ ြမန်မာသုိ့ ဘာသာြပန်ပါ။: {sentence} =
Gujarati અંગ્રેજીમાંથી Ǒુજરાતીમાં અǙુવાદ કરો: {sentence} =
Sinhala ඉංගී�සි සිංහලයට පරිවර‍්තනය කරන‍්න: {sentence} =
Tamil ஆங்க¦லத்த¦லிருந்து தமிழுக்கு ெமாழிெபயர்க்கவும்:

{sentence} =
Telugu ఆంగల్ం నుండి తెలుగుకు అనువదించండి: {sentence} =

Target-En mt

English Translate {X: a target language} to English: {sentence} =
Amharic አማርኛን ወደ እንግሊዝኛ ተርጉም: {sentence} =
Bengali বাংলা েথেক ইংেরǬজেত অনুবাদ কর‍ুন: {sentence} =
Burmese ြမန်မာမှ အဂင်္ လိပ်သုိ့ ဘာသာြပန်ပါ။: {sentence} =
Gujarati Ǒુજરાતીમાંથી અંગ્રેજીમાં અǙુવાદ કરો: {sentence} =
Sinhala සිංහලෙයන‍් ඉංගී�සියට පරිවර‍්තනය කරන‍්න: {sentence} =
Tamil தமிழிலிருந்து ஆங்க¦லத்த¦ற்கு ெமாழிெபயர்க்கவும்:

{sentence} =
Telugu తెలుగు నుండి ఆంగల్ంకు అనువదించండి: {sentence} =

sum

English Write a short summary of the following text in {language}.
Article: {text} Summary:

Amharic የታችኛው ጽሁፍን በአማርኛ አጭር በማድረግ አሳትረኝ።: {text} አጭር
መግለጫ:

Bengali িনƉǬলিখত েলখািট বাংলায় সংেক্ষেপ Ǭলখুন।: {text} সংǬক্ষźসার:
Burmese ေအာက်ပါစာသားကုိ ြမန်မာဘာသာြဖင့် အကျဥ်းချုပ်ေရးပါ။ ေဆာင်းပါး:

{text} အကျဥ်းချုပ်:
Gujarati નીચે આપેલા લખાણને Ǒુજરાતીમાં સંɶક્ષપ્ત લખો.: {text} સંક્ષેપ:
Sinhala පහත පාඨෙය‍් සාරාංශය සිංහෙලන‍් ලියන‍්න. ලිපිය: {text}

සාරාංශය:
Tamil கீேழ உள்ள உைரைய தமிழில் சுருக்கமாக எழுதுங்-

கள்: {text} சுருக்கம்:
Telugu కిȨంది వచనం యొకక్ సారాంశం తెలుగులో రాయండి. వాయ్సం: {text}

సారాంశం:

mc

English {passage} \n Question: {question} \n A. {answer 1}\n B. {an-
swer 2}\n C. {answer 3}\n D. {answer 4}\n Answer:

Amharic {passage} \n ጥያቄ: {question} \n A. {answer 1}\n B. {answer
2}\n C. {answer 3}\n D. {answer 4}\n መልስ:

Bengali {passage} \n àƣ: {question} \n A. {answer 1}\n B. {answer
2}\n C. {answer 3}\n D. {answer 4}\n উত্তর:

Burmese {passage} \n ေမးခွန်း: {question} \n A. {answer 1}\n B. {answer
2}\n C. {answer 3}\n D. {answer 4}\n အေြဖ:

Gujarati {passage} \n પ્રƆ: {question} \n A. {answer 1}\n B. {answer
2}\n C. {answer 3}\n D. {answer 4}\n જવાબ:

Sinhala {passage} \n ප�ශ‍්නය: {question} \n A. {answer 1}\n B. {an-
swer 2}\n C. {answer 3}\n D. {answer 4}\n පිළිතුර:

Tamil {passage} \n ேகள்வ¥: {question} \n A. {answer 1}\n B. {an-
swer 2}\n C. {answer 3}\n D. {answer 4}\n பத¦ல்:

Telugu {passage} \n పȼశన్: {question} \n A. {answer 1}\n B. {answer
2}\n C. {answer 3}\n D. {answer 4}\n జవాబు:
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Table 7: Qwen2.5 2 7B chat, instruction-following, and safety performance. Darker blue and red shades
indicate higher positive and negative relative performance change over Chat per language and task, re-
spectively. Experiments are limited to models that use the chat template, except for IFEval to verify the
performance gain of CV over its adapted base model, Base+VE.

