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Abstract—Unmanned Underwater Vehicle (UUV) has been
applied increasingly in marine work, and the trajectory tracking
speed and accuracy directly affect work efficiency. To improve
the convergence speed and accuracy of UUV tracking control,
an adaptive weight model predictive control based on quantum
particle swarm optimization (QPSO-AWMPC) is presented in this
paper. The control weight is determined by the state tracking
error. At the initial stage, where the tracking error is large,
the weight control is lowered to achieve a higher speed. At
the stable phase, where the tracking error is small, the weight
control is raised to maintain robustness. A kinematics controller
is designed to optimize state error and obtain the desired speed
within constraints, while a dynamic controller is proposed to
optimize speed and obtain the required thrust. Finally, the three-
dimensional simulation verifies the effectiveness of the proposed
method. Compared with the traditional MPC and Backstepping
methods, the internal constraint of the UUV is satisfied while the
convergence speed, accuracy, and robustness are improved.

Index Terms—Trajectory tracking, Model predictive control,
Convergence speed, Adaptive weight

I. INTRODUCTION

Unmanned Underwater Vehicle (UUV), due to the flexibility
and autonomy, is used to explore the oceanic and scientific
investigation. Trajectory tracking is an important aspect of
the control research of UUV. Now many trajectory tracking
methods have been proposed, such as PID control [1, 2],
backstepping control [3, 4], neural network method [5], sliding
mode control [6–8], etc. All of the above methods have been
successfully applied in UUV trajectory tracking research.

In addition to the above work, model predictive control
has been widely used in UUV control owing to its own
advantages of adding constraints. Model predictive control has
the inherent advantage of dealing with the internal constraints
of the machine directly [9–12]. It has a strong adaptabil-
ity to the nonlinear underwater environment, and can solve
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the problems of speed jump and thrust saturation well in
the tracking process [13–15]. Gan et al. [16] proposed the
MPC method based on quantum particle swarm optimization
(QPSO), which adopts the latest optimization algorithm, to
achieve the faster tracing with constraints. In reference [17],
an observer was designed to improve the robustness of UUV
by adding the influence of ocean currents. In reference [18],
a hybrid control strategy based on MPC is applied to 7000m-
Human Occupied Vehicle and its feasibility is verified, and
Zhu et al. proposed further model predictive cascade control
for resolving actuator saturation in human-occupied vehicle
trajectory tracking. Yao et al. [20] proposed an improved
model predictive control and designed different weight for
comparison according to different depths in the fixed-depth
control. It verifies the feasibility of the method and gives the
influence of different size weight. The above research solved
the thrust saturation, but failed to improve the UUV speed
control value. In addition, fixed weight leads to a decrease
in UUV adaptive ability. Its tracking accuracy, convergence
speed and robustness all need to be further improved.

In this paper, inspired by adaptive weight control and
constraint optimization of MPC, a hybrid control strategy
QPSO-AWMPC which combines quantum particle swarm
optimization (QPSO) and adaptive weight model predictive
control (AWMPC) is proposed to deal with the tracking control
problem of UUV. Then the SMC method was cascaded to real-
ize UUV dynamic design. The overall strategy is comprised of
two parts: the first part is the kinematics controller based on
QPSO-AWMPC, which can get the desired speed according
to the position information. The second part is the dynamics
controller based on SMC, which can get the desired thrust
according to the speed information.

The rest of the paper is organized as follows. In Section
II, the control principle of MPC, the optimization algorithm
of QPSO, the simplified model and thruster arrangement of
UUV are introduced. In Section III, we present the hybrid



control strategy QPSO-AWMPC, and design the controller of
kinematics and dynamics. In Section IV, the stability analysis
of the controller is given. In Section V, to indicate the fea-
sibility and effectiveness of the proposed method, simulation
comparison and analysis are given. In Section VI, concluding
remarks are made.

