
Learning Compositional Behaviors from
Demonstration and Language

Anonymous Author(s)

Abstract: We introduce Behavior from Language and Demonstration (BLADE), a1

framework for long-horizon robotic manipulation by integrating imitation learning2

and model-based planning. BLADE leverages language-annotated demonstrations,3

extracts abstract action knowledge from large language models (LLMs), and con-4

structs a library of structured, high-level action representations. These represen-5

tations include preconditions and effects grounded in visual perception for each6

high-level action, along with corresponding controllers implemented as neural7

network-based policies. BLADE can recover such structured representations auto-8

matically, without manually labeled states or symbolic definitions. BLADE shows9

significant capabilities in generalizing to novel situations, including novel initial10

states, external state perturbations, and novel goals. We validate the effectiveness11

of our approach both in simulation and on a real robot with a diverse set of objects12

with articulated parts, partial observability, and geometric constraints.13

Keywords: Manipulation, Planning Abstractions, Learning from Language14

15

1 Introduction16

Developing autonomous robots capable of completing long-horizon manipulation tasks that involve17

interacting with many objects is a significant milestone. We want to build robots that can directly18

perceive the world, operate over extended periods, generalize to various states and goals, and are19

robust to perturbations. A promising direction is to combine learned policies with model-based20

planners, allowing them to operate on different time scales. In particular, imitation learning-based21

methods have proven highly successful in learning policies for various “behaviors,” which usually22

operate over a short time span [e.g., 1]. To solve more complex and longer-horizon tasks, we can23

compose these behaviors by planning in explicit abstract action spaces [2–4], in latent spaces [5], or24

via large pre-trained models such as large language models [6].25

However, one of the key challenges of all high-level planning approaches is the automatic acquisition26

of an abstraction for the learned “behaviors” to support long-horizon planning. The goal of this27

behavior abstraction learning is to build representations that describe the preconditions and effects of28

behaviors, to enable chaining and search. These representations should depend on the environment, the29

set of possible goals, and the specifications of individual behaviors. Furthermore, these representations30

should be grounded on high-dimensional perception inputs and low-level robot control commands.31

Our insight into tackling this challenge is to leverage knowledge from two sources: the low-level,32

mechanical understanding of robot-object contact, and the high-level, abstract understanding of33

object-object interactions described in language that can be extracted from language models as the34

knowledge source. We bridge them by learning the grounding of abstract language terms on visual35

perception and robot actuation. Our framework, behavior from language and demonstration (BLADE),36

takes as input a small number of language-annotated demonstrations (Fig. 1a). It segments each37

trajectory based on which object is in contact with the robot. Then, it uses a large language model38

(LLM), conditioned on the contact sequences and the language annotations, to propose abstract39

behavior descriptions with preconditions and effects that best explain the demonstration trajectories.40

∗ denotes equal contribution.

Submitted to the 2nd Workshop on Learning Effective Abstractions for Planning. Do not distribute.

(b) Generalizations
(c) Examples: Robust to Perturbations and Geometry Constraints

Recovery: move faucet head ခ place in sinkPerturbation: kettle moved

Kettle Filled & On Stove

…

Geometric constraint: stove blocked Recovery: move pot to table

…
Stove is not blocked

Kettle In Sink
Unseen Initial

Condition
State

Perturbation

Partial
Observability

Geometric
Constraints

❌

Kettle Filled & On Stove

Place In Sink Move Faucet Head Turn On Faucet Turn Off Faucet Move Faucet Away Place Pot on Table Move Kettle to Stove

(a) Annotated Human Demonstrations | Task: Boil Water On Stove

Figure 1: BLADE, a robot manipulation framework combining imitation learning and model-based planning. (a)
BLADE takes language-annotated demonstrations as training data. (b) It generalizes to unseen initial conditions,
state perturbations, and geometric constraints. (c) In the depicted scenarios, BLADE recovers from perturbations
such as moving the kettle out of the sink, and resolves geometric constraints including a blocked stove.

During training, we extract the state abstraction terms from the preconditions and effects (e.g.,41

turned-on, aligned-with), and learn their groundings on perception inputs. We also learn the control42

policies associated with each behavior (e.g., turn on the faucet).43

Our model offers several advantages. First, unlike prior work that relies on manually defined state44

abstractions or additional state labels, our method automatically generates state abstraction labels45

based on the language annotations and LLM-proposed behavior descriptions. BLADE recovers the46

visual grounding of these abstractions without any additional label. Second, BLADE generalizes to47

novel states and goals by composing learned behaviors using a planner. Shown in Fig. 1b, it can48

handle various novel initial conditions and external perturbations that lead to unseen states. Third,49

our method can handle novel geometric constraints (Fig. 1c), novel goals expressed in learned state50

abstractions, and partial observability from articulated bodies like drawers.51

2 Related Work52

Composing skills for long-horizon manipulation. A large body of model-based planning methods53

use manually-defined transition models [2, 7–9] or models learned from data [10–15] to generate54

long-horizon plans. However, learning dynamics models with accurate long-term predictions and55

strong generalization remains challenging. Another related direction is to introduce hierarchical struc-56

tures into the policy models [16–20], where different methods have been introduced to decompose57

continuous demonstrations into segments for short-horizon skills [20–22]. Unable to model the de-58

pendencies between the skills, these methods are limited to following sequentially specified subgoals59

and struggle to generalize to unseen goals. Researchers have also used learned models to improve60

state estimation [23] and planning efficiency [24]. However, they still require manual definitions of61

planning knowledge. Some work addresses this issue by learning the dependencies between actions62

from data, but they still require large-scale supervised datasets [25–27]. In contrast, BLADE learns63

planning-compatible action representations from only language-annotated demonstrations.64

Using LLMs for planning. Many researchers have explored using LLMs for planning. Methods65

for direct generation of action sequences [28, 29] usually do not produce accurate plans [30, 31].66

Researchers have also leveraged LLMs as translators from natural language instructions to symbolic67

goals [32–35], as generalized solvers [36], as memory modules [37], and as world models [38, 39].68

To improve the planning accuracy of LLMs, prior work has explored techniques including learning69

affordance functions [6, 40], replanning [41], finetuning [42–44], and VLM-based decision-making70

[45, 46]. BLADE shares a similar spirit as methods using LLMs to generate planning-compatible action71

representations [47–49]. However, they all make assumptions on the availability of state abstractions,72

while BLADE automatically grounds LLM-generated action definitions without additional labels.73

2

(:action open-cabinet-door
 :precondition (not (is-door-open ?door))
 :effect (is-door-open ?door)
 :body (then
 (close-gripper)
 (push ?door)
 (open-gripper)))

(a) Annotated Human Demonstrations

“Open Cabinet Door”
“Grab Kettle”

(b) Structured Behavior Representations

Open Cabinet Door

...

...

Bi-Level Planning & Execution

Novel Goal States: in(teabag, kettle)
closed(cabinet-door), closed(drawer)

Novel Initial Condition

Contact Segmentation
+ LLM Proposal

Learning Algorithms

...

Place Cut On Stove

Robot Actions
Diffusion

Policy
“Open Drawer”

“is-open(drawer)”
“is-filled(cup)”

...

...

“is-blocked(door)” Classifier
Model False

True

...

...

False

Skill Library Classifier Library

(c) Generalization

Figure 2: Overview of BLADE. (a) It receives language-annotated human demonstrations, (b) segments
demonstrations into contact primitives, and learns a structured behavior representation. (c) It generalizes to
novel initial conditions, leveraging bi-level planning and execution to achieve goal states.

3 Problem Formulation74

We consider the problem of learning a language-conditioned goal-reaching manipulation policy.75

Formally, the environment is modeled as a tuple ⟨X ,U , T ⟩ where X is the raw state space, U is the76

low-level action space, and T : X × U → X is the transition function (which may be stochastic and77

unknown). Furthermore, the robot will receive observations o ∈ O that may be partially observable78

views of the states. At test time, the robot also receives a natural language instruction ℓt, which79

corresponds to a set of goal states. An oracle goal satisfaction function defines whether the language80

goal is reached, i.e., gℓt : X → {T, F}. Given an initial state x0 ∈ X and the instruction ℓt, the81

robot should generate a sequence of low-level actions {u1, u2, ..., uH} ∈ UH .82

In the language-annotated learning setting, the robot has a dataset of language-annotated demonstra-83

tions D. Each demonstration is a sequence of robot actions {u1, ..., uH} paired with observations84

{o0, ..., oH}. Each trajectory is segmented into M subtrajectories, and natural language descriptions85

{ℓ1, ..., ℓM} are associated with the segments (e.g., “place the kettle on the stove”). In this paper, we86

assume that there is a finite number of possible ℓ’s—each corresponding to a skill to learn.87

Directly learning a single goal-conditioned policy that can generalize to novel states and goals is88

challenging. Therefore, we recover an abstract state and action representation of the environment and89

combine online planning in abstract states and offline policy learning for low-level control to solve90

the task. In BLADE, behaviors are represented as temporally extended actions with preconditions and91

effects characterized by state predicates. Formally, we want to recover a set of predicates P that define92

an abstract state space S . We focus on a scenario where all predicates are binary. However, they are93

grounded on high-dimensional sensory inputs. Using P , a state can be described as a set of grounded94

atoms such as {kettle(A), stove(B), filled(A), on(A,B)} for a two-object scene. BLADE will learn a95

function Φ : O → S that maps observations to abstract states. In its current implementation, BLADE96

requires humans to additionally provide a list of predicate names in natural language, which we97

have found to be helpful for LLMs to generate action definitions. We provide additional ablations98

in the Appendix A.2. Based on S, we learn a library of behaviors (a.k.a., abstract actions). Each99

behavior a ∈ A is a tuple of ⟨name, args, pre, eff, π⟩. name is the name of the action. args is a list of100

variables related to the action, often denoted by ?x, ?y. pre and eff are the precondition and effect101

formula defined in terms of the variables args and the predicates P . A low-level policy π : O → U is102

also associated with a. The semantics of the preconditions and effects is: for any state x such that103

pre(Φ(x)) is satisfied, executing π at x will lead to a state x′ such that eff(Φ(x′)) [50].104

4 Behavior from Language and Demonstration105

BLADE is a method for learning abstract state and action representations from language-annotated106

demonstrations. It works in three steps, as illustrated in Fig. 2. First, we generate a symbolic behavior107

definition conditioned on the language annotations and contact sequences in the demonstration using108

a large language model (LLM). Next, we learn the classifiers associated with all state predicates and109

the control policies, all from the demonstration without additional annotations. At test time, we use a110

bi-level planning and execution strategy to generate robot actions.111

3

(:action turn_on_faucet
 :precondition (and (is-turned-off ?faucet-knob)
 (is-aligned ?kettle ?faucet-head)
 (is-placed-in ?kettle ?sink))
 :effect (and (is-turned-on ?faucet-knob)
 (not (is-turned-off ?faucet-knob)))
 :body (then (close-gripper) (push ?faucet-knob) (open-gripper)))

(:action move_faucet_head_over_sink
 :precondition (and (is-placed-in ?kettle ?sink)
 (is-turned-away ?faucet-head) ...)
 :effect (and (is-aligned ?kettle ?faucet-head)
 (not (is-turned-away ?faucet-head)))
 :body (then (close-gripper) (push ?faucet-head) (open-gripper)))

Move Faucet Head Turn On Faucet

…
Place In Sink Wait to be Filled

push open-gripperclose-gripper

(a) Demonstrations

(b) Temporal Segmentation with Contact Primitives

push open-gripperclose-gripper

… …

…

transit

…
transit

(b) Temporal Segmentation with Contact Primitives

(c) Automatic Predicate Annotation

(d) Behavior Description Generation with LLMs

…

Figure 3: Behavior Descriptions Learning. Starting with (a) human demonstrations with language annotations,
BLADE segments (b) the demonstrations into contact primitives such as “close-gripper,” and “push.” Then,
BLADE (d) generates operators using an LLM, defining actions with specific preconditions and effects. (c) These
operators allow for automatic predicate annotation based on the preconditions and effects.

