Robust SuperAlignment: Weak-to-Strong Robustness
Generalization for Vision-Language Models

Junhao Dongl’zz Cong Zhang3: Xinghua Qu4, Zejun Ma3,
Piotr Koniusz*%7, and Yew-Soon Ong!'
'Nanyang Technological University, ?°CFAR, IHPC, A*STAR, *TikTok, Singapore,
4Bytedance, SData61YCSIRO, 6University of New South Wales, “Australian National University

Abstract

Numerous well-established studies have demonstrated the superhuman capabilities
of modern Vision-Language Models (VLMs) across a wide range of tasks. However,
growing is the doubt about the continuing availability of reliable high-quality
labeling (supervision) from human annotators, leading to stagnation of the model’s
performance. To address this challenge, “superalignment” employs the so-called
weak-to-strong generalization paradigm, where the supervision from a weak model
can provide generalizable knowledge for a strong model. While effective in aligning
knowledge for clean samples between the strong and weak models, the standard
weak-to-strong approach typically fails to capture adversarial robustness, exposing
strong VLMs to adversarial attacks. This inability to transfer adversarial robustness
is because adversarial samples are normally missing in the superalignment stage.
To this end, we are the first to propose the weak-to-strong (adversarial) robustness
generalization method to elicit zero-shot robustness in large-scale models by an
unsupervised scheme, mitigating the unreliable information source for alignment
from two perspectives: alignment re-weighting and source guidance refinement.
We analyze settings under which robustness generalization is possible. Extensive
experiments across various vision-language benchmarks validate the effectiveness
of our method in numerous scenarios, demonstrating its plug-and-play applicability
to large-scale VLMs.

1 Introduction

Vision-Language Models (VLMs) enjoy remarkable prediction capabilities, frequently surpassing
human performance on diverse multimodal tasks, ranging from zero-shot recognition to multimodal
reasoning [60, 42, 49] to task unlearning [24]. Despite these outstanding achievements, they suffer
from an emerging issue: as models become highly capable, human annotators fail to reliably guide
and/or evaluate their outputs, especially given the complexity and ambiguity inherent in vision-
language paired data due to inherent limitations in cognitive capacity and scalability [7, 4]. This
fundamental limitation has prompted the super-intelligence alignment (superalignment) [41], a
conceptualized framework to align (future) superhuman models with human values and goals based
on limited human supervision. One seminal approach toward superalignment is weak-to-strong
generalization [5], which explores supervision from a weak (lightweight) feacher model to guide a
strong (large-scale) student model, enabling the student to generalize beyond the original limitations
of its supervision source (reference model) on unforeseen data.

However, while existing weak-to-strong generalization methods focus on distilling knowledge from a
teacher model, we demonstrate that robustness, a distinct form of knowledge, cannot be transferred
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into a VLM even when guided by a robust teacher'. This limitation inherently exacerbates the
vulnerability to adversarial examples—original images with added imperceptible artifacts leading to
erroneous predictions with high confidence [65]. In addition to single-modal backbones [21, 20, 23,
15, 22, 14], these vulnerabilities are especially critical in VLMs, where the correctness of language
reasoning heavily relies on visual inputs: poisoned images may compound errors and propagate
catastrophic failures through the model’s output, fundamentally compromising its reliability for
real-world deployment [72, 51, 46, 47].

Through systematic analysis, we are the first to identify the root cause of robustness transfer failure
presenting as a mismatch in learning objectives arising from the data employed in weak-to-strong gen-
eralization models. Our analysis in Section 3.2 reveals that integrating adversarial examples—rather
than their clean counterparts—into learning can induce robustness in the strong student model, even
without explicit supervision from an adversarially robust teacher. Motivated by this insight, we
propose the first adversarially robust weak-to-strong generalization framework, termed Adv-W2S,
designed to elicit robust knowledge from the strong student model in an unsupervised scheme. Specif-
ically, our method mitigates unreliable supervision signals from the weak teacher model through two
complementary mechanisms: alignment re-weighting and source guidance refinement. To quantify
the reliability of guidance of the weak teacher, we introduce an instance-wise re-weighting mecha-
nism based on prediction entropy, adaptively modulating the emphasis placed on robust knowledge
alignment between the teacher and student VLMs. Additionally, in order to further reduce reliance
on potentially erroneous guidance signals, we design an adaptive refinement scheme for prediction
reference, generating benign inputs that can be considered as improved guidance for robust weak-to-
strong generalization. Our theoretical analysis establishes two core claims: (i) low prediction entropy
enforced on the student promotes larger classification margins and robustness, and (ii) alignment
toward refined source guidance strictly improves robustness generalization during superalignment.

Extensive experiments conducted across diverse network architectures and evaluation scenarios
demonstrate that our proposed Adv-W2S framework achieves superior zero-shot classification perfor-
mance in both clean and robust accuracy compared to state-of-the-art adversarial fine-tuning methods.
Moreover, we show that the robustness induced by Adv-W2S can effectively transfer to a broad
array of downstream vision-language tasks—including image captioning, visual question answering,
hallucination mitigation, and chain-of-thought reasoning—via a plug-and-play replacement of the
original vision encoder with our robustly aligned encoder. Our empirical analyses further reveal that
the in-distribution robustness initially obtained via unsupervised alignment can be further improved
through supervised fine-tuning. To our best knowledge, this work represents the first systematic
exploration of robust superalignment, providing a promising pathway toward building robust and
aligned foundation VLMs for artificial general intelligence applications.

Our core contributions are summarized as follows:

1. We reveal that standard weak-to-strong generalization schemes fail to transfer VLM robustness.
Through systematic analyses, we identify—for the first time—that the root cause of this failure is
the absence of adversarial examples in alignment objectives of weak-to-strong generalization.

2. In contrast to adversarial fine-tuning from scratch, we propose Adv-W2S, the first adversarially
robust weak-to-strong generalization framework to elicit robust knowledge from a weak student
VLM by an unsupervised scheme. We also investigate unreliable source guidance mitigation
from two complementary perspectives: alignment re-weighting and source guidance refinement.
Theoretical analyses characterize the conditions under which robustness generalization is possible.

3. We conduct extensive experiments across 20 datasets spanning diverse vision-language tasks
(including visual question answering and captioning) across various scenarios, demonstrating that
our Adv-W2S consistently outperforms state-of-the-art adversarial fine-tuning approaches in terms
of natural performance and zero-shot robustness, while supporting plug-and-play integration.

2 Related Works

Foundation VLMs. Vision-language pre-training learns joint visual-textual representations to
improve downstream task performance [73]. CLIP [60] pioneered large-scale vision-language con-
trastive learning, enabling zero-shot transfer to a wide range of vision tasks. Subsequent foundation
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VLMs, e.g., BLIP [43], OpenFlamingo [2], and LLaVA [49, 48], have demonstrated strong multi-
modal understanding and generalization. Our study concentrates on improving the robustness of the
widely adopted CLIP model, generalizing robustness to other foundation VLMs via a plug-and-play
replacement of their vision encoders with our robust counterpart. To mitigate computational costs
and potential overfitting associated with full fine-tuning, we explore Parameter-Efficient Fine-Tuning
(PEFT) [36, 35, 56, 76, 74] within our robust weak-to-strong generalization framework.

Weak-to-strong generalization for superalignment. Inspired by the challenge of aligning super-
human models via weaker supervision (superalignment), Burns et al. [5] first explored fine-tuning
large-scale models using weak-model supervision. This paradigm, termed weak-to-strong generaliza-
tion, improves the generalizability of the strong student model via a weak teacher model, distinct
from standard knowledge distillation [34]. Lang et al. [40] established the error bound for weak
supervision, highlighting the significance of pseudolabel correction. Our study explores prediction-
based pseudolabel refinement by generating more benign inputs for improved supervision via an
inverse procedure of adversarial generation. Subsequent works studied the inherent reliability of
weak teacher supervision [29, 30]. However, prior works focus on single-modal vanilla knowledge
transfer for specific tasks. In contrast, we address an underexplored problem: robust weak-to-strong
generalization for VLMs, generalizing natural and robust knowledge across diverse multimodal tasks.

Adversarial robustness of VLMs. The increasing security risks posed by adversarial examples
[37, 70] have spurred extensive research on defense schemes for VLMs [63, 75, 3, 17, 18, 16, 19].
Adversarial fine-tuning, a leading defense paradigm, augments training data with adversaries based on
naturally pre-trained VLMs, e.g., CLIP [60]. Mao et al. [55] first introduced adversarial fine-tuning
within a contrastive learning framework to align adversarially perturbed image embeddings with their
text counterparts. Schlarmann et al. [63] developed an unsupervised adversarial fine-tuning strategy
by preserving the features of the original CLIP model. Unlike prior adversarial fine-tuning approaches
that exclusively rely on training data, we focus on a weak-to-strong generalization framework guided
by a weak VLM to elicit the strong robustness generalization capability from a strong VLM across
diverse downstream tasks, offering a promising solution toward the superalignment challenge for
foundation VLMs.

3 Robust Weak-to-strong Generalization for Superalignment

Below, we propose Adv-W28, the first robust weak-to-strong generalization framework to elicit zero-
shot robustness from large VLMs across a variety of vision-language tasks without extra supervision.

