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Abstract

Formosan languages, spoken by the indige-
nous peoples of Taiwan, have unique roles in
reconstructing Proto-Austronesian Languages.
This paper presents a real-world Formosan lan-
guage speech dataset, including 144 hours-
news footage of 16 Formosan languages. One
merit of the dataset is to look into the relation-
ships among Formosan languages in vivo. With
the help of deep learning models, we could
analyze the speech data without transcription.
Specifically, we first train a language classifier
based on XLSR-53 to classify the 16 Formosan
languages with an accuracy of 88%. Then,
we extract the speech vector representations
learned from the model and compare them with
152 manually coded linguistic typological fea-
tures. The comparison suggests that the speech
vectors reflect the phonological and morpho-
logical aspects of Formosan languages. In ad-
dition, these linguistic features are used to con-
struct linguistic phylogeny, and the resulting
genealogical grouping corresponds with previ-
ous literature. To sum up, the dataset opens
up possibilities to investigate the current real-
world use of the Formosan language.

1 Introduction

Formosan languages refer to a group of languages
spoken by the indigenous peoples of Taiwan re-
garding their geographic distribution, all of which
are Austronesian languages. The 24 Formosan lan-
guages respectively belong to 9 subgroups, 8 of
which are considered extinct, while the other 12 lan-
guages, listed in Table 1, are regarded as national
languages of Taiwan.! Since most of these cur-
rently spoken Formosan languages are extremely
fragile or even moribund, the revitalization of these
languages must be actively taken into action.

!The Yami language, spoken by Tao people living in Lanyu
(lit. Orchid Island) Township, Taitung Country, 46 kilometers
southeast of Taiwan, is linguistically Malayo-Polynesian, but
geographically Formosan.

From the perspective of historical linguistics,
Formosan languages also stand out in their role
in reconstructing Proto-Austronesian Languages
(PAn). Blust (1984) proposes the so-called pulse-
pause scenario of the Pacific settlement, in which
the Austronesian speakers originated in Taiwan
around 5,200 years ago and rapidly spread through
the Pacific in a series of expansion pulses and settle-
ment pauses. Past studies propose rich insights into
the linguistic phylogeny of Formosan languages
through careful analysis of language innovations.
However, due to the difficulties of speech data col-
lection and analysis, it is less clear how to approach
the phylogeny problems with real-world data.

We present a real-world dataset of Formosan
languages collected from daily news broadcasted
over Taiwan’s free-to-air channels. The paper is
organized as follows: Section 2 introduces the col-
lected speech corpus. This corpus includes news
footage covering 16 Formosan languages and aims
to provide a valuable source with which researchers
study Austronesian. To demonstrate one principal
value of the dataset, we investigate the relationships
among Formosan languages with speech vectors
extracted from a deep learning classifier. Section
3 first describes the language classifier and its im-
plied language phylogeny, and Section 4 analyzes
the speech vectors and compares the learned vec-
tors with manually coded linguistic features. Re-
lated works are briefly introduced in Section 5, and
Section 6 concludes our work.

2 Formosan Speech Corpus

The collected Formosan speech corpus aims to
record the real-world usage of the 16 Formosan
languages. The primary data source is from daily
news broadcasted over Taiwan’s free-to-air chan-
nels. We use a TV tuner connected to an outdoor
antenna to record the news footage to digital files.
We capture all 16 Formosan languages news pro-
vided by the Taiwan Indigenous Television (TITV)



Figure 1: Example news broadcast

channel. Newscasts are chosen for the availability
of all Formosan languages and to reduce the vari-
ability of gathering different languages from differ-
ent programs. Each program is approximately an
hour in duration. The corpus comprises 144 hours
of videos with 9 hours for each language’s news. 2

While the news videos serve as an abundant
source of information, the interaction among the
Formosan languages and Mandarin Chinese in the
news provides a unique challenge Figure 1. Specifi-
cally, although the news is broadcasted with a given
Formosan language, segments still use Mandarin
Chinese. These segments are like press conferences
or interviews where the most common languages
are still Mandarin Chinese. The issue is further
complicated because some footage is narrated by
the anchor, so there are no consistent visual cues
to differentiate the language used in a given video
segment. In addition, the Formosan languages are
under-resourced, and there are no automatic speech
recognition or language identification tools readily
available. However, to properly explore the For-
mosan language in the video, we must at least tag
the language used in the segments.

