
Self-supervised Learning for Formosan Speech Representation and
Linguistic Phylogeny

Anonymous ACL submission

Abstract

Formosan languages, spoken by the indige-001
nous peoples of Taiwan, have unique roles in002
reconstructing Proto-Austronesian Languages.003
This paper presents a real-world Formosan lan-004
guage speech dataset, including 144 hours-005
news footage of 16 Formosan languages. One006
merit of the dataset is to look into the relation-007
ships among Formosan languages in vivo. With008
the help of deep learning models, we could009
analyze the speech data without transcription.010
Specifically, we first train a language classifier011
based on XLSR-53 to classify the 16 Formosan012
languages with an accuracy of 88%. Then,013
we extract the speech vector representations014
learned from the model and compare them with015
152 manually coded linguistic typological fea-016
tures. The comparison suggests that the speech017
vectors reflect the phonological and morpho-018
logical aspects of Formosan languages. In ad-019
dition, these linguistic features are used to con-020
struct linguistic phylogeny, and the resulting021
genealogical grouping corresponds with previ-022
ous literature. To sum up, the dataset opens023
up possibilities to investigate the current real-024
world use of the Formosan language.025

1 Introduction026

Formosan languages refer to a group of languages027

spoken by the indigenous peoples of Taiwan re-028

garding their geographic distribution, all of which029

are Austronesian languages. The 24 Formosan lan-030

guages respectively belong to 9 subgroups, 8 of031

which are considered extinct, while the other 12 lan-032

guages, listed in Table 1, are regarded as national033

languages of Taiwan.1 Since most of these cur-034

rently spoken Formosan languages are extremely035

fragile or even moribund, the revitalization of these036

languages must be actively taken into action.037

1The Yami language, spoken by Tao people living in Lanyu
(lit. Orchid Island) Township, Taitung Country, 46 kilometers
southeast of Taiwan, is linguistically Malayo-Polynesian, but
geographically Formosan.

From the perspective of historical linguistics, 038

Formosan languages also stand out in their role 039

in reconstructing Proto-Austronesian Languages 040

(PAn). Blust (1984) proposes the so-called pulse- 041

pause scenario of the Pacific settlement, in which 042

the Austronesian speakers originated in Taiwan 043

around 5,200 years ago and rapidly spread through 044

the Pacific in a series of expansion pulses and settle- 045

ment pauses. Past studies propose rich insights into 046

the linguistic phylogeny of Formosan languages 047

through careful analysis of language innovations. 048

However, due to the difficulties of speech data col- 049

lection and analysis, it is less clear how to approach 050

the phylogeny problems with real-world data. 051

We present a real-world dataset of Formosan 052

languages collected from daily news broadcasted 053

over Taiwan’s free-to-air channels. The paper is 054

organized as follows: Section 2 introduces the col- 055

lected speech corpus. This corpus includes news 056

footage covering 16 Formosan languages and aims 057

to provide a valuable source with which researchers 058

study Austronesian. To demonstrate one principal 059

value of the dataset, we investigate the relationships 060

among Formosan languages with speech vectors 061

extracted from a deep learning classifier. Section 062

3 first describes the language classifier and its im- 063

plied language phylogeny, and Section 4 analyzes 064

the speech vectors and compares the learned vec- 065

tors with manually coded linguistic features. Re- 066

lated works are briefly introduced in Section 5, and 067

Section 6 concludes our work. 068

2 Formosan Speech Corpus 069

The collected Formosan speech corpus aims to 070

record the real-world usage of the 16 Formosan 071

languages. The primary data source is from daily 072

news broadcasted over Taiwan’s free-to-air chan- 073

nels. We use a TV tuner connected to an outdoor 074

antenna to record the news footage to digital files. 075

We capture all 16 Formosan languages news pro- 076

vided by the Taiwan Indigenous Television (TITV) 077
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Figure 1: Example news broadcast