3.1 Revisiting Adversarial Fine-tuning and Weak-to-strong Generalization

Adpversarial Fine-tuning. CLIP [60] consists of an image encoder fg,: X —R% and a text encoder
fo.: T —R9, parameterized by 8 = (6y, 61). These encoders map image-text pairs (x, t) into d-
dimensional features. Classification is performed via computing the probability that input x belongs
to class c€{1,...,C} via softmax over the image-text feature cosine similarity:

exp (cos(fo, (%), for (tc)) )

C )
Zc’:l €xXp ( COS(fgI (X)7 fBT (tc’)) )
where exp(+) and cos(-) denote the exponential and cosine similarity functions. Each text prompt is
tokenized by ¢(-) and embedded by fo,(-), denoted as t.» = g(“[Context][CLASS.]”). A typical
template is “This is a photo of [CLASS.]”. We define p(x) = [p1(x),...,pc(x)] T €[0,1]¢

as the prediction for input x across C categories. Given image-text pairs D, standard adversarial
fine-tuning (TeCoA) [55] is framed as a minimax optimization to improve CLIP robustness:

Pe(x) = ey

minEx o)op [ max Lcg(p(x + 6),y(c))} , 2)
01 I3l o <e

where y(c) = [I(c=1),...,1(c=C)]" € {0,1} is a one-hot label for class c, and Lcg is the

Cross-Entropy (CE) loss. The adversarial example X =x+§ lies within an ¢,,-norm hyperball of

radius € around x. Further details about adversarial learning are in Appendix A. CLIP parameters are

optimized by empirical risk on adversaries, generated via Projected Gradient Descent (PGD) [6].

&) = g [fc(“ +a-sign (Vo Lea (pE?), y<c>))} : 3



where sign(-) represents the sign function, and the scalar « denotes the step size. The projection
operator Ilp(y () restricts the adversary in £-norm hyperball with e-radius around x. The starting

point is randomly initialized %(*) ~x+0.001-N (0, I) with the final adversary X =%(™) after m steps.
Weak-to-strong Generalization. In analogy to superalignment, Burns et al. [5] proposed weak-

to-strong generalization via fine-tuning a strong student model using soft-label supervision from a
weak teacher. We extend this idea to VLMs, denoting the weak teacher VLM as [fg7(-), fo7 (+)]

and the strong student VLM as [fgs (-), fgs (-)]. Based on Eq. (1), let p7(x) and ps(x) denote

the prediction of the teacher and student on input x. The standard weak-to-strong generalization
approach is formulated as an auxiliary confidence loss:

Lauxcont = (1 = B) - Lee(ps(x), pr (X)) + 8- Lee(ps (%), M(ps(x))), 4)

where M () produces one-hot labels based on strong model predictions, and 3 controls the trade-off
between teacher-student prediction alignment (first term) and student self-refinement (second term).

e ~
Problem definition. Unlike standard robustness evaluations that assume in-distribution adversar-

ial attacks [11], we study a more challenging zero-shot robustness scenario [55], where adversaries
originate from unseen distributions during inference. Under practical defense conditions, we
presume textual prompts are fixed and safeguarded, as they typically reside within multimodal
systems and are thus not subjected to manipulation. Within this demanding zero-shot robustness
context, we further explore how weak-to-strong generalization contributes to improved robustness

elicitation across different vision-language model settings and downstream-task generalization.
S J

3.2 Can Vanilla Weak-to-strong Generalization Elicit Robustness?

While vanilla weak-to-strong general- Table 1: Performance (%) of fine-tuned teacher CLIP models,
ization improves natural performance and their weak-to-strong generalizations, where robustness
in single modality tasks [5], its effec- ¢ wrt Auto-Attack [12]. Vanilla-W2S, . q Adversarial-W2§

tiveness in enhancing VLM robust-
ness remains underexplored. We in-
vestigate whether the vanilla weak-to- Method
strong generalization scheme (Eq. (4))

denote vanilla and adversarial weak-to-strong generalization.

ImageNet Avg. 13 Datasets
Clean Robust Clean Robust

Natural Fine-Tuning 76.06  0.00  58.64 0.01

can elicit robustness from the strong Robust Fine-Tuning ~ 64.96 39.74 4827  32.92
student model. As shown in Table Natural F Yemile-w2s 1054 000 6550 026
1, standard weak-to-strong generaliza- atura - : . : :
tion primarily improves nftl%ral erfor- Robust FTA: anl“aﬁzvizs 7272 560 5537 9.20
P y 1mp P Natural FT Adversarial 7610 5082 6328 4097

mance, but fails to yield robustness in
large-scale student VLMs. This con-
trasts with vanilla knowledge distillation, where robustness has been successfully transferred from
robust teachers [27]. Intriguingly, even substituting the weak guidance with an adversarially robust
VLM (e.g., TeCoA [55]) does not facilitate robustness elicitation. We attribute this to a mismatch in
model capacity and learning objectives. Representations from a limited-capacity VLM trained on
clean data poorly generalize to a high-capacity VLM tasked with handling unforeseen adversaries.

Adversarial-W2S
—_—>

Robust FT 7495 5197 62.57 41.70

To validate our claim, we explore an adversarial variant of vanilla weak-to-strong generalization by
shifting the data perspective of the strong student VLM to adversarial samples (colored in red):

»CAdv»AuxConf = (]- - 5) ' »CCE (pS(X + 6)7 pT(X)) + 5 ' ﬁCE (PS(X + 6)7 M(pS(X))) (5)

Integrating adversaries into weak-to-strong generalization elicits robustness even with guidance
from a non-robust weak VLM (Table 1). The necessity of employing adversaries arises from their
ability to represent worst-case input distributions, enabling the strong student VLM to better mimic
the weak teacher’s robust behavior and its own self-knowledge refinement. Thus, we focus on
adversary-driven weak-to-strong generalization for transferable robustness. To mitigate potentially
unreliable supervision from weak teacher VLMs, we investigate two complementary mechanisms:
alignment re-weighting and source guidance refinement, supported by theoretical analyses in the
following sections.



3.3 Entropy-guided Uncertainty Re-weighting

Recall that in weak-to-strong generalization, the trade-off factor 5 balances teacher-student alignment
and student self-refinement. However, [ is either fixed or follows a predefined warm-up schedule,
neglecting the potential prediction errors from the weak teacher model. Thus, we propose an adaptive
re-weighting mechanism guided by the teacher’s prediction uncertainty, quantified via entropy:

Teacher entropy. We define teacher prediction entropy as Hr(x)=—3__ [p7(x)]log [p7(x)].
capturing uncertainty in an unsupervised scheme: higher entropy Hr(x) indicates greater uncertainty
(predictions are close to uniform distributions), whereas low entropy reflects more confident predic-
tions. By leveraging prediction entropy as a reliability quantification, we adaptively emphasize the
low-entropy guidance from the teacher model, enhancing robust knowledge superalignment.

We seek an instance-wise re-weighting function w(-) that maps prediction entropy to weights while
preserving relative differences in uncertainty across samples. To avoid uncertainty scale distortions
from ad hoc normalization, w is required to be monotonically increasing in H (so that more uncertain
examples receive higher weight). A suitable choice is a soft normalization:

Hr(x)
WO = s ©)
where kp is obtained by an adaptive scaling strategy as the median entropy of the teacher’s prediction
over the dataset: xy =median ({HT(X) |x € D}) The median entropy serves as a robust central
tendency measure against outliers, allowing confident teacher predictions to guide alignment, while
uncertain cases prioritize the student self-refinement. Robust weak-to-strong generalization (Eq. (5))
can be reformulated by replacing fixed 8 with our entropy-guided weighting w(x) per input x.

Theorem 1 (Adapted from [25]). Let the weights of the classifier, i.e., in our case these are textual
VLM embeddings denoted as .= fo,(t.), and the vision feature extractor be given by ¢(-). Let H[-]
be the Shannon entropy. Then for the conditional entropy over predictions it holds true that:

log(c) -H [p( | ¢(X)7 Q/)h s 71/)6')]
[¢0)ll2 = 2maxi—1,...c ||9¥;]l2 ' @
Proof. See [25]. O]

Hence, with fixed textual embeddings (denominator), lower prediction entropy tightens the model
selection space for the vision encoder in VLMs by favoring models with larger weights. The vision
encoder is thus constrained to a more stable optimization trajectory and is less prone to overfitting.
Definition 1 (Classification margin in VLMs). Consider a VLM of the form (¢(-), {p.}S_,), where
#(x) € R? is the vision feature for input x, and each 1, € R% is a text embedding representing class
c. For input x with ground-truth label v, the classification margin is defined as:

Y(yx) =1, d(x) — max P, o(x). (8)

The input x is correctly classified as y when the classification margin y(y|x) > 0, with larger v(y|x)
indicating a wider separation from the nearest decision boundary.