4.1 Behavior Description Learning112

Given a finite set of behaviors with language descriptions {ℓ} and corresponding demonstration113

segments, we generate an abstract description for each ℓ by querying large language models. To114

facilitate LLM generation, we provide additional information on the list of objects with which the115

robot has contact. The generated operators are further refined with abstract verification.116

Temporal segmentation. We first segment each demonstration (Fig. 3a) into a sequence of contact-117

based primitives (Fig. 3b). In this paper we consider seven primitives describing the interactions118

between the robot and other objects: open/close grippers without holding objects, move-to(x) which119

moves the gripper to an object, grasp(x, y) and place(x, y) which grasp and place object x from/onto120

another object y, move(x) which moves the currently holding object x and push(x). We leverage121

proprioception, i.e., gripper open state, and object segmentation to automatically segment the con-122

tinuous trajectories into these basis segments. For example, pushing the faucet head away involves123

the sequence of {close-gripper, push, open-gripper}. This segmentation will be used for LLMs to124

generate operator definitions and for constructing training data for control policies.125

Behavior description generation with LLMs. Our behavior description language is based on126

PDDL [51]. We extend the PDDL definition to include a body section which is a sequence of contact127

primitives. It will be generated by the LLM based on the demonstration data.128

Our input to the LLM contains four parts: 1) a general description of the environment, 2) the natural129

language descriptions ℓ associated with the behavior itself and other behaviors that have appeared130

preceding ℓ in the dataset, 3) all possible sequence of contact primitive sequences associated with131

ℓ across the dataset, and 4) additional instructions on the PDDL syntax, including a single PDDL132

definition example. We find that the inclusion of previous behaviors and contact primitive sequences133

improves the overall generation quality. As shown in Fig. 3c, in addition to preconditions and effects134

of the operators, we also ask LLMs to predict a body of contact primitive sequence associated with135

the behavior, which we call body. We assume that each behavior has a single corresponding contact136

primitive sequence, and use this step to account for noises in the segmentation annotations. After137

LLM predicts the definition for all behavior, we will re-segment the demonstrations associated with138

each behavior based on the LLM-predicted body section.139

Behavior description refinement with abstract verification. Besides checking for syntax errors,140

we also verify the generated behavior descriptions by performing abstract verification on the demon-141

stration trajectories. In particular, given a segmented sequence of the trajectory where each segment142

is associated with a behavior, we verify whether the preconditions of each behavior can be satisfied143

4

by the accumulated effects of the previous behaviors. This verification does not require learning the144

grounding of state predicates and can be done at the behavior level to discover incorrect preconditions145

and effects, and at the contact primitive level to find missing or incorrect contact primitives (e.g.,146

grasp cannot be immediately followed by other grasp). We resample behavior definitions that do not147

pass the verification test.148

4.2 Classifier and Policy Learning149

Given the dataset of state-action segments associated with each behavior, we train the classifiers for150

different state predicates and the low-level controller for each behavior.151

Automatic predicate annotation. We leverage all behavior descriptions to automatically label an152

observation ō = {o1, ..., oH} based on its associated segmentation. In particular, at o0, we label all153

state predicates as “unknown.” Next, we unroll the sequence of behavior executed in ō. As illustrated154

in Fig. 3c, before applying a behavior a at step ot, we label all predicates in prea true. When a155

finishes at step ot′ , we label all predicates in effa. In addition, we will propagate the labels for state156

predicates to later time steps until they are explicitly altered by another behavior a. In contrast to157

earlier methods, such as Migimatsu and Bohg [52] and Mao et al. [53], which directly use the first158

and last state of state-action segments to train predicate classifiers, our method greatly increases the159

diversity of training data. After this step, for each predicate p ∈ P , we obtain a dataset of paired160

observations o and the predicate value of p at the corresponding time step.161

Classifier learning. Based on the state predicate dataset generated from behavior definitions, we train162

a set of state classifiers fθ(p) : O → {T, F}, which are implemented as standard neural networks for163

classification. We include implementation details in Appendix A.6. In real-world environments with164

strong data-efficiency requirements, we additionally use an open vocabulary object detector [54] to165

detect relevant objects for the state predicate and crop the observation images. For example, only166

pixels associated with the object faucet will be the input to the turned-on(faucet) classifier.167

Policy learning. For each behavior, we also train control policies πθ(a) : O → U , implemented as168

a diffusion policy [1]. In simulation, we use a combination of frame-mounted and wrist-mounted169

RGB-D cameras as the inputs to the diffusion policy, while in the real world, the policy takes raw170

camera images as input. The high-level planner orchestrates which of these low-level policies to171

deploy based on the scene and states. Once trained on these diverse demonstrations of different skills,172

the resulting low-level policies can adapt to local changes, such as variations in object poses.173

4.3 Bi-Level Planning and Execution174

At test time, given a novel state and a novel goal, BLADE first uses LLMs to translate the goal into a175

first-order logic formula based on the state predicates. Next, it leverages the learned state abstractions176

to perform planning in a symbolic space to produce a sequence of behaviors. Then, we execute177

the low-level policy associated with the first behavior, and we re-run the planner after the low-level178

policy finishes—this enables us to handle various types of uncertainties and perturbations, including179

execution failure, partial observability, and human perturbation.180

Visibility and geometric constraints are also modeled as preconditions, in addition to other object-181

state and relational conditions. For example, the behavior “opening the cabinet door” will have182

preconditions on the initial state of the door, a visibility constraint that the door is visible, and a183

geometric constraint that nothing is blocking the door. When those preconditions are not satisfied,184

the planner will automatically generate plans, such as actions that move obstacles away, to achieve185

them. Partial observability was handled by using the most-likely state assumption during planning186

and performing replanning. We include details in Appendix A.8.187

5 Experiments188

5.1 Simulation Experimental Setup189

We use the CALVIN benchmark [55] for simulation-based evaluations, which include teleoperated190

human-play data. We use the split D of the dataset, which consists of approximately 6 hours of191

interactions. Annotations of the play data are generated by a script that detects goal conditions on192

5

Goal State
Abstract Goals

Initial Condition

Initial Condition Goal State

Language Goal: “Place All Blocks Inside Drawer”
 ∀x . is-block(x) ⇒ in(x, drawer)

Language Goal: “Find Block In Slider”
 is-block(x), is-blue(x), is-table(y), on(x, y)

Partial Observability

Language Goal: “Move Sliding Door Left”
 is-sliding-door(x), left(x)

Geometric Constraints
Goal StateInitial Condition Goal StateInitial Condition

Blue block not visible Blue block on table Purple cube
blocking slider Slider on the leftDrawer closed

blocks outside drawer
Drawer open

blocks inside drawer

Figure 4: Generalization Tasks in CALVIN. Examples from the three generalization tasks in the CALVIN
simulation environment. Successfully completing these tasks require planning for and executing 3-7 actions.

Table 1: Generalization results in CALVIN. Mean success rates with STD from three seeds are reported.
BLADE outperforms latent planning, LLM, and VLM baselines in completing novel long-horizon tasks.

Method State
Classifier

Latent
Feasibility

Generalization Task

Abstract Goal Geometric Constraint Partial Observability

HULC [56] N/A N/A 2.78± 3.47 11.67± 11.55 0.00± 0.00
SayCan [6] N/A Short 0.00± 0.00 0.00± 0.00 0.00± 0.00
VILA [45] N/A N/A 18.38± 2.48 0.00± 0.00 4.17± 5.20
T2M-Shooting [40] Learned Long 57.78± 12.29 0.00± 0.00 13.33± 1.44
Ours Learned N/A 68.33± 10.14 26.67± 7.64 75.83± 3.82

T2M-Shooting [40] GT Long 61.67± 5.00 0.00± 0.00 0.83± 1.44
Ours GT N/A 76.11± 6.74 56.67± 16.07 70.00± 5.00

simulator states, and there are in total 34 types of behaviors. We use RGB-D images from the mounted193

camera for classifier learning and partial 3D point clouds recovered from the RGB-D cameras for194

policy learning. The original benchmark focuses only on evaluating individual skills. To evaluate the195

ability of different algorithms to compositionally combine previously learned policies to solve novel196

tasks, we design six new generalization tasks, as shown in Fig. 4. Each task has a language instruction,197

a sampler that generates random initial states, and a goal satisfaction function for evaluation. For198

each task, we sample 20 initial states and evaluate all methods with three different random seeds. See199

Appendix B.1 for more details on the benchmark setup.200

Baselines. We compare BLADE with two groups of baselines: hierarchical policies with planning in201

latent spaces and LLM/VLM-based methods for robotic planning. For the former, we use HULC [56],202

the state-of-the-art method in CALVIN, which learns a hierarchical policy from language-annotated203

play data using hindsight labeling. For the latter, we use SayCan [6], Robot-VILA [45], and204

Text2Motion [40]. Note that Text2Motion assumes access to ground-truth symbolic states. Hence we205

compare Text2Motion with BLADE in two settings: one with the ground-truth states and the other206

with the state classifiers learned by BLADE. See Appendix B.2 for more details on these methods.207

5.2 Results in Simulation208

Table 1 presents the performance of different models in all three types of generalization tasks.209

Structured behavior representations improve long-horizon planning. We first focus on the210

comparison with the hierarchical policy model HULC in Table. 1. BLADE with learned classifiers211

achieves a more than 65% improvement in the success rate for reaching abstract goals while using the212

same language-annotated play data. We attribute this to the particular implementation of hindsight213

labeling in HULC being not sufficient to achieve goals that require chaining together multiple high-214

level actions: for example, the task of placing all blocks in the closed drawer requires chaining215

together a minimum of 7 behaviors.216

Structured transition models learned by BLADE facilitate long-horizon planning. Both SayCan217

and T2M-Shooting learn a long-horizon transition and action feasibility model for planning. Shown218

in Table. 1, learning accurate feasibility models directly from raw demonstration data remains a219

significant challenge. In our experiment, we find that first, when the LLM does not take into account220

state information (SayCan), using the short-horizon feasibility model is not sufficient to produce221

6

sound plans. Second, since our model learns a structured transition model, factorized into different222

state predicates, BLADE is capable of producing longer-horizon plans.223

Structured scene representations facilitate making feasible plans. Compared to the Robot-VILA224

method, which directly predicts action sequences based on the image state, BLADE first uses learned225

state classifiers to construct an abstract state representation. This contributes to a 49% improvement226

on the Abstract Goal tasks in Table 1. We observe that the pre-trained VLM used in Robot-VILA227

often predicts actions that are not feasible in the current state. For example, Robot-VILA consistently228

performs better in completing “placing all blocks in a closed drawer” than “placing all blocks in an229

open drawer” since it always predicts opening the drawer as the first step.230

Explicit modeling of geometric constraints and object visibility improves performance in these231

scenarios. BLADE can reason about these challenging situations without explicitly being trained232

in those settings. Table. 1 shows that our approach consistently outperforms baselines in these two233

settings. These generalization capabilities are built on the explicit modeling of geometric constraints234

and object visibility in behavior preconditions.235

BLADE can automatically propose operators for the specific environment given demonstrations.236

Our experiment shows that the LLM can automatically propose high-quality behavior descriptions237

that resemble the dependency structures among operators. For example, the LLM discovers from238

the given contact primitive sequences and language-paired demonstration that blocks can only be239

placed after the block is lifted and that a drawer needs to be opened before placing objects inside, etc.240

Some of these dependencies are unique to the CALVIN environment, therefore requiring the LLM to241

generate specifically for this domain. We provide more visualizations in the Appendix A.1.242

Table 2: Ablation on state classifier learning in CALVIN.

Method Abstract Geometric Partial Obs.

[52] 33.89± 5.85 9.17± 5.20 3.33± 2.89
BLADE 68.33± 10.14 26.67± 7.64 75.83± 3.82

BLADE’s automatic predicate annotation243

enables better classifier learning. From244

Table 1, we observe that having accurate245

state classifier models is critical for algo-246

rithms’ performance (GT vs. Learned).247

Hence, we perform additional ablation stud-248

ies on classifier learning. Migimatsu and249

Bohg [52] also presented a method for learning the preconditions and effects of actions from seg-250

mented trajectories and symbolic action descriptions. The key difference between BLADE and theirs is251

that they only use the first and last frame of each segment to supervise the learning of state classifiers.252

We compare the two classifier learning algorithms, given the same LLM-generated behavior defini-253

tions, by evaluating the classifier accuracy on held-out states. BLADE shows a 20.7% improvement in254

F1 (16.3% improvement for classifying object states and 38.6% improvement for classifying spatial255

relations) compared to the baseline model. This also translates into significant improvements in the256

planning success rate, as shown in Table 2,257

5.3 Real World Experiments258

Environments. We use a Franka Emika robot arm with a parallel jaw gripper. The setup includes259

five RealSense RGB-D cameras, with one being wrist-mounted on the robot and the remaining260

positioned around the workspace. Fig. 5 shows the two domains: Make Tea and Boil Water. For261

each domain, we collect 85 language-annotated demonstrations using teleoperation with a 3D mouse.262

After segmenting the demonstrations using proprioception sensor data, an LLM is used to generate263

behavior descriptions. These descriptions are subsequently used for policy and classifier learning.264

Setup. We compare BLADE against the VLM-based baseline Robot-VILA. We omit SayCan and265

T2M-Shooting since they require additional training data. We first test the original action sequences266

seen in the demonstrations for each domain. We then test on tasks that require novel compositions of267

behaviors for four types of generalizations, i.e., unseen initial condition, state perturbation, geometric268

constraints, and partial observability. For each generalization type, we run six experiments and report269

the number of experiments that have been successfully completed.270

Results. In Fig. 5, we show that our model is able to successfully complete at least 4/6 tasks for all271

generalization types in the two different domains. In comparison, Robot-VILA struggles to generate272

7

Open/Close
Cabinet DoorPlace Kettle

On Stove

Open Drawer
Place Teabag In Kettle

Place Kettle In Sink

Turn On/Off Faucet

Move Faucet Head
Towards/Away From Sink

Place Kettle On Stove

Place Pot
On Table

Make Tea DomainBoil Water Domain

0

1

2

3

4

5

6

Orig. Seq Unseen Init Perturb. Geo. Constr.Partial Obs.