channel. Newscasts are chosen for the availability078

of all Formosan languages and to reduce the vari-079

ability of gathering different languages from differ-080

ent programs. Each program is approximately an081

hour in duration. The corpus comprises 144 hours082

of videos with 9 hours for each language’s news. 2083

While the news videos serve as an abundant084

source of information, the interaction among the085

Formosan languages and Mandarin Chinese in the086

news provides a unique challenge Figure 1. Specifi-087

cally, although the news is broadcasted with a given088

Formosan language, segments still use Mandarin089

Chinese. These segments are like press conferences090

or interviews where the most common languages091

are still Mandarin Chinese. The issue is further092

complicated because some footage is narrated by093

the anchor, so there are no consistent visual cues094

to differentiate the language used in a given video095

segment. In addition, the Formosan languages are096

under-resourced, and there are no automatic speech097

recognition or language identification tools readily098

available. However, to properly explore the For-099

mosan language in the video, we must at least tag100

the language used in the segments.101

We address the mixed language problem first102

with automatic preprocessing, with which we103

gather primitive data to train a language identifica-104

tion classifier. We first assume the anchor always105

uses (one of the 16) Formosan language, and multi-106

ple cues in the video frames indicate that the anchor107

is speaking. We use two sources of information to108

determine the frame is an anchor frame. The first109

source is facial recognition, and the second is the110

headline usually displayed at the lower part of the111

frame. We first identify the anchor’s face from the112

2The corpus will be released once the paper is accepted.

first 20 seconds of the video. The anchor is intro- 113

duced and accompanied by a title card showing its 114

name. We use off-the-shelf face recognition and op- 115

tical text recognition models to pair the faces and 116

the anchor name. After identifying the anchor’s 117

face, we detect, in each frame, if the anchor ap- 118

pears along with a headline. From these two cues, 119

we determine, in a five-second interval, whether 120

the anchor is speaking in the specific segment. The 121

automatic anchor detection results, and the number 122

of different anchors appeared in the news of each 123

language are shown in Table 1. 124

However, while the detected anchor frames are 125

likely the Formosan languages segments, there will 126

be considerable false negatives in this approach. 127

Segments, where the anchor narrates the footage 128

with Formosan, are inevitably missed with the al- 129

gorithm mentioned above. Therefore, it is still 130

preferable to identify the language with the speech 131

data alone. The trained language classifier not only 132

helps us identify the language, but it also, with the 133

help of computational models, helps us to explore 134

the representations of the underlying speech data. 135

3 Formosan Language Classification 136

3.1 Classifier Training 137

We train a Formosan language classifier based on 138

the Wav2Vec (Baevski et al., 2020) model architec- 139

ture and the pretrained weights of XLSR (Conneau 140

et al., 2020). We used the XLSR model to take 141

advantage of having already been pretrained on 142

53 different languages. Although these languages 143

may be significantly different from the Formosan 144

languages, it might be possible for the model to 145

transfer the regularities across languages. 146

The training data is the anchor segments automat- 147

ically identified in the preprocessing stage. Among 148

the 144 hours of speech data, 790.58 minutes of 149

audio data are included in the dataset. In addi- 150

tion to the 16 Formosan languages, we add a other 151

category, which is randomly sampled from the not- 152

anchor video segments. Finally, we split the dataset 153

so that every language is still equally represented 154

in the test data. 155

Language classification is fine-tuned on the pre- 156

trained XLSR model. The classifier is a fully- 157

connected layer stacked upon the vector ouput of 158

the Wav2Vec2 model. The parameters are opti- 159

mized with Adam with learning rate warming up to 160

a peak of 10−3 in the first 200 steps and decrease to 161

0 with a half-cycle cosine scheduling. The model 162
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Language Subgroup Len. (hrs) Anchor Footage
Amis Eastern Formosan 9 35.8(1)
Atayal Atayalic 9 41.0(2)
Bunun Bunun 9 52.6(1)

Cou (Tsou) Tsouic 9 69.8(3)
Hla’alua (Saaroa) Tsouic 9 34.8(1)

Kanakanavu Tsouic 9 37.1(1)
Kavalan Eastern Formosan 9 59.3(1)
Paiwan Paiwan 9 12.3 (1)

Pinuyumayan (Puyuma) Puyuma 9 40.9(1)
Rukai Rukai 9 42.8(3)

Sakizaya Eastern Formosan 9 54.5(2)
Saysiyat Northwest Formosan 9 43.0(4)
Seediq Atayalic 9 47.0(2)