IFEval GSM8K MT-Bench
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

Base+VE .19 .16 .14 .15 .16 .17 .14 - - - - - - - - - - - - - -
CV .41 .36 .45 .36 .38 .38 .37 .65 .66 .73 .57 .56 .11 .25 2.92 3.35 3.54 3.41 3.39 3.22 3.33
Chat .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 4.19 4.19 4.19 4.19 4.19 4.19 4.19
Chat+CPT .40 .43 .41 .31 .34 .35 .36 .63 .70 .66 .68 .70 .60 .71 3.55 3.51 3.52 2.93 3.19 3.38 3.29
Chat+VE .39 .38 .45 .39 .40 .39 .40 .43 .63 .74 .47 .57 .29 .44 3.12 3.43 3.67 3.31 3.50 3.34 3.21
ElChat .52 .54 .59 .52 .53 .52 .55 .66 .72 .74 .68 .72 .71 .70 3.30 3.59 3.81 3.58 3.75 3.69 3.58

TruthfulQA ToxiGen ImplicitHate
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

CV .55 .57 .52 .58 .50 .62 .60 .21 .23 .22 .24 .23 .22 .22 .16 .20 .19 .22 .20 .21 .19
Chat .31 .50 .33 .41 .32 .33 .32 .10 .12 .07 .10 .09 .09 .09 .09 .12 .09 .10 .07 .09 .09
Chat+CPT .55 .59 .38 .56 .47 .59 .55 .17 .17 .10 .13 .13 .14 .12 .16 .16 .11 .13 .13 .14 .12
Chat+VE .59 .56 .51 .60 .49 .59 .56 .18 .21 .19 .21 .21 .19 .20 .14 .19 .18 .20 .19 .18 .18
ElChat .54 .60 .49 .58 .53 .60 .61 .12 .18 .17 .17 .16 .16 .16 .09 .17 .17 .17 .14 .15 .15

Table 8: Llama 3.1 8B chat, instruction-following, and safety performance. Darker blue and red shades
indicate higher positive and negative relative performance change over Chat per language and task, respec-
tively. (L) stands for linear merging. Experiments are limited to models that use the chat template, except
for IFEval to verify the performance gain of CV over its adapted base model, Base+VE.

IFEval GSM8K MT-Bench
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

Base+VE .17 .14 .13 .11 .15 .12 .12 - - - - - - - - - - - - - -
CV .38 .39 .42 .35 .41 .35 .35 .10 .27 .34 .30 .43 .40 .48 2.93 3.10 3.49 2.84 3.03 3.04 2.88
Chat .73 .73 .73 .73 .73 .73 .73 .84 .84 .84 .84 .84 .84 .84 3.93 3.93 3.93 3.93 3.93 3.93 3.93
Chat+CPT .18 .31 .37 .23 .32 .36 .36 .46 .51 .58 .43 .51 .51 .45 2.44 2.23 2.61 2.48 2.76 2.15 2.72
Chat+VE .33 .37 .37 .32 .37 .36 .28 .26 .55 .38 .29 .44 .35 .07 2.28 2.85 2.64 2.29 2.54 2.71 2.34
ElChat .45 .44 .54 .44 .47 .51 .47 .57 .57 .72 .56 .60 .56 .52 2.86 2.72 3.56 2.81 2.79 2.96 2.76
ElChat \Merge .27 .38 .41 .30 .38 .33 .31 .17 .54 .58 .42 .55 .47 .09 2.29 2.79 2.86 2.42 2.70 2.28 2.40
ElChat \Copy .40 .37 .43 .35 .40 .41 .39 .15 .44 .66 .14 .42 .41 .36 2.61 2.82 3.09 2.45 2.41 2.70 2.48
ElChat (L) .48 .44 .55 .42 .50 .50 .48 .56 .55 .74 .55 .60 .55 .51 2.91 2.97 3.58 2.69 2.76 3.23 2.75

TruthfulQA ToxiGen ImplicitHate
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

CV .11 .30 .25 .10 .15 .42 .39 .17 .19 .19 .21 .17 .18 .20 .11 .17 .17 .20 .15 .16 .17
Chat .34 .43 .15 .46 .30 .45 .40 .08 .12 .07 .09 .08 .09 .08 .09 .11 .07 .10 .08 .09 .08
Chat+CPT .00 .06 .80 .74 .94 .00 .71 .16 .17 .11 .14 .13 .12 .13 .18 .17 .12 .15 .14 .13 .13
Chat+VE .30 .29 .09 .06 .30 .27 .21 .18 .22 .17 .22 .19 .21 .23 .14 .20 .17 .21 .17 .20 .21
ElChat .43 .44 .25 .15 .48 .22 .65 .10 .18 .14 .18 .14 .17 .15 .06 .16 .14 .17 .12 .16 .13
ElChat \Merge .89 .33 .09 .33 .28 .77 .53 .15 .21 .18 .21 .19 .21 .22 .06 .17 .15 .18 .14 .16 .14
ElChat \Copy .42 .45 .27 .16 .52 .26 .60 .10 .19 .15 .19 .16 .18 .16 .06 .17 .15 .18 .14 .16 .14
ElChat (L) .43 .44 .23 .14 .46 .24 .63 .10 .18 .14 .18 .14 .17 .15 .06 .16 .14 .17 .12 .16 .13
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Table 9: Qwen2.5 7B task performance. Darker blue and red shades indicate higher positive and negative
relative performance change over Chat per language and task, respectively. Note that gmmlu does not
cover Burmese (my), Gujarati (gu), and Tamil (ta).