1/6
0/6

1/61/6
0/6

4/64/64/64/6
5/6 BLADE Robot-VILA

Co
un

t (o
ut

of
6)

0
1
2
3
4
5
6

Orig. Seq Unseen Init Perturb. Geo. Constr.
0/60/60/60/6

6/66/66/6
5/6

Generalization Tasks

Boil Water Results Make Tea Results

Figure 5: Domains and Results in Real World. Make Tea features a toy kitchen designed to simulate boiling
water on a stove. The robot must assess the available space on the stove for the kettle. It also needs to manage
the dependencies between actions, such as the faucet must be turned away before the kettle can be placed into
the sink to avoid collisions. Boil Water involves a tabletop task aimed at preparing tea, incorporating a cabinet,
a drawer, and a stove. The robot must locate the kettle, potentially hidden within the cabinet, and a teabag in the
drawer. Additionally, it must consider geometric constraints by removing obstacles that block the cabinet doors.
In both environments, our model significantly outperforms the VLM-based planner Robot-VILA.

Open Left Door Place On Stove Open Drawer

BL
AD

E
Ro

bo
t-V

ila Plan: “open-drawer”, “place-teabag” …
(Policy cannot achieve the goal, teabag is on the stove)

Open Right DoorInitial Condition Place Teabag

Grab TeabagOpen Drawer

Plan: “grab-kettle”, “grab-kettle”, “grab-kettle” …
(Policy unable to achieve the goal, resulting in a loop)

Grab Kettle

BL
AD

E
Ro

bo
t-V

ila

Goal Achieved

Goal Achieved

Open Left DoorUnblock Doors Place On Stove Place Teabag

Cup Not Visible Cup Not Visible Cup is Visible

(b)

Left & Right
Doors Blocked

Drawer Open

Geometric Constraint:
Kettle blocking the doors

Cup Not Visible
Initial Condition

Initial Condition

(a)

Figure 6: Real World Planning and Execution. We show the execution traces from BLADE and Robot-VILA
for two generalization tasks: (a) partial observability and (b) geometric constraints.

correct plans to complete the tasks. In Fig. 6, we visualize the generated plans and execution traces273

of both models. In example A, we show that BLADE can find the kettle initially hidden in the cabinet274

and then complete the rest of the task. In comparison, Robot-VILA directly predicts placing the275

teabag in the kettle when the kettle is not visible, resulting in a failure.276

6 Conclusion and Discussion277

BLADE is a novel framework for long-horizon manipulation by integrating model-based planning and278

imitation learning. BLADE uses an LLM to generate behavior descriptions with preconditions and279

effects from language-annotated demonstrations and automatically generates state abstraction labels280

based on behavior descriptions for learning state classifiers. At performance time, BLADE generalizes281

to novel states and goals by composing learned behaviors with a planner. Compared to latent-space282

and LLM/VLM-based planners, BLADE successfully completes significantly more long-horizon tasks283

with various types of generalizations.284

Limitations. One limitation of BLADE is that the automatic segmentation of demonstrations is based285

on gripper states; more advanced contact detection techniques might be required for certain tasks such286

as caging grasps. We also assume the knowledge of a given set of predicate names in natural language287

and focus on learning dependencies between actions using the given predicates. Automatically288

inventing task-specific predicates from demonstrations and language annotations, possibly with the289

integration of vision-language models (VLMs) is an important future direction. In our experiments,290

we also found that noisy state classification led to some planning failures. Therefore, developing291

planners that are more robust to noises in state estimation is necessary. Finally, achieving novel292

compositions of behaviors also requires policies with strong generalization to novel environmental293

states, which remain a challenge for skills learned from a limited amount of demonstration data.294

8

References295

[1] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:296

Visuomotor policy learning via action diffusion. In RSS, 2023. 1, 5, 17297

[2] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. PDDLStream: Integrating Symbolic298

Planners and Blackbox Samplers via Optimistic Adaptive Planning. In ICAPS, 2020. 1, 2299

[3] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and L. Fei-Fei. Deep affordance300

foresight: Planning through what can be done in the future. In ICRA, 2021.301

[4] H. Shi, H. Xu, Z. Huang, Y. Li, and J. Wu. RoboCraft: Learning to see, simulate, and shape302

elasto-plastic objects in 3d with graph networks. IJRR, 43(4):533–549, 2024. 1303

[5] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning304

latent plans from play. In CoRL, 2020. 1305

[6] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,306

R. Julian, et al. Do as I can, not as I say: Grounding language in robotic affordances. In CoRL,307

2023. 1, 2, 6308

[7] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined Task and309

Motion Planning through an Extensible Planner-Independent Interface Layer. In ICRA, 2014. 2310

[8] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. Incremental task and motion311

planning: A constraint-based approach. In RSS, 2016.312

[9] M. Toussaint. Logic-Geometric Programming: An optimization-based approach to combined313

task and motion planning. In IJCAI, 2015. 2314

[10] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In ICRA, 2017. 2315

[11] S. Nair and C. Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks via316

visual subgoal generation. In ICLR, 2020.317

[12] H. Shi, H. Xu, S. Clarke, Y. Li, and J. Wu. Robocook: Long-horizon elasto-plastic object318

manipulation with diverse tools. In CoRL, 2023.319

[13] A. Simeonov, Y. Du, B. Kim, F. Hogan, J. Tenenbaum, P. Agrawal, and A. Rodriguez. A long320

horizon planning framework for manipulating rigid pointcloud objects. In CoRL, 2021.321

[14] X. Lin, C. Qi, Y. Zhang, Z. Huang, K. Fragkiadaki, Y. Li, C. Gan, and D. Held. Planning322

with spatial and temporal abstraction from point clouds for deformable object manipulation. In323

CoRL, 2022.324

[15] Y. Du, M. Yang, P. Florence, F. Xia, A. Wahid, B. Ichter, P. Sermanet, T. Yu, P. Abbeel, J. B.325

Tenenbaum, et al. Video language planning. arXiv:2310.10625, 2023. 2326

[16] J. Luo, C. Xu, X. Geng, G. Feng, K. Fang, L. Tan, S. Schaal, and S. Levine. Multi-stage cable327

routing through hierarchical imitation learning. IEEE Transactions on Robotics, 2024. 2328

[17] L. X. Shi, Z. Hu, T. Z. Zhao, A. Sharma, K. Pertsch, J. Luo, S. Levine, and C. Finn. Yell at your329

robot: Improving on-the-fly from language corrections. arXiv:2403.12910, 2024.330

[18] S. Pirk, K. Hausman, A. Toshev, and M. Khansari. Modeling long-horizon tasks as sequential331

interaction landscapes. In CoRL, 2020.332

[19] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:333

Long-horizon imitation learning by watching human play. In CoRL, 2023.334

9

[20] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data. In335

RSS, 2021. 2336

[21] Z. Zhang, Y. Li, O. Bastani, A. Gupta, D. Jayaraman, Y. J. Ma, and L. Weihs. Universal Visual337

Decomposer: Long-horizon manipulation made easy. In ICRA, 2024.338

[22] Y. Zhu, P. Stone, and Y. Zhu. Bottom-up skill discovery from unsegmented demonstrations339

for long-horizon robot manipulation. IEEE Robotics and Automation Letters, 7(2):4126–4133,340

2022. 2341

[23] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon manipu-342

lation of unknown objects via task and motion planning with estimated affordances. In ICRA,343

2022. 2344

[24] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint. Deep visual heuristics: Learning feasibility of345

mixed-integer programs for manipulation planning. In ICRA, 2020. 2346

[25] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu. Hierarchical planning for long-horizon manipu-347

lation with geometric and symbolic scene graphs. In ICRA, 2020. 2348

[26] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese, and J. C. Niebles. Neural349

task graphs: Generalizing to unseen tasks from a single video demonstration. In CVPR, 2019.350

[27] D.-A. Huang, D. Xu, Y. Zhu, A. Garg, S. Savarese, F.-F. Li, and J. C. Niebles. Continuous351

relaxation of symbolic planner for one-shot imitation learning. In IROS, 2019. 2352

[28] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:353

Extracting actionable knowledge for embodied agents. In ICML, 2022. 2354

[29] T. Silver, V. Hariprasad, R. S. Shuttleworth, N. Kumar, T. Lozano-Pérez, and L. P. Kaelbling.355

Pddl planning with pretrained large language models. In NeurIPS 2022 foundation models for356

decision making workshop, 2022. 2357

[30] K. Valmeekam, M. Marquez, S. Sreedharan, and S. Kambhampati. On the planning abilities of358

large language models-a critical investigation. In NeurIPS, 2023. 2359

[31] S. Kambhampati, K. Valmeekam, L. Guan, K. Stechly, M. Verma, S. Bhambri, L. Saldyt, and360

A. Murthy. Llms can’t plan, but can help planning in llm-modulo frameworks. arXiv:2402.01817,361

2024. 2362

[32] Y. Chen, J. Arkin, Y. Zhang, N. Roy, and C. Fan. AutoTAMP: Autoregressive task and motion363

planning with llms as translators and checkers. In ICRA, 2024. 2364

[33] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. LLM+P: Empowering365

large language models with optimal planning proficiency. arXiv:2304.11477, 2023.366

[34] Y. Xie, C. Yu, T. Zhu, J. Bai, Z. Gong, and H. Soh. Translating natural language to planning367

goals with large-language models. arXiv:2302.05128, 2023.368

[35] A. Mavrogiannis, C. Mavrogiannis, and Y. Aloimonos. Cook2ltl: Translating cooking recipes369

to ltl formulae using large language models. In ICRA, 2024. 2370

[36] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. Kaelbling, and M. Katz. Generalized371

planning in PDDL domains with pretrained large language models. In AAAI, 2024. 2372

[37] X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang, B. Li, L. Lu, X. Wang, et al. Ghost373

in the Minecraft: Generally capable agents for open-world enviroments via large language374

models with text-based knowledge and memory. arXiv:2305.17144, 2023. 2375

10

[38] K. Nottingham, P. Ammanabrolu, A. Suhr, Y. Choi, H. Hajishirzi, S. Singh, and R. Fox. Do376

embodied agents dream of pixelated sheep: Embodied decision making using language guided377

world modelling. In ICML, 2023. 2378

[39] S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang, and Z. Hu. Reasoning with language379

model is planning with world model. In EMNLP, 2023. 2380

[40] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language381

instructions to feasible plans. Autonomous Robots, 47(8):1345–1365, 2023. 2, 6382

[41] M. Skreta, Z. Zhou, J. L. Yuan, K. Darvish, A. Aspuru-Guzik, and A. Garg. Replan: Robotic383

replanning with perception and language models. arXiv:2401.04157, 2024. 2384

[42] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,385

Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv:2303.03378,386

2023. 2387

[43] Z. Wu, Z. Wang, X. Xu, J. Lu, and H. Yan. Embodied task planning with large language models.388

arXiv:2307.01848, 2023.389

[44] J. Xiang, T. Tao, Y. Gu, T. Shu, Z. Wang, Z. Yang, and Z. Hu. Language models meet world390

models: Embodied experiences enhance language models. In NeurIPS, 2024. 2391

[45] Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao. Look before you leap: Unveiling the power of392

GPT-4v in robotic vision-language planning. arXiv:2311.17842, 2023. 2, 6393

[46] N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi. ChatGPT empowered394

long-step robot control in various environments: A case application. IEEE Access, 2023. 2395

[47] L. Wong, J. Mao, P. Sharma, Z. S. Siegel, J. Feng, N. Korneev, J. B. Tenenbaum, and J. Andreas.396

Learning adaptive planning representations with natural language guidance. In ICLR, 2024. 2397

[48] L. Guan, K. Valmeekam, S. Sreedharan, and S. Kambhampati. Leveraging pre-trained large398

language models to construct and utilize world models for model-based task planning. In399