Thau (Thao) Western Plains 9 44.2 (1)
Truku Atayalic 9 73.5 (1)
Yami Malayo-Polynesian 9 47.3 (1)

Table 1: Captured video length for each language. Anchor footage denotes the automatically detected anchor
segments. The lengths are in minutes. These segments are more likely to only contain the targeted Formosan
language. Numbers in the parentheses are the number of different anchors in the news footage. The subgroups of
each language follow Blust (2013).

training took approximately two hours on a A5000163

GPU.164

The language classification model achieved an165

overall accuracy of 88% across 17 categories (16166

languages and the other category) languages in the167

testing set. The classification accuracy shows that168

the model indeed can identify different Formosan169

languages. Notably, the anchor’s identity is con-170

founded with the language in this dataset. However,171

the overall classification results show that the lan-172

guages with only one anchor do not necessarily173

have better performances than those with multiple174

anchors. That is, the anchor identities may not175

directly influence the classifier.176

The classifier not only has the practical value in177

helping identify relevant segments in the dataset. In178

addition, the self-supervision nature of Wav2Vec2179

provides us with a unique opportunity to explore180

how these languages are related to each other in181

this formalized vector space. When the model is182

only trained on the speech signal, it should espe-183

cially shed light on the phonological or phonetic184

relationships among these languages.185

3.2 Speech Vector Analysis186

The fine-tuned language classification model suc-187

cessfully differentiates the language of a specific188

speech segment. In the speech representation per-189

spective, it is interesting to explore the language190

Language Prec. Recall F1 N
Amis 0.97 0.54 0.69 140
Atayal 0.99 0.84 0.91 192
Bunun 0.83 0.99 0.90 115
Cou 0.93 0.99 0.96 154
Hla’alua 0.94 0.92 0.93 89
Kanakanavu 1.00 0.93 0.96 95
Kavalan 0.99 0.98 0.98 145
Paiwan 0.94 0.97 0.96 35
Pinuyumayan 0.65 0.98 0.78 54
Rukai 0.95 0.84 0.89 122
Sakizaya 0.98 0.96 0.97 155
Saysiyat 0.78 0.98 0.87 129
Seediq 0.86 0.78 0.82 102
Thau 0.87 0.99 0.93 110
Truku 0.77 0.99 0.86 205
Yami 1.00 0.93 0.96 215
Other 0.64 0.57 0.60 219

Table 2: Classification results for each of the 16 lan-
guages and the “other” category. The overall accuracy
is .88, and the weighted average is .87.
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Figure 2: Clustering results with 16 language vectors.