II. ALGORITHM PRINCIPLE AND UUV SIMPLIFIED MODEL

A. Algorithm principle of model predictive control

For model predictive control, there are three key steps in
the process, namely three basic principles, which are pre-
diction model, rolling optimization and feedback correction,
respectively corresponding to the prediction model, controller
and corrector. The function of the prediction model is to
predict the future output value. The controller identifies the
characteristics of the system output. And the corrector is the
feedback correction for the error.

During the control process, there is always an expected
reference trajectory used as the optimization target. Taking
time k as the current time, the controller combines the current
measured value and prediction model. To predict the output
of the system in the future domain [k, k +NP ] (NP is the
predicted time domain), a series of control sequences in the
control time domain [k, k +NC ] (NC is the control time do-
main) is obtained by solving optimization problems satisfying
objective functions and constraints.

The first element of the control sequence is taken as the
actual control quantity of the controlled object. When it comes
to the next time k + 1, the above process repeats, completing
an optimization problem with constraints in a rolling manner,
thereby achieving continuous control of the controlled object.

B. QPSO algorithm

Quantum particle swarm optimization (QPSO) is a type of
swarm intelligence optimization algorithm, which is devel-
oped from ant colony algorithm, particle swarm optimization
algorithm, etc. The QPSO algorithm cancels the movement
direction attribute of the particle. And the update of the
particle position has nothing to do with the previous movement
of the particle, increasing the randomness of the particle
position. The biggest update is that the new quantity mbest
is introduced to represent the average value of pbest. The
objective function is optimized by QPSO algorithm to obtain
the control sequence. The pseudocode is shown in Table I.

The control increment V is initialized. Then calculating
the fitness functions value of each group and finding out
the optimal group. Depending on the corresponding formula,
the above control increment is updated, the fitness function
value is calculated, the optimal control increment is found and
compared with the previous increment. The specific implemen-
tation process of QPSO method. In this way, when the cycle
number reaches the maximum, the optimal control increment
is achieved.

TABLE I
PSEUDOCODE OF QPSO

Algorithm QPSO
Input: particle i (N is the popsize of particle)
Output: Gbest
1: for each particle i
2: Initialize velocity Vi and position Xi

3: Evaluate particle i and set Pbesti = Xi

4: end for
5: Gbest = min(Pbest)
6: while not stop
7: for i = 1 to N
8: Update the velocity and position
9: Evaluate particle i
10: if fitness(Xi) < fitness(Pbesti)
11: Pbesti = Xi

12: if fitness(Pbesti) < fitness(Gbesti)
13: Gbesti = Pbesti
14: end for
15: end while
16: print Gbest

C. UUV dynamics simplified model

UUV moves in space with six degrees of freedom under
water. Its coordinate system is divided into inertial frame and
body-fixed frame, as shown in Fig. 1.

Fig. 1. UUV coordinate system.

The motion in the body-fixed frame can be expressed by the
linear motion along three axes and the rotation around three
axes, and its nonlinear dynamic motion equation is as follows:

MV̇ + C(v)V +D(v)V + g(η) = τ (1)

where M is the inertia matrix, C(v) is the Coriolis term and
the centrifugal term, D(v) is hydrodynamic loss term, g(η)
is the resultant force term of gravity and buoyancy, τ is the
input for propeller control, V =

[
u v w p q r

]T
.

In practical applications, pitch and roll movements are rare,
so this paper studied the relatively frequent motions, namely
surge, sway, heave and yaw. The reference state is:

ηd(t) =
[
xd(t) yd(t) zd(t) ψd(t)

]T
(2)

The real-time state is:

η(t) =
[
x(t) y(t) z(t) ψ(t)

]T
(3)



(a) (b)
Fig. 2. Falcon and its thruster layout.

The errors of x, y, z, ψ are respectively ex, ey, ez, eψ . The
state vector in the inertial frame is expressed as η =[
x y z ψ

]T
. The speed vector in body-fixed frame is

expressed as v =
[
u v w r

]T
.