We address the mixed language problem first
with automatic preprocessing, with which we
gather primitive data to train a language identifica-
tion classifier. We first assume the anchor always
uses (one of the 16) Formosan language, and multi-
ple cues in the video frames indicate that the anchor
is speaking. We use two sources of information to
determine the frame is an anchor frame. The first
source is facial recognition, and the second is the
headline usually displayed at the lower part of the
frame. We first identify the anchor’s face from the

The corpus will be released once the paper is accepted.

first 20 seconds of the video. The anchor is intro-
duced and accompanied by a title card showing its
name. We use off-the-shelf face recognition and op-
tical text recognition models to pair the faces and
the anchor name. After identifying the anchor’s
face, we detect, in each frame, if the anchor ap-
pears along with a headline. From these two cues,
we determine, in a five-second interval, whether
the anchor is speaking in the specific segment. The
automatic anchor detection results, and the number
of different anchors appeared in the news of each
language are shown in Table 1.

However, while the detected anchor frames are
likely the Formosan languages segments, there will
be considerable false negatives in this approach.
Segments, where the anchor narrates the footage
with Formosan, are inevitably missed with the al-
gorithm mentioned above. Therefore, it is still
preferable to identify the language with the speech
data alone. The trained language classifier not only
helps us identify the language, but it also, with the
help of computational models, helps us to explore
the representations of the underlying speech data.

3 Formosan Language Classification

3.1 Classifier Training

We train a Formosan language classifier based on
the Wav2Vec (Baevski et al., 2020) model architec-
ture and the pretrained weights of XLSR (Conneau
et al., 2020). We used the XLSR model to take
advantage of having already been pretrained on
53 different languages. Although these languages
may be significantly different from the Formosan
languages, it might be possible for the model to
transfer the regularities across languages.

The training data is the anchor segments automat-
ically identified in the preprocessing stage. Among
the 144 hours of speech data, 790.58 minutes of
audio data are included in the dataset. In addi-
tion to the 16 Formosan languages, we add a other
category, which is randomly sampled from the not-
anchor video segments. Finally, we split the dataset
so that every language is still equally represented
in the test data.

Language classification is fine-tuned on the pre-
trained XLSR model. The classifier is a fully-
connected layer stacked upon the vector ouput of
the Wav2Vec2 model. The parameters are opti-
mized with Adam with learning rate warming up to
a peak of 1073 in the first 200 steps and decrease to
0 with a half-cycle cosine scheduling. The model



Language Subgroup Len. (hrs) Anchor Footage
Amis Eastern Formosan 9 35.8(1)
Atayal Atayalic 9 41.0(2)
Bunun Bunun 9 52.6(1)
Cou (Tsou) Tsouic 9 69.8(3)
Hla’alua (Saaroa) Tsouic 9 34.8(1)
Kanakanavu Tsouic 9 37.1(1)
Kavalan Eastern Formosan 9 59.3(1)
Paiwan Paiwan 9 12.3 (1)
Pinuyumayan (Puyuma) Puyuma 9 40.9(1)
Rukai Rukai 9 42.8(3)
Sakizaya Eastern Formosan 9 54.5(2)
Saysiyat Northwest Formosan 9 43.0(4)
Seediq Atayalic 9 47.0(2)
Thau (Thao) Western Plains 9 44.2 (1)
Truku Atayalic 9 73.5(1)
Yami Malayo-Polynesian 9 47.3 (1)

Table 1: Captured video length for each language. Anchor footage denotes the automatically detected anchor
segments. The lengths are in minutes. These segments are more likely to only contain the targeted Formosan
language. Numbers in the parentheses are the number of different anchors in the news footage. The subgroups of

each language follow Blust (2013).

training took approximately two hours on a A5000
GPU.

The language classification model achieved an
overall accuracy of 88% across 17 categories (16
languages and the other category) languages in the
testing set. The classification accuracy shows that
the model indeed can identify different Formosan
languages. Notably, the anchor’s identity is con-
founded with the language in this dataset. However,
the overall classification results show that the lan-
guages with only one anchor do not necessarily
have better performances than those with multiple
anchors. That is, the anchor identities may not
directly influence the classifier.

The classifier not only has the practical value in
helping identify relevant segments in the dataset. In
addition, the self-supervision nature of Wav2Vec2
provides us with a unique opportunity to explore
how these languages are related to each other in
this formalized vector space. When the model is
only trained on the speech signal, it should espe-
cially shed light on the phonological or phonetic
relationships among these languages.