similarities implied by these speech vectors. The191

idea is consistent with the findings from other do-192

mains of deep learning application that the model193

representation may reflect the intrinsic structure un-194

derlying the data. For example, the word analogy195

relations results naturally from the vector represen-196

tation learned from skip-gram or CBOW model197

(Mikolov et al., 2013), and the transformer-based198

language model also implicitly reflect the syntactic199

relations in the sentence (Manning et al., 2020).200

To compute the language similarities among201

these 16 languages, we first extract the speech202

vector representation of each segment from the203

Wav2Vec2 model; that is, the 1,024-dimension vec-204

tor before it is fed into the final classifier. These205

1,024 dimensional vectors are assumed to carry206

various information, and only some of which are207

the ones used in language classification. We thus208

simplify the vector with a linear dimension reduc-209

tion model (i.e. PCA) into 5 dimensions. Next,210

we find the median points, or the medoids, in each211

language to represent the speech segments of that212

language. These median point are then clustered to213

show the structure implied by the model.214

The clustering result is shown in Figure 2. One215

way to interpret the clustering is that it reflects216

a snapshot of the current linguistic environment.217

However, there are several possibilities that the218

model treats two languages as similar in these vec-219

tors: such as geographical closeness, phonetic, mor-220

phological, and syntactic relations. Therefore, we221

try to explore the representations of these speech222

vectors with a correlational similarity study. Next,223

we manually coded linguistic typological features224

of the 16 Formosan languages. These features in-225

clude phonological, morphological, and syntactical226

ones. We then compare the language similarities227

implied by these typological features to the ones228

computed by the speech vectors. 229

4 Formosan Linguistic Phylogeny 230

The ‘Austronesian homeland’ hypothesis was sup- 231

ported by lexical data and other archaeological ev- 232

idence (Greenhill et al., 2010). However, Dunn 233

et al. (2005) showed that it is also possible to 234

probe the linguistic phylogeny by using non-lexical 235

grammatical traits/features. For instance, the pho- 236

netic features of 16 Formosan languages have been 237

manifested in the aforementioned speech corpus 238

data and Wav2Vec model. In the current section, 239

the phonological features will also be adopted in 240

our clustering analysis of Formosan linguistic phy- 241

logeny. 242

4.1 Features Coding 243

To explore the extent to which a feature system is 244

minimally sufficient to distinguish all the sounds 245

in Formosan languages, we follow Duanmu (2016) 246

that (1) the number of features is small, (2) all fea- 247

tures are binary (due to the notion of contrast), and 248

(3) features can be compared across languages. Our 249

dataset contains data from 16 taxa (i.e., languages, 250

or tips of the phylogenetic tree) encoded with 152 251

typological features (manually encoded based on 252

a series of Reference Grammar books by a group 253

of prestigious Formosan linguists) (Wu et.al, 2016- 254

18), including grammatical traits, such as word 255

order (order of noun phrase elements and verb), 256

pronominals, demonstratives, noun formation and 257

verb formation, numerals and the counting system, 258

adjective, syntactic roles of noun phrases, the verb 259

complex, TAM (tense, aspect, mood), core and 260

oblique participants, as well as phonological ones, 261

such as voicing, places and manners of articulation, 262

etc.3 263

4.2 Language Features and Speech Vectors 264

The coded language features imply language simi- 265

larities among Formosan languages, which we can 266

compare to those implied by speech vectors. The 267

comparison also sheds light on the nature of rep- 268

resentations learned automatically with the deep 269

learning model. Specifically, suppose the language 270

similarities are consistent with a set of language 271

features, e.g., phonological ones. In that case, we 272

could infer that the learned speech vector repre- 273

sentations encode phonological aspects of those 274

languages. 275

3The data are attached to the paper.
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We first partition 152 features into three cate-276

gories: phonological, morphological, and syntacti-277

cal features. Features all coded as ones and zeros278

are excluded from further analysis. There are 120279

features included in this analysis, 56 phonologi-280

cal ones, 43 are morphological, and 21 are syn-281

tactical. Among the phonological features, we282

further distinguish 10 vowel-related features, 46283

consonant-related ones, 22 sonorants, and 31 ob-284

struent features. Note that not all phonological285

features could be classified as sonorant or obstru-286

ent, such as syllable-level features (e.g., phone-287

mic stress or consonant clusters). For each feature288

group, we constructed a correlation matrix from289

the feature encoding. As a result, eight language290

correlation matrices are made from eight feature291

groups, respectively.292

We compare the language feature-derived corre-293

lation matrices and the speech vector-derived ma-294

trices with Spearman’s rank correlation coefficients295

(Spearman’s r). Specifically, the lower triangles of296

each correlation matrix are extracted and flattened297

as vectors, from which we computed Spearman’s r.298

However, as the data vector comes from a correla-299

tion matrix, it is unclear whether the standard infer-300

ential statistics apply. Therefore, we bootstrap the301

speech vectors to infer a confidence interval. Each302

bootstrap sample comprises 50% of correctly clas-303

sified sequences in each language. We computed304

the medoids (following the same procedure in Sec.305

3.2) of each language, from which we derived the306

correlation matrix of this particular bootstrap sam-307

ple. For each bootstrapped speech vector-derived308

correlation, we compute one Spearman’s r with309

the language feature-derived correlation. From 100310

bootstrapped samples, we calculate the mean, 5%311

(Q05) and 95% (Q95) quantiles of Spearman’s r.312

The same bootstrapping procedures are repeated313

for the random feature controls, where values in314

each feature are randomly permuted. The goal of315

this permutation is to generate a random baseline316

where the language features provide no information317

on the language similarities.318

Results are shown in Figure 3. First, the speech319

vector-derived language similarities are consistent320

with the one derived from language features, as321

seen by the non-overlapping confidence intervals322

computed from the actual samples and the random323

baseline. This pattern persists into the phonolog-324

ical feature groups. Most notably, the obstruent325

feature group shows the most significant difference,326

Figure 3: Correlation similarities across different fea-
ture groups. The blue segments show the similarities
between the correlations of Formosan languages implied
by the speech vectors and the one implied by feature
groups. The line intervals indicate the bootstrapped con-
fidence interval (Q05-Q95). The gray segments show
the similarity scores under a random baseline.