Target sum English → Target mt Target mc
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

Base 15.80.1 29.00.1 21.70.0 21.90.0 23.30.1 26.50.0 20.20.0 4.60.1 32.20.0 15.70.2 22.40.1 10.60.1 24.80.2 18.30.0 .32 .70 .42 .57 .44 .55 .46
Base+CPT 17.30.0 29.20.0 21.70.0 21.40.0 23.90.0 26.60.0 20.40.1 31.20.1 42.50.1 30.90.0 37.60.1 35.50.1 43.80.2 38.00.1 .74 .76 .67 .70 .74 .69 .66
Base+VE 18.00.1 34.40.0 36.50.1 29.50.0 37.30.1 34.20.3 31.40.0 22.60.1 38.80.1 44.20.1 40.30.1 38.30.1 46.30.2 42.50.2 .76 .76 .71 .75 .78 .74 .70
CV 19.00.1 35.60.0 38.50.0 29.70.1 38.50.0 38.50.0 31.90.0 22.50.0 36.90.1 45.60.3 39.20.1 21.20.0 40.00.1 32.00.1 .74 .75 .73 .74 .79 .76 .71
Chat 14.60.1 30.40.0 19.10.0 22.10.0 22.80.0 27.70.0 19.10.0 3.40.2 30.20.0 17.20.1 21.20.1 14.30.1 25.70.1 20.10.0 .35 .69 .39 .58 .47 .54 .49
Chat+CPT 18.40.0 32.20.0 22.70.0 24.10.0 26.90.0 29.10.0 22.60.0 30.90.0 42.10.0 30.30.0 36.50.0 33.50.0 42.60.0 36.30.0 .75 .75 .64 .68 .73 .72 .67
Chat+VE 19.10.1 36.70.1 38.70.0 29.70.0 38.90.1 38.60.1 32.20.0 22.90.1 38.40.1 45.20.0 40.00.2 31.70.5 40.40.3 28.90.2 .74 .76 .73 .75 .78 .75 .71
ElChat 18.70.1 35.50.1 36.50.1 29.60.1 37.60.1 37.80.0 30.70.0 28.10.2 40.80.2 42.40.2 38.60.2 37.30.2 45.80.1 38.70.1 .70 .72 .67 .68 .74 .70 .63

English sum Target → English mt English mc
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

Base 24.40.0 24.40.0 24.40.0 24.40.0 24.40.0 24.40.0 24.40.0 22.70.1 52.30.2 26.60.1 48.80.2 27.00.1 36.70.1 41.40.3 .92 .92 .92 .92 .92 .92 .92
Base+CPT 22.60.1 20.60.2 23.40.1 14.90.1 23.30.1 23.60.0 22.00.1 45.80.1 44.20.1 40.80.1 46.10.2 43.80.1 42.40.1 46.50.2 .90 .90 .90 .90 .90 .91 .89
Base+VE 24.30.0 23.60.0 23.80.0 23.40.0 23.50.0 23.40.0 23.20.1 35.60.2 37.60.2 37.10.1 38.90.1 37.70.1 36.20.3 37.60.0 .90 .90 .90 .91 .91 .92 .91
CV 23.60.0 22.50.0 22.90.0 23.20.0 23.20.1 22.90.0 23.00.1 31.60.1 33.70.2 28.30.6 31.70.1 34.10.1 34.00.2 36.40.1 .91 .91 .91 .92 .92 .92 .92
Chat 24.20.0 24.20.0 24.20.0 24.20.0 24.20.0 24.20.0 24.20.0 25.20.0 52.90.0 29.80.1 49.40.1 31.10.0 38.60.0 42.20.1 .92 .92 .92 .92 .92 .92 .92
Chat+CPT 23.40.0 22.30.1 23.00.0 20.60.1 23.30.0 23.00.0 22.70.0 47.00.1 43.50.0 29.70.1 47.90.2 44.80.0 40.10.1 47.90.1 .91 .91 .91 .91 .92 .91 .91
Chat+VE 24.10.1 22.90.0 23.40.1 23.50.0 23.50.0 23.30.0 23.00.0 35.20.2 35.50.1 33.10.1 38.20.1 38.20.1 37.20.0 38.50.1 .92 .92 .91 .92 .91 .92 .91
ElChat 24.40.0 24.10.0 24.00.0 24.10.1 24.30.0 24.20.0 23.80.0 44.70.0 44.40.1 45.40.1 46.40.0 45.70.1 44.80.1 44.40.1 .91 .91 .92 .91 .91 .92 .91