The correlation is:

η̇ = J(η)v (4)

That is:
ẋ
ẏ
ż

ψ̇

 =


cosψ − sinψ 0 0
sinψ cosψ 0 0
0 0 1 0
0 0 0 1



u
v
w
r

 (5)

where J(η) is the Jacobian matrix, which is generally used
as the transformation matrix from the body-fixed frame to the
inertial frame.

D. Thrusters arrangement of Falcon and thrust normalization

To check the effectiveness of the proposed algorithm, we
used the data of Falcon vehicle for simulation, so the thruster
system of Falcon is analyzed. The structure and horizontal
thruster layout of Falcon are shown in Fig. 2.

Falcon unmanned underwater vehicle contains 5 thrusters, 4
thrusters in the horizontal plane and 1 thruster in the vertical
plane. It can carry out 4-dof movements: surge, sway, yaw
and heave. a and b are width and length of Falcon, α is angle
between the thruster and the X0 axis of the body-fixed frame.
The specific data are as follows: a = 0.6 m, b = 1 m, and
α = 36◦.

The hydrodynamic parameters of Falcon can refer to [16].
The simplified dynamic model used in the simulation is as
follows: 

(m+Xu̇) u̇+Xuu+Xuuu|u| = τX
(m+ Yv) v̇ + Yvv + Yvvv|v| = τY
(m+ Zẇ) ẇ + Zww + Zwvw|w| = τZ
(Iz +Nr) ṙ +Nrr +Nrrr|r| = τψ

(6)

According to the propeller layout of Fig. 2 and the principle
of dynamic, the resultant force and resultant moment generated
by Falcon on each degree of freedom can be easily calculated:


τX
τY
τZ
τΨ

 =


cosα cosα cosα cosα 0
sinα − sinα sinα − sinα 0
0 0 0 0 1
A −A −A A 0



T1
T2
T3
T4
T5


(7)

where
[
τX τY τZ τN

]T
are the resultant force

and moment on the four degrees of freedom, and[
T1 T2 T3 T4 T5

]T
are thrust on each propeller. A =

(b/2) · sinα+(a/2) · cosα. The thrust can be normalized and
obtained:

τ̄X
τ̄Y
τ̄Z
τ̄N

 =


0.25 0.25 0.25 0.25 0
0.25 −0.25 0.25 −0.25 0
0 0 0 0 1

0.25 −0.25 −0.25 0.25 0



T̄1
T̄2
T̄3
T̄4
T̄5


(8)

That is: 
τ̄X
τ̄Y
τ̄Z
τ̄N

 = B̄


T̄1
T̄2
T̄3
T̄4
T̄5

⇔ τ̄ = B̄ · T̄ (9)

T̄ = B̄−1 · τ̄ (10)

where τ̄ is the normalized form of τ , and T̄ is the normalized
form of T,−1 ≤ T̄i ≤ 1, i = 1, 2, 3, 4, 5.

III. CONTROL STRATEGY AND SYSTEM DESIGN

A. Objective function and adaptive weight design

The objective function is designed as:

J(k) =

Np∑
i=1

∥η(k + i | t)− ηref (k + i | t)∥2Qη

+

Nc−1∑
i=0

∥∆V (k + i | t)∥2Rr

(11)

The first term is the path tracking error penalty term, whose
physical meaning is the ability to track the expected path. Qη
is the state weight matrix. In this design, Qη has a fixed value.
The second is the control input penalty term, which suppresses
the excessively drastic control increment to ensure that there
will be no big jump at the control input port, making the
input performance more stable. Rv is the control input weight
matrix. In this design, Rv takes variable values.

In most studies, the weight matrix is fixed, like in references
[11], [16]. Considering the actual track tracking process, the
controller has different requirements for different stages of
UUV operation. There is a large error in the initial state of
tracking, while the controller expects the UUV to approach
the reference trajectory at a higher speed. The tracking error is
small in the late stage, while the controller expects the UUV to
operate at a more stable state and speed. To meet this demand,



Fig. 3. Diagram of relationship between δv and eη(t).

Fig. 4. Control system flowchart.

the MPC method based on adaptive weight is designed in this
paper. The control weight matrix Rv is designed to be variable,
which makes UUV converge at a relatively higher speed and
operate in a more stable state. UUVs specific constraint must
be met in the process, and the MPC method handles this well.

This paper introduces a variable parameter δv . Weight Rv
is expressed as:

Rv = δvIm×m (12)

Im×m is the m-dimensional identity matrix, and m is the
number of controlled-quantity.

The relationship between δv and state error eη(t) is shown
in Fig. 3.

Here, eη(t) =
[
x− xd y − yd z − zd ψ − ψd

]
, eη =

∥eη(t)∥ , eη1, eη2 is the state error of different sizes,
and eη1 < eη2 . When ∥eη(t)∥ ≥ eη2 , the value of δv
approaches the minimum value of 0 , so as to give a large
control increment and improve the tracking speed. When
∥eη(t)∥ ≤ eη1, the value of δv approaches the maximum
value of 1 , so as to suppress large fluctuations of control
variables and improve stability. When eη1 < ∥eη(t)∥ < eη2,
there is a law of change. Where 0 and 1 are theoretical limits,
the actual value is close to 0 and 1. The law of global change
is expressed as follows:

δ = 0 (eη ≥ ∥eη2∥)
δ =

eη2−∥eη∥
eη2−eη1

(eη1 < ∥eη(t)∥ < eη2)

δ = 1 (eη ≤ ∥eη1∥)
(13)

B. Design of kinematics controller

The entire system design flow chart is shown in Fig. 4, and
it is subdivided into kinematics controller design as the outer
loop and dynamics controller design as the inner loop.

Here, ηd is the reference state, eη is the state error, vc is
the expected speed, η is the real-time state, v is the real-time
speed. The kinematics controller is comprised of error model,
system constraint and objective function. The state error in the
inertial frame is optimized, while the kinematics controller is
constructed to obtain the desired speed vc.

1) Error model: The optimal object for kinematic tracking
is the state variable error. The UUV tracks the reference
trajectory on the status by narrowing the error. Reference state
and the actual state are ηd(t),η(t) respectively, So the state
error is defined as:

eη(t) = ηd(t)− η(t) (14)

When t tends to infinity, the state error of UUV tends to 0,
that is:

lim
t→∞

eη(t) = 0 (15)

With the speed as the input of the system and the state as the
output of the system, the real-time system can be expressed
as follows:

η̇ = f(η, v) (16)

Each point needs to satisfy the above equation, then the
reference trajectory can be expressed as:

η̇d = f (ηd, vd) (17)

In general, Taylor expansion method is employed to error
analysis. Carrying out Taylor expansion of equation (16) at
the reference point and ignoring higher-order terms:

η̇ = f (ηd, vd)+
∂f(η, v)

∂η

∣∣∣∣η=ηd
v=vd

(η − ηd)+
∂f(η, v)

∂v

∣∣∣∣η=ηd
v=vd

(v − vd)

(18)
Equation (17) minus equation (16) is equal to:

˙̃η = A(t)


x− xd
y − yd
z − zd
ψ − ψd

+B(t)


u− ud
v − vd
w − wd
r − rd

 (19)

where:

A(t) =


0 0 0 −u sinψ − v sinψ
0 0 0 u cosψ − v cosψ
0 0 0 0
0 0 0 0



B(t) =


cosψ − sinψ 0 0
sinψ cosψ 0 0
0 0 1 0
0 0 0 1


Then, the above equation can be expressed as:

˙̃η = A(t)η̃(k) +B(t)ṽ(k) (20)

In fact, the controller design is a discrete sampling, so the
first-order difference quotient method is adopted to discretize
the continuous equation:

Ak,t = I + T ·A(t) (21)

Bk,t = T ·B(t) (22)



T is the sampling time, that is:

Ak,t =


1 0 0 (−u sinψ − v sinψ)T
0 1 0 (u cosψ − v cosψ)T
0 0 1 0
0 0 0 1



Bk,t =


T cosψ −T sinψ 0 0
T sinψ T cosψ 0 0

0 0 T 0
0 0 0 T


Then, equation (20) can be expressed as:

η̃(k + 1) = Ak,tη̃(k) +Bk,tṽ(k) (23)

2) Solution of control: We change equation (23) to the
following form and get an augmented state-space model:

ξ(k | t) =
[

η̃(k | t)
ṽ(k − 1 | t)

]
(24)

The augmented model can be written in the following matrix
form:

ξ(k + 1 | t) = Ãk,tξ(k | t) + B̃k,t∆v(k | t) (25)

η(k | t) = G̃k,tξ(k | t) (26)

where, Ãk,t =

[
Ak,t Bk,t

0m× n Im

]
, B̃k,t =[

Bk,t
Im

]
, G̃k,t =

[
Gk,t 0

]
, m = 4, n = 4.

The predicted outputs sequence is in the finite prediction
layer NP and the control input sequence is in the finite control
layer NC :

The output sequence is:

γ =
[
η(k + 1 | k) η(k + 2 | k) · · · η (k +Np | k)

]T
(27)

The control input sequence is:

∆V =
[
∆v(k) ∆v(k + 1) · · · ∆v (k +Nc − 1)

]T
(28)

We combine equations of (25), (26), (27) and (28) to obtain
the system prediction output:

γ = Ψtξ(t | t) + Θt∆V (t) (29)

where

Ψt =

 G̃t,tÃt,t
· · ·

G̃t,tÃ
Np

t,t



Θt =



G̃t,tB̃t,t 0 0 0

G̃t,tÃt,tB̃t,t G̃t,tB̃t,t 0 0

G̃t,tÃ
N
t,tB̃t,t G̃t,tÃ

Nt−1

t,t B̃t,t
... G̃t,tÃt,tB̃t,t

...
...

. . .
...

G̃t,tÃ
Np−1

t,t B̃t,t G̃t,tÃ
NR−2

t,t B̃t,t · · · G̃t,tÃ
Np

p−Nc−1

t,t B̃t,t


Substitute equation (29) into the target function (11):

J(k) = ∆V (t)Ht∆V (t)T +Gt∆V (t)T (30)

where Ht = [ ΘTt QΘt +R 0 ], Gt = [ 2E(t)TQΘt 0 ].
The simulation constraints are set as follows. The control

quantity constraint:

−vmax ≤ v(k + n) ≤ vmax, n = 0, 1, · · ·Nc − 1 (31)

The control increment constraint:

−vmax ≤ ∆v(k + n) ≤ vmax, n = 0, 1, · · ·Nc − 1 (32)

Based on lots of data, we set vmax = 2 m/s. The terminal
item of prediction output γ is as follows, which is set as 0.

η (k +Np | k) = G̃t,tÃ
NP ξ(t, t)

+
[
G̃t,tÃ

NP−1

t,t B̃t,t · · · G̃t,tÃ
NP−NC−1
t,t B̃t,t

]
∆V = 0

(33)
In conclusion, the kinematic trajectory tracking problem can

be transformed into the following optimization problem.

min
∆V

J(k) = ∆V (t)Ht∆V (t)T +Gt∆V (t)T

s.t. Eq(31)− Eq(33)
(34)

The control sequence for a period of time in the future can
be obtained by solving this equation with QPSO algorithm.
Then, its optimal solution can be obtained and the first
increment of ∆V ∗ is applied as the control input:

∆V ∗ =
[
1 0 · · · 0

] [
∆vt ∆vt+1 · · · ∆vt+NC−1

]T
(35)

C. Design of dynamic controller

Kinematics system output is the desired speed. In order to
get thrust to reach the desired speed, a dynamic controller
needs to be built. The design of the controller adopts the
sliding mode control method.

Due to the chattering caused by switching terms in tradi-
tional SMC, adaptive continuous switching terms are designed
in this paper to avoid intermittent jumping.
v and vc are the real-time speed and desired speed of UUV

respectively. Then the speed tracking error is defined as:

ec = vc − v (36)

Sliding mode control includes the design of sliding mode
surface and control law. Firstly, the design of sliding mode
surface is as follows:

s = ėc + 2Λec + Λ2

∫
ecdt (37)

We take the derivative of S and set it to 0:

ṡ = ëc + 2Λėc + Λ2ec = ëc + 2Λ (v̇c − v̇) + Λ2ec = 0 (38)

The known kinetic equation is:

Mv̇ + C(v)V +D(v)V + g(η) = τ (39)

v̇ =M−1(τ − (C(v)V +D(v)V + g(η))) (40)

We put equation (40) into equation (38) to get:

ë+ 2Λ
(
v̇c −M−1(τ − (C(v) +D(v) + g(µ)))

)
+ Λ2e = 0

(41)



Because the UUV dynamic model is not completely known,
the dynamic equation is equivalent to the estimated term and
the unknown term, so:

τ = τ̂ + τ̃ (42)

where, τ̃ = M̃q+ C̃q+ D̃q+ g̃+τw; τ̂ = M̂q+ Ĉq+ D̂q+ ĝ;
M,C,D, g are estimate term of M̂, Ĉ, D̂, ĝ, M,C,D, g
are unknown term of M̃, C̃, D̃, g̃, τw is unknown disturbance.
The control law is designed as follows:

τeq = M̂

(
v̇c +

ëc
2Λ

+
Λ

2
ec

)
+ Ĉq + D̂q + ĝ (43)

Because UUV runs slowly underwater, the unknown term
can be considered to be very small and bounded. In order to
ensure the stability of the sliding mode surface, the adaptive
term is designed and added into the control law.

τad = Γs+

(
K +

Ĉ

2Λ

)
s (44)

The complete control law is:

τ = τeq + Γs+

(
K +

Ĉ

2Λ

)
s (45)

IV. SIMULATION AND RESULT ANALYSIS

This experiment compared the improved QPSO-AWMPC
method with the fixed-weighted QPSO-MPC and backstepping
methods. The experiment was split into three-dimensional
straight line and spiral curve simulation, respectively to verify
the effect of speed jump or thrust saturation problems and
convergence speed improvement.

Related parameters: the sampling period was set as Ts =
0.1 s, while sampling time is T = 200 s and T = 500 s.
Backstepping parameters: Λ = 3,K = 60,Γ = 100. AWMPC
parameters: population size popsize = 40, maximal iterations
MAXITER = 50, predictive domain Np = 10, control do-
main Nc = 10; dynamics related parameters: Λ = 3,K = 60,
Γ = 100. Due to the insignificant changes of all parameters
after a period of simulation, the intercept time of some
simulation diagrams is less than the total simulation time.

An important point is explained here in advance. If back-
stepping method does not take account of the actual con-
straints, the reference trajectory will be tracked quickly. In
order to demonstrate the actual situation, we will limit the
maximum thrust of the simulation.

1) The control law of backstepping is:

vc =


uc
vc
wc
rc

 =


k (Vx cosψ + Vy sinψ) + (ud cos eψ − vd sin eψ)
k (−Vx sinψ + Vy cosψ) + (ud sin eψ + vd cos eψ)
wd + kzVz
rd + kψVψ


(46)

where k, kz, kψ is the positive constant.
2) The weight in method QPSO-MPC is fixed value 0.5.

Fig. 5. Comparison diagram of straight line tracking.

Fig. 6. Comparison diagram of tracking error changes.