Theorem 2. Let (¢(-),{1.}_,) be the same VLM setup as in Definition 1. Assume ¢(-) is L-
Lipschitz continuous w.r.t. the input norm, i.e., ||p(x)—@(x')||2 < L||x—x|| for all x,x" € X. Suppose
input x satisfies Theorem I (i.e., low prediction entropy enforces large feature norm ||¢(x)||2). Under
the mild alignment assumption that ¢(X) is not close-to-orthogonal to the ground-truth textual
embedding 1, of class y, increasing the vision feature norm ||¢(x)||2 expands the margin ~(x). If
~v(x) >0, the prediction for (x+0) cannot be altered away from the ground-truth label y for any
perturbation § € X with:

(%) ©)

L maXezty ||,¢'c - 1/Jy||2 '
Proof. See Appendix C.1. O

16]loc < fl0]l2 <

Combined Theorems 1 & 2, and Definition | indicate that low-entropy prediction enforces a large
vision feature norm, which in turn amplifies the classification margin. Under a mild Lipschitz
assumption, this margin translates to robustness against input perturbations. In other words,
a model with highly confident predictions naturally places each sample far from the decision
boundary in feature space, making it less susceptible to small adversarial or noisy modifications.




3.4 Teacher Guidance Refinement via Inverse Adversarial Examples

Beyond re-weighting uncertain teacher predictions, we investigate an adaptive prediction refinement
scheme to reduce reliance on erroneous supervision. In other words, we focus on generating more
benign inputs to improve guidance for robust weak-to-strong generalization model. Instead of
generating adversaries that reduce confidence (i.e., loss-input gradient ascent), we consider an inverse
procedure by reversing the gradient to maximize the likelihood in the neighborhood region of clean
samples. Thus, this input perturbation enhances teacher prediction confidence. Such refined samples
highlight class-specific features, offering more reliable guidance for the robust weak-to-strong
generalization framework.

Inverse adversarial perturbation formulation. Given an input x, we aim to generate a benignly
perturbed sample X =x+9 within an £.,-bounded region (|| ||, < €), which maximizes the teacher’s
prediction confidence. Formally, this inverse adversarial example is defined by:

XD = Tx ) {x@ ~a-sign (Vs Log (pr(x?), M(W(X))))} : (10)

Equivalently, the perturbation & shifts the teacher’s prediction p7(X) closer to a one-hot distribution
based on the teacher-derived pseudolabels M (p7(x)). This process contrasts standard adversary
generation Eq. (3) by reinforcing, rather than undermining, the teacher’s initial decision, creating an
“inverse adversary”. Consequently, the resulting inverse adversary X = x +  enhances class-specific
confidence and refines teacher supervision, supporting robust weak-to-strong generalization. We
reformulate Lcg (ps(x+6), p7(x)) into its refined counterpart Lcg (ps(x+6), pr(%)) by aligning
adversarial predictions with high-confidence teacher outputs. To justify this refinement, Theorem 3
formalizes the unique role of inverse adversaries as effective guidance distinct from standard inputs.

Theorem 3. Let pr(x) and ps(x) denote the softmax predictions over C categories w.r.t. the
teacher and student VLM during weak-to-strong generalization, respectively. Suppose X = X + 4 is
an adversarial example for student, while x = x + 9 is an inverse adversarial example for the teacher
with high confidence in the ground-truth class. Then the following cross-entropy inequality holds:

Ler(ps(%),pr(%)) > Leg(ps(x), pr(X)), (11
where Lcg(q,p)= —Ziczlpi log(q;) is the cross-entropy of q w.r.t. target p.
Proof. See Appendix C.2. O

Theorem 3 shows a unique and beneficial property of using our proposed unsupervised inverse
adversaries as guidance during robust weak-to-strong generalization. Reducing the prediction gap
between p(%X) and ps(%) also enhances the standard teacher-student prediction alignment for
clean samples, thus enhancing natural generalization to unseen data.

Objective function. We formulate Adv-W2S as a simple min-max optimization by replacing the
learning objectives in standard weak-to-strong generalization (Eq. (4)) with adversarial and inverse
adversarial examples. Under the unsupervised setting, we conduct both adversarial perturbation &
and inverse adversarial perturbation § generation based on the pseudolabels from the teacher VLM:

5=arg‘|§‘1|1a>iE£CE(pg(x+6),p7—(x)) and 5:arg||sr|1|1in<vﬁcE(PT(X+5),M(PT(X))). (12)

We can thus form adversarial example X =x-+d and its inverse adversarial counterpart X =x+ based
on the maximization above. By reformulating the adversarial variant of weak-to-strong generalization
(Eq. (5)) with our entropy-guided uncertainty re-weighting (Eq. (6)), our Adv-W2S minimizes:

LN sxcont= (1=W(x)) - Lce (Ps(R), PT(X)) +w(x) - Leg(ps(X), M(ps(x))).  (13)

During the inference stage, we directly use the CLIP model fine-tuned via our Adv-W2S method for
robustness evaluations and further cross-task generalization without modifying VLM architectures.

oo

4 Experiments

In this section, we compare our Adv-W2S with state-of-the-art adversarial fine-tuning approach
across various downstream tasks and scenarios. Below, we detail our experimental configurations.



Table 2: Zero-shot clean and robust accuracy (%). Adversarial learning is conducted on ImageNet
with evaluations across 14 datasets. Adversaries are generated via Auto-Attack with radius e =2/255.

o 8 P = o o ~ @

o] - - q =1 L =] = ° ]

5 = £ = 2 5 T % g 9 5 3 %

2 = @ @ S = < 2 a £ % 5 2 2

Eval. Method g n o o 7 o} o = a) 55 = & g g Average

< Standard CLIP 74.90 99.31 95.20 71.08 77.91 83.29 9321 79.17 55.21 62.65 31.77 52.01 87.86 59.61 73.08
2 TeCoA [55] 80.00 95.40 86.88 61.64 44.45 80.33 80.78 51.83 4543 2348 15.00 5839 79.40 58.77 61.56
= PMG [69] 77.84 96.92 90.25 64.97 58.23 83.34 86.45 58.46 4649 28.04 20.64 49.99 83.18 57.62 64.46
s FARE [63] 7296 98.28 90.24 67.78 66.80 85.65 89.75 65.13 50.43 16.54 22.83 50.02 83.75 56.86 65.50
=2 TGA [71] 80.26 96.83 88.07 60.86 49.81 81.54 81.11 51.49 4596 30.30 14.22 4995 80.20 58.89 62.11
© Adv-W2S 75.84 9848 91.64 68.83 70.58 84.86 91.11 70.68 49.57 2496 27.48 63.51 85.37 59.58 68.75
<  Standard CLIP 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.0l 0.0l 0.09 0.01
: TeCoA [55] 61.74 86.34 61.99 3582 18.62 70.57 6822 27.27 26.17 1237 543 2693 59.57 44.56 43.26
- PMG [69] 60.02 88.21 64.12 37.14 23.68 72.47 7092 2820 2633 9.07 579 47.06 62.24 45.08 45.74
z FARE [63] 43.56 88.55 61.82 34.89 23.74 70.88 67.70 32.95 25.69 3.76 531 49.39 5647 36.80 4297
2 TGA [71] 61.46 88.56 63.21 3544 21.60 71.16 68.52 26.15 26.70 11.37 576 47.88 60.32 44.46 45.19
& Adv-W2S 58.30 90.49 69.56 41.08 29.62 73.03 73.24 34.33 29.63 11.06 7.53 48.76 65.32 4543 48.38

Table 3: Average accuracy (%) of diverse CLIP ~ Table 4: Average accuracy (%) of diverse ¢ when

backbones with perturbation radius e =2/255. fine-tuning and testing w.r.t. CLIP w/ ViT-L.
Backbone Method Clean Robust Radius Method Clean Robust
TeCoA [55] 4340 23.40 TeCoA ESS] 58.90 38.07

PMG [[69]] 46.34 2248 PMG [[79]] 61.72  39.40

ResNet101  FARE [63 47.88  16.61 e =3/255 FARE|[63 63.55 37.17
TGA [71 4529  23.18 TGA [71 59.65  38.59

Adv-W2 50.14 25.93 Adv-W2 64.79 40.85

TeCoA gSS] 4946 3341 TeCoA [55] 56.25 32.53

) PMG [69] 53.57 33.05 PMG [69] 58.82 33.87
ViT-B/16 FARE [63] 54.09 30.54 e =4/255 FARE[63] 60.26 32.02
TGA [71 51.32  33.07 TGA [71] 56.76  32.86

Adv-W2 5542 35.20 Adv-W2S 61.56 35.19

Datasets. In line with prior works [55, 63], we conduct adversarial learning on the ImageNet
training set [13], with zero-shot classification evaluations on its test set and other 13 datasets. We
further explore downstream task generalization across various datasets w.r.t. image captioning, visual
question answering, object hallucination, and science question answering (see Appendix B.1).

