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Abstract
Understanding gut microbiome dynamics gut re-
quires deciphering complex, metