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ABSTRACT

During software development, developers often turn to code snippets as a starting
point for their individual use and further development. These code snippets can
be looked up and explored on popular Q&A websites such as Stack Overflow for
solving programming-related problems. The context switch between the IDE and
the respective Q&A websites required for this affects the programming flow and
degrades the developer’s programming productivity. We present an extension for
the VSCode IDE to reduce the need for context switches. Multiple code generation
models built on GPT-3 or Codex can be plugged in and used to generate and
contextualize code snippets based on a natural language intent. A qualitative test
and a brief pricing analysis indicate that our open-source extension, especially
when combined with Codex, can already be a valuable addition to everyday soft-
ware development and, furthermore, enables developers to benefit from future
improvements in natural language processing.

1 INTRODUCTION

The internet provides developers a great deal of programming help, most notably through the popular
Q&A website Stack Overflow. Today, this wealth of source code data is used to train large neural
networks that enable code generation based on natural language intent (Chen et al., 2021; Feng et al.,
2020). It has become standard practice for developers to search specifically for code snippets to solve
programming-related problems. The search query is usually formulated as an intention suitable for
search engines—often in natural language—to be executed by general purpose search engines such
as Google or Bing. From these, the programmer eventually selects a code snippet, which is then
copied, pasted into the IDE, sometimes ported, integrated and customized, and further developed.
However, research, e.g., by Bacchelli et al. (2012), attest to the negative impact of using websites like
Stack Overflow during programming. The major weaknesses are (1) the context switch when leaving
the IDE to open a browser and (2) the lack of context of copied code snippets from the web. Our
extension aims to work around these adverse side effects by using state-of-the-art code generation
models to provide contextualized code suggestions directly in the IDE.

The main contributions of this work are

1. a VSCode extension that suggests code snippets based on natural language intents,

2. the utilization of large language models to contextualize and generate code suggestions,

3. an evaluation of different models used for the code generation, and

4. an extensible architecture to integrate additional code generation models to the tool.

Our VSCode extension supports writing Python code and is designed to help developers focus and
increase their productivity. All currently integrated models support only Python code generation.
However, some of them, such as those described in chapters 4.3–4.4, are easily extensible to other
programming languages.

The paper is organized as follows. Section 2 presents the related work. Section 3 introduces the
extension itself and highlights its implementation. Thereafter, section 4 presents the currently available
code generation models of the extension with a focus on the implementation details. Building on this,
section 5 compares the models and section 6 summarizes this work.
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2 RELATED WORK

Recent work focused on utilizing large amounts of available source code online to improve deep-
learning-based code generations models (Chen et al., 2021; Feng et al., 2020; Svyatkovskiy et al.,
2020; Xu et al., 2020; Kanade et al., 2020; Phan et al., 2021). These models are built on transformer-
based architectures such as BERT (Feng et al., 2020; Kanade et al., 2020), GPT (Chen et al., 2021;
Svyatkovskiy et al., 2020), or T5 (Phan et al., 2021). Other work utilized these models within IDEs
for searching or generating code snippets (Zhang et al., 2016; Xu et al., 2021; Ponzanelli et al., 2014).
In addition, benchmarks for code generation models have been established to allow for an evaluation
of different models (Austin et al., 2021; Lu et al., 2021). The following two papers are the primary
resources on whose findings our work expands.

In-IDE Code Generation from Natural Language Xu et al. (2021) developed a PyCharm IDE
plugin that implements a hybrid of code generation and code retrieval functionality. Based on a given
natural language intent, the extension creates seven different code snippets with a code generation
model and retrieves seven matching code snippets from Stack Overflow. The authors analyzed the
impact of their plugin on developer productivity through a study with 31 participants. Fourteen
Python programming tasks were created for seven different use cases, such as file manipulation,
web scraping, or data visualization. The results showed that they did not find any significant
performance increase while the developers used the plugin. Code generated or retrieved by the plugin
was neither faster written nor of higher quality. Nevertheless, they concluded their work with six
recommendations for future work that might increase developer productivity through their plugin.
One of the recommendations that this work focuses on is considering a developer’s local context
inside the current file as part of the input and output of the code generation model.