Implementation details. Unless specified otherwise, we adopt CLIP [60] with the ViT-Large/14
architecture, as in previous studies [55, 63]. During adversarial weak-to-strong generalization, we
conduct adversary generation via 10-step PGD with perturbation radius € = 2/255 and step size
a=1/255 in an unsupervised scheme. In analogy to superalignment, we consider a relatively weak
teacher of the ViT-Base/32 architecture, pre-trained on the ImageNet training set using TeCoA [55].
Zero-shot robustness is assessed under Auto-Attack [12], an ensemble adversarial attack method
for reliable evaluations. We achieve downstream task generalization based on two large-scale VLM
frameworks, LLaVA 1.5 7B [48] and OpenFlamingo 9B [2], by replacing vision encoders with our
robust counterparts. For fairness, evaluations are under adaptive attacks. Details are in Appendix B.2.

4.1 Main Results (Zero-shot Classification)

Zero-shot classification performance. Table 2 compares Adv-W2S with state-of-the-art adversarial
fine-tuning methods using CLIP ViT-L. We report both clean and robust accuracy (Auto-Attack
[12]) across 14 datasets. Our Adv-W2S achieves the best zero-shot performance with an average
improvement of ~5% in clean accuracy and ~5.8% in robustness. While in-distribution accuracy on
ImageNet drops slightly due to the unsupervised learning scheme [63], Section 4.3 shows this gap
can be mitigated by incorporating a supervised objective into robust weak-to-strong generalization.

Robustness across diverse CLIP backbones. In addition to robustness with ViT-L, we here apply
our Adv-W2S method on ResNet101 and ViT-Base/16 based on the weak teacher VLM of ResNet50
and ViT-Base/32, respectively. Table 3 shows that our Adv-W2S consistently outperforms other
adversarial learning approaches in both average clean and robust accuracy across 14 datasets.

Adversarial learning with diverse perturbation radii. Beyond the default perturbation radius
€=2/255, we explore adversaries of larger {.,-norm perturbation radii (e =3/255, 4/255) during
both fine-tuning and robustness evaluations for fair comparisons. As shown in Table 4, we observe
that our Adv-W2S surpasses other methods across diverse perturbation radii in zero-shot scenarios.



Table 6: Zero-shot transfer performance on image captioning (CIDEr score) and VQA (accuracy %).
Captioning Visual Question Answering
VLM Type Method COoCo Flickr30k TextVQA VQAV2 Vizwiz
Clean Robust Clean Robust Clean Robust Clean Robust Clean Robust

Standard CLIP 1123 2.9 74.7 1.0 34.8 0.0 745 0.0 39.4 23

TeCoA [55] 967 451 552 240 238 128 662 357 425 296

PMG [69] 103.1 528 632 284 276 140 684 351 410 276

LLaVA 1.5 FARE [63] 1085 479 674 245 30.5 147 703 345 419 253

TGA [71] 101.3  50.6 61.9 27.8 27.1 14.6 67.3 35.0 42.8 28.0

Adv-W2S 110.8 553 72.6 30.7 32.5 16.4 72.9 37.3 45.3 33.8

Standard CLIP ~ 78.8 1.5 58.7 0.6 22.3 0.0 47.7 0.0 17.7 33

TeCoA [55] 73.0 29.6 474 13.7 17.3 2.4 46.1 23.8 17.6 4.0

. PMG [69] 76.2 31.2 52.0 16.5 17.7 2.8 47.0 24.0 16.9 42
OpenFlamingo FARE [63] 77.9 327 53.5 15.9 18.8 2.2 46.7 21.8 17.2 3.8
TGA [71] 74.2 30.5 51.8 16.0 19.0 2.7 46.2 23.6 18.0 2.5

Adv-W2S 80.0 34.3 56.9 17.1 20.5 3.9 474 253 18.2 53

Extension with adversarial PEFT. Fully fine-tuning Table 5: Acc. (%) w.r.t. diff. € for fine-
large-scale VLMs typically introduces significant com- tuning and testing (ViT-L) with LoRA.
putational costs. We therefore extend adversarial VLM Radius Method  Clean Robust
learning with LoRA [35], a PEFT strategy using trainable TeCoA [55] 5522  26.54

low-rank matrices for efficient adaptation. We report both . _ 3955 r M{%[%%j gg:g% %g%

clean and robust accuracy in the zero-shot setting of our KgA 21
V=

LoRA-based Adv-W2S as well as other approaches with TeCoA [55] 49.84  19.87

the LoRA strategy (see Table 5). The results indicate that PMG [69] 52.08 20.07
our Adv-W2S can still outperform other approaches, even € = 4/255 PARE[63] - 33.20 19.09

. . [71 51.13  19.83
with the LoRA strategy for efficiency. Adv-W2S 5428 2191

4.2 Zero-Shot Downstream Task Generalization

Image captioning extension. We here extend Adv-W2S to image captioning by replacing the vision
encoders of large-scale VLMs (e.g., LLaVA and OpenFlamingo) with our robust versions. We report
the CIDEr score [66] for both COCO and Flickr30k datasets (see Table 6). We observe that our
Adv-W2S achieves the best captioning performance in terms of both clean and adversarial examples
compared to other adversarial learning approaches. In addition to quantitative results, we further
provide image captioning visualizations against unforeseen adversaries in Figure 1 in Appendix F.

Visual Question Answering (VQA) extension. Table 6 reports VQA accuracy [1] across three
standard VQA datasets using different VLMs. Our Adv-W2S method receives a large gain in zero-
shot robustness while maintaining comparable natural performance with standard CLIP. Note that
our method can even outperform standard CLIP in clean accuracy on Vizwiz, leading to lossless
robustness enhancement. The corresponding visualizations are provided in Figure 2 in Appendix F.

Object hallucination extension. Foundation Table 7: Hallucination evaluations (F1-score) us-
VLMs are vulnerable to object hallucinations ing POPE for adversarial VLM learning (ViT-L).

i.e., erroneously recognizing objects that do not ;
( L Y g g 0] Method POPE Sampling Avg. Score
exist in inputs) [61]. POPE [44] served as an ob- Random Popular Adversarial
ject hallucination evaluation benchmark based TeCoa [55]  79.8 79.1 75.2 78.0
: : : PMG [69] 81.7 80.9 76.3 79.6

on VQ[?1 aq]osls d[gverse él'uelsgtlgon \ssmphngdscg- FTAGRE[[7613]] %(2)22; g é% 32‘8 %).g
nari ils in ndix B.3). xten - : . . .

arios (details ppe ). We extend a Adv-W2S 85.6 84.9 81.0 83.8

versarial VLM learning with hallucination eval-
uations in Table 7 (see also visualizations in Figure 3 in Appendix F). Notably, our Adv-W2S shows
reduced hallucination rates, benefiting from our inherent regularization to over-confident or overly
aligned predictions by balancing teacher-student alignment with model uncertainty.

Science question answering extension w/ CoT. Table 8: CoT eval. (Acc.) using science question
Chain of Thought (CoT) has been widely ex- answering for adversarial VLM learning (ViT-L).
plored to elicit intermediate reasoning steps

. Temperature
s Sett Method ~ __emperature ayo Acc.
from large-scale VLMs by guiding them to gen- ctine eto 00 01 02 Ve Ace
erate multi-step rationales before producing a TeCoA [55] 514 51.6 50.0 51.0
ﬁsnzal lalmsvger [8]. Sciencz QuestiondAr(liswerling Standard 5%%&?31] %2 g%jg g%;g g%g
n r niz ndar - TGA [71] 151 . L.
[. ] as been recogmzed as a .Sta ard eva lfla Adv-W2S 538 539 53.6 53.8
tion benchmark for CoT due to its large quantity =
. . . . . TeCoA [55] 674 67.6 67.1 67.4
of multi-option questions with multimodal con- Single  PMG [69] 682 68.0 67.7 68.0
texts from the science curriculum. As shown Choce %ﬂ%l 8.l 679 o1 612
in Table 8, we extend diverse adversarial VLM Adv-W2§ 693 69.5 69.0 69.3




learning methods to science question answering across different settings to evaluate their CoT capabil-
ity. Further details of diverse configurations are in Appendix B.3. Our method consistently achieves
the best science question answering performance across diverse settings, which demonstrates that our
robust weak-to-strong generalization potentially enhances the CoT capability of large-scale VLMs.
Visual examples are in Figure 4 in Appendix F.

4.3 Further Analyses (Why Adv-W2S is Effective)

Below we conduct systematic analyses of our proposed Adv-W2S framework and its component
modules to justify its efficacy and generalization capability across diverse configurations.

Impact of component modules. We analyze the con- Table 9: Ablation study of key compo-
tribution of two main components of our Adv-W2S: (i) nents in our Adv-W2S for average clean
Entropy-guided Uncertainty Re-weighting (EUR) from Eq. and robust accuracy (%) on 14 datasets.
(6), and (ii) Inverse Adversarial Refinement (IAR) in Eq.

EUR IAR Clean Robust

(10). Table 9 reports the average clean and robust accuracy 1 6345 4243
across 14 datasets in the zero-shot setting. We adopt the 2 v 6642 47.35
adversarial variant of weak-to-strong generalization from 3 v 6709 4679
4 v v 6875 4838

Eq. (5) as the baseline (first row in Table 9). Enforcing
instance-wise re-weighting to balance prediction alignment and self-refinement contributes to im-
proving both natural performance and adversarial robustness. Refining the teacher guidance with
inverse adversarial examples also enhances natural generalization to unseen data, yielding further
gains in the zero-shot accuracy.

Impact of teacher-student setups. In the stan-
dard weak-to-strong generalization paradigm,
the weak teacher model is typically pre-trained

Table 10: Average performance (%) of our Adv-
W2S method with diverse teacher-student setups.

- . - . Teacher Student Clean Robust
using task-specific s.uperV1se.d. learning un(_ier Nat. Pre-Trained ~ w/o Adv. Warm-up  68.05  46.79
natural (non-adversarial) conditions. To provide  Adv. Pre-Trained = w/o Adv. Warm-up  67.53  47.40

N . Nat. Pre-Trained ~ w/ Adv. Warm-up  68.98  47.02
further insights into the teacher-student config-  Ady. Pre-Trained  w/ Adv. Warm-up  68.75 4838

urations employed in our adversarial weak-to-
strong generalization (Adv-W2S) framework, we summarize the key setups (i) whether the weak
teacher is pre-trained under adversarial or natural conditions, and (ii) whether an unsupervised
adversarial fine-tuning (i.e., FARE [63]) is employed during the initial warm-up stage of Adv-W2S.
Table 10 shows that an adversarially pre-trained teacher with unsupervised adversarial fine-tuning for
student warm-up enjoys greater zero-shot robustness.

Impact of adversary generation schemes. Be- Table 11: Average accuracy (%) of our Adv-W2S
low, we analyze the average zero-shot classifi- with diverse adversary generation schemes.
cation performance of diverse adversary gener-

! . R - Adversary Generation Clean Robust
ation schemes ({.e., ob]ectlveAfunctlons .for gen- Student Feature Deviation 6717  46.69
erating adversarial examples X =x-4) in Table Student Prediction Deviation 65.98  47.20

Teacher-Student Prediction Distance  68.75  48.38

11. We observe that adversary generation by
maximizing the teacher-student prediction gap enforces a better robustness transfer in the context of
weak-to-strong generalization. More details are in Appendix D.1.

Impact of inverse adversary generation Table 12: Average accuracy (%) of Adv-W2S with
schemes. In addition to diverse adversary gen- diverse inverse adversary generation schemes.

eration strategies, we also investigate a range of Inverse Adversary Generation ~ Clean Robust
inverse adversary generation approaches (details Pseudo-Margin Minimization ~ 68.19  47.82
in Appendix D.2) in Table 12. The results in-  Prediction Entropy Minimization = 67.93  47.34

Pseudolabel Cross-Entropy 68.75  48.38

dicate that using the pseudolabel cross-entropy
loss leads to inverse adversaries of more benign guidance for robust weak-to-strong generalization.

Auxiliary ground-truth supervision. Table 13: Clean and robust accuracy (%) of our Adv-W2S
Recall that we primarily focus on ro- with/without an auxiliary ground-truth supervision.

bust weak-to-strong generalization in Method ImageNet Avg. 13 Datasets
an unsupervised scheme following the Clean Robust  Clean  Robust
standard setup [S]. Despite its im- TeCoA [55] 80.00 6174 6014 4184
proved zero-shot performance, its in- O g WS 7584 5830 6820  47.62
distribution performance on the fine-  “gypervised Adv-W2S ~ 80.56 64.08 6572  45.25

tuned dataset is still lower than super-
vised adversarial fine-tuning at the same VLM backbone. Thus, we investigate the underlying effect



of appending an auxiliary ground-truth supervision in our Adv-W2S method (see Table 13). Details
of this auxiliary branch are in Appendix E. We observe an inherent trade-off between in-distribution
performance on ImageNet and out-of-distribution (zero-shot) performance on other datasets.

Hyper-parameter sensitivity analyses We further provide a systematic analysis of key hyperparam-
eters involved in our proposed Adv-W2S method in Appendix G.

5 Conclusions

Motivated by our analysis of standard weak-to-strong generalization paradigm in eliciting VLM
robustness, we have uncovered that neglecting adversarial examples in alignment objectives leads
to robustness degradation, even when leveraging source guidance from an adversarially pre-trained
VLM. Thus, we have investigated an adversarial adaptation of standard weak-to-strong generalization,
explicitly integrating adversarial examples to elicit robust knowledge in an unsupervised scheme.
Recognizing that supervision from a weak-capacity VLM may be inherently unreliable, we introduce
two complementary strategies: uncertainty-based alignment re-weighting and source guidance
refinement via inverse adversarial examples. Further theoretical analyses characterize the robustness
elicitation efficacy of our method, demonstrating enhanced generalization against subtle adversarial
or noise modifications.
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Abstract

This supplementary material provides additional theoretical, algorithmic, and em-
pirical details to support our main paper. We first present a comprehensive overview
of adversarial fine-tuning schemes in vision-language models (Appendix A) and
detail our experimental configurations, including dataset descriptions, implemen-
tation details, and downstream task extensions such as image captioning, visual
question answering, object hallucination, and scientific reasoning (Appendix B).
Appendix C offers formal proofs for our theoretical statements. We further elabo-
rate on diverse objective functions for adversary and inverse adversary generation
(Appendix D). Details with respect to the auxiliary supervised branch are provided
in Appendix E, and the hyperparameter sensitivity analyses are in Appendix G.
Finally, visualizations and extended qualitative results are provided in Appendix F,
and broader impact and limitations are discussed in Appendix H.

A Further Adversarial Fine-tuning Schemes

We have analyzed the standard adversarial fine-tuning scheme (TeCoA) [55] in Eq. (2), and we
here provide more details regarding other adversarial fine-tuning schemes in the context of Vision-
Language Models (VLMs) for a more comprehensive background introduction.

PMG [69]. Motivated by the inherent overfitting of TeCoA [55] with generalization degradation, PMG
[69] leveraged the prediction-level guidance from the vanilla pre-trained VLM with a regularization
of clean samples for the target model to conduct adversarial fine-tuning, as follows:

T B~ ||§ﬁlax<g£CE(P(X+5)7Y(C))+>\1'ﬁKL(Porig(X)||P(X+5))+>\2'EKL(p(X)HP(XJr(s)) , (14)

where Lxi, represents the Kullback—Leibler divergence, and poig denotes the prediction of the vanilla
pre-trained CLIP model [60]. A; and A, are the corresponding loss weighting factors.

FARE [63]. To enhance the robustness generalization capability across diverse vision-language tasks,
Schlarmann et al. [63] proposed an unsupervised adversarial fine-tuning approach, dubbed FARE, to
adversarially optimize feature-level discrepancies in an unsupervised scheme:

foso) — x4 9) . (15)

minE o~p | max
o P 5] <e

where f(-) denotes the image encoder of the CLIP model for fine-tuning, while fg(-) is the image
encoder of the vanilla pre-trained CLIP model as the frozen reference.

*The research work was done during Junhao’s internship at TikTok Singapore.
"Corresponding author.
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TGA [71]. Motivated by the empirical observation that adversarial perturbations induce shifts in text
attention maps, TGA [71] has been proposed to incorporate test-guided attention into adversarial
fine-tuning, improving the zero-shot adversarial robustness of VLMs:

min Ee )| max Lo (p(x+6),y(0)) +01- | gore (x) = g+ )|+ A2 [|gons(x) —g(x)][| . (16)
where g(-) extracts the text-guided attention map. While the original TGA mechanism relies on the
global [CLS] token available in ViT-based CLIP models to compute text-guided attention maps, this
approach is not directly applicable to ResNet-based CLIP architectures due to the absence of an
explicit global pooling token. To address this limitation, we adapt the TGA computation by operating
on the final spatial feature maps extracted from the ResNet-101 backbone (as shown in Table 3).

B Experimental Configurations

In this section, we present a comprehensive overview of the experimental setup for our Adv-W2S
framework, including dataset descriptions, implementation details, and the methodology for extending
our approach to diverse vision-language downstream tasks.

B.1 Dataset Description

In line with prior adversarial VLM learning works [55, 63], we conduct adversarial weak-to-strong
generalization on the training set of ImageNet [13] and evaluate its classification performance on the
validation set of ImageNet, as the ground-truth labels for the test set are not publicly available. We
further evaluate the zero-shot classification performance across a broad spectrum of image recognition
tasks, encompassing 13 datasets:

* Natural Object Recognition: STL-10 [10], CIFAR-10/100 [39], and Caltech-101 [26].

* Fine-Grained Recognition: Stanf. Cars (Stanford Cars) [38], Oxford-IIIT Pets [58], Flower102
[57], and FGVC Aircraft [54].

 Texture Recognition: DTD (Describable Textures Dataset) [9].

* Remote Sensing Classification: EuroSAT [32].

* Medical Image Diagnosis: PCAM (PatchCAMelyon) [67].

* Robust Classification: ImageNet-R(endition) [33] and ImageNet-S(ketch) [68].

In addition to zero-shot image classification, we further evaluate zero-shot transfer performance on a
range of image-text downstream tasks, including image captioning and Visual Question Answering
(VQA), assessing both natural performance and adversarial robustness. For image captioning,
evaluations are conducted on the COCO [45] and Flickr30k [59] datasets. For VQA, we assess
performance on TextVQA [64], VQAV2 [28], and VizWiz [31]. Object hallucination is evaluated on
the COCO dataset [45], while Chain-of-Thought (CoT) reasoning is assessed on the SCIENCE QA
benchmark [52], a large-scale multi-choice dataset comprising multimodal science questions with
detailed explanations and diverse domain coverage.

B.2 Implementation Details (Zero-shot Classification)

Standard setups. In line with the configurations used in prior studies [55, 63], we adopt the
CLIP model [60] with the ViT-Large/14 architecture for the strong student model, unless stated
otherwise. In analogy to superalignment, we consider adversarial weak-to-strong generalization
from a weak-capacity teacher CLIP model of the ViT-Base/32 architecture that is adversarially
pre-trained on the ImageNet training set using TeCoA [55]. For robust weak-to-strong generalization
of other CLIP architectures (see Table 3 in the main text), we consider the relatively strong-capacity
student model of ResNet101 and ViT-Base/16 with the corresponding weak-capacity teacher model
of ResNet50 and ViT-Base/32, respectively. During adversarial weak-to-strong generalization, we
conduct adversary generation via 10-step PGD [53] with perturbation radius ¢ = 2/255 and step size
a = 1/255 in an unsupervised scheme (see Eq. (12)). We set the inverse adversarial perturbation
radius as ¢ = 2/255. For network parameter optimization, we adopt the AdamW optimizer [50] with
momentum coefficients (0.9,0.95). The adversarial weak-to-strong generalization is optimized with
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a cosine annealing learning rate schedule with a linear warm-up to the maximum learning rate of
1 x 1075 for 2 epochs. During the warm-up period, we also integrate the objective function of FARE
[63] (See Appendix A) with a tiny weighting factor of Ayam-up = 0.2. For Parameter-Efficient Fine-
Tuning (PEFT) extension of our Adv-W2S method in Table 5, we adopt the Low-Rank Adaptation
(LoRA) [35] framework, applied specifically to the attention modules.

Evaluation protocol for zero-shot classification. Following [63], we evaluate the classification
performance in terms of clean samples and their adversarial counterparts. Specifically for adversary
generation during evaluations, we adopt Auto-Attack (AA) [12] with the maximum perturbation radius
of e = 2/255 unless specified otherwise. For fairness, all the robustness evaluations are conducted
under adaptive attacks. Note that zero-shot classification with CLIP is performed by computing
the cosine similarity between image embeddings and a set of text embeddings corresponding to
category-specific prompts. The input image is then classified by choosing the label whose text
embedding has the highest similarity to the input image representation.

B.3 Downstream Task Extensions

We achieve downstream task generalization based on two large-scale VLM frameworks, LLaVA 1.5
7B [48] and OpenFlamingo 9B [2], by replacing their vision encoders of the ViT-Large/14 architecture
with our robust counterparts. We further explain specific modifications and evaluation protocols for
individual vision-language task extensions below.

Configurations for image captioning extensions. The CIDEr score [66] is adopted to measure
the similarity of a generated sentence against a set of ground-truth sentences for image captioning
evaluations in this paper. For adversary generation in the context of image captioning, we conduct
APGD attacks [12] with 100 steps against each ground-truth caption w.r.t. each image following [63].
After each attack step, we compute the CIDEr scores and exclude samples from further attacks if
their scores fall below our predefined thresholds, 10 for COCO and 2 for Flickr30k, representing
less than 10% of the baseline (LLaVA) performance. This selective strategy allows us to allocate
computational resources more effectively by concentrating on samples that retain relatively high
scores. In the final stage, we conduct an adversarial attack with the perturbation that previously
resulted in the lowest CIDEr score and using the corresponding ground-truth reference.

Configurations for visual question answering extensions. For VQA tasks, we report VQA accuracy
[1] and adopt a similar evaluation scheme to image captioning, without using a prediction score
threshold. Note that we select the five most frequent ground-truth answers from the ten available
annotations. We further conduct targeted adversarial attacks based on the text prompt strings “Maybe”
and “Word”. Such an evaluation protocol is also aligned with [62, 63] with APGD attacks.

Configurations for object hallucination extensions. For object hallucination evaluations, we
focus on the POPE benchmark [44] to convert the standard hallucination evaluation into a binary
classification task by prompting LVLMs with basic yes-or-no short questions about the probing
objects in three object sampling scenarios:

* Random sampling: Objects absent from the image are selected at random.

* Popular sampling: From the set of objects not present in the current image, we choose the top-k
most common objects across the entire dataset.

» Adversarial sampling: We rank all candidate objects by their co-occurrence frequency with
ground-truth objects and choose the top-k among those not appearing in the input image.

Configurations for chain of thought extensions. We assess on the ScienceQA test split based on
the LLaVA framework. During inference, we follow two prompting/evaluation regimes: standard
and single-choice. In the standard setting, the target VLM first produces an unrestricted chain-
of-thought (CoT) rationale and is then re-prompted to extract its final answer token, emulating
free-form scientific reasoning. While in the single-choice setting, we append the instruction ¢‘Answer
with the option’s letter from the given choices directly.’’ to the initial prompt,
forcing the model to emit exactly one of {A, B, C, D}. We then test both scenarios w.r.t. different
temperatures. Note that in Table 8 in the main text, the single-choice setup typically achieves better
performance than the standard case. Constraining the decoder to output only the option label can
potentially eliminate a major error source present in the standard CoT pipeline. The classifier-style
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prompt concentrates probability mass on four symbols, reducing exposure to sampling noise and
temperature-induced drift that can corrupt the final answer token.

C Theoretical Analyses

C.1 Proof of Theorem 2

We now detail the proof of Theorem 2 that a large feature-space norm can yield a large classification
margin, which in turn leads to robustness against small input perturbation.

Theorem 4 (Theorem 2 from the main text). Let (¢(-),{1.}_,) be the same VLM setup as in
Definition 1. Assume ¢(-) is L-Lipschitz continuous w.r.t. the input norm, i.e., ||¢(x) —d(x')||2 <
L||jx—x'|| for all x,x’ € X. Suppose input x satisfies Theorem I (i.e., low prediction entropy enforces
large feature norm ||¢(x)||2). Under conditions where correct prediction in Definition 1 holds,
increasing the vision feature norm ||¢(x)||2 expands the margin ~(x). If v(x) >0, the prediction for
(x+498) cannot be altered away from the ground-truth label y for any perturbation § € X with:

7(x)
L max -, ¥, — ¢y||2

Proof. We consider the VLM ((-), {¢p.}&_;), where 1, are {-normalized, and L is the Lipschitz
constant of ¢ w.r.t. the input norm:

|6(x) — p(x)|l2 < Llx—x'||o forall x,x € X.

16]loc < I6]l2 < (17)

Such Lipschitz continuity commonly holds under standard smoothness or regularity assumptions or
can be enforced by spectral normalization in neural network layers, or locally by aligning adversarial
samples with their clean and/or inverse adversarial counterparts at the feature level (we indeed have
such an alignment realized by cross-entropy in our loss).

For an input example x with ground-truth category y €{1, ..., C}, define the classification margin:
Y(yx) = 1, d(x) — max P! d(x).

If ~(y|x) >0, then x is correctly classified by the ground-truth label y.

Part (i): Large feature norm implies a larger classification margin. By Theorem 1, low prediction
entropy forces ||¢(x)||2 to be sufficiently large, unless text embeddings 1), become unbounded.
Note that the textual embeddings (prompts) are fixed and safeguarded, as they typically reside
within multimodal systems and are thus not subjected to manipulations. Under the mild alignment
assumption that ¢(x) is not close-to-orthogonal to the ground-truth textual embedding ¥, of class y,
we examine the logit gap:

Py 0(x) =9 ¢(x) = (¥, —p.) d(x) = |9, — Pl2llo(0)]]2 - cos (By.c),

where 0, . is the angle between vectors (1, — 1)) and ¢(x). Thus, increasing the vision feature

norm ||¢(x)||2 amplifies each logit gap provided cos (6,,,.) remains bounded away from zero. Hence,
the overall classification margin:

960 = min [(9, — ) T6(x)]

also grows as ||¢(x)||2 increases, leading to a wider separation from the nearest decision boundary.

Part (ii): Margin implies robustness. A standard argument in margin-based classification shows
that if y(x) is large, then no small input perturbations flip the predicted label. Formally, if y(x) > 0,
to flip the label from ground-truth y to some ¢ # ¥, one needs:

Ylo(x+0) >, d(x+0) = (Y.—v,) [p(x+0)—p(x)] > —(x).

According to the Cauchy-Schwarz inequality, one can obtain:

(e = ,) T [B(x + &) — d(x)]| < lltpe — P, 2| 6(x + &) — H(x)]|2-
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Since ¢ is L-Lipschitz, i.e., ||¢(x + §) — #(x)|l2 < L]||8||2. Therefore, we have:
(e —,) [b(x +8) — ¢(x)] = ~llvp. — ¥, 2L || ]2

Hence, if ||d]|cc < |02 < LHJ(i%, the above inequality cannot hold, preventing a label flip.