.24, and the sonorant has the smallest ones, .12. 327

Interestingly, the difference is still significant in the 328

morphological group but not in the syntax group. 329

These findings show that the model does capture 330

language-relevant aspects from the audio stream, 331

not just superficial acoustic features (e.g., anchors’ 332

voice characteristics). The significant difference in 333

the morphological group also suggests that, while 334

the data is speech only, it doesn’t prevent the model 335

from learning morphological information from the 336

audio sequence. In contrast, the syntactic features 337

do not play a role in speech vectors. Possible ex- 338

planations may include the insufficient number of 339

features in syntactic groups or the nature of lan- 340

guage identification tasks that prevent the models 341

from learning such long-ranged features. 342

The language feature analysis clearly shows that 343

speech vectors encode phonological, even morpho- 344

logical aspects of Formosan languages. However, 345

it is still unclear how these language features relate 346

to the Formosan language similarities, or linguistic 347

phylogenies, in the literature. Therefore, we use 348

our coded linguistic features to proceed with the 349

linguistic phylogenetic inferences. 350

4.3 Linguistic Phylogenetic Inferences 351

Comparison between speech vectors and linguis- 352

tic features reveals significant similarities. It also 353

shows the speech vectors, unsurprisingly, tend 354

to capture the phonological aspects of languages. 355

However, it is not clear whether the coded linguis- 356
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tic features really reflect, or are consistent with the357

Formosan phylogenies found in literature. There-358

fore, we construct the Formosan phylogeny from359

our linguistic features.360

We used 61 phonological features in the follow-361

ing phylogenetic inferences. These phonological362

features account for most of our linguistic features363

and are the most significant ones in the correla-364

tional similarity study. In addition, as they relied365

more on phonological innovation to infer the sub-366

groupings of Formosan languages, using phonolog-367

ical features provides a better comparison with past368

studies.369

First, we consider divisive clustering based on370

the features, as shown in Figure 4. However, the371

dendrogram obtained does not fit well with pre-372

vious reconstruction proposals (Blust, 2013; Li,373

2006; Starosta, 1995), and we do not know how374

accurate and robust the phylogenetic estimates of375

Austronesian language relationships are. We then376

turn to a computational phylogenetic method called377

neighbor-joining algorithm) (NJ) (Saitou and Nei,378

1987) to create a phylogenetic tree without a de-379

fined root. The unrooted tree has its advantage in380

not presuming information about the temporal se-381

quence of lineage-splitting events. Figure 5 shows382

the resulting unrooted tree with NJ algorithm that383

is widely used for phylogeny estimation. The tree384

presented in the left panel shows that the unrooted385

phylogenetic tree groups languages according to386

their geographical region, indicated by different387

font styles (e.g., bold, italics).388

To validate the results of our cluster analysis,389

the BOOTSTRAP method is applied to the present390

data. The data is sampled with replacement for 200391

bootstrap runs. In each sampling run, the distance392

matrix is calculated to further yield the unrooted393

tree with the NJ algorithm. With the resulting den-394

drograms from the bootstrap samples, we compare395

them to the original one, and calculate the propor-396

tions of bootstrapped dendrograms that support the397

subtrees in the original tree. The proportion of398

support for different subtrees is shown in the mid-399

dle panel with the sign of thermometers, of which400

the higher degree indicates greater support. The401

consensus tree, where the subgroups that are not ob-402

served in all bootstrap trees are collapsed, is shown403

in the right panel.4404

4We use the ape package developed by (Paradis et al.,
2004) to implement the calculations

5 Related Works 405

Studying language families has long been of high 406

interest in historical linguistics. Among language 407

families around the world, Austronesian, which 408

contains more than 1,250 languages and spans 409

across the Indian Ocean into the western Pacific, 410

has been one family tracts significant research in- 411

terest. The expansion origin of Austronesian is 412

inevitably controversial. Nevertheless, past stud- 413

ies combine data both from linguistics and archae- 414

ologists and suggest the Formosan language has 415

played a significant role in Austronesian expansion 416

(Blust, 2019, 1999; Gray et al., 2009; Bellwood, 417

1984). 418

Being the origin of expansion, Formosan lan- 419

guages show great diversity. Studies of Formosan 420

phylogeny follow the cladistic principles, where 421

each tree node is supported by a language inno- 422

vation, such as phonological, morphological, or 423

basic numeral vocabulary (Blust, 1999; Ho, 1998; 424

Sagart, 2004; Ross, 2012). Another approach to 425

study the relationships among the languages is from 426

structural similarities. These structural features are 427

abstract and were selected to reflect the known 428

linguistic topology in the region. Genealogical 429

groupings are then constructed by computational 430

algorithms, such as maximal parsimony, from their 431

shared structural features (Dunn et al., 2005). How- 432

ever, the structural features are abstract, and not 433

all structural features are equally prominent in ac- 434

tual usage. Therefore, the similarities implied by 435

the structural features may not directly reflect the 436

similarities in real-world use. 437

The recent speech recognition model allows us 438

to work with natural speech data without directly 439

transcribing it. This approach opens up the possi- 440

bility of looking into the real-world usage of For- 441

mosan language and studying them with a system- 442

atic methodology. Hartmann (2019) uses deep neu- 443

ral networks to reconstruct the phonetic features of 444

historical sounds based on a language’s synchronic 445

phonological features, such as co-articulatory and 446

phonological constraints. Korkut et al. (2020) com- 447

pare several deep learning methods for spoken lan- 448

guage identification. The authors use a hybrid 449

CNN-RNN (CRNNs), X-vectors with FFNNs, and 450

Wav2Vec CNNs (Schneider et al., 2019) in a lan- 451

guage classification task. They also find that the 452

X-vector-based FFNN classifier outperforms the 453

other two models. They also learn that SpecAug- 454

ment is suitable for language identification data 455
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Figure 4: Dendrogram with AU/BP values (%) of divisive hierarchical clustering of 61 phonological features for
Austronesian languages in Taiwan. Red: AU (approximately unbiased) p-value; green: BP (bootstrap probability)
p-value; gray: SI (Selective inference) p-value.
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Figure 5: Unrooted phylogenetic trees for Austronesian languages in Taiwan
(Left panel) The geographical information is represented by fonts. Plain: Northern; bold: Southern; italics: Eastern; bold italics:
Central/Tsouic. (Middle panel) Validation of clustering using the bootstrap. (Right panel) Consensus tree from 200 bootstrap
runs.
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augmentation. In this study, we leverage speech456

vectors, learned by a language identification model,457

to study the relationships among the Formosan lan-458

guages.459

6 Conclusion460

In this paper, we present a Formosan Speech Cor-461

pus. We provide two perspectives on Formosan462

phylogeny studies based on the dataset: a speech463

vector approach using a Wav2Vec-based deep learn-464

ing model and linguistic coding with linguistic ty-465

pological features. The speech vector approach466

is more data-driven, and more emphasized on the467

usage aspect of speech data. The speech represen-468

tation is trained to achieve a language classification469

task of 16 Formosan languages with 144 hours of470

speech data collected from the news broadcast. The471

model achieves overall classification accuracy of472

88%. Moreover, correlational similarities analysis473

shows the speech vector representations reflect the474

phonological and morphological information. A475

further look into the typological language features476

reveals phylogenetic trees correspond well with477

previous theories.478

Overall, this paper tries to approach the For-479

mosan language similarities guided by model-480

learned representation from real-world data and481

linguistic typological features. Future works in-482

clude how to interpret the language similarities483

implied by the speech vectors and further explore484

the multimodal nature of the dataset. This paper,485

along with its dataset, is expected to help investi-486

gate the linguistic phylogeny simultaneously with487

the actual usage patterns in the current language488

environment.489
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