CoPilot using Codex Chen et al. (2021) introduced the Codex model; a large language model
fine-tuned on code from GitHub. It can be accessed as a VSCode Extension called GitHub CoPilot1,
released in June 2021. The extension provides a similar user experience of retrieving inline code
snippet suggestions based on a natural language intent. However, this extension does not allow one
to choose one’s preferred code generation model based on considerations such as accuracy or cost.
Additionally, CoPilot is not open-source, making it difficult to understand what parts of the source
code are sent to the Microsoft servers. We designed our Extensions to provide a generalized workflow
for code snippet suggestions generated using models chosen by the developer.

3 THE EXTENSION

The developed VSCode extension generates code snippets directly in the IDE. It takes a query as
input and returns a list of code snippets that match the query via a customizable code generation
model. There are two ways to interact with the extension.

1copilot.github.com

(a) Input popup. (b) Code snippet candidates list.

Figure 1: Query-Approach: A query is taken as input and code snippet candidates are presented in a
list, generated by the default code generation+retrieval model and the contextualization using GPT-3.
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Figure 2: Inline-Approach: The intent //read csv file. is triggering the inline suggestions and
key commands to switch between code snippet suggestions.

The first option, the query-approach, similar to the work of Xu et al. (2021), utilizes the Quick
Pick capability2 of the VSCode API to collect the user input and then shows a list of code snippet
candidates (see Figure 1). After selecting a snippet, it is pasted into the IDE. This option is accessible
via a keyboard shortcut which opens a popup where the user can enter a request in natural language
(see Figure 1 (a)). The plugin then sends the request to the code generation model and displays the
list of code snippet candidates shown in Figure 1 (b).

The second option, the inline-approach, features a similar user experience to GitHub CoPilot. It uses
the Inline Suggestions capabilities3 of the VSCode API to show the code snippet candidates directly
as if they were already accepted inside of the IDE (see Figure 2). The extension’s inline suggestion
capabilities can be triggered by adding two slashes followed by the query and ending with a dot.

An additional feature of the extension is that the user can choose the code generation model. The
code generations models introduced in the next chapter have their unique benefits and trade-offs.
In the “Settings” tab of the VSCode extension, the different models can be selected if the required
access keys for the models have been provided (see Figure 3). Additionally, the repository provides
instructions on plugging in custom code generation models.

4 CODE GENERATION MODELS

For our extension, we integrated (1) a default code generation and retrieval based on Stack Overflow
and the Bing Search Engine, (2) a contextualization and a (3) a code generation using GPT-3 as well
as (4) contextualized code generation using Codex.

2Quick Pick API: code.visualstudio.com/api/extension-capabilities/common-capabilities#quick-pick
3Inline Suggestions API: code.visualstudio.com/updates/v1 58# inline-suggestions

Figure 3: Extension settings to choose the preferred Code Generation Model.
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4.1 DEFAULT CODE GENERATION+RETRIEVAL MODEL

The default model of the extension uses a similar architecture to the one Xu et al. (2021) used in their
PyCharm plugin. The code generation model is based on a previous paper of the same authors Xu
et al. (2020). First, they used a pre-trained model based on a dataset of 100k Stack Overflow Code-
Question pairs for the programming language Python and API Documentations. Then, they fine-tuned
the model on a small manually curated dataset called CoNaLa4 of code-question pairs that had a
significantly higher data quality.

Natural Language
Intent StackOverflow 

URLs
Code Snippet 

Extraction

Code Snippet 
Results

Figure 4: Code Retrieval Pipeline

The code retrieval pipeline (see Figure 4 for a visualization of the pipeline) uses a wrapper on top of
the Bing Search Engine that already includes an advanced indexing and ranking mechanism. The
Bing API is called with the additional string “site:stackoverflow.com” to ensure that only the best
matching Stack Overflow pages are considered in the response. The response then provides a Stack
Overflow URL to the relevant posts, which can be scraped. Then, the answer with the most votes is
selected, and based on a simple heuristic, a code snippet is extracted from that answer. This results in
a list of code snippets that match the query. Our extension shows five results for each of the models
and combines them in the output.

4.2 CONTEXTUALIZATION USING GPT-3

This option uses the default code generation+retrieval model and then utilizes the language model
GPT-3 to contextualize the code snippets to fit the context of the current position in the file. An
option to contextualize a code snippet is to replace the variables with the matching ones of the current
context of a file.

GPT-3 is an autoregressive language model with 175 billion parameters released by OpenAI in July
2020 (Brown et al., 2020). Through a technique called few-shot learning, GPT-3 can be taught to
solve various tasks. The only thing necessary is to adjust the so-called prompt, i.e., the input to the
neural network. For the design of this prompt, it is helpful first to describe the task of the model and
list some examples for it in the next step.

The prompt for the model to contextualize code snippets starts with the formulation of the task:

1 Replace variables in Python Code Snippet (Unprocessed) with the context of the Program:

To increase the model’s accuracy on this task, we provide a few examples to the prompt on how
a given unprocessed code snippet should be contextualized given the context of its program. The
examples start with adding the context of the position in a current file (Program:), then adding the
unprocessed code snippet generated by the default code generation/retrieval model (Unprocessed:),
and finally adding the contextualized code snippet (Processed:). An example taken from the
prompt is the following:

1 Program:
2 fruits = ["apple", "banana", "cherry"]
3 new_fruit = "mango"
4 Unprocessed:
5 list.append(2)
6 Processed:
7 fruits.append(new_fruit)

By providing GPT-3 with examples like this, the model can be taught to only substitute variables to
the matching type. The complete prompt with all examples can be found in Appendix A.1.

4CoNaLa: conala-corpus.github.io
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4.3 CODE GENERATION USING GPT-3

The following model option generates the code snippet and contextualizes the output via one prompt
to GPT-3. It removes the need to use the default code generation and retrieval model for receiving a
list of code snippets for a natural language intent.

GPT-3 was not explicitly built for generating source code, but it was trained on a scrape of the whole
internet, which includes websites with source code such as GitHub or Stack Overflow (Brown et al.,
2020, p.3). This makes it possible to tweak GPT-3 to output code snippets instead of natural language.
The created prompt for instructing GPT-3 to create Python code snippets from a natural language
intent starts with the following task definition:
1 CoPilot is a chatbot that helps software developers write code.
2 It takes a natural language intent NLI and answers in the Python programming language.

Afterwards, the model is given some examples that consist of the context of a program (Program:),
the question or task instruction as a natural language intent (NLI:) and the matching code snippet
output (CoPilot:). An example looks like this:
1 Program:
2 fruits = ["apple", "banana", "cherry"]
3 new_fruit = "mango"
4 NLI:
5 Append new fruit to list of fruits
6 CoPilot:
7 fruits.append(new_fruit)

The complete prompt with all examples can be found in Appendix A.2.

4.4 CODEX FOR CODE GENERATION

Codex5 is a model that was released by OpenAI through an API in private beta in August 2021.
They fine-tuned a GPT model on code from GitHub. The performance for generating code improved
significantly compared to code generation using GPT-3 (Chen et al., 2021).

The model can create code in over a dozen programming languages, including JavaScript, Go, PHP,
and Python. Since the extension focuses on generating Python code snippets, the only thing that
needs to be specified in the prompt is to output Python code. This is as easy as adding the following
line to the beginning of the prompt:
1 # Python 3

After this line, it is possible to add the current context of the file the developer is working in and the
natural language intent to the prompt, at which point the Codex model will respond with a matching
code snippet.

5 RESULTS

We evaluated the different code generation models by means of qualitative testing and pricing.

Qualitative Testing In general, the default code generation and retrieval model introduced by Xu
et al. (2021) has a relatively low quality. If the extension creates ten code snippet results for a query,
usually only a few of them are useful (see Appendix B.1 for examples of the model).

The low quality of the code snippets created by the default model, in turn, harms the second model,
which builds on top of it and only does the contextualization using GPT-3.

Using GPT-3 for code generation works great for queries that are similar to the ones used as examples
in the prompt, but it often doesn’t find any useful code snippets for more advanced queries (see
Appendix B.3 for examples).

By far the best performing model during the qualitative testing was the Codex model. Even though
only minor modifications were necessary for the prompt, the generated code snippets matched the

5Codex Release: openai.com/blog/openai-codex
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queries best. Unlike the default code generation model, for simple queries most of the code snippets
created by Codex are usable and compilable.

Pricing The Codex API is currently offered for free in private beta. Therefore, we cannot include it
in the price comparison.

The default code generation model was deployed on an AWS EC2 server. Also, the code retrieval
pipeline does not add additional costs for generating a list of code snippet candidates. For these
reasons, this model represents the long-term least expensive option.

Next, the two GPT-3 based models are examined for their costs. OpenAI offers different model sizes
for their GPT-3 language model. The larger ones have a better performance, but cost significantly
more. Additionally, the pricing depends on the length of the prompt and the generated code snippet.
The price is paid in 1,000-token increments, with the number of tokens corresponding to the byte-pair
encoded input and output of the model. On average, 1,000 tokens correspond to approximately 750
words6. However, more tokens must be expected for code, as their byte-pair encoding algorithm is
not optimal for encoding source code.

As described in Section 4.2, one of the models uses GPT-3 just for the contextualization of the code
snippets that it retrieves from the default code generation/retrieval model and the other model uses
GPT-3 directly to generate the code snippets. Since the evaluation of the default code generation/re-
trieval model has shown that a larger amount of possible code snippet candidates must be created
with this model in order to obtain at least some useful results, the GPT-3 API must be called more
often for the model that uses GPT-3 for the contextualization. For a single use of the extension, the
GPT-3 for contextualization model makes 10 request to the GPT-3 API, while the GPT-3 for code
generation model makes just one request and generates 3 code snippets.

The prompts for both of the models have a similar length because they consist of the same number of
examples. This makes using the GPT-3 for contextualization model about three times more expensive
than using the GPT-3 for code generation model. An average single use of the extension with the
second largest GPT-3 model costs about $0.06 (˜ 10,000 tokens) for the GPT-3 for contextualization
model and $0.02 (˜ 3,000 tokens) for the GPT-3 for code generation model. Using the largest GPT-3
model would increase the price to about $0.6 for the GPT-3 for contextualization model and $0.2
for the GPT-3 for code generation model. Although the performance of both models increases when
using the larger model, regular use of the extension with this configuration would not be economically
feasible. Therefore, we decided to set the second largest GPT-3 model as the default, which still
provides good performance but reduces the cost significantly. See Appendix C for a detailed price
calculation for the different models.

6 CONCLUSION

In this work, we introduced a VSCode extension that provides code suggestions based on a customiz-
able code generation model. Developers can submit a query to one of the code generation models
and retrieve a list of code snippet suggestions from which to choose. We also introduced the four
code generation models currently available in the extension, i.e., the standard code generation and
query model, the contextualization model using GPT-3, the code generation model using GPT-3, and
the codex model. We believe that code generation models will become even more potent in the future
and will be an indispensable tool for any developer. Our extension provides a flexible and extensible
architecture that could serve as a foundation for future work in this direction.

Our extension is open-source and freely available online at github.com/blinded/for-review.
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A GPT-3 PROMPTS

A.1 CONTEXTUALIZATION USING GPT-3

1 Replace variables in Python Code Snippet (Unprocessed) with
2 the context of the Program:

4 Program:
5 file_to_download="sales_of_january.csv"
6 Unprocessed:
7 import pandas as pd
8 data = pd.read_csv('https://example.com/passkey=wedsmdjsjmdd')
9 Processed:
10 import pandas as pd
11 data = pd.read_csv(file_to_download)

13 Program:
14 fruits = ["apple", "banana", "cherry"]
15 new_fruit = "mango"
16 Unprocessed:
17 list.append(2)
18 Processed:
19 fruits.append(new_fruit)

21 Program:
22 hostUrl = "http://localhost:8081/parse/conala"
23 parameters = {
24 q: query
25 };
26 Unprocessed:
27 requests.get(url, params=params)
28 Processed:
29 requests.get(hostUrl, params=parameters)

31 Program:
32 params = {
33 q: query
34 };
35 randomUrl = "https://example.com"
36 Unprocessed:
37 requests.get(url, params=parameters)
38 Processed:
39 requests.get(randomUrl, params=parameters)

41 Program:
42 d1 = {'a': 1, 'b': 2}
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43 d2 = {'b': 10, 'c': 11}
44 Unprocessed:
45 z = x | y
46 Processed:
47 z = d1 | d2

49 Program:
50 prompt_for_email = "Please enter your email"
51 Unprocessed:
52 text = input("prompt")
53 Processed:
54 text = input(prompt_for_email)

56 Program:
57 file_to_open = "earnings_Q2_20.xlsm"
58 Unprocessed:
59 import os.path
60 os.path.isfile(fname)
61 Processed:
62 import os.path
63 os.path.isfile(file_to_open)

65 Program:
66 colors = ['red', 'blue', 'green']
67 favoriteColor = 'red'
68 Unprocessed:
69 list[-1]
70 Processed:
71 colors[-1]

73 Program:
74 new_list = list()
75 Unprocessed:
76 if len(li) == 0:
77 print('the list is empty')
78 Processed:
79 if len(new_list) == 0:
80 print('the list is empty')

82 Program:
83 old_list = [1,2,3,4,5,6]
84 Unprocessed:
85 lst2=lst1[:]
86 Processed:
87 new_list = old_list[:]

89 Program:
90 list1 = [23,65,23,75,23]
91 list2 = [245,95,122,1,98]
92 Unprocessed:
93 c = [x+y for x,y in zip(a, b)]
94 Processed:
95 sum_of_lists = [x+y for x,y in zip(list1, list2)]

Listing 1: Complete prompt for contextualizing code snippets with the help of GPT-3

A.2 GPT-3 FOR CODE GENERATION

1 CoPilot is a chatbot that helps software developers write code.
2 It takes a natural language intent NLI and answers in the
3 Python programming language.

5 Program:
6 file_to_download="sales_of_january.csv"
7 NLI:
8 Read the data of the csv file
9 CoPilot:
10 import pandas as pd
11 data = pd.read_csv(file_to_download)

13 Program:
14 fruits = ["apple", "banana", "cherry"]
15 new_fruit = "mango"
16 NLI:
17 Append new fruit to list of fruits
18 CoPilot:
19 fruits.append(new_fruit)

21 Program:
22 const hostUrl = "http://localhost:8081/parse/conala"
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23 const parameters = {
24 q: query
25 };
26 NLI:
27 Make a get request with parameters
28 CoPilot:
29 requests.get(hostUrl, params=parameters)

31 Program:
32 const params = {
33 q: query
34 };
35 const randomUrl = "https://example.com"
36 NLI:
37 Make a get request with parameters
38 CoPilot:
39 import requests
40 requests.get(randomUrl, params=parameters)

42 Program:
43 csvFile = "./data.csv"
44 NLI:
45 Read the data of the csv file
46 CoPilot:
47 import pandas as pd
48 data = pd.read_csv(csvFile)

50 Program:
51 d1 = {'a': 1, 'b': 2}
52 d2 = {'b': 10, 'c': 11}
53 NLI:
54 Merge two dictionaries
55 CoPilot:
56 z = d1 | d2

58 Program:
59 prompt_for_email = "Please enter your email"
60 NLI:
61 Request user input from command line
62 CoPilot:
63 text = input(prompt_for_email)

65 Program:
66 file_to_open = "earnings_Q2_20.xlsm"
67 NLI:
68 Check if file exists
69 CoPilot:
70 import os.path
71 os.path.isfile(file_to_open)

73 Program:
74 colors = ['red', 'blue', 'green']
75 favoriteColor = 'red'
76 NLI:
77 Get last item of list
78 CoPilot:
79 colors[-1]

81 Program:
82 new_list = list()
83 NLI:
84 Check if list is empty
85 CoPilot:
86 if len(new_list) == 0:
87 print('the list is empty')

89 Program:
90 old_list = [1,2,3,4,5,6]
91 NLI:
92 Clone list
93 CoPilot:
94 new_list = old_list[:]

96 Program:
97 list1 = [23,65,23,75,23]
98 list2 = [245,95,122,1,98]
99 NLI:

100 Sum elements in two lists
101 CoPilot:
102 sum_of_lists = [x+y for x,y in zip(list1, list2)]
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104 Program:
105 cars = ["Ford", "Volvo", "BMW"]
106 NLI:
107 Sort list
108 CoPilot:
109 cars.sort()

111 Program:
112 my_list = [1,1,3,5,5]
113 NLI:
114 Find duplicate in list
115 CoPilot:
116 duplicates = [x for x in my_list if x in my_list]

118 Program:
119 name = "Mamma"
120 NLI:
121 Check if palindrome
122 CoPilot:
123 palindrome = name == name[::-1]

Listing 2: Complete prompt for generating code snippets with the help of GPT-3

B CODE COMPLETION EXAMPLES

Example 1 - List Operations
Context of the file:

1 l_1 = ["test", 2, 3.5]
2 l_2 = [6, "test2", 9.7]

Query:

1 //merge two lists.
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Example 2 - File Manipulation
Context of the file:

1 file_to_write_to = "./transcript.txt"
2 text_to_add = "Hello World"

Query:

1 //add string to file.

B.1 DEFAULT CODE GENERATION/RETRIEVAL

1 # Disclaimer: Even though this model does not replace the variable names, the compilable
solutions that do what the query specifies have been marked as correct.

3 # Example 1:

5 ### COMPLETION 1 (WRONG -> At least not what was expected, since it aggregates list in a
tuple): ###

7 zip(T, y)

9 ### COMPLETION 2 (WRONG): ###

11 dict(list(x) for x in zip(*my_list))

13 ### COMPLETION 3 (WRONG): ###

15 dict(list(x) for x in zip(*lists))

17 ### COMPLETION 4 (WRONG): ###

19 dict(list(y) for y in zip(a, b, c))

21 ### COMPLETION 5 (WRONG): ###

23 zip(T, b)

25 ### COMPLETION 6 (CORRECT): ###

27 listone = [1, 2, 3]
28 listtwo = [4, 5, 6]

30 joinedlist = listone + listtwo
31 >>> joinedlist
32 [1, 2, 3, 4, 5, 6]

35 ### COMPLETION 7 (CORRECT): ###

37 >>> l1 = [1, 2, 3]
38 >>> l2 = [4, 5, 6]
39 >>> joined_list = [*l1, *l2] # unpack both iterables in a list literal
40 >>> print(joined_list)
41 [1, 2, 3, 4, 5, 6]
42 l = [1, 2, 3]
43 r = range(4, 7)
44 res = l + r
45 res = [*l, *r]

48 ### COMPLETION 8 (CORRECT): ###

50 import itertools
51 for item in itertools.chain(listone, listtwo):
52 # Do something with each list item

55 ### COMPLETION 9 (CORRECT): ###

57 mergedlist = list(set(listone + listtwo))
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60 ### COMPLETION 10 (CORRECT): ###

62 listone = [1,2,3]
63 listtwo = [4,5,6]

65 listone.extend(listtwo)
66 mergedlist = []
67 mergedlist.extend(listone)
68 mergedlist.extend(listtwo)

71 # Example 2:

73 ### COMPLETION 1 (CORRECT): ###

75 f.write('en_US')

77 ### COMPLETION 2 (WRONG): ###

79 os.write(string)

81 ### COMPLETION 3 (WRONG): ###

83 os.write(file)

85 ### COMPLETION 4 (WRONG): ###

87 os.listdir('..')