A. Straight line tracking

By setting the initial state of UUV as (0,−10,−1, 1),

the reference trajectory is: ηd(t) =


xd = 0.15 ∗ t
yd = 0.15 ∗ t
zd = 0.15 ∗ t
psid = π/4

The

simulation results are shown in Figs. 5-8.
The tracking result is given in Fig. 5. The blue dotted line

represents the tracking trajectory generated by backstepping
method. It can be seen that its track trajectory is divergent in
finite space and cannot be converge, which is caused by the
constraint of its thrust. The other two methods can track the
reference trajectory stably. And the proposed QPSO-AWMPC
tracking effect is better. Because backstepping method cannot
track the reference trajectory, we will not talk about it in error

Fig. 7. Comparison diagram of speed changes.



Fig. 8. Comparison diagram of normalized thrusts.

TABLE II
CONTRAST OF ERROR ACCURACY IN 20S

Method X Y Z ψ
QPSO-MPC -0.277 5.493 -0.038 -0.065

QPSO-AWMPC -0.082 2.956 -0.025 -0.043

and speed analysis.
Fig. 6 shows the error variation in the tracking process.

Taking the X direction as an example, we compare the tracking
accuracy of the two methods with a fixed horizontal axis and
find that the error of QPSO-AWMPC is always smaller than
that of QPSO-MPC at the same time. Selecting 20s as an
example to compare the error accuracy and the results are
shown in Table II. We fixed the vertical axis to compare
the taken time when the error was about 0, and found that
QPSO-AWMPC method could converge to the vicinity of 0
faster. Taking the Y direction as an example, final convergence
time of QPSO-AWMPC and QPSO-MPC is 48.6s and 104.2s
respectively, and the convergence time is shown in Table III.
This method saves a lot of tracking time and has a higher
tracking accuracy.

The speed changes can be observed in Fig. 7. The black dot
line marks the maximum speed that the QPSO-MPC method
can achieve, and the blue solid line marks the maximum speed
that the QPSO-AWMPC method can achieve. In large error
phase, the speed of latter is always greater in four directions
at the same time. In small error phase, such as 15-30s, the
latter speed is lower than the former, which is caused by the
latter larger control weight. Due to the large error of X and Y
axis directions, the speed difference in these two directions is
more obvious in the tracking initial stage: in the Y direction,
the maximum speed of QPSO-AWMPC reaches about 0.9954
m/s, while the maximum speed of QPSO-MPC is about 0.5941
m/s. And the maximum speed of two methods satisfies the
constraint. In the tracking stable phase, the two speeds are
nearly equal. This speed change shows that QPSO-AWMPC
converges faster in the early stage of the tracking process.

TABLE III
TACKING TIME WHEN THE ERROR IS 0

Method Backstepping QPSO-AWMPC QPSO-MPC
Time +∞ 48.6s 104.2s

TABLE IV
THE COMPARISON OF MAXIMUM SPEED

Method uc (m/s) vc (m/s) wc (m/s) rc (m/s)
QPSO-MPC 0.5481 0.5941 0.4885 0.2647

QPSO-AWMPC 0.9621 0.9954 0.6830 0.4322

Fig. 9. Maximal normalized thrust.

Maximum speed value of UUV is shown in the Table IV.
Fig. 8 shows the thrust change after normalization. After

cutting off the over-limit thrust of backstepping method, the
track diverges and the subsequent thrust changes greatly. The
thrust of both QPSO-MPC and QPSO-AWMPC is within the
constraint range. In the initial stage, the thrust of QPSO-
AWMPC is larger than that of QPSO-MPC, while the thrust
of tracking stable phase is almost equal. The thrust magnitude
reflects the speed magnitude, so this result proves that QPSO-
AWMPC tracking converges faster again. The maximum thrust
value is illustrated in Fig. 9.

In conclusion, backstepping cannot track the reference tra-
jectory under the condition of limited thrust. QPSO-MPC can
track the reference trajectory well, but its convergence speed
and tracking accuracy are far less than QPSO-AWMPC.