Taking the worst-case class ¢ # y via max., |9 — 1, |2 establishes the radius:

(%)
L maxc4, |9, — "/’yH2

Thus, no perturbation ||d|2 below that threshold can alter the predicted label from y.

C.2 Proof of Theorem 3

Theorem 5 (Theorem 3 from the main text). Let p7(x) and ps(x) denote the softmax predic-
tions over C categories w.r.t. the teacher and student VLM during weak-to-strong generalization,
respectively. Suppose X = x + 6 is an adversarial example for student, while x = x + 0 is an
inverse adversarial example for the teacher with high confidence on the ground-truth class. Then the
following cross-entropy inequality holds:

Lce(ps(X),pr(X)) > Log(Ps(x), PT (X)), (18)

Proof. Recall that Lcg(q,p) = — Zil p; log(g;) is the cross-entropy of q w.r.t. the target dis-
tribution p. Let teacher’s prediction on inverse adversaries p7(X) = [p1, P2, -, Pc], student’s
prediction on adversaries ps(X) = [§1,G2, - ,{dc], and student’s prediction on clean samples
ps(x) = [q1,92, -, qgc]. The cross-entropy difference in Eq. (18) can be written as:

c c c
Les(@, p7 (%)) — Lee(a, PT(X) = — Zﬁz‘ log(q:) + Zﬁi log(q:) = Zﬁi log (%), 19)
i=1 i=1 i=1

where § := ps(X) and q := ps(x). The inequality in Eq. (18) is thus equivalent to:

c
Zpi log (%) > 0.
i=1

By construction, X is an inverse adversarial example for the teacher with high confidence in category
1. We assume the high-confidence prediction w.r.t. the inverse adversary p; > p; for index i > 1. In
addition, let X be an adversarial example against the student model, which means that its prediction ¢
reduces the probability of the ground-truth class 1 by some positive amount ~; > 0 and increases the
probability of each wrong category 7 > 1 by «; > 0. Thus, we obtain:

Gh=q¢—FK, G=¢+kK, i=2,...,C.

This adversarial shift captures the typical adversarial behavior moving mass away from the ground-
truth class 1 to the remaining classes.

We thus examine the sum:
c c

Zpi log (g—) = p log (qlq_lm) + Zﬁi log (qi?ﬁm).

=1 i=2

Define:

C
G(k1,...,kc) = p1log ( ql‘fm) +) pilog <qiﬁ>
=2

We show that for x; > 0, G(k) > 0. Its derivative w.r.t. k1 is:

0 D 0 Di
9% _ _n , andfori > 1, 9 _ __Di )
Ok1 q1 — K1 OK; qi + Kq
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Hence, the Hessian is diagonal with entries:
82 ~ 62 5.
99 _ oy 99 _ B
Ok (g1 — k1) Ok (gi + ki)

?

0, (1>2).
Thus, G is strictly convex in the vector x. By the first-order property of convex functions, for any
K, K", we get:

G(k) 2 G(K*) + VG(x*)T (k= K").
Evaluating at <* = 0. Set «* = (0,0, ...,0); then we get:

g(0) = p110g< )+Zptlog( ) 0.

Moreover,

Hence, for any k = (k1,..., ko),

>O+Z<6m

Ensuring non-negativity of Eq. (19). Since p1 > p; for ¢ > 1, we may assume ”1 > 1and pl <1
for ¢ > 1. (This aligns with the intuition that the teacher distribution over the i 1nverse adversanal
example p7(X) is heavily concentrated on the ground-truth class 1, whereas ps(x) is less confident.)
Thus, we get the following

~ C ~
. 0)“”' =i [B] =Y m[2].

L>r, mil <k, i=2,...,0

»::"U

Therefore,
c
K) >k — Y ki =0,
i=2

implying ZZ L pilog ( ) > 0. Revisiting Eq. (19) shows that the cross-entropy difference is
non-negative. Hence, we ‘obtain:

Lce(q,p7(X)) > Lee(a,pr(X)) <= Lee(ps(%),pr(%)) > Lee(ps(x), pr(X)),
which completes the proof of Eq. (18).

D Objective Functions for Adversary and Inverse Adversary Generation

In this section, we provide several alternatives for both adversary and inverse adversary generation in
an unsupervised manner during our proposed Adv-W2S learning.

D.1 Adversary Generation in Weak-to-strong Generalization

In addition to generating adversarial examples by maximizing teacher-student prediction distance in
Eq. (12), we here also consider two adversary generation schemes solely based on the student VLM:
(1) feature-level deviation between clean and adversarial examples, and (ii) prediction-level deviation
between clean and adversarial examples, as follows:

Student feature deviation (ds.eat as adversarial perturbations):

05 Feat = arg s ” Hfs (X + OsFear), fs(x )| (20)
S-Feat
where fs(-) denotes the image encoder of the student CLIP model during fine-tuning.
Student prediction deviation (ds.preq as adversarial perturbations):
Os-pred = arg  max  Lcg(Ps(x + 0s-prea), Ps(X)). 1)
[185-prea || o <€
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Clean Captioning Adversarial Captioning

CLIP: A group of people are CLIP: A toy car is placed on a
skiing on a mountain. road with a car on top of it.
Adv. Image
Clean Image TeCoA: Two men walking on a £=12/255 TeCoA: A woman is standing

mountain. across a tile floor.

PMG: A group of people skiing
_on a mountain.

PMG: Two young girls are
- walking across the street.

FARE: A group of people are
skiing on a mountain.

FARE: A group of people are
standing on a snowy mountain.

TGA: A black and white photo

TGA: A man is skiing on a

mountain. of a fan sitting on a desk.
Adv-W2S: A group of people Adv-W2S: A group of people
are skiing on a snowy mountain. are skiing on a snowy mountain.
Clean Captioning Adversarial Captioning
CLIP: Two elephants standing CLIP: A heart made out of dog
next to each other. food and a dog laying on it.
Adv. Image

TeCoA: Two elephants walking
in a field.

PMG: Two elephants standing
in a field.

FARE: Two elephants standing
next to each other.

TeCoA: A big group of

Clean Image
9 elephants move across a field.

PMG: Two zombie elephants
are sitting on a driveway.

FARE: Three elephants walking
across a river.

TGA: A couple of elephants in TGA: A turtle is sitting in a car

the bush. on a stage.
Adv-W2S: Two elephants Adv-W2S: Two elephants
walking together in a field. standing in a river.

Figure 1: Visual examples (clean and adversarial samples) for image captioning when using the
LLaVA 1.5 framework with the robust vision encoder of diverse adversarial VLM learning methods.

Question: Is there a hotel in this area? Question: Is there a hotel in this area?
What type of establishment is listed on What type of establishment is listed on
the big blue sign on the left side? the big blue sign on the left side?
Clean Image Clean VQA Adv. Image ¢ = 2/255 Adversarial VQA

CLIP: (Yes, Hotel)

TeCoA: (Yes, Barber shop)
PMG: (Yes, Hotel)

FARE: (Yes, Hotel)

TGA: (Yes, Bar)

Adv-W2S: (Yes, Hotel)

CLIP: (Word, Maybe)
TeCoA: (No, Barber shop)
PMG: (Yes, Restaurant)
FARE: (Yes, Barber shop)
TGA: (No, Bar)

Adv-W2S: (Yes, Hotel)

- 4, 1 -

I Question: How much does this test cost?l I Question: How much does this test cosT?l
Clean Image Clean VQA Adv. Image & = 2/255 Adversarial VQA
3 ST CLIP: $19.99 3 S CLIP: $3000
TeCoA: $10 TeCoA: $10
PMG: $19.99 PMG: £15
FARE: $19.99 FARE: $100
TGA: $19.99 TGA: free

Adv-W2S: $19.99 Adv-W2S: $19.99

Figure 2: Visualizations (clean and adversarial samples) for visual question answering based on
LLaVA 1.5 with the robust vision encoder of diverse adversarial VLM learning methods.

D.2 Inverse Adversary Generation in Weak-to-strong Generalization

Recall that in the main text, we focus on inverse adversary generation based on the cross-entropy
loss with reference to the one-hot vector based on the teacher’s prediction M (ps(x)) (see Eq. (12)).
We further consider two other types of inverse adversary generation in an unsupervised scheme: (i)
pseudo-margin minimization, and (ii) prediction entropy minimization, as follows:

Teacher pseudo-margin minimization (1. as adversarial perturbations):

drm = i ] drm) — K or
ey e [mpr (e Sov) e (et na) @)

where j* = arg max; pjT(x + &) denotes the index of the maximum prediction.
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| Question: Is there a person in the image? | Question: Is there a traffic light in the image?l

Clean Image POPE Hallucination VQA Clean Image POPE Hallucination VQA

i) e

TeCoA: No § TeCoA: No
PMG: No s PMG: Yes
FARE: Yes FARE: Yes
TGA: Yes > TGA: No
Adv-W2S: Yes Adv-W2S: Yes
| Question: Is there a dog in the image? | | Question: Is there a bus in the image? |

Clean Image POPE Hallucination VQA Clean Image POPE Hallucination VQA

TeCoA: Yes K5 R A‘. TeCoA: No
PMG: Yes . t S PMG: Yes
Iy : r .
o\ FARE: Yes FARE: No
" TGA: Yes TGA: Yes
Adv-W2S: No

Adv-W2S: No

Figure 3: Visual examples for POPE hallucination evaluations when using the LLaVA 1.5 frame-
work with the robust vision encoder of diverse adversarial VLM learning methods.