89 ### COMPLETION 5 (WRONG): ###

91 f.write('\n'.join(line.rstrip('\n') for line in open('file.txt')))

93 ### COMPLETION 6 (CORRECT): ###

95 with open("Output.txt", "w") as text_file:
96 text_file.write("Purchase Amount: %s" % TotalAmount)
97 text_file = open("Output.txt", "w")
98 text_file.write("Purchase Amount: %s" % TotalAmount)
99 text_file.close()

100 with open("Output.txt", "w") as text_file:
101 text_file.write("Purchase Amount: {0}".format(TotalAmount))
102 with open("Output.txt", "w") as text_file:
103 print("Purchase Amount: {}".format(TotalAmount), file=text_file)
104 with open("Output.txt", "w") as text_file:
105 print(f"Purchase Amount: {TotalAmount}", file=text_file)

107 ### COMPLETION 7 (CORRECT): ###

109 price = 33.3
110 with open("Output.txt", "w") as text_file:
111 text_file.write("Purchase Amount: %s price %f" % (TotalAmount, price))

113 ### COMPLETION 8 (WRONG): ###

115 f = open('%s.csv' % name, 'wb')

117 ### COMPLETION 9 (CORRECT - but a lot of stuff we didn't ask for in the query): ###

119 your_data = {"Purchase Amount": 'TotalAmount'}
120 print(your_data, file=open('D:\log.txt', 'w'))
121 def my_func():
122 """
123 this function return some value
124 :return:
125 """
126 return 25.256

129 def write_file(data):
130 """
131 this function write data to file
132 :param data:
133 :return:
134 """
135 file_name = r'D:\log.txt'
136 with open(file_name, 'w') as x_file:
137 x_file.write('{} TotalAmount'.format(data))
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140 def run():
141 data = my_func()
142 write_file(data)

145 run()

147 ### COMPLETION 10 (WRONG): ###

149 numpy.savetxt('Output.txt', ["Purchase Amount: %s" % TotalAmount], fmt='%s')

Listing 3: Completion options for Example 1 and 2 of the Default Code Generation/Retrieval model

B.2 CONTEXTUALIZATION USING GPT-3

1 # Disclaimer: All completions are marked as wrong if the variables weren't replaced with
the ones from the context of the file.

3 # Example 1:

5 ### COMPLETION 1 (WRONG): ###

7 zip(l_1, l_2)

9 ### COMPLETION 2 (WRONG): ###

11 dict(list(x) for x in zip(l_1, l_2))

13 ### COMPLETION 3 (WRONG): ###

15 dict(list(x) for x in zip(*lists))

17 ### COMPLETION 4 (WRONG): ###

19 dict(list(y) for y in zip(l_1, l_2, l_3

21 ### COMPLETION 5 (WRONG): ###

23 zip(l_1, l_2)

25 ### COMPLETION 6 (WRONG): ###

27 listone = [1, 2, 3]
28 listtwo = [4, 5, 6]
29 joinedlist = listone + listtwo
30 >>> joinedlist
31 [1, 2, 3, 4, 5, 6]

33 ### COMPLETION 7 (WRONG): ###

35 >>> l1 = [1, 2, 3]
36 >>> l2 = [4, 5, 6]
37 >>> joined_list = [*l1, *l2] # unpack both iterables in a list literal
38 >>> print(joined_list)
39 [1, 2, 3, 4, 5, 6]
40 l = [1, 2, 3]
41 r = range(4, 7)
42 res = l + r
43 res = [*l, *r]

45 ### COMPLETION 8 (CORRECT): ###

47 import itertools
48 for item in itertools.chain(l_1, l_2):
49 # Do something with each list item

51 ### COMPLETION 9 (WRONG): ###

53 mergedlist = list(set(listone + listtwo))

55 ### COMPLETION 10 (WRONG): ###

57 listone = [1,2,3]
58 listtwo = [4,5,6]

60 listone.extend(listtwo)
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61 mergedlist = []
62 mergedlist.extend(listone)
63 mergedlist.extend(listtwo)

65 # Example 2:

67 ### COMPLETION 1 (WRONG): ###

69 open('hello', 'w').write(text_to_add)

71 ### COMPLETION 2 (WRONG): ###

73 f.write('<unk>' % file_to_write_to)

75 ### COMPLETION 3 (WRONG): ###

77 f.write('My <unk>')

79 ### COMPLETION 4 (WRONG): ###

81 f.write('<unk>Hello World</unk>')

83 ### COMPLETION 5 (WRONG): ###

85 os.write(file_to_write_to, text_to_add)