Target gmmlu English mmlu
am bn my gu si ta te am bn my gu si ta te

Base .31 .47 - - .34 - .36 .74 .74 .74 .74 .74 .74 .74
Base+CPT .48 .53 - - .48 - .47 .71 .69 .71 .71 .70 .70 .70
Base+VE .50 .52 - - .51 - .48 .70 .71 .72 .71 .71 .71 .71
CV .49 .51 - - .51 - .47 .69 .70 .69 .69 .70 .69 .69
Chat .31 .47 - - .35 - .35 .73 .73 .73 .73 .73 .73 .73
Chat+CPT .47 .52 - - .48 - .48 .70 .71 .71 .70 .70 .70 .70
Chat+VE .51 .51 - - .50 - .49 .70 .70 .71 .70 .70 .70 .70
ElChat .49 .46 - - .46 - .43 .71 .71 .72 .71 .72 .72 .71
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Table 10: Llama 3.1 8B task performance. Darker blue and red shades indicate higher positive and negative
relative performance change over Chat per language and task, respectively. (L) stands for linear merging.
Note that gmmlu does not cover Burmese (my), Gujarati (gu), and Tamil (ta).

Target sum English → Target mt Target mc
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

Base 11.90.1 27.50.0 18.50.0 19.90.0 20.20.0 23.30.1 18.40.0 9.80.1 39.50.0 21.40.1 30.00.1 24.20.1 36.20.2 31.00.1 .35 .62 .44 .51 .52 .55 .51
Base+CPT 10.90.2 27.50.1 18.20.0 19.40.0 20.80.1 22.80.0 18.10.0 24.30.0 41.00.0 26.50.1 35.90.1 31.50.1 39.60.1 34.50.0 .43 .46 .29 .31 .34 .37 .26
Base+VE 17.40.0 34.10.1 36.70.1 29.50.0 36.70.0 37.40.1 31.10.0 19.40.1 40.70.1 43.40.2 39.70.1 40.30.1 48.10.1 42.50.1 .64 .66 .58 .61 .67 .57 .55
CV 19.50.0 35.60.0 37.40.0 29.80.0 37.80.0 38.30.0 31.40.1 23.50.1 38.70.0 45.10.1 39.20.1 38.60.2 46.20.1 43.40.0 .53 .53 .39 .44 .48 .43 .48
Chat 12.20.0 29.80.0 18.60.0 22.40.0 22.00.0 26.50.0 20.40.1 9.50.1 39.70.1 21.30.0 31.10.0 21.80.0 36.80.0 32.20.1 .36 .65 .42 .56 .62 .61 .59
Chat+CPT 11.20.0 26.80.0 18.80.0 20.90.1 20.70.0 23.40.0 19.60.1 24.10.0 40.00.1 26.00.1 34.90.0 31.30.0 39.30.1 34.70.1 .34 .32 .28 .26 .29 .31 .27
Chat+VE 17.90.2 35.40.0 37.10.0 29.90.0 38.10.2 37.60.0 31.70.1 22.00.4 41.20.1 45.90.1 41.30.1 41.30.2 49.00.1 43.30.2 .61 .58 .43 .59 .59 .50 .52
ElChat 19.40.1 35.10.1 36.40.1 29.60.1 38.10.1 38.40.0 31.20.1 21.10.1 38.10.1 36.10.2 38.90.2 34.60.2 42.50.3 37.40.3 .64 .67 .53 .54 .67 .55 .56
ElChat \Merge 16.20.2 33.90.1 36.70.1 29.40.0 37.30.1 36.70.0 31.40.1 22.10.1 40.70.1 45.20.0 41.40.2 36.90.3 47.50.0 43.00.1 .50 .52 .42 .53 .52 .48 .49
ElChat \Copy 19.30.2 35.60.1 36.50.1 29.60.1 38.60.1 38.90.2 31.40.1 19.90.1 37.90.1 35.50.2 38.90.2 35.10.1 42.90.2 38.10.1 .67 .69 .57 .57 .72 .59 .61
ElChat (L) 19.30.2 35.30.0 36.10.0 29.30.1 38.30.0 38.40.1 31.10.1 20.80.1 37.70.1 35.20.3 38.40.2 33.80.2 41.50.4 36.60.3 .64 .66 .53 .53 .66 .56 .56

English sum Target → English mt English mc
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