3.2 Speech Vector Analysis

The fine-tuned language classification model suc-
cessfully differentiates the language of a specific
speech segment. In the speech representation per-
spective, it is interesting to explore the language

Language Prec. Recall F1 N
Amis 0.97 0.54 0.69 140
Atayal 0.99 0.84 091 192
Bunun 0.83 0.99 090 115
Cou 0.93 099 096 154
Hla’alua 0.94 092 093 89
Kanakanavu 1.00 093 096 95
Kavalan 0.99 098 098 145
Paiwan 0.94 097 09 35
Pinuyumayan  0.65 098 0.78 54
Rukai 0.95 0.84 0.89 122
Sakizaya 0.98 0.96 097 155
Saysiyat 0.78 098 0.87 129
Seediq 0.86 0.78 0.82 102
Thau 0.87 0.99 093 110
Truku 0.77 099 0.86 205
Yami 1.00 093 096 215
Other 0.64 0.57 0.60 219

Table 2: Classification results for each of the 16 lan-
guages and the “other” category. The overall accuracy
is .88, and the weighted average is .87.



Clustering with speech vectors
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Figure 2: Clustering results with 16 language vectors.

similarities implied by these speech vectors. The
idea is consistent with the findings from other do-
mains of deep learning application that the model
representation may reflect the intrinsic structure un-
derlying the data. For example, the word analogy
relations results naturally from the vector represen-
tation learned from skip-gram or CBOW model
(Mikolov et al., 2013), and the transformer-based
language model also implicitly reflect the syntactic
relations in the sentence (Manning et al., 2020).

To compute the language similarities among
these 16 languages, we first extract the speech
vector representation of each segment from the
Wav2Vec2 model; that is, the 1,024-dimension vec-
tor before it is fed into the final classifier. These
1,024 dimensional vectors are assumed to carry
various information, and only some of which are
the ones used in language classification. We thus
simplify the vector with a linear dimension reduc-
tion model (i.e. PCA) into 5 dimensions. Next,
we find the median points, or the medoids, in each
language to represent the speech segments of that
language. These median point are then clustered to
show the structure implied by the model.

The clustering result is shown in Figure 2. One
way to interpret the clustering is that it reflects
a snapshot of the current linguistic environment.
However, there are several possibilities that the
model treats two languages as similar in these vec-
tors: such as geographical closeness, phonetic, mor-
phological, and syntactic relations. Therefore, we
try to explore the representations of these speech
vectors with a correlational similarity study. Next,
we manually coded linguistic typological features
of the 16 Formosan languages. These features in-
clude phonological, morphological, and syntactical
ones. We then compare the language similarities
implied by these typological features to the ones

computed by the speech vectors.

4 Formosan Linguistic Phylogeny

The ‘Austronesian homeland’ hypothesis was sup-
ported by lexical data and other archaeological ev-
idence (Greenhill et al., 2010). However, Dunn
et al. (2005) showed that it is also possible to
probe the linguistic phylogeny by using non-lexical
grammatical traits/features. For instance, the pho-
netic features of 16 Formosan languages have been
manifested in the aforementioned speech corpus
data and Wav2Vec model. In the current section,
the phonological features will also be adopted in
our clustering analysis of Formosan linguistic phy-
logeny.

4.1 Features Coding

To explore the extent to which a feature system is
minimally sufficient to distinguish all the sounds
in Formosan languages, we follow Duanmu (2016)
that (1) the number of features is small, (2) all fea-
tures are binary (due to the notion of contrast), and
(3) features can be compared across languages. Our
dataset contains data from 16 taxa (i.e., languages,
or tips of the phylogenetic tree) encoded with 152
typological features (manually encoded based on
a series of Reference Grammar books by a group
of prestigious Formosan linguists) (Wu et.al, 2016-
18), including grammatical traits, such as word
order (order of noun phrase elements and verb),
pronominals, demonstratives, noun formation and
verb formation, numerals and the counting system,
adjective, syntactic roles of noun phrases, the verb
complex, TAM (tense, aspect, mood), core and
oblique participants, as well as phonological ones,
such as voicing, places and manners of articulation,
etc.’

4.2 Language Features and Speech Vectors

The coded language features imply language simi-
larities among Formosan languages, which we can
compare to those implied by speech vectors. The
comparison also sheds light on the nature of rep-
resentations learned automatically with the deep
learning model. Specifically, suppose the language
similarities are consistent with a set of language
features, e.g., phonological ones. In that case, we
could infer that the learned speech vector repre-
sentations encode phonological aspects of those
languages.

3The data are attached to the paper.



We first partition 152 features into three cate-
gories: phonological, morphological, and syntacti-
cal features. Features all coded as ones and zeros
are excluded from further analysis. There are 120
features included in this analysis, 56 phonologi-
cal ones, 43 are morphological, and 21 are syn-
tactical. Among the phonological features, we
further distinguish 10 vowel-related features, 46
consonant-related ones, 22 sonorants, and 31 ob-
struent features. Note that not all phonological
features could be classified as sonorant or obstru-
ent, such as syllable-level features (e.g., phone-
mic stress or consonant clusters). For each feature
group, we constructed a correlation matrix from
the feature encoding. As a result, eight language
correlation matrices are made from eight feature
groups, respectively.