87 ### COMPLETION 6 (WRONG): ###

89 from pathlib import Path

91 Desktop = Path('Desktop')

93 # print(Desktop)
94 WindowsPath('Desktop')

96 # extend the path to include subdir
97 SubDeskTop = Desktop / "subdir"

99 # print(SubDeskTop)
100 WindowsPath('Desktop/subdir')
101 # passing an absolute path has different behavior

103 ### COMPLETION 7 (WRONG): ###

105 f = open('%s.csv' % name, 'wb')

107 ### COMPLETION 8 (WRONG): ###

109 file_name = "testlorem"
110 string_to_add = "added"

112 with open(file_name, 'r') as f:
113 file_lines = [''.join([x.strip(), string_to_add, '\\n']) for x in f.readlines()]

115 with open(file_name, 'w') as f:
116 f.writelines(file_lines)

118 ### COMPLETION 9 (WRONG): ###

120 from pathlib import Path
121 Desktop = Path('Desktop')
122 SubDeskTop = Path.joinpath(Desktop, "subdir")

124 ### COMPLETION 10 (WRONG): ###

126 with open('file.txt', 'a') as f:
127 f.write('blah')
128 f.writelines(lines)

Listing 4: Completion options for Example 1 and 2 of the GPT-3 for Contextualization model

B.3 GPT-3

1 # Example 1:

3 ### COMPLETION 1 (CORRECT): ###

15



Under review as a conference paper at ICLR 2022

5 merged_list = l_1 + l_2

7 ### COMPLETION 2 (CORRECT): ###

9 l_1 + l_2

11 ### COMPLETION 3 (CORRECT, but generated the same as COMPLETION 2): ###

13 l_1 + l_2

16 # Example 2:

18 ### COMPLETION 1 (CORRECT): ###

20 with open(file_to_write_to, 'a') as f:
21 f.write(text_to_add)

23 ### COMPLETION 2 (CORRECT, but generated the same as COMPLETION 1): ###

25 with open(file_to_write_to, 'a') as f:
26 f.write(text_to_add)

28 ### COMPLETION 3 (CORRECT, but generated the same as COMPLETION 1 and 2): ###

30 with open(file_to_write_to, 'a') as f:
31 f.write(text_to_add)

Listing 5: Completion options for Example 1 and 2 of the GPT-3 for Code Generation model

B.4 CODEX

1 # Example 1:

3 ### COMPLETION 1 (CORRECT): ###

5 l_3 = l_1 + l_2
6 print(l_3)

8 ### COMPLETION 2 (CORRECT, but generated the same as COMPLETION 1): ###

10 l_3 = l_1 + l_2
11 print(l_3)

13 ### COMPLETION 3 (CORRECT, but generated the same as COMPLETION 1 and 2): ###

15 l_3 = l_1 + l_2
16 print(l_3)

19 # Example 2:

21 ### COMPLETION 1 (CORRECT): ###

23 f = open(file_to_write_to, "a")
24 f.write(text_to_add)
25 f.close()

27 ### COMPLETION 2 (CORRECT, but generated the same as COMPLETION 1): ###

29 file = open(file_to_write_to, "a")
30 file.write(text_to_add)
31 file.close()

33 ### COMPLETION 3 (CORRECT): ###

35 with open(file_to_write_to, "a") as f:
36 f.write(text_to_add)

Listing 6: Completion options for Example 1 and 2 of the Codex model
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C GPT-3 PRICING EXAMPLE

Contextualization (curie) Contextualization (davinci) Code Generation (curie) Code Generation (davinci)
Number of Requests 10 10 2 2
Prompt Length (in tokens) 8797 8797 1908 1908
Completion Length (in tokens) 537 357 320 192
Total Cost $0.06 $0.55 $0.01 $0.13

Table 1: Evaluation of a single use of the extension using the GPT-3 for Contextualization and GPT-3
for Code Generation model. Both were evaluated using the second largest GPT-3 model called ”curie”
and the largest one called ”davinci”.

Context of the file:

1 def getInfos(name):
2 hostUrl = "https://example.com/getInformation"
3 paramsForUrl = {
4 "name": name
5 }

Query:

1 //get request with parameters.
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