NeurIPS, 2023.400

[49] P. Smirnov, F. Joublin, A. Ceravola, and M. Gienger. Generating consistent PDDL domains401

with large language models. arXiv:2404.07751, 2024. 2402

[50] V. Lifschitz. On the semantics of STRIPS. In M. Georgeff, Lansky, and Amy, editors, Reasoning403

about Actions and Plans, pages 1–9. Morgan Kaufmann, San Mateo, CA, 1987. 3404

[51] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram, M. Veloso, D. Weld, D. W.405

SRI, A. Barrett, and D. Christianson. PDDL: The Planning Domain Definition Language, 1998.406

4407

[52] T. Migimatsu and J. Bohg. Grounding predicates through actions. In ICRA, 2022. 5, 7408

[53] J. Mao, T. Lozano-Pérez, J. Tenenbaum, and L. Kaelbling. PDSketch: Integrated domain409

programming, learning, and planning. In NeurIPS, 2022. 5410

[54] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding411

dino: Marrying dino with grounded pre-training for open-set object detection. arXiv:2303.05499,412

2023. 5, 16413

[55] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-414

conditioned policy learning for long-horizon robot manipulation tasks. RA-L, 7:7327–7334,415

2021. 5416

[56] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation417

learning over unstructured data. RA-L, 7:11205–11212, 2022. 6, 19418

11

[57] Z. Zhang, Y. Li, O. Bastani, A. Gupta, D. Jayaraman, Y. J. Ma, and L. Weihs. Universal visual419

decomposer: Long-horizon manipulation made easy. In ICRA, 2024. 15420

[58] W. Wan, Y. Zhu, R. Shah, and Y. Zhu. Lotus: Continual imitation learning for robot manipulation421

through unsupervised skill discovery. In ICRA, 2024. 15422

[59] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu. Pct: Point cloud423

transformer. Computational Visual Media, 7:187–199, 2021. 16424

[60] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion planning in the now. In425

ICRA, 2011. 17, 18426

[61] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in427

belief space for partially observable task and motion problems. In ICRA. IEEE, 2020. 18428

[62] O. Mees, J. Borja-Diaz, and W. Burgard. Grounding language with visual affordances over429

unstructured data. In ICRA, 2023. 19430

12

Supplementary Material for Learning Compositional431

Behaviors from Demonstration and Language432

This supplementary material provides additional details on the BLADE model, the simulation exper-433

iments, and qualitative examples. Section A provides a detailed description of the BLADE model,434

including the behavior description generation, predicate generation, abstract verification, automatic435

predicate annotation, classifier implementation, and policy implementation. Section B provides436

details on the simulation experiments, including the task design and baseline implementations. Sec-437

tion C provides qualitative examples of our method and baselines. Section D provides details of438

our setup of the real-robot experiment. Finally, Section E includes a full list of the prompts for the439

baselines used in the simulation experiments.440

A BLADE Details441

A.1 Behavior Description Generation with LLMs442

In Listing 2, we show the behavior descriptions automatically generated by the LLM for the CALVIN443

domain. We also show the detailed prompt to the LLM for generating the behavior description. We444

break down the system prompt into four parts: definitions of primitive actions (Listings 3), definitions445

of predicates and environment context (Listings 4), an in-context example (Listings 5), and additional446

instructions (Listings 6). In Listings 7, we show one example of the specific user prompt that is used447

to generate the behavior description for place-in-drawer.448

A.2 Predicate Generation with LLMs449

In our main experiment, we assume that the predicates for each task domain are provided in natural450

language. Here, we show that given the task definition and the environment context, a LLM can451

automatically generate the relevant predicates for the domain. Listing 8 shows the prompt for452

generating predicates; Listing 1 shows the generated predicates and the relevant actions for them. In453

Table A1, we compare the generated predicates with the predicates defined by the domain expert.454

We observe that the LLM is able to generate 13 out of 15 predicates that match closely with the455

expert-designed predicates. These predicates provide abstract representations for object states (e.g.,456

is-open, light-on), relations between objects (e.g., in-slider, in), and robot-centric states (e.g., holding).457

The LLM incorrectly generates the predicate next-to(?x, ?y) to characterize the effects of the push-left458

and push-right actions, possibly due to ambiguities in the definition of the actions. Future work can459

explore interactive generation and refinement of predicates. Our algorithms are agnostic to the source460

of predicates and can flexibly generate action descriptions based on the given predicates and learn461

their groundings.462

Listing 1: LLM Response for Predicate Generation.
463

Unary Predicates464
1. **(on-table ?x)** - Indicates that object ?x is on the table.465

- Relevant Actions: lift_red_block_table, lift_blue_block_table, lift_pink_block_table,466
place_on_table467

2. **(in-slider ?x)** - Indicates that object ?x is inside the slider.468
- Relevant Actions: lift_red_block_slider, lift_blue_block_slider, lift_pink_block_slider,469
place_in_slider470

3. **(in-drawer ?x)** - Indicates that object ?x is inside the drawer.471
- Relevant Actions: lift_red_block_drawer, lift_blue_block_drawer, lift_pink_block_drawer,472
place_in_drawer473

4. **(is-open ?x)** - Indicates that container ?x (drawer or slider) is open.474
- Relevant Actions: open_drawer, close_drawer, place_in_drawer475

5. **(is-closed ?x)** - Indicates that container ?x (drawer or slider) is closed.476
- Relevant Actions: close_drawer477

6. **(light-on ?x)** - Indicates that the light (lightbulb or led) is turned on.478
- Relevant Actions: turn_off_lightbulb, turn_off_led479

7. **(light-off ?x)** - Indicates that the light (lightbulb or led) is turned off.480
- Relevant Actions: turn_on_lightbulb, turn_on_led481

8. **(holding ?x)** - Indicates that the robot is currently holding object ?x.482
- Relevant Actions: grasp, place, move, stack_block, unstack_block483

9. **(clear ?x)** - Indicates that there is no object on top of ?x.484

13

- Relevant Actions: stack_block, unstack_block, place_on_table485
10. **(rotated-right ?x)** - Indicates that block ?x is rotated to the right.486

- Relevant Actions: rotate_red_block_left, rotate_blue_block_left, rotate_pink_block_left487
11. **(rotated-left ?x)** - Indicates that block ?x is rotated to the left.488

- Relevant Actions: rotate_red_block_right, rotate_blue_block_right,489
rotate_pink_block_right490

12. **(slider-left ?x)** - Indicates that the slider ?x is in the leftmost position.491
13. **(slider-right ?x)** - Indicates that the slider ?x is in the rightmost position.492

493
Binary Relations494
1. **(on ?x ?y)** - Indicates that object ?x is on top of object ?y.495

- Relevant Actions: stack_block, unstack_block496
2. **(next-to ?x ?y)** - Indicates that object ?x is next to object ?y.497

- Relevant Actions: push_red_block_right, push_red_block_left, push_blue_block_right,498
push_blue_block_left, push_pink_block_right, push_pink_block_left499500

A.3 Temporal Segmentation501

Before the generation of behavior description, we segment each demonstration into a sequence of502

contact-based primitives. We consider seven primitives describing the interactions between the robot503

and other objects: open/close grippers without holding objects, move-to(x) which moves the gripper504

to an object, grasp(x, y) and place(x, y) which grasp and place object x from/onto another object y,505

move(x) which moves the currently holding object x and push(x).506

We use a set of heuristics to automatically segment the continuous trajectories using proprioception,507

i.e., gripper open state, and object segmentation. Specifically, open and close are directly detected by508

checking whether the gripper width is at the maximum or minimum value. grasp(x, y) and place(x, y)509

correspond to the other closing and opening gripper actions. move(x), push(x) and move-to(x) are510

matched to temporal segments between pairs of gripper actions. Their type can be inferred based on511

the preceding and following gripper actions. We make a simplifying assumption that the robot moves512

freely in space only when the gripper is fully open and pushes objects only when the gripper is fully513

closed. These are given as instructions to the human demonstrators. In the simulator, the arguments514

of the primitives are obtained from the contact state. In the real world, they are inferred from the515

language annotations of the actions (e.g.,“place the kettle on the stove” corresponds to place(kettle,516

stove)) procedurally or by the LLMs.517

In Section 4.1, we discuss that we use LLMs to predict a body of contact primitive sequence associated518

with each behavior description. This additional step helps account for noises in the segmentation anno-519

tations, which are prevalent in CALVIN’s language-annotated demonstrations. For example, the lan-520

guage annotation “lift-block-table” correspond to the contact sequence {move-to, grasp,move, place}.521

Based on the generated body, the behavior can be correctly mapped to {grasp,move} and the demon-522

Table A1: Comparison of Predicates Defined by Domain Expert and Predicates Generated by an LLM.
Manually Defined Automatically Generated

rotated-left(?x) rotated-left(?x)
rotated-right(?x) rotated-right(?x)
lifted(?x) holding(?x)
is-open(?x) is-open(?x)
is-close(?x) is-closed(?x)
is-turned-on(?x) light-on(?x)
is-turned-off(?x) light-off(?x)
is-slider-left(?x) slider-left(?x)
is-slider-right(?x) slider-right(?x)
is-on(?x, ?y) on-table(?x)
is-in(?x, ?y) in-slider(?x), in-drawer(?x)
stacked(?x, ?y) on(?x, ?y)
unstacked(?x, ?y) clear(?x)
pushed-left(?x) -
pushed-right(?x) -
- next-to(?x, ?y)

14

stration trajectories can then be re-segmented. This additional step is crucial for learning accurate523

groundings of the states and actions.524

In our preliminary studies, we also experiment with other vision-based temporal segmentation525

methods including UVD [57] and Lotus [58]. A main issue for incorporating these methods is that526

they provide less consistent segmentations for different occurrences of the same behavior. As we527

discussed in Section 6, more advanced contact detection techniques will be an important future528

direction for using contact primitives as a meaningful interface between actions and language.529

A.4 Abstract Verification530

After the generation of the behavior descriptions, we verify the generated behavior descriptions by531

performing abstract verification on the demonstration trajectories. Given a segmented sequence of532

the trajectory where each segment is associated with a behavior, we verify whether the preconditions533

of each behavior can be satisfied by the accumulated effects of the previous behaviors. Pseudocode534

for this algorithm is shown in Algorithm 1.535

Algorithm 1 Abstract Verification

Input: Dataset D, Behavior descriptions A
1: error counter← a counter for sequencing errors related to each behavior
2: counter← a counter for storing the occurrences of each behavior
3: for i← 1 to K do
4: obtain a behavior sequence Di ← {ai1, ..., aiN}
5: initialize a dictionary for predicate state pred← {}
6: for t← 1 to N do
7: for each exp in preai

t
do

8: (p, v)← EXTRACTPREDICATEANDBOOL(exp)
9: if p not in pred then

10: pred[p]← v
11: else
12: if pred[p] ̸= v then
13: increment error counter[ait]
14: for each exp in effai

t
do

15: (p, v)← EXTRACTPREDICATEANDBOOL(exp)
16: pred[p]← v

17: increment counter[ait]
18: for each a in error counter do
19: if error counter[a]/counter[a] > threshold then
20: regenerate the behavior description for a

A.5 Automatic Predicate Annotation536

We leverage all behavior descriptions to automatically label an observation ō = {o1, ..., oH} based537

on its associated segmentation. In particular, at o0, we label all state predicates as “unknown.” Next,538

we unroll the sequence of behavior executed in ō. As illustrated in Fig. 3c, before applying a behavior539

a at step ot, we label all predicates in prea true. When a finishes at step ot′ , we label all predicates in540

effa. In addition, we will propagate the labels for state predicates to later time steps until they are541

explicitly altered by another behavior a. Pseudocode for this algorithm is shown in Algorithm 2.542

A.6 Classifier Implementation543

Based on the state predicate dataset generated from behavior definitions, we train a set of state544

classifiers fθ(p) : O → {T, F}, which are implemented as standard neural networks for classification.545

In the simulation experiment, the classifier model is based on a pre-trained CLIP model (ViT-B/32).546

We use the image pre-processing pipeline from the CLIP model to process the input images. We547

15

Algorithm 2 Predicate Annotation

Input: Behavior sequence {a1, ..., aN}, Observation sequence {o1, ..., oH}, Descriptions A
1: propagated← an empty list of propagated predicates
2: prev effs← a list for storing effects from previous step
3: timed preds← an empty list of predicates associated with time steps
4: pred obs← an empty list for storing predicates paired with observations
5: for t← 1 to N do
6: // Precondition
7: timed preds← timed preds ∪ GETTIMEDPREDICATES(preat

, t)
8: timed preds← timed preds ∪ GETTIMEDPREDICATES(¬effat

, t)
9: // Propagated

10: for each p in propagated do
11: if not ALTERED(p, at) then
12: UPDATETIME(p, t)
13: else
14: propagated.remove(p)
15: timed preds.add(p)
16: // Previous effects
17: for each p in prev effs do
18: if not ALTERED(p, at) then
19: propagated.add(p)
20: else
21: timed preds.add(p)
22: // Store effects for next step
23: prev effs← GETTIMEDPREDICATES(effat

, t)

24: timed preds.update(propagated)
25: timed preds.update(prev effs)
26: for each p in timed preds do
27: pred obs.update(MATCHTIMEDPREDICATEWITHOBSERVATION(p, {o1, ..., oH}))
28: return pred obs

use images from the static camera in the simulation. We perform one additional step of image548

processing to mask out the robot arm, which we find in our preliminary experiment to help avoid549

overfitting. We do not use the global image embedding from the CLIP model, instead we extract the550

patch tokens from the output of the vision transformer. We downsize the concatenated patch tokens551

with a multilayer perceptron (MLP) and then concatenate with word embeddings of the predicate552

arguments (e.g., red-block, table). The final embedding is then passed through a predicate-specific553

MLP to output the logit for binary classification. The CLIP model is frozen, while all other learnable554

parameters are trained.555

In the real-world experiment, we find that, with more limited data than simulation, the pre-trained556

CLIP model often overfits to spurious relations in the training images (e.g., the state of the faucet557

is entangled with the location of the kettle). We also experiment with a ResNet-50 model pre-558

trained on ImageNet and find similar behavior. To improve generalization, we choose to focus on559

relevant objects and regions. We achieve this by using segmented object point clouds. We use open560

vocabulary object detector Grounding-Dino [54] to detect objects given object names. The predicted561

2D bounding boxes are projected into 3D and used to extract regions of the point cloud surrounding562

each object. The point-cloud-based classifier is based on the shape classification model from the563

Point Cloud Transformer (PCT) [59]. We concatenate the segmented object point clouds and include564

one additional channel to indicate the identity of each point. The PCT is used to encode the combined565

point cloud and output the final logit. The PCT model is trained from scratch.566

16

A.7 Policy Implementation567

For each behavior, we train control policies πθ(a) : O → U , implemented as a diffusion policy [1].568

We make three changes to the original implementation to facilitate chaining the learned behaviors.569

First, when training the model to predict the first raw action for each skill, we replace the history570

observations with observations sampled randomly from a temporal window prior to when the skill is571

executed, to avoid bias in the starting positions of the robot arm. Second, we perform biased sampling572

of the training sequences to ensure that the policy is trained on a diverse set of starting positions.573

Third, at the end of each training sequence, we append a sequence of zeros actions so the learned574

policy can learned to predicate termination. These strategies are implemented for both the simulation575

and the real world.576

In simulation, we construct the point cloud of the scene using the RGB-D image from the frame-577

mounted camera. We then obtain segmented object point clouds for the relevant objects of each578

behavior (e.g., table and block for pick-block-table) with groundtruth segmentation masks from the579

PyBullet simulator. The segmented point clouds of the objects are concatenated to form the input580

point cloud observation. The model uses the PCT to encode a sequence of point clouds as history581

observations and uses another time-series transformer encoder to reason over the history observations582

and predict the next actions. The time-series transformer is similar in design to the transformer-based583

diffusion policy [1].584

In the real world, we use RGB images from four stationary cameras mounted around the workspace585

and a wrist-mounted camera as input to an image-based diffusion policy model. The input is processed586

using five separate ResNet-34 encoder heads. The policy directly predicts the gripper pose in the587

world frame. We found the wrist-mounted camera to be particularly helpful in the real-world setup.588

A.8 Planner Implementation589

Planning over geometric constraints. Geometric constraints, specifically the collision-free con-590

straints for each action, are handled “in the now,” right before an action is executed. This is because591

in order to classify the geometric constraints, we would need to know the exact pose of all objects in592

the environments. However, we do not explicitly learn models for predicting the exact location of593

objects after executing certain behaviors.594

Our approach to handle this is to process them in the now. It follows the hierarchical planning595

strategy [60]. In particular, the precondition for actions is an ordered list. In our case, there are two596

levels: the second level contains the geometric constraint preconditions and the first level contains the597

rest of the semantic preconditions. During planning, only the first set of preconditions will be added598

to the subgoal list. After we have finished planning for the first-level preconditions, we consider599

the second-level precondition for the first behavior in the resulting plan, by possibly moving other600

obstacles away.601

As an example, let us consider the skill of opening the cabinet door. Its first-level precondition602

only considers the initial state of the cabinet door (i.e., it should be initially closed). It also has a603

second-level precondition stating that nothing else should be blocking the door. In the beginning, the604

planner only considers the first-level preconditions. When this behavior is selected to be executed605

next, the planner checks for the second-level precondition. If this non-blocking precondition is not606

satisfied in the current state, we will recursively call the planner to achieve it (which will generate607

actions that move the blocking obstacles away). If this precondition has already been satisfied, we608

will proceed to execute the policy associated with this opening-cabinet-door skill.609

This strategy will work for scenarios where there is enough space for moving obstacles around and610

the robot does not need to make dedicated plans for arranging objects. In scenarios where space is611

tight and dedicated object placement planning is required, we can extend our framework to include612

the prediction of object poses after each skill execution.613

Planning over partial observability. Partial observability is handled assuming the most likely state.614

In particular, the effect definitions for all behaviors are deterministic. It denotes the most likely615

17

state that it will result in. For example, in the definition of behaviors for finding objects (e.g., the616

find-object-in-left-cabinet), we have a deterministic and “optimistic” effect statement that the object617

will be visible after executing this action.618

At performance time, since we will replan after executing each behavior, if the object is not visible619

after we have opened the left cabinet, the planner will automatically plan for other actions to achieve620

this visibility subgoal.621

This strategy works for simple partially observable Markov decision processes (POMDPs). A622

potential extension to it is to model a belief state (e.g., representing a distribution of possible object623

poses) and execute belief updates on it. Planners can then use more advanced algorithms such as624

observation-based planning to generate plans. Such strategies have been studied in task and motion625

planning literature [60, 61].626

B Simulation Experiment Details627

B.1 Task Design628

To evaluate generalization to new long-horizon manipulation tasks, we designed six tasks that fall629

into three categories: Abstract Goal, Geometric Constraint, and Partial Observability. Each task has a630

language instruction, a sampler that generates random initial states, and a goal satisfaction function631

for evaluation. We provide details for each task below.632

Task-1633

• Task Category: Abstract Goal634

• Language Instruction: turn off all lights.635

• Logical Goal: (and (is-turned-off led) (is-turned-off lightbulb))636

• Initial State: Both the led and the lightbulb are initially turned on.637

• Goal Satisfaction: The logical states of both the lightbulb and the led are off.638

• Variation: The initial states of the led and the lightbulb are both on and the goal is to turn them639

off.640

Task-2641

• Task Category: Abstract Goal642

• Language Instruction: move all blocks to the closed drawer.643

• Logical Goal: (and (is-in red-block drawer) (is-in blue-block drawer) (is-in pink-block drawer))644

• Initial State: The blocks are visible and not in the drawer. The drawer is closed.645

• Goal Satisfaction: The blocks are in the drawer.646

Task-3647

• Task Category: Abstract Goal648

• Language Instruction: move all blocks to the open drawer.649

• Logical Goal: (and (is-in red-block drawer) (is-in blue-block drawer) (is-in pink-block drawer))650

• Initial State: The blocks are visible and not in the drawer. The drawer is open.651

• Goal Satisfaction: The blocks are in the drawer.652

Task-4653

• Task Category: Partial Observability654

• Language Instruction: place a red block on the table.655

• Logical Goal: (is-on red-block table)656

• Initial State: The red block is in the drawer and the drawer is closed.657

• Goal Satisfaction: The red block is placed on the table.658

• Variations: Find the blue block or the pink block.659

Task-5660

• Task Category: Partial Observability661

• Language Instruction: place a red block on the table.662

18

• Logical Goal: (is-on red-block table)663

• Initial State: The red block is behind the sliding door.664

• Goal Satisfaction: The red block is placed on the table.665

• Variations: Find the blue block or the pink block.666

Task-6667

• Task Category: Geometric Constraint668

• Language Instruction: open the slider.669

• Logical Goal: (is-slider-left slider)670

• Initial State: The sliding door is on the right and there is a pink block on the path of the sliding671

door to the left.672

• Goal Satisfaction: The sliding door is within 5cm of the left end.673

• Variations: Move the slider to the right.674

B.2 Baseline Implementation675

HULC. This baseline is a hierarchical policy learning method that learns from language-annotated676

play data using hindsight labeling [56]. It’s one of the best-performing models on the D → D split of677

the CALVIN benchmark. We omit the comparison to the HULC++ method [62], the follow-up work678

of HULC that leverages affordance prediction and motion planning to improve the low-level skills,679

because our evaluation is focused on the task planning ability of the learned hierarchical model.680

SayCan. This baseline combines an LLM-based planner that takes the language instruction and681

learned feasibility functions for skills to perform task planning. We adopt SayCan to our learning-682

from-play-data setting by training our own skill feasibility function by predicting possible next actions683

to be executed at each state. The prompt of the model is listed in Listing 9.684

Robot-VILA. This baseline performs task planning with a VLM. We adopt the prompts pro-685

vided in the original paper to the CALVIN environment. The prompts are divided into the initial686

prompt that is used to generate the task plan given the initial observation (shown in Listing 10)687

and the follow-up prompt that is used for all subsequent steps (shown in Listing 11). We use688

gpt-4-turbo-2024-04-09 as the VLM. Because the model does not memorize the history. We689

store the history dialogue, including the text input and the image input, and concatenate the history690

dialogue with the current dialogue as the input to the VLM.691

T2M-Shooting. This baseline (in particular, the shooting-based algorithm) is similar to the SayCan692

algorithm except that: 1) it uses a multi-step feasibility model in contrast to the single-step feasibility693

model used by SayCan; 2) the LLM additionally takes a symbolic state description of object states694

and relationships. The original Text2Motion method assumes access to ground-truth symbolic states.695

For comparison, in this paper, we compare Text2Motion with BLADE in two settings: one with the696

ground-truth states and the other with the state classifiers learned by BLADE. The prompt of the697

model is listed in Listing 12.698

C Qualitative Examples699

In this section, we include three qualitative examples from the CALVIN experiments to compare the700

generalization capabilities of BLADE with baselines. Specifically, Fig. A2 shows generalization to701

abstract goal, Fig. A3 shows generalization to partial observability, and Fig. A4 shows generalization702

to geometric constraint. In summary, BLADE is able to generate accurate long-horizon manipulation703

plans for novel situations while latent planning, LLM, and VLM baselines fail.704

D Real World Experiment Details705

As shown in Fig. A1, we employ a 7-degree of freedom (DOF) Franka Emika robotic arm equipped706

with a parallel jaw gripper. A total of Five Intel RealSense RGB-D cameras are used to provide707

19

RealSense RGBD Camera

RealSense RGBD Camera RealSense RGBD Camera

RealSense RGBD Camera

RealSense RGBD Camera
(Wrist-mounted)

Franka Emika Robot

Figure A1: We use a 7-degree of freedom (DOF) Franka Emika robotic arm with a parallel jaw gripper for our
real-world experiment. A total of Five Intel RealSense RGB-D cameras are used to provide observation for our
policies and state classifiers. Four cameras are mounted on the frame and an additional one is mounted to the
robot’s wrist.

observation for our policies and state classifiers. Four cameras are mounted on the frame and one708

additional camera is mounted on the robot’s wrist.709

We use a teleoperation system with a 3DConnexion SpaceMouse for control. During the collection of710

demonstrations, we record the robot’s joint configurations, the pose of the end effector, the gripper711

width, and the RGB-D images from the five cameras. We collected approximately 80 demonstrations712

for each of the two real-world domains, which provide the training data for the diffusion policy713

models and the state classifiers.714

Similar to our simulation experiments, our evaluation protocol includes the design of six tasks aimed715

at assessing the model’s generalization capabilities across new long-horizon tasks. These tasks are716

specifically crafted to test the model’s proficiency for four types of generalization: Unseen Initial717

Condition, State Perturbation, Partial Observability, and Geometric Constraint.718

Task-1719

• Domain: Boil Water720

• Task Category: Unseen Initial Condition721

• Language Instruction: Fill the kettle with water and place it on the stove722

• Logical Goal: (and (is-filled kettle) (is-placed-on kettle stove) (is-turned-off faucet-knob))723

• Initial State: The kettle is placed inside the sink, and the stove is not blocked. The faucet is724

turned off with the faucet head turned away.725

Task-2726

• Domain: Boil Water727

• Task Category: State Perturbation728

• Language Instruction: Fill the kettle with water and place it on the stove729

• Logical Goal: (and (is-filled kettle) (is-placed-on kettle stove) (is-turned-off faucet-knob))730