We compare the language feature-derived corre-
lation matrices and the speech vector-derived ma-
trices with Spearman’s rank correlation coefficients
(Spearman’s ). Specifically, the lower triangles of
each correlation matrix are extracted and flattened
as vectors, from which we computed Spearman’s 7.
However, as the data vector comes from a correla-
tion matrix, it is unclear whether the standard infer-
ential statistics apply. Therefore, we bootstrap the
speech vectors to infer a confidence interval. Each
bootstrap sample comprises 50% of correctly clas-
sified sequences in each language. We computed
the medoids (following the same procedure in Sec.
3.2) of each language, from which we derived the
correlation matrix of this particular bootstrap sam-
ple. For each bootstrapped speech vector-derived
correlation, we compute one Spearman’s r with
the language feature-derived correlation. From 100
bootstrapped samples, we calculate the mean, 5%
(Q05) and 95% (Q95) quantiles of Spearman’s 7.
The same bootstrapping procedures are repeated
for the random feature controls, where values in
each feature are randomly permuted. The goal of
this permutation is to generate a random baseline
where the language features provide no information
on the language similarities.

Results are shown in Figure 3. First, the speech
vector-derived language similarities are consistent
with the one derived from language features, as
seen by the non-overlapping confidence intervals
computed from the actual samples and the random
baseline. This pattern persists into the phonolog-
ical feature groups. Most notably, the obstruent
feature group shows the most significant difference,

Correlation Similarities Across Feature Groups

All —_— —
Phonology —_— —_—

Vowel —_— —_—

Consonant

Sonorant —_—— ——

Obstruent —_— —_—
Morphology —_—
Syntax —_——

0.2 0.3 0.4 0.5 0.6 0.7

Spearman's r

Figure 3: Correlation similarities across different fea-
ture groups. The blue segments show the similarities
between the correlations of Formosan languages implied
by the speech vectors and the one implied by feature
groups. The line intervals indicate the bootstrapped con-
fidence interval (Q05-Q95). The gray segments show
the similarity scores under a random baseline.

.24, and the sonorant has the smallest ones, .12.
Interestingly, the difference is still significant in the
morphological group but not in the syntax group.
These findings show that the model does capture
language-relevant aspects from the audio stream,
not just superficial acoustic features (e.g., anchors’
voice characteristics). The significant difference in
the morphological group also suggests that, while
the data is speech only, it doesn’t prevent the model
from learning morphological information from the
audio sequence. In contrast, the syntactic features
do not play a role in speech vectors. Possible ex-
planations may include the insufficient number of
features in syntactic groups or the nature of lan-
guage identification tasks that prevent the models
from learning such long-ranged features.

The language feature analysis clearly shows that
speech vectors encode phonological, even morpho-
logical aspects of Formosan languages. However,
it is still unclear how these language features relate
to the Formosan language similarities, or linguistic
phylogenies, in the literature. Therefore, we use
our coded linguistic features to proceed with the
linguistic phylogenetic inferences.

4.3 Linguistic Phylogenetic Inferences

Comparison between speech vectors and linguis-
tic features reveals significant similarities. It also
shows the speech vectors, unsurprisingly, tend
to capture the phonological aspects of languages.
However, it is not clear whether the coded linguis-



tic features really reflect, or are consistent with the
Formosan phylogenies found in literature. There-
fore, we construct the Formosan phylogeny from
our linguistic features.

We used 61 phonological features in the follow-
ing phylogenetic inferences. These phonological
features account for most of our linguistic features
and are the most significant ones in the correla-
tional similarity study. In addition, as they relied
more on phonological innovation to infer the sub-
groupings of Formosan languages, using phonolog-
ical features provides a better comparison with past
studies.

First, we consider divisive clustering based on
the features, as shown in Figure 4. However, the
dendrogram obtained does not fit well with pre-
vious reconstruction proposals (Blust, 2013; Li,
2006; Starosta, 1995), and we do not know how
accurate and robust the phylogenetic estimates of
Austronesian language relationships are. We then
turn to a computational phylogenetic method called
neighbor-joining algorithm) (NJ) (Saitou and Nei,
1987) to create a phylogenetic tree without a de-
fined root. The unrooted tree has its advantage in
not presuming information about the temporal se-
quence of lineage-splitting events. Figure 5 shows
the resulting unrooted tree with NJ algorithm that
is widely used for phylogeny estimation. The tree
presented in the left panel shows that the unrooted
phylogenetic tree groups languages according to
their geographical region, indicated by different
font styles (e.g., bold, italics).