Base 23.50.0 23.50.0 23.50.0 23.50.0 23.50.0 23.50.0 23.50.0 33.30.1 58.60.1 44.40.2 57.90.2 49.90.2 53.10.2 56.30.2 .88 .88 .88 .88 .88 .88 .88
Base+CPT 19.00.1 17.20.1 21.70.2 17.00.1 19.40.0 22.30.1 21.80.1 44.70.2 47.10.1 42.90.1 50.30.1 46.40.2 41.50.0 47.70.2 .78 .82 .81 .83 .80 .80 .81
Base+VE 22.50.1 22.60.2 22.90.0 22.90.0 23.00.1 23.10.0 23.00.0 36.00.1 40.20.1 37.50.1 42.60.1 39.00.1 37.80.2 41.00.0 .82 .82 .81 .83 .84 .82 .81
CV 23.40.0 23.30.1 23.60.1 23.10.0 23.20.0 23.50.1 23.00.0 33.10.2 35.60.2 30.70.1 37.80.1 32.40.1 34.20.1 35.80.1 .83 .83 .85 .82 .84 .80 .83
Chat 26.80.0 26.80.0 26.80.0 26.80.0 26.80.0 26.80.0 26.80.0 29.30.1 57.30.2 36.20.2 57.30.2 47.90.2 53.10.1 56.80.2 .91 .91 .91 .91 .91 .91 .91
Chat+CPT 22.60.1 22.70.1 21.40.2 22.00.0 24.10.1 23.50.0 23.30.0 31.20.1 36.50.3 37.10.4 40.60.3 42.10.1 39.10.2 43.90.3 .28 .83 .82 .84 .83 .80 .82
Chat+VE 23.40.0 23.50.0 23.80.0 23.00.1 23.70.1 23.50.1 23.40.1 26.50.0 36.80.1 33.50.1 38.00.2 33.50.2 36.00.1 34.90.1 .84 .86 .85 .83 .85 .84 .83
ElChat 24.10.1 23.50.1 24.10.0 23.60.1 23.80.0 24.20.1 23.70.0 27.50.1 27.60.3 31.70.2 35.60.0 25.10.4 31.50.3 34.00.2 .90 .89 .89 .90 .90 .88 .90
ElChat \Merge 23.30.1 23.10.0 23.80.1 22.80.1 23.50.1 20.90.1 23.10.1 14.40.4 38.50.0 34.60.1 37.20.1 30.30.0 35.90.1 35.60.2 .80 .82 .83 .47 .79 .55 .78
ElChat \Copy 24.20.0 24.00.1 24.10.0 24.00.0 24.00.1 24.30.1 24.10.1 27.70.3 27.00.2 32.10.3 36.30.3 27.80.3 30.60.1 31.50.2 .90 .89 .89 .90 .89 .89 .90
ElChat (L) 24.00.0 23.50.1 24.00.0 23.80.0 23.80.1 24.20.0 23.70.0 27.90.2 26.60.1 31.60.2 36.10.4 24.10.3 31.50.1 33.60.2 .90 .89 .89 .91 .90 .88 .91

Target gmmlu English mmlu
am bn my gu si ta te am bn my gu si ta te

Base .31 .41 - - .36 - .39 .65 .65 .65 .65 .65 .65 .65
Base+CPT .32 .34 - - .32 - .32 .49 .55 .57 .54 .54 .50 .54
Base+VE .39 .42 - - .42 - .38 .55 .56 .58 .53 .57 .55 .53
CV .32 .31 - - .34 - .33 .48 .50 .53 .47 .51 .48 .49
Chat .29 .42 - - .36 - .39 .67 .67 .67 .67 .67 .67 .67
Chat+CPT .28 .26 - - .26 - .29 .27 .53 .54 .54 .52 .47 .53
Chat+VE .36 .33 - - .35 - .36 .51 .51 .55 .52 .54 .54 .52
ElChat .37 .36 - - .38 - .36 .61 .57 .60 .58 .61 .60 .60
ElChat \Merge .35 .32 - - .33 - .35 .44 .48 .53 .32 .50 .34 .49
ElChat \Copy .37 .37 - - .39 - .37 .61 .57 .61 .58 .61 .60 .60
ElChat (L) .37 .36 - - .38 - .36 .61 .57 .61 .58 .61 .59 .60

Table 11: Qwen2.5 7B task performance. Darker blue and red shades indicate higher positive and negative
relative performance change over Chat per language and task, respectively.

Target sum English → Target mt
[ROUGE-L] [chrF++]

am bn my gu si ta te am bn my gu si ta te

Base 1.80.1 1.70.0 7.20.0 2.80.1 42.40.5 2.40.0 18.70.1 3.80.1 28.30.1 12.30.2 19.60.1 9.90.0 20.70.1 15.30.1

Base+CPT 2.10.1 1.80.0 5.50.0 3.00.0 42.50.2 2.20.0 19.00.2 28.40.1 38.00.1 24.50.0 34.00.1 32.80.1 38.10.2 33.70.1

Base+VE 3.00.3 1.70.1 9.20.2 4.20.2 55.50.2 2.80.1 24.90.3 20.50.1 34.60.1 35.00.1 36.80.1 35.70.1 40.10.2 37.80.1