Teacher prediction entropy minimization (d1.pr.qep as adversarial perturbations):

OTPreEp = arg _ min [ max Hy(x + 1prearp) ] (23)
| 8r-preate | I

where Hr(-) denotes the prediction-level entropy of the teacher VLM.

E Auxiliary Ground-truth Supervision

Recall that we primarily concentrate on robust weak-to-strong generalization in an unsupervised
scheme (see our Adv-W2S method in Eq. (13)). Despite its improved zero-shot performance as
shown in Table 2, its corresponding in-distribution performance on the fine-tuned dataset is still lower
than standard supervised adversarial fine-tuning (e.g., TeCoA [55]) at the same VLM backbone. To
mitigate such an in-distribution performance drop, we investigate an auxiliary branch of ground-truth
supervision for our standard Adv-W2S method (Eq. (13)):

ESAl:ll\)/ivAvl-Jichvonf = L uxcont + Asup - Lce (Ps(x + 8),y(c)), (24)

where gy, = 0.5 denotes the weighting factor for the auxiliary supervised loss. The corresponding
hyper-parameter analysis is shown in Figures 5¢ & 5d. The trade-off effect of such an auxiliary
supervision is demonstrated in Table 13.

F Visualizations of Image Captioning and Visual Question Answering

We here provide visualizations of diverse adversarial learning approaches (including our proposed
Adv-W2S method) in the context of image captioning and visual question answering.

Image captioning. As shown in Figure 1, we can observe that our Adv-W2S method facilitates an
adversarial invariance when confronted with unforeseen adversaries, generating correct and high-
quality captioning results for both clean samples and their adversarial counterparts. While most
baselines exhibit severe semantic drift or hallucinated content under adversarial perturbations, such
as describing toy cars, turtles, or zombie elephants, our method, Adv-W2S, maintains robust and
semantically consistent captions across both scenarios. These results highlight the superior robustness
of Adv-W2S in preserving grounded visual-language alignment under distributional shift.

Visual question answering. Figure 2 illustrates the robustness of the LLaVA framework using
the robust vision encoder w.r.t. diverse adversarial VLM learning approaches under clean and
adversarial conditions. For clean images, most methods provide consistent and correct answers.
However, under adversarial perturbations (¢ = 2/255), other comparative approaches exhibit severe
degradation, producing hallucinated or even incorrect answers, e.g., listing the price as “$3000” or
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Figure 4: Visual examples for science question answering when using the LLaVA 1.5 framework
with the robust vision encoder of diverse adversarial VLM learning methods.
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Figure 5: Hyper-parameter (inverse perturbation radius ¢, warm-up factor Ayarmup, and auxiliary su-
pervision factor Ag) sensitivity of Adv-W2S. (a) Varying € averaged across 14 datasets. (b) Different
Awarmup S€tups averaged across 14 datasets. (c) Sensitivity to Ag,p on ImageNet (in-distribution). (d)
Sensitivity to Agp averaged over the remaining 13 Out-Of-Distribution (OOD) datasets.

misdentifying a hotel as a “barber shop”. In contrast, our Adv-W2S method consistently preserves
correct and semantically grounded answers, demonstrating strong zero-shot robustness against
adversarial perturbations in real-world VQA scenarios.

POPE object hallucination. The visualizations of the POPE benchmark [44] in Figure 3 illustrate
how our Adv-W2S method suppresses object-level hallucinations in the adversarial evaluation
scenario. Note that previous adversarial VLM learning works tend to over-rely on language priors:
they answer “Yes” whenever the question mentions a common object (person and traffic light) and
“No” when it mentions an unlikely one (dog on a baseball field), regardless of the actual pixels.
However, our proposed Adv-W2S is the only method that consistently avoids hallucinating objects
that are absent or missing objects that are present.

Science question answering. Figure 4 focuses on multi-step reasoning under the ScienceQA protocol
[52]. Although all methods observe the same inputs, other adversarial VLM learning approaches
collapse to the most linguistically co-occurring option (e.g., Atlantic Ocean for a map highlighting
the Indian Ocean). However, our Adv-W2S maintains the correct answer even when it contradicts the
majority of peer models. The result supports our claim that adversarial weak-to-strong generalization
not only reduces single-token hallucinations but also strengthens higher-order inference pipelines.
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G Hyper-parameter Sensitivity Analyses.

A key practical advantage of our Adv-W2S method has only a few mild-impact hyper-parameters
apart from the standard parameter optimizer settings, Adv-W2S introduces only (i) the inverse
adversarial perturbation € that controls adversary strength in Eq. (12), (ii) the warm-up factor Ayarmup
that anneals the adversarial loss in the early epochs, and (iii) the auxiliary supervision factor Ag,p
in Eq. (24). Notably, no manual loss-balancing terms are required, as all three scalars modulate
self-contained components and therefore have bounded influence.

We adopt the same inverse adversarial perturbation radius é configuration as the standard adversary
setup for consistency. We can also observe that increasing € mildly strengthens both clean and robust
accuracy up to € = 2, beyond which returns saturate. A minor weighting for the adversarial warm-up
facilitates improving natural performance and adversarial robustness. The analyses in Figures 5S¢ &
5d further justify the underlying trade-off between in-distribution robustness and out-of-distribution
robustness. We therefore choose a balanced value of Ag, = 0.5 in our standard setting, which gives
near-optimal ImageNet accuracy while limiting OOD performance degradation.

H Broader Impact and Limitations.

H.1 Broader Impact

The advancement of VLMs has significantly revolutionized zero-shot learning across multimodal tasks.
However, their real-world deployment raises serious concerns regarding their inherent vulnerability
to adversarial attacks, which can severely compromise reliability and trustworthiness in high-stakes
applications. Our proposed adversarial weak-to-strong generalization (Adv-W2S) framework directly
addresses this concern by improving the zero-shot adversarial robustness of VLMs across diverse
multimodal tasks in an unsupervised scheme.

Our method also aligns with the emerging objective of superalignment, which arises from the widening
gap between model capabilities and the scalability of human supervision [41]. As models increasingly
exceed human performance, reliance on weak teacher models to guide stronger student models
becomes a scalable alternative (analogy of superalignment). Our work advances this paradigm by
showing that adversarially guided supervision, rather than solely natural signals, can more effectively
elicit robustness in vision-language settings.

The improvement carries several broader impacts:

* Research advancement. Our theoretical and empirical analyses of entropy-guided uncertainty
re-weighting and inverse adversarial examples provide more insights into robust knowledge
superalignment in cross-modal settings, potentially inspiring future work in robust cross-modal
learning and robust Al with foundation models.

» Al safety. By strengthening the robustness of foundational models against unforeseen adversarial
examples, our method lays the groundwork for more secure and trustworthy Al systems applicable
to diverse vision recognition and understanding tasks.

* Public trust. As Al technologies become embedded in everyday decision-making, improving ro-
bustness under distribution shift and adversarial scenarios contributes to building public confidence
in their safe and responsible deployment.

H.2 Limitations

While our method significantly enhances adversarial robustness, it presents several limitations, yet
we also try to address/mitigate these limitations in our paper:

¢ In-distribution performance trade-off. The unsupervised nature of our Adv-W2S can lead to
a slight degradation in in-distribution (e.g., the ImageNet dataset for fine-tuning) performance.
However, we show that this can be mitigated by incorporating a supervised loss term into our
optimization, allowing the model to balance zero-shot performance and in-distribution performance
more effectively (see the last analysis in Section 4.3).

* Dependence on teacher reliability. The effectiveness of weak-to-strong generalization inherently
depends on the quality of the weak teacher’s predictions. When the teacher exhibits high uncer-
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tainty or spurious behavior, it may misguide the student. This is a common challenge to all the
weak-to-strong generalization approaches. To somehow mitigate this, our proposed framework
introduces entropy-guided re-weighting and inverse adversarial refinement to reduce reliance on
low-confidence supervision (see Sections 3.3 and 3.4).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly convey the key contributions and scope
of the paper with a clear motivation for robust weak-to-strong generalization. The claims
are consistently supported by theoretical analyses and extensive experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix H.2.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper provides complete theoretical results, with all assumptions clearly
stated alongside each theorem. Full formal proofs are included in the appendix, and intuitive
sketches are offered in the main text to aid understanding.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed experimental setups are provided in Appendix B. For each experi-
ment/anaylsis, we also provide its corresponding configuration for clarity.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Detailed experimental setups for reproducing our results are provided in
Appendix B. All the datasets used in the paper are publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Full details of training and evaluations are provided in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat each experiment five times under different random seeds and report
the mean performance. Consistent trends across runs indicate the robustness of our findings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

10.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The required computing resources in our setting are provided in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have thoroughly checked the NeurIPS Code of Ethics for our research.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader positive impacts are discussed in Appendix H.1.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the external resources we used are properly mentioned and credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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