To validate the results of our cluster analysis,
the BOOTSTRAP method is applied to the present
data. The data is sampled with replacement for 200
bootstrap runs. In each sampling run, the distance
matrix is calculated to further yield the unrooted
tree with the NJ algorithm. With the resulting den-
drograms from the bootstrap samples, we compare
them to the original one, and calculate the propor-
tions of bootstrapped dendrograms that support the
subtrees in the original tree. The proportion of
support for different subtrees is shown in the mid-
dle panel with the sign of thermometers, of which
the higher degree indicates greater support. The
consensus tree, where the subgroups that are not ob-
served in all bootstrap trees are collapsed, is shown
in the right panel.*

*We use the ape package developed by (Paradis et al.,
2004) to implement the calculations

5 Related Works

Studying language families has long been of high
interest in historical linguistics. Among language
families around the world, Austronesian, which
contains more than 1,250 languages and spans
across the Indian Ocean into the western Pacific,
has been one family tracts significant research in-
terest. The expansion origin of Austronesian is
inevitably controversial. Nevertheless, past stud-
ies combine data both from linguistics and archae-
ologists and suggest the Formosan language has
played a significant role in Austronesian expansion
(Blust, 2019, 1999; Gray et al., 2009; Bellwood,
1984).

Being the origin of expansion, Formosan lan-
guages show great diversity. Studies of Formosan
phylogeny follow the cladistic principles, where
each tree node is supported by a language inno-
vation, such as phonological, morphological, or
basic numeral vocabulary (Blust, 1999; Ho, 1998;
Sagart, 2004; Ross, 2012). Another approach to
study the relationships among the languages is from
structural similarities. These structural features are
abstract and were selected to reflect the known
linguistic topology in the region. Genealogical
groupings are then constructed by computational
algorithms, such as maximal parsimony, from their
shared structural features (Dunn et al., 2005). How-
ever, the structural features are abstract, and not
all structural features are equally prominent in ac-
tual usage. Therefore, the similarities implied by
the structural features may not directly reflect the
similarities in real-world use.

The recent speech recognition model allows us
to work with natural speech data without directly
transcribing it. This approach opens up the possi-
bility of looking into the real-world usage of For-
mosan language and studying them with a system-
atic methodology. Hartmann (2019) uses deep neu-
ral networks to reconstruct the phonetic features of
historical sounds based on a language’s synchronic
phonological features, such as co-articulatory and
phonological constraints. Korkut et al. (2020) com-
pare several deep learning methods for spoken lan-
guage identification. The authors use a hybrid
CNN-RNN (CRNNs), X-vectors with FENNs, and
Wav2Vec CNNs (Schneider et al., 2019) in a lan-
guage classification task. They also find that the
X-vector-based FFNN classifier outperforms the
other two models. They also learn that SpecAug-
ment is suitable for language identification data
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Figure 4: Dendrogram with AU/BP values (%) of divisive hierarchical clustering of 61 phonological features for
Austronesian languages in Taiwan. Red: AU (approximately unbiased) p-value; green: BP (bootstrap probability)
p-value; gray: SI (Selective inference) p-value.
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augmentation. In this study, we leverage speech
vectors, learned by a language identification model,
to study the relationships among the Formosan lan-
guages.

6 Conclusion

In this paper, we present a Formosan Speech Cor-
pus. We provide two perspectives on Formosan
phylogeny studies based on the dataset: a speech
vector approach using a Wav2Vec-based deep learn-
ing model and linguistic coding with linguistic ty-
pological features. The speech vector approach
is more data-driven, and more emphasized on the
usage aspect of speech data. The speech represen-
tation is trained to achieve a language classification
task of 16 Formosan languages with 144 hours of
speech data collected from the news broadcast. The
model achieves overall classification accuracy of
88%. Moreover, correlational similarities analysis
shows the speech vector representations reflect the
phonological and morphological information. A
further look into the typological language features
reveals phylogenetic trees correspond well with
previous theories.

Overall, this paper tries to approach the For-
mosan language similarities guided by model-
learned representation from real-world data and
linguistic typological features. Future works in-
clude how to interpret the language similarities
implied by the speech vectors and further explore
the multimodal nature of the dataset. This paper,
along with its dataset, is expected to help investi-
gate the linguistic phylogeny simultaneously with
the actual usage patterns in the current language
environment.
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