B. Spiral curve tracking with constraints

By setting the initial state of UUV as (−10, 10, 0, 1), the

reference trajectory is: ηd(t) =


xd = 25 ∗ sin(0.02 ∗ t)
yd = −25 ∗ cos(0.02 ∗ t)
zd = 0.1 ∗ t
psid = 0.02 ∗ t

,

The simulation results are shown in Figs. 10-13.
Fig. 10 shows the tracking results of the three methods in

the presence of thrust constraints. The backstepping method
cannot effectively track the reference trajectory under the
thrust constraint. However, both QPSO-AWMPC and QPSO-
MPC can track the reference trajectory. QPSO-AWMPC has
a better tracking result than QPSO-MPC.

Fig. 11 shows the normalized thrust change. In order to
respond to the actual situation, the thrust generated by back-
stepping is limited to [-1, 1]. So thrust constraint makes it can’t
achieve trajectory tracking process. Both QPSO-AWMPC and
QPSO-MPC are restricted within the constraint, and the former
has bigger thrust.

From the error changes in the four directions in Fig. 12, it
can be seen that the error reduction speed of QPSO-AWMPC



Fig. 10. Comparison diagram of straight line tracking.

Fig. 11. Comparison diagram of tracking error changes.

Fig. 12. Comparison diagram of speed changes.

Fig. 13. Comparison diagram of normalized thrusts.

TABLE V
CONTRAST OF ERROR ACCURACY IN 20S

Method X Y Z ψ
QPSO-MPC 0.855 -9.389 0.221 0.109

QPSO-AWMPC 0.503 -4.584 0.066 0.098

TABLE VI
COMPARISON OF CONVERGENCE TIME

Method Backstepping QPSO-AWMPC QPSO-MPC
Time +∞ 50.3s 100.9s

method is greater and the tracking accuracy is higher. In four
directions, at the same time, the error brought by QPSO-
AWMPC is always smaller than that of QPSO-MPC, and the
former fluctuation is slight, so the final error is closer to 0. The
error accuracy in 20s is shown in Table V. The convergence
time can also be obtained from the error variation and is shown
in Table VI.

Fig. 13 shows the tracking real-time speed, and the initial
real-time speed which represents the tracking convergence
speed. As can be seen from the figure, speed of QPSO-
AWMPC in all four directions is greater than that of QPSO-
MPC method, while the latter speed is basically same.

C. Robustness analysis

To verify tracking stability, we added disturbance at the 320s
to simulate thruster failure. Observing trajectory trends and the
result was shown in Fig. 14. In the process of UUV tracking,
we alter its speed. At this time, the UUV cannot reach the
expected speed, so the tracking trajectory will deviate from the
reference trajectory. From the degree of trajectory deviation,
it can be seen that the tracking trajectory of QPSO-AWMPC
is closer to the reference trajectory, with smaller relative error
and higher accuracy. When the error reaches the maximum
point, the trajectory descent gradient of QPSO-AWMPC is
grater, that is to say, its convergence speed is faster than that
of QPSO-MPC. In conclusion, the improved method had better
robustness, accuracy and speed.

Through simulation experiments of straight line and spiral
curve tracking, on the basis of solving the problem of thrust
saturation, the improved method can track the reference tra-
jectory quickly with higher accuracy. The convergence time
is about 50-60s less than QPSO-MPC method. Simulation
experiment of robustness analysis shows that the robustness
of UUV tracking process in the later stage is better, and
the recovery speed is faster. The simulation results verify the
effectiveness of the QPSO-AWMPC method.

V. CONCLUSION

In this paper, an improved MPC method based on QPSO is
designed to improve the convergence speed and accuracy of
UUV trajectory tracking. In this method, the control weight
is a function of state error. In the initial stage, if the error is
large, the weight is small and the tracking speed is greater. In
the later stage, if the error is small, the weight is large and the



Fig. 14. Comparison diagram of speed changes.

operation robustness is greater. Finally, the effectiveness of this
method is verified by MATLAB simulation. This paper studied
the convergence speed, accuracy and robustness deeply, and
the fault tolerant control of tracking will be further discussed
in the future work.
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