• Initial State: The kettle is placed inside the sink and the stove is blocked.731

• Perturbation: The human user moves the kettle from the sink to the table after the robot turns732

the faucet head towards the sink. The robot needs to replan to move the kettle back to the sink.733

Task-3734

• Domain: Boil Water735

• Task Category: Geometric Constraint736

• Language Instruction: Fill the kettle with water and place it on the stove737

20

• Logical Goal: (and (is-filled kettle) (is-placed-on kettle stove) (is-turned-off faucet-knob))738

• Initial State: The kettle is placed inside the sink and the stove is blocked, creating a geometric739

constraint.740

Task-4741

• Domain: Make Tea742

• Task Category: Unseen Initial Condition743

• Language Instruction: Place the kettle on the stove and place the teabag inside the kettle.744

• Logical Goal: (and (is-placed-on kettle stove) (is-placed-inside teabag kettle))745

• Initial State: The kettle is placed inside a cabinet. The cabinet doors are open. The drawer is746

closed.747

Task-5748

• Domain: Make Tea749

• Task Category: State Perturbation750

• Language Instruction: Place the kettle on the stove and place the teabag inside the kettle.751

• Logical Goal: (and (is-placed-on kettle stove) (is-placed-inside teabag kettle))752

• Initial State: The kettle is placed inside the cabinet and the cabinet door is open. The drawer is753

initially closed.754

• Perturbation: Once the robot opens the drawer, a human user closes the drawer.755

Task-6756

• Domain: Make Tea757

• Task Category: Geometric Constraint758

• Language Instruction: Place the kettle on the stove and place the teabag inside the kettle.759

• Logical Goal: (and (is-placed-on kettle stove) (is-placed-inside teabag kettle))760

• Initial State: There is a teapot blocking the cabinet doors. The kettle is inside the cabinet. The761

drawer is open with the teabag visible.762

Task-7763

• Domain: Make Tea764

• Task Category: Partial Observability765

• Language Instruction: Place the kettle on the stove and place the teabag inside the kettle.766

• Logical Goal: (and (is-placed-on kettle stove) (is-placed-inside teabag kettle))767

• Initial State: The kettle is placed inside a cabinet and is not visible.768

E Prompts for Baselines769

In this section, we provide the prompts for the baselines used in the simulation experiments. We770

provide the prompts for SayCan in Listing 9, Robot-VILA in Listing 10 and Listing 11, and T2M-771

Shooting in Listing 12.772

21

BL
AD

E
Tex

t2M
oti

on
 -

Sh
oo

tin
g

HU
LK

Planner loops
between two skills:

open drawer,
close drawer

Planner fails to pick
up the last block and

place in drawer

Planner fails to place
any block into the

drawerRo
bo

t-V
ILA

Initial State Open Drawer Place Block In Drawer Place Block In Drawer Place Block In Drawer

Initial State Open Drawer Place Block In Drawer Place Block In Drawer

Initial State Open Drawer

Abstract Goal: ”Place All Blocks In Drawer”

Place Block on Table Place Block on Table

Initial State Open Drawer Close Drawer

Figure A2: BLADE and baseline performance on an Abstract Goal generalization task in the CALVIN environ-
ment.

BL
AD

E
Tex

t2M
oti

on
 -

Sh
oo

tin
g

HU
LK Planner fails to

generate a relevant
action

Planner fails to
consider the slider is

closed

Planner fails to
generate a plan

Ro
bo

t-V
ILA

Initial State Open Drawer Open Slider Grab Block In Slider

Initial State Grab Block In Slider

Initial State

Partial Observability: ”Find Block In Slider”
Initial State Turn On Lights

Figure A3: BLADE and baseline performance on the Partial Observability generalization task in the CALVIN
environment.

22

BL
AD

E
Tex

t2M
oti

on
 -

Sh
oo

tin
g

HU
LK Planner fails to

consider the door is
blocked

Planner fails to
consider the door is

blocked

Planner fails to
generate a plan

Ro
bo

t-V
ILA

Initial State Move Block Open Slider

Initial State Open Slider

Initial State

Geometric Constraints: ”Open Slider Door”
Initial State Move Slider

Figure A4: BLADE and baseline performance on the Geometric Constraint generalization task in the CALVIN
environment.

23

Listing 2: Behavior descriptions generated by the LLM for the CALVIN domain.
773

;; lift_block_table774
(:action lift-block-table775
:parameters (?block - item ?table - item)776
:precondition (and (is-block ?block) (is-table ?table) (is-on ?block ?table) (not (is-lifted777
?block)))778
:effect (and (lifted ?block) (not (is-on ?block ?table)))779
:body (then780

(grasp ?block ?table)781
(move ?block)782

)783
)784

785
;; lift_block_slider786
(:action lift_block_slider787
:parameters (?block - item ?slider - item)788
:precondition (and (is-block ?block) (is-slider ?slider) (is-in ?block ?slider))789
:effect (and (lifted ?block) (not (is-in ?block ?slider)))790
:body (then791

(grasp ?block ?slider)792
(move ?block)793

)794
)795

796
;; lift_block_drawer797
(:action lift-block-drawer798
:parameters (?block - item ?drawer - item)799
:precondition (and (is-block ?block) (is-drawer ?drawer) (is-in ?block ?drawer) (is-open ?800
drawer))801
:effect (and (lifted ?block) (not (is-in ?block ?drawer)))802
:body (then803

(grasp ?block ?drawer)804
(move ?block)805

)806
)807

808
;; place_in_slider809
(:action place-in-slider810
:parameters (?block - item ?slider - item)811
:precondition (and (is-block ?block) (is-slider ?slider) (is-lifted ?block))812
:effect (and (is-in ?block ?slider) (not (is-lifted ?block)))813
:body (then814

(place ?block ?slider)815
)816
)817

818
;; place_in_drawer819
(:action place-in-drawer820
:parameters (?block - item ?drawer - item)821
:precondition (and (is-block ?block) (is-drawer ?drawer) (is-lifted ?block) (is-open ?drawer)822
)823
:effect (and (is-in ?block ?drawer) (not (is-lifted ?block)))824
:body (then825

(place ?block ?drawer)826
)827
)828

829
;; place_on_table830
(:action place-on-table831
:parameters (?block - item ?table - item)832
:precondition (and (is-block ?block) (is-table ?table) (is-lifted ?block))833
:effect (and (is-on ?block ?table) (not (is-lifted ?block)))834
:body (then835

(place ?block ?table)836
)837
)838

839
;; stack_block840
(:action stack_block841
:parameters (?block - item ?target - item)842
:precondition (and (is-block ?block) (is-block ?target) (is-lifted ?block))843
:effect (and (stacked ?block ?target) (not (is-lifted ?block)))844
:body (then845

(place ?block ?target)846
)847
)848

849
850

;; unstack_block851
(:action unstack_block852

24

:parameters (?block1 - item ?block2 - item)853
:precondition (and (is-block ?block1) (is-block ?block2) (stacked ?block1 ?block2))854
:effect (and (unstacked ?block1 ?block2) (is-lifted ?block1) (not (stacked ?block1 ?block2)))855
:body (then856

(grasp ?block1 ?block2)857
(move ?block1)858

)859
)860

861
;; rotate_block_right862
(:action rotate-block-right863
:parameters (?block - item ?table - item)864
:precondition (and (is-block ?block) (is-table ?table) (is-on ?block ?table))865
:effect (and866

(rotated-right ?block)867
(not (rotated-left ?block)))868

:body (then869
(grasp ?block ?table)870
(move ?block)871
(place ?block ?table)872

)873
)874

875
;; rotate_block_left876
(:action rotate_block_left877
:parameters (?block - item ?table - item)878
:precondition (and (is-block ?block) (is-table ?table) (is-on ?block ?table))879
:effect (and (rotated-left ?block))880
:body (then881

(grasp ?block)882
(move ?block)883
(place ?block)884

)885
)886

887
;; push_block_right888
(:action push_block_right889
:parameters (?block - item ?table - item)890
:precondition (and (is-block ?block) (is-table ?table) (is-on ?block ?table))891
:effect (and (pushed-right ?block) (not (pushed-left ?block)))892
:body (then893

(close)894
(push ?block)895
(open)896

)897
)898

899
;; push_block_left900
(:action push-block-left901
:parameters (?block - item)902
:precondition (and (is-block ?block))903
:effect (and (pushed-left ?block))904
:body (then905

(close)906
(push ?block)907
(open)908

)909
)910

911
;; move_slider_left912
(:action move_slider_left913
:parameters (?slider - item)914
:precondition (and (is-slider ?slider) (is-slider-right ?slider))915
:effect (and (is-slider-left ?slider) (not (is-slider-right ?slider)))916
:body (then917

(grasp ?slider)918
(move ?slider)919
(place ?slider)920

)921
)922

923
;; move_slider_right924
(:action move-slider-right925
:parameters (?slider - item)926
:precondition (and (is-slider ?slider) (not (is-slider-right ?slider)))927
:effect (and (is-slider-right ?slider))928
:body (then929

(grasp ?slider)930
(move ?slider)931
(place ?slider)932

)933

25

)934
935

;; open_drawer936
(:action open-drawer937
:parameters (?drawer - item)938
:precondition (and (is-drawer ?drawer) (is-close ?drawer))939
:effect (and (is-open ?drawer) (not (is-close ?drawer)))940
:body (then941

(close)942
(push ?drawer)943
(open)944

)945
)946

947
;; close_drawer948
(:action close-drawer949
:parameters (?drawer - item)950
:precondition (and (is-drawer ?drawer) (is-open ?drawer))951
:effect (and (is-close ?drawer) (not (is-open ?drawer)))952
:body (then953

(close)954
(push ?drawer)955
(open)956

)957
)958

959
;; turn_on_lightbulb960
(:action turn-on-lightbulb961
:parameters (?lightbulb - item)962
:precondition (and (is-lightbulb ?lightbulb) (is-turned-off ?lightbulb))963
:effect (and (is-turned-on ?lightbulb) (not (is-turned-off ?lightbulb)))964
:body (then965

(close)966
(push ?lightbulb)967
(open)968

)969
)970

971
;; turn_off_lightbulb972
(:action turn-off-lightbulb973
:parameters (?lightbulb - item)974
:precondition (and (is-lightbulb ?lightbulb) (is-turned-on ?lightbulb))975
:effect (and (is-turned-off ?lightbulb) (not (is-turned-on ?lightbulb)))976
:body (then977

(close) (push ?lightbulb) (open)978
)979
)980

981
;; turn_on_led982
(:action turn-on-led983
:parameters (?led - item)984
:precondition (is-led ?led)985
:effect (and (is-turned-on ?led) (not (is-turned-off ?led)))986
:body (then987

(close)988
(push ?led)989
(open)990

)991
)992

993
;; turn_off_led994
(:action turn-off-led995
:parameters (?led - item)996
:precondition (and (is-led ?led) (is-turned-on ?led))997
:effect (and (is-turned-off ?led) (not (is-turned-on ?led)))998
:body (then999

(close)1000
(push ?led)1001
(open)1002

)1003
)1004

1005
;; push_into_drawer1006
(:action push-into-drawer1007
:parameters (?block - item ?drawer - item)1008
:precondition (and (is-block ?block) (is-drawer ?drawer) (is-open ?drawer))1009
:effect (and (is-in ?block ?drawer))1010
:body (then1011

(close)1012
(push ?block)1013
(open)1014

26

)1015
)10161017

Listing 3: Example Prompt for CALVIN–Contact Primitives.
1018

Primitive Actions:1019
There are seven primitive actions that the robot can perform. They are:1020
- (grasp ?x ?y): ?x and ?y are two object variables. ?x is the object that the robot will be1021
grasping, ?y is the object that ?x is currently on or in.1022
- (place ?x ?y): ?x and ?y are two object variables. ?x is the object that the robot is1023
currently holding, ?y is the object that ?x will be placed on or in.1024
- (move ?x): ?x is the object that the robot is currently holding and will be moved by the1025
robot.1026
- (push ?x): ?x is the object that the robot will be pushing.1027
- (move-to ?x): the robot arm will move without holding any object or pushing any object.1028
- (open): the robot gripper will open fully.1029
- (close): the robot gripper will close without grasping any object.1030

1031
Combined Primitives:1032
The primitive actions can be combined into a high-level routine. For example, (then (grasp ?x1033
?y) (move ?x) (place ?x ?y)) means the robot will pick up ?x from ?y, move ?x, and place ?x to1034
?z. The possible combination of primitives are:1035
A. (then (grasp ?x ?y) (move ?x))1036
B. (then (place ?x ?y))1037
C. (then (grasp ?x ?y) (move ?x) (place ?x ?z))1038
D. (then (close) (push ?x) (open))10391040