CV 4.00.1 1.80.0 9.70.0 5.20.1 55.10.2 4.10.0 23.70.1 20.10.0 32.80.1 36.30.2 35.80.1 20.20.0 34.60.1 28.20.1

Chat 1.50.1 1.30.0 3.90.1 3.00.1 35.90.1 2.20.0 15.00.1 2.90.1 26.60.0 13.40.0 18.80.1 13.90.1 21.50.1 16.90.0

Chat+CPT 2.50.1 1.40.0 4.60.2 5.20.0 49.40.1 2.40.0 20.70.2 28.20.0 37.80.0 24.20.0 33.00.0 31.00.1 36.90.0 32.30.0

Chat+VE 3.70.4 1.60.0 9.80.1 4.80.1 56.00.4 3.60.1 25.10.2 20.60.1 34.20.1 35.90.1 36.60.2 29.90.5 34.90.3 25.40.2

ElChat 4.00.2 2.00.0 8.50.3 4.10.1 56.10.4 3.90.2 24.10.2 25.50.2 36.30.2 33.50.1 35.70.1 34.80.2 39.60.1 34.30.1

English sum Target → English mt
[ROUGE-L] [chrF++]

am bn my gu si ta te am bn my gu si ta te

Base 12.00.0 12.00.0 12.00.0 12.00.0 12.00.0 12.00.0 12.00.0 20.60.1 50.20.2 24.70.2 46.60.1 25.10.0 34.80.1 39.20.3

Base+CPT 11.00.1 10.10.1 11.10.0 7.20.1 10.90.0 11.10.0 10.20.1 43.00.1 41.40.1 38.60.1 43.40.1 40.60.1 40.10.1 43.80.2

Base+VE 12.00.1 11.40.1 11.70.1 11.00.0 11.00.0 10.90.1 11.10.1 33.40.1 35.40.2 36.10.1 36.50.1 35.00.1 34.90.3 35.70.1

CV 11.50.0 10.80.0 10.90.0 11.20.0 11.00.0 10.80.0 10.90.0 29.70.1 31.90.2 30.10.2 30.00.1 32.20.1 32.30.1 34.10.1

Chat 11.80.0 11.80.0 11.80.0 11.80.0 11.80.0 11.80.0 11.80.0 22.80.0 50.30.0 27.50.0 46.90.1 28.60.0 36.20.0 39.60.0

Chat+CPT 11.50.1 10.70.0 10.90.0 9.90.1 11.10.0 11.10.0 10.80.0 44.50.0 40.70.1 28.20.1 45.40.2 41.80.0 38.10.1 45.50.1

Chat+VE 11.90.0 11.00.0 11.00.1 11.20.0 11.20.0 11.10.0 10.90.0 33.00.2 34.40.0 31.40.1 36.30.0 36.30.1 35.40.1 36.00.1

ElChat 12.20.0 11.50.0 11.30.0 11.60.0 11.70.0 11.60.0 11.40.0 42.90.0 42.30.1 42.80.1 44.40.0 43.40.1 42.50.1 42.20.1
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Table 12: Llama 3.1 8B task performance. Darker blue and red shades indicate higher positive and negative
relative performance change over Chat per language and task, respectively. (L) stands for linear merging.

Target sum English → Target mt
[ROUGE-L] [chrF++]

am bn my gu si ta te am bn my gu si ta te

Base 1.60.1 1.90.0 6.20.1 3.20.0 36.30.4 2.00.1 18.30.2 8.40.1 35.60.0 16.90.1 27.00.1 22.50.1 31.50.2 27.30.1

Base+CPT 1.00.1 1.90.0 6.30.0 2.90.2 38.20.2 1.60.1 17.30.2 22.00.0 36.80.0 21.10.1 32.50.1 29.00.1 34.50.1 30.50.0

Base+VE 3.20.2 1.60.0 8.80.4 4.60.1 55.00.2 3.30.0 25.20.1 17.50.1 36.40.1 34.30.1 36.40.1 37.40.1 41.90.1 37.70.1

CV 3.10.2 1.70.0 8.20.1 5.10.2 55.50.4 4.10.0 25.80.3 21.40.1 34.00.1 35.60.1 32.50.2 35.60.1 40.30.1 38.60.0

Chat 1.70.0 1.10.0 4.20.0 3.10.0 46.50.0 3.00.0 21.30.1 8.00.0 35.70.1 16.80.0 28.10.0 20.90.1 32.10.0 28.70.1

Chat+CPT 1.60.0 1.70.0 3.50.3 2.80.1 36.50.4 2.10.0 18.20.2 21.90.1 35.70.1 20.60.1 31.50.0 28.90.1 34.30.1 30.70.1

Chat+VE 2.70.1 1.40.1 8.80.1 4.80.1 54.70.3 3.40.1 25.90.3 20.10.3 37.00.1 36.50.1 38.00.2 38.60.1 42.80.1 38.80.2