Listing 4: Example Prompt for CALVIN–Environment.
1041

Predicates for Preconditions and Effects:1042
The list of all possible predicates for defining the preconditions and effects of the high-1043
level routine are listed below:1044

1045
For specifying the type of the object:1046
- (is-table ?x - item): ?x is a table.1047
- (is-slider ?x - item): ?x is a slider.1048
- (is-drawer ?x - item): ?x is a drawer.1049
- (is-lightbulb ?x - item): ?x is a lightbulb.1050
- (is-led ?x - item): ?x is a led.1051
- (is-block ?x - item): ?x is a block.1052

1053
For specifying the attributes of the object:1054
- (is-red ?x - item): ?x is red. This predicate applies to a block.1055
- (is-blue ?x - item): ?x is blue. This predicate applies to a block.1056
- (is-pink ?x - item): ?x is pink. This predicate applies to a block.1057

1058
For specifying the state of the object:1059
- (rotated-left ?x - item): ?x is rotated left. This predicate applies to a block.1060
- (rotated-right ?x - item): ?x is rotated right. This predicate applies to a block.1061
- (pushed-left ?x - item): ?x is pushed left. This predicate applies to a block.1062
- (pushed-right ?x - item): ?x is pushed right. This predicate applies to a block.1063
- (lifted ?x - item): ?x is lifted in the air. This predicate applies to a block.1064
- (is-open ?x - item): ?x is open. This predicate applies to a drawer.1065
- (is-close ?x - item): ?x is close. This predicate applies to a drawer.1066
- (is-turned-on ?x - item): ?x is turned on. This predicate applies to a lightbulb or a led.1067
- (is-turned-off ?x - item): ?x is turned off. This predicate applies to a lightbulb or a led.1068
- (is-slider-left ?x - item): the sliding door of the slider ?x is on the left.1069
- (is-slider-right ?x - item): the sliding door of the slider ?x is on the right.1070

1071
For specifying the relationship between objects:1072
- (is-on ?x - item ?y - item): ?x is on top of ?y. This predicate applies when ?x is a block1073
and ?y is a table.1074
- (is-in ?x - item ?y - item): ?x is inside of ?y. This predicate applies when ?x is a block1075
and ?y is a drawer or a slider.1076
- (stacked ?x - item ?y - item): ?x is stacked on top of ?y. This predicate applies when ?x1077
and ?y are blocks.1078
- (unstacked ?x - item ?y - item): ?x is unstacked from ?y. This predicate applies when ?x and1079
?y are blocks.1080

1081
Task Environment:1082
In the environment where the demonstrations are being performed, there are the following1083
objects:1084
- A table. Objects can be placed on the table.1085
- A drawer that can be opened. Objects can be placed into the drawer when it is open.1086
- A slider which is a cabinet with a sliding door. The sliding door can be moved to the left1087
or to the right. Objects can be placed into the slider no matter the position of the sliding1088
door.1089
- A lightbulb that be can turned on/off with a button.1090
- A led that can be turned on/off with a button.1091

27

- Three blocks that can be rotated, pushed, lifted, and placed.10921093

Listing 5: Example Prompt for CALVIN–In-Context Example.
1094

Demonstration Parsing:1095
Now, you will help to parse several human demonstrations of the robot performing a task and1096
generate a lifted description of how to accomplish this task.1097
For each demonstration, a sequence of performed primitives will be given, with actual object1098
names. Three demonstrations for the task of "place_in_slider" is:1099

1100
<code name="primitive_sequence">1101
primitives = [1102

{"name": "grasp", "arguments": ["red_block", "table"]}1103
{"name": "move", "arguments": ["red_block"]}1104
{"name": "place", "arguments": ["red_block", "slider"]}1105
{"name": "move-to", "arguments": [""]}1106

]1107
</code>1108

1109
<code name="primitive_sequence">1110
primitives = [1111

{"name": "grasp", "arguments": ["blue_block", "table"]}1112
{"name": "move", "arguments": ["blue_block"]}1113
{"name": "place", "arguments": ["blue_block", "slider"]}1114
{"name": "move-to", "arguments": [""]}1115

]1116
</code>1117

1118
<code name="primitive_sequence">1119
primitives = [1120

{"name": "grasp", "arguments": ["pink_block", "table"]}1121
{"name": "move", "arguments": ["pink_block"]}1122
{"name": "place", "arguments": ["pink_block", "slider"]}1123
{"name": "move-to", "arguments": [""]}1124

]1125
</code>1126

1127
Previous Tasks:1128
A list of tasks that can be performed before the current task will also be provided as context1129
. For the task of "place_in_slider", the possible previous tasks are:1130
lift_block_table, lift_block_drawer, move_slider_right1131

1132
Example Output:1133
You should generate a lifted description, treating all objects as variables. For example, the1134
lifted description for "place_in_slider" is:1135
<code name="mechanism">1136
(:mechanism place-in-slider1137
:parameters (?block - item ?slider - item)1138
:precondition (and (is-block ?block) (is-slider ?slider) (is-lifted ?block))1139
:effect (and (is-in ?block ?slider) (not (is-lifted ?block)))1140
:body (then1141

(place ?block ?slider)1142
)1143
)1144
</code>11451146

Listing 6: Example Prompt for CALVIN–Instructions.
1147

Think Step-by-Step:1148
To generate the lifted description, you should think through the task in natural language in1149
the following steps. Be EXTREMELY CAREFUL to think through step 3a, 3b, and 4a, 4b.1150
1. Parse the goal. For example "place_in_slider", the goal is to place a block into the slider1151
.1152
2. Think about the possible effects achieved by previous tasks and the previous actions that1153
have been performed. For "lift_block_table", a block is lifted from the table and the effect1154
is that the block is lifted. For "lift_block_drawer", a block is lifted from the drawer and1155
the effect is that the block is lifted. For "move_slider_right", the sliding door of the1156
slider is moved to the right and the effect is that the sliding door is on the right.1157
3. Parse the demonstrations and choose the combination of primitives for the current task. The1158
demonstrations are noisy so that the demonstrated primitive sequences may include extra1159
primitive actions that are not necessary for the current task at the beginning or end. The1160
extra primitive actions can be for the previous tasks. Combining with the understanding of the1161
task and previous task to infer the correct combination of primitives for the current task.1162
3a. In this case, the previous tasks are relevant to the current task. We should think about1163
how to sequence the previous tasks with the current task. The primitive combination for the1164
current task should not include primitive actions that have been performed. The above example1165
for "place_in_slider" is this case. We can infer that "grasp" in the demonstrated sequences is1166
likely to be for the previous tasks and should not be included in the primitive combination1167

28

for the current task. We therefore choose B. (then (place ?x ?y)). The semantics is that the1168
robot place the lifted block in the slider.1169
3b. In this case, the previous tasks are not relevant to the current task.1170
4. Think about the preconditions. Also specify the types of all relevant objects in the1171
preconditions.1172
4a. In this case, previous tasks are relevant to the current task. We should think about the1173
effects of the previous tasks. For "place_in_slider", the effects of previous tasks include1174
the block is already lifted. So we should specify that the block is lifted in the1175
preconditions for the current task.1176
4b. In this case, previous tasks are not relevant to the current task.1177
5. Think about the effects. For "place_in_slider", the effects are that the block is in the1178
slider and the block is not lifted.1179
6. Write down the mechanism in the format of the example.1180

1181
Additional Instructions:1182
1. Make sure the generated lifted description starts with <code name="mechanism"> and ends1183
with </code>.1184
2. Please do not invent any new predicates for the precondition and effect. You can only use1185
the predicates listed above.1186
3. Consider the physical constraints of the objects. For example, a robot arm can not go1187
through a closed door.1188
4. For each parameter in :parameters, you should use one of the predicates for specifying the1189
type of the object to indicate its type (e.g., is-drawer, is-block, and etc).11901191

Listing 7: Example Prompt for CALVIN–Task Input.
1192

Current Task: place_in_drawer1193
1194

Example Sequences:1195
<code name="primitive_sequence">1196
primitives = [1197

{"name": "grasp", "arguments": ["blue_block", "table"]}1198
{"name": "move", "arguments": ["blue_block"]}1199
{"name": "place", "arguments": ["blue_block", "drawer"]}1200
{"name": "move-to", "arguments": [""]}1201

]1202
</code>1203

1204
<code name="primitive_sequence">1205
primitives = [1206

{"name": "grasp", "arguments": ["red_block", "table"]}1207
{"name": "move", "arguments": ["red_block"]}1208
{"name": "place", "arguments": ["red_block", "drawer"]}1209
{"name": "move-to", "arguments": [""]}1210

]1211
</code>1212

1213
<code name="primitive_sequence">1214
primitives = [1215

{"name": "grasp", "arguments": ["pink_block", "table"]}1216
{"name": "move", "arguments": ["pink_block"]}1217
{"name": "place", "arguments": ["pink_block", "drawer"]}1218
{"name": "move-to", "arguments": [""]}1219

]1220
</code>1221

1222
Previous Tasks: push_into_drawer, lift_block_table, lift_block_slider12231224

Listing 8: Example Prompt for Predicate Generation.
1225

You are a helpful agent in helping a robot interpret human demonstrations and discover a1226
generalized high-level routine to accomplish a given task.1227
Primitive Actions:1228
There are seven primitive actions that the robot can perform. They are:1229
- (grasp ?x ?y): ?x and ?y are two object variables. ?x is the object that the robot will be1230
grasping, ?y is the object that ?x is currently on or in.1231
- (place ?x ?y): ?x and ?y are two object variables. ?x is the object that the robot is1232
currently holding, ?y is the object that ?x will be placed on or in.1233
- (move ?x): ?x is the object that the robot is currently holding and will be moved by the1234
robot.1235
- (push ?x): ?x is the object that the robot will be pushing.1236
- (move-to ?x): the robot arm will move without holding any object or pushing any object.1237
- (open): the robot gripper will open fully.1238
- (close): the robot gripper will close without grasping any object.1239

1240
Task Environment:1241
In the environment where the demonstrations are being performed, there are the following1242
objects:1243
- A table. Objects can be placed on the table.1244

29

- A drawer that can be opened. Objects can be placed into the drawer when it is open.1245
- A slider which is a cabinet with a sliding door. The sliding door can be moved to the left1246
or to the right. Objects can be placed into the slider no matter the position of the sliding1247
door.1248
- A lightbulb that be can turned on/off with a button.1249
- A led that can be turned on/off with a button.1250
- Three blocks that can be rotated, pushed, lifted, and placed.1251

1252
Task1253
You will help the robot to write PDDL definitions for the following actions:1254
1. lift_red_block_table1255
2. lift_red_block_slider1256
3. lift_red_block_drawer1257
4. lift_blue_block_table1258
5. lift_blue_block_slider1259
6. lift_blue_block_drawer1260
7. lift_pink_block_table1261
8. lift_pink_block_slider1262
9. lift_pink_block_drawer1263
10. stack_block1264
11. unstack_block1265
12. place_in_slider1266
13. place_in_drawer1267
14. place_on_table1268
15. rotate_red_block_right1269
16. rotate_red_block_left1270
17. rotate_blue_block_right1271
18. rotate_blue_block_left1272
19. rotate_pink_block_right1273
20. rotate_pink_block_left1274
21. push_red_block_right1275
22. push_red_block_left1276
23. push_blue_block_right1277
24. push_blue_block_left1278
25. push_pink_block_right1279
26. push_pink_block_left1280
27. move_slider_left1281
28. move_slider_right1282
29. open_drawer1283
30. close_drawer1284
31. turn_on_lightbulb1285
32. turn_off_lightbulb1286
33. turn_on_led1287
34. turn_off_led1288

1289
Before writing the operators, define the predicates that should be used to write the1290
preconditions and effects of the operators. Group the predicates into unary predicates that1291
define the states of objects and binary relations that specify relations between two objects.1292
For each predicate, list actions that are relevant.12931294

Listing 9: Prompt for SayCan.
1295

Objective:1296
You are a helpful agent in helping a robot plan a sequence of actions to accomplish a given1297
task.1298
I will first provide context and then provide an example of how to perform the task.1299

1300
Task Environment:1301
In the robot’s environment, there are the following objects:1302
- A table. Objects can be placed on the table.1303
- A drawer that can be opened. Objects can be placed into the drawer when it is open.1304
- A slider which is a cabinet with a sliding door. The sliding door can be moved to the left1305
or to the right. Objects can be placed into the slider no matter the position of the sliding1306
door.1307
- A lightbulb that be can turned on/off with a button.1308
- A led that can be turned on/off with a button.1309
- Three blocks that can be rotated, pushed, lifted, and placed.1310