ElChat 3.40.3 1.30.0 7.50.3 4.80.1 53.90.2 4.30.3 25.40.3 19.10.1 33.80.1 28.40.1 35.60.2 31.90.2 36.40.3 33.00.2

ElChat \Merge 2.50.3 1.60.1 8.90.2 5.00.1 54.20.3 2.90.1 25.80.2 20.40.1 36.50.1 36.00.0 38.60.2 36.20.2 41.60.0 38.60.1

ElChat \Copy 3.20.1 1.40.0 7.60.3 5.00.0 53.70.1 4.40.2 25.50.2 18.10.1 33.60.1 28.00.2 35.80.2 32.60.1 37.10.2 33.60.1

ElChat (L) 3.70.1 1.30.0 7.90.2 5.00.1 54.10.5 4.50.1 25.80.2 18.90.1 33.40.1 27.80.3 35.00.2 31.10.1 35.60.4 32.20.3

English sum Target → English mt
[ROUGE-L] [chrF++]

am bn my gu si ta te am bn my gu si ta te

Base 10.90.0 10.90.0 10.90.0 10.90.0 10.90.0 10.90.0 10.90.0 31.40.1 56.30.1 42.20.2 55.80.2 47.80.2 50.90.1 54.10.2

Base+CPT 8.70.1 7.80.0 10.00.1 7.80.1 9.00.0 10.20.0 10.00.0 42.00.1 44.00.1 40.40.1 47.20.1 43.10.2 39.30.1 44.90.2

Base+VE 10.70.0 10.40.1 10.50.0 10.40.0 10.50.0 10.70.0 10.60.0 33.80.1 37.70.1 36.40.1 40.10.1 36.30.2 36.20.2 38.90.0

CV 11.60.1 11.20.1 11.40.0 10.90.0 11.00.0 11.20.0 10.80.1 32.30.1 33.80.3 30.20.1 34.10.1 30.40.1 32.50.1 31.60.1

Chat 14.00.0 14.00.0 14.00.0 14.00.0 14.00.0 14.00.0 14.00.0 27.40.1 54.90.1 34.10.1 55.20.2 45.70.1 50.80.0 54.70.2

Chat+CPT 10.60.0 10.90.1 10.40.1 10.60.0 12.00.0 11.20.0 11.10.0 29.80.1 37.40.2 35.10.4 38.40.3 39.40.1 37.20.2 41.30.3

Chat+VE 11.50.0 11.40.0 11.60.1 10.90.0 11.50.0 11.30.1 11.70.1 30.10.3 34.70.1 31.90.1 35.70.2 31.60.1 34.80.0 33.00.1

ElChat 12.10.0 12.00.1 11.90.0 12.10.1 12.60.1 12.50.1 12.30.0 26.00.1 26.30.3 31.00.2 33.80.0 23.80.4 30.80.4 32.60.2

ElChat \Merge 11.30.0 11.20.0 11.40.0 10.40.0 11.10.0 9.30.1 11.10.1 26.70.2 36.80.1 33.50.1 36.20.2 34.40.1 35.40.2 34.00.1

ElChat \Copy 12.20.1 12.00.1 11.80.0 12.10.0 12.10.1 12.00.0 12.10.1 26.20.3 25.90.2 31.40.3 34.60.2 26.50.2 29.60.1 30.30.2

ElChat (L) 12.10.1 12.00.1 11.80.1 12.10.0 12.50.0 12.50.0 12.30.0 26.30.2 25.30.1 30.80.3 34.30.3 22.80.3 30.70.1 32.20.2

Table 13: Qwen2.5 7B inference speedup measured by the number of tokens generated per second. Darker
blue and red shades indicate higher positive and negative relative performance change over Chat per
language and task, respectively.

Target sum English → Target mt Target mc
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

Base 29.30.3 30.70.2 27.80.2 27.20.1 32.40.1 31.60.2 27.60.1 34.10.3 33.40.4 33.20.2 33.90.2 36.40.3 33.90.1 34.00.3 28.9 22.6 15.7 17.5 18.2 20.9 17.1
Base+CPT 30.71.1 26.62.0 28.80.2 28.10.1 28.01.6 33.10.3 29.70.2 35.50.1 35.40.2 34.60.0 35.00.1 36.30.3 35.30.3 35.50.1 28.5 23.1 15.2 17.1 18.6 20.7 18.0
Base+VE 110.41.0 68.91.2 103.10.1 106.30.3 102.30.3 70.80.7 89.90.8 86.50.3 72.20.7 93.50.7 98.01.4 102.70.8 73.60.4 91.31.0 38.1 37.4 40.2 42.6 37.7 36.1 37.3
CV 121.80.3 76.20.2 98.90.6 93.40.4 114.71.6 80.80.7 89.80.6 109.60.5 71.60.5 97.51.1 94.50.6 70.40.4 67.20.4 82.30.3 40.8 42.2 37.1 37.3 41.5 39.4 35.4
Chat 30.40.3 30.70.0 29.60.1 27.30.1 29.80.3 33.30.2 29.60.1 32.60.1 34.70.3 34.70.3 35.30.2 37.90.3 35.20.1 35.90.3 27.9 22.0 15.3 16.9 18.0 20.2 17.0
Chat+CPT 33.70.2 32.20.2 29.40.1 27.30.0 33.50.0 33.30.1 28.20.0 34.80.4 34.60.3 33.70.2 34.20.1 35.30.1 34.30.1 34.90.1 28.8 23.8 15.5 17.2 19.7 21.0 17.5
Chat+VE 129.10.7 68.30.0 103.60.6 94.80.3 104.30.7 80.60.7 99.40.4 102.01.8 73.30.6 97.60.0 98.60.8 81.10.9 70.90.7 80.20.9 43.2 37.5 39.1 37.6 37.3 40.2 38.7
ElChat 117.50.4 76.80.8 97.65.0 95.20.4 104.20.2 81.10.8 99.71.0 113.30.5 70.90.5 94.10.4 93.00.9 101.10.2 74.20.8 91.60.9 38.0 42.0 37.2 37.4 37.7 39.9 38.4

Table 14: Llama 3.1 8B inference speedup measured by the number of tokens generated per second. Darker
blue and red shades indicate higher positive and negative relative performance change over Chat per
language and task, respectively. (L) stands for linear merging.

Target sum English → Target mt Target mc
am bn my gu si ta te am bn my gu si ta te am bn my gu si ta te

Base 19.30.0 21.70.0 18.30.1 19.70.0 20.80.0 22.40.1 18.80.0 31.90.0 33.30.1 28.50.1 32.00.0 31.90.0 32.10.0 31.50.2 15.4 17.7 10.5 13.5 13.1 14.6 12.7
Base+CPT 19.30.0 21.90.0 18.50.0 19.40.1 21.20.0 23.20.0 18.90.0 31.60.0 33.10.4 28.40.2 31.60.1 31.60.1 31.80.1 31.40.2 15.3 17.9 10.5 13.6 13.1 14.7 12.7
Base+VE 206.23.3 78.50.5 114.70.3 100.60.5 121.00.4 91.40.4 105.40.2 141.50.8 78.90.5 111.60.4 98.20.8 122.51.2 84.98.8 98.30.8 44.7 39.7 36.9 36.9 37.0 37.8 38.7
CV 224.32.9 78.20.1 120.20.2 107.60.6 132.70.1 90.11.1 103.50.2 185.10.8 84.80.4 123.51.0 135.61.4 123.21.0 91.81.1 109.51.2 44.5 33.0 28.6 33.4 34.7 31.0 31.4
Chat 19.20.0 22.00.0 18.30.0 19.60.0 21.10.1 22.90.0 18.90.0 31.60.1 33.00.2 28.20.0 31.50.1 31.70.0 31.60.1 31.00.1 15.0 17.3 10.3 13.2 12.9 14.4 12.5
Chat+CPT 18.90.0 21.80.0 18.40.0 19.50.0 21.10.0 23.20.1 18.90.0 31.80.1 33.40.1 28.30.0 31.70.2 31.30.3 31.90.1 31.30.1 14.9 17.2 10.4 13.3 13.0 14.4 12.7
Chat+VE 218.93.1 78.60.3 120.20.7 107.20.5 135.10.4 93.20.6 99.30.5 168.83.7 79.70.2 115.51.2 100.41.5 124.40.9 89.00.5 96.90.4 44.3 39.1 34.7 39.5 40.6 37.6 36.9
ElChat 233.91.9 75.80.5 118.22.6 105.50.5 126.30.6 90.31.4 101.70.4 212.03.4 81.30.8 113.01.2 107.70.4 124.10.7 89.80.8 107.20.5 44.5 37.9 34.1 38.9 38.0 37.6 37.3
ElChat \Merge 201.32.6 79.30.0 121.60.4 109.10.2 132.11.1 88.90.4 103.80.2 164.12.2 76.30.8 111.41.5 84.21.1 102.02.7 84.30.4 94.50.3 42.2 39.1 34.4 40.2 39.9 37.3 37.6
ElChat \Copy 235.04.3 79.20.1 118.60.2 107.30.2 123.70.7 85.61.5 105.00.6 207.31.6 83.71.4 113.20.7 112.10.3 129.20.5 92.40.8 110.92.0 46.7 39.6 34.3 39.5 37.5 36.4 37.8
ElChat (L) 230.72.4 78.70.2 119.60.6 106.30.8 135.90.2 92.60.9 103.90.8 211.43.1 78.90.7 111.21.1 106.00.7 122.20.5 88.41.9 105.80.5 44.9 39.2 34.3 39.4 40.8 37.7 37.8
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