1311
Actions:1312
There are the following actions that the robot can perform. They are:1313
- lift_red_block_table: lift the red block from the table.1314
- lift_red_block_slider: lift the red block from the slider.1315
- lift_red_block_drawer: lift the red block from the drawer.1316
- lift_blue_block_table: lift the blue block from the table.1317
- lift_blue_block_slider: lift the blue block from the slider.1318
- lift_blue_block_drawer: lift the blue block from the drawer.1319
- lift_pink_block_table: lift the pink block from the table.1320
- lift_pink_block_slider: lift the pink block from the slider.1321
- lift_pink_block_drawer: lift the pink block from the drawer.1322
- stack_block: stack the blocks.1323

30

- place_in_slider: place the block in the slider.1324
- place_in_drawer: place the block in the drawer.1325
- place_on_table: place the block on the table.1326
- rotate_red_block_right: rotate the red block to the right.1327
- rotate_red_block_left: rotate the red block to the left.1328
- rotate_blue_block_right: rotate the blue block to the right.1329
- rotate_blue_block_left: rotate the blue block to the left.1330
- rotate_pink_block_right: rotate the pink block to the right.1331
- rotate_pink_block_left: rotate the pink block to the left.1332
- push_red_block_right: push the red block to the right.1333
- push_red_block_left: push the red block to the left.1334
- push_blue_block_right: push the blue block to the right.1335
- push_blue_block_left: push the blue block to the left.1336
- push_pink_block_right: push the pink block to the right.1337
- push_pink_block_left: push the pink block to the left.1338
- move_slider_left: move the slider to the left.1339
- move_slider_right: move the slider to the right.1340
- open_drawer: open the drawer.1341
- close_drawer: close the drawer.1342
- turn_on_lightbulb: turn on the lightbulb.1343
- turn_off_lightbulb: turn off the lightbulb.1344
- turn_on_led: turn on the led.1345
- turn_off_led: turn off the led.1346
- do_nothing: do nothing.1347

1348
Example Task:1349
Now, you will help to parse the goal predicate and generate a list of candidate actions the1350
robot can potentially take to accomplish the task. You should rank the actions in terms of how1351
likely they are to be performed next.1352
Goal predicate: (is-turned-off led)1353
Task output:1354
‘‘‘python1355
[’turn_off_led’, ’do_nothing’]1356
‘‘‘1357
In this example above, if the led is on, the robot should turn it off. If the led is already1358
off, the robot should do nothing.1359

1360
Additional Instructions:1361
1. Make sure the generated plan is a list of actions. Place the list between ‘‘‘python and1362
ends with ‘‘‘.1363
2. Think Step-by-Step.13641365

Listing 10: Initial Prompt for Robot-VILA.
1366

You are highly skilled in robotic task planning, breaking down intricate and long-term tasks1367
into distinct primitive actions.1368
If the object is in sight, you need to directly manipulate it. If the object is not in sight,1369
you need to use primitive skills to find the object1370
first. If the target object is blocked by other objects, you need to remove all the blocking1371
objects before picking up the target object. At1372
the same time, you need to ignore distracters that are not related to the task. And remember1373
your last step plan needs to be "done".1374

1375
Consider the following skills a robotic arm can perform.1376
- lift_red_block_table: lift the red block from the table.1377
- lift_red_block_slider: lift the red block from the slider.1378
- lift_red_block_drawer: lift the red block from the drawer.1379
- lift_blue_block_table: lift the blue block from the table.1380
- lift_blue_block_slider: lift the blue block from the slider.1381
- lift_blue_block_drawer: lift the blue block from the drawer.1382
- lift_pink_block_table: lift the pink block from the table.1383
- lift_pink_block_slider: lift the pink block from the slider.1384
- lift_pink_block_drawer: lift the pink block from the drawer.1385
- stack_block: stack the blocks.1386
- place_in_slider: place the block in the slider.1387
- place_in_drawer: place the block in the drawer.1388
- place_on_table: place the block on the table.1389
- rotate_red_block_right: rotate the red block to the right.1390
- rotate_red_block_left: rotate the red block to the left.1391
- rotate_blue_block_right: rotate the blue block to the right.1392
- rotate_blue_block_left: rotate the blue block to the left.1393
- rotate_pink_block_right: rotate the pink block to the right.1394
- rotate_pink_block_left: rotate the pink block to the left.1395
- push_red_block_right: push the red block to the right.1396
- push_red_block_left: push the red block to the left.1397
- push_blue_block_right: push the blue block to the right.1398
- push_blue_block_left: push the blue block to the left.1399
- push_pink_block_right: push the pink block to the right.1400
- push_pink_block_left: push the pink block to the left.1401
- move_slider_left: move the slider to the left.1402

31

- move_slider_right: move the slider to the right.1403
- open_drawer: open the drawer.1404
- close_drawer: close the drawer.1405
- turn_on_lightbulb: turn on the lightbulb.1406
- turn_off_lightbulb: turn off the lightbulb.1407
- turn_on_led: turn on the led.1408
- turn_off_led: turn off the led.1409
- done: the goal has reached.1410

1411
You are only allowed to use the provided skills. You can first itemize the task-related1412
objects to help you plan.1413
For the actions you choose, list them as a list in the following format.1414

1415
<code>1416
[’turn_off_led’, ’open_drawer’, ’done’]1417
</code>14181419

Listing 11: Follow-Up Prompt for Robot-VILA.
1420

This image displays a scenario after you have executed some steps from the plan generated1421
earlier. When interacting with people,1422
sometimes the robotic arm needs to wait for the person’s action. If you do not find the target1423
object in the current image, you need to1424
continue searching elsewhere. Continue to generate the plan given the updated environment1425
state.14261427

Listing 12: Prompt for Text2Motion.
1428

Objective:1429
You are a helpful agent in helping a robot plan a sequence of actions to accomplish a given1430
task.1431
I will first provide context and then provide an example of how to perform the task.1432

1433
Task Environment:1434
In the robot’s environment, there are the following objects:1435
- A table. Objects can be placed on the table.1436
- A drawer that can be opened. Objects can be placed into the drawer when it is open.1437
- A slider which is a cabinet with a sliding door. The sliding door can be moved to the left1438
or to the right. Objects can be placed into the slider no matter the position of the1439
sliding door.1440
- A lightbulb that be can turned on/off with a button.1441
- A led that can be turned on/off with a button.1442
- Three blocks that can be rotated, pushed, lifted, and placed.1443

1444
Predicates for symbolic state:1445
The list of all possible predicates for defining the symbolic state are listed below:1446
- (rotated-left ?x - item): ?x is rotated left. This predicate applies to a block.1447
- (rotated-right ?x - item): ?x is rotated right. This predicate applies to a block.1448
- (pushed-left ?x - item): ?x is pushed left. This predicate applies to a block.1449
- (pushed-right ?x - item): ?x is pushed right. This predicate applies to a block.1450
- (lifted ?x - item): ?x is lifted in the air. This predicate applies to a block.1451
- (is-open ?x - item): ?x is open. This predicate applies to a drawer.1452
- (is-close ?x - item): ?x is close. This predicate applies to a drawer.1453
- (is-turned-on ?x - item): ?x is turned on. This predicate applies to a lightbulb or a led.1454
- (is-turned-off ?x - item): ?x is turned off. This predicate applies to a lightbulb or a1455
led.1456
- (is-slider-left ?x - item): the sliding door of the slider ?x is on the left.1457
- (is-slider-right ?x - item): the sliding door of the slider ?x is on the right.1458
- (is-on ?x - item ?y - item): ?x is on top of ?y. This predicate applies when ?x is a block1459
and ?y is a table.1460
- (is-in ?x - item ?y - item): ?x is inside of ?y. This predicate applies when ?x is a block1461
and ?y is a drawer or a slider.1462
- (stacked ?x - item ?y - item): ?x is stacked on top of ?y. This predicate applies when ?x1463
and ?y are blocks.1464
- (unstacked ?x - item ?y - item): ?x is unstacked from ?y. This predicate applies when ?x1465
and ?y are blocks.1466

1467
Actions:1468
There are the following actions that the robot can perform. They are:1469
- lift_red_block_table: lift the red block from the table.1470
- lift_red_block_slider: lift the red block from the slider.1471
- lift_red_block_drawer: lift the red block from the drawer.1472
- lift_blue_block_table: lift the blue block from the table.1473
- lift_blue_block_slider: lift the blue block from the slider.1474
- lift_blue_block_drawer: lift the blue block from the drawer.1475
- lift_pink_block_table: lift the pink block from the table.1476
- lift_pink_block_slider: lift the pink block from the slider.1477
- lift_pink_block_drawer: lift the pink block from the drawer.1478
- stack_block: stack the blocks.1479

32

- place_in_slider: place the block in the slider.1480
- place_in_drawer: place the block in the drawer.1481
- place_on_table: place the block on the table.1482
- rotate_red_block_right: rotate the red block to the right.1483
- rotate_red_block_left: rotate the red block to the left.1484
- rotate_blue_block_right: rotate the blue block to the right.1485
- rotate_blue_block_left: rotate the blue block to the left.1486
- rotate_pink_block_right: rotate the pink block to the right.1487
- rotate_pink_block_left: rotate the pink block to the left.1488
- push_red_block_right: push the red block to the right.1489
- push_red_block_left: push the red block to the left.1490
- push_blue_block_right: push the blue block to the right.1491
- push_blue_block_left: push the blue block to the left.1492
- push_pink_block_right: push the pink block to the right.1493
- push_pink_block_left: push the pink block to the left.1494
- move_slider_left: move the slider to the left.1495
- move_slider_right: move the slider to the right.1496
- open_drawer: open the drawer.1497
- close_drawer: close the drawer.1498
- turn_on_lightbulb: turn on the lightbulb.1499
- turn_off_lightbulb: turn off the lightbulb.1500
- turn_on_led: turn on the led.1501
- turn_off_led: turn off the led.1502

1503
Example Task:1504
Now, you will help to parse the goal predicate and generate a sequence of actions to1505
accomplish this task.1506
Goal predicate: (is-turned-off led)1507
Symbolic state: is-turned-on(led), is-turned-on(lightbulb), not(is-turned-off(led)), not(is-1508
turned-off(lightbulb))1509
Task output:1510
‘‘‘python1511
[’turn_off_led’]1512
‘‘‘1513

1514
Example Task:1515
Goal predicate: (is-turned-on led)1516
Symbolic state: is-turned-on(led), is-turned-on(lightbulb), not(is-turned-off(led)), not(is-1517
turned-off(lightbulb))1518
Task output:1519
‘‘‘python1520
[]1521
‘‘‘1522

1523
Example Task:1524
Goal predicate: (is-in red_block drawer)1525
Symbolic state: not(is-in(red_block, drawer)), not(is-in(red_block, slider)), is-on(1526
red_block, table), not(is-open(drawer)), is-close(drawer), is-slider-left(slider), not(is-1527
slider-right(slider)), not(lifted(red_block))1528
Task output:1529
‘‘‘python1530
[’open_drawer’, ’lift_red_block_table’, ’place_in_drawer’]1531
‘‘‘1532

1533
Example Task:1534
Goal predicate: (is-in red_block drawer)1535
Symbolic state: not(is-in(red_block, drawer)), not(is-in(red_block, slider)), not(is-on(1536
red_block, table)), is-open(drawer), not(is-close(drawer)), is-slider-left(slider), not(is-1537
slider-right(slider)), lifted(red_block)1538
Task output:1539
‘‘‘python1540
[’place_in_drawer’]1541
‘‘‘1542

1543
Example Task:1544
Goal predicate: (and (is-turned-on lightbulb) (is-slider-right slider))1545
Symbolic state: is-slider-left(slider), not(is-slider-right(slider)), is-turned-off(1546
lightbulb), not(is-turned-on(lightbulb))1547
Task output:1548
‘‘‘python1549
[’turn_on_lightbulb’, ’move_slider_right’]1550
‘‘‘1551

1552
Additional Instructions:1553
1. Make sure the generated plan is a list of actions. Place the list between ‘‘‘python and1554
ends with ‘‘‘.1555
2. Think Step-by-Step.15561557

33

	Introduction
	Related Work
	Problem Formulation
	Behavior from Language and Demonstration
	Behavior Description Learning
	Classifier and Policy Learning
	Bi-Level Planning and Execution

	Experiments
	Simulation Experimental Setup
	Results in Simulation
	Real World Experiments

	Conclusion and Discussion
	blade Details
	Behavior Description Generation with LLMs
	Predicate Generation with LLMs
	Temporal Segmentation
	Abstract Verification
	Automatic Predicate Annotation
	Classifier Implementation
	Policy Implementation
	Planner Implementation

	Simulation Experiment Details
	Task Design
	Baseline Implementation

	Qualitative Examples
	Real World Experiment Details
	Prompts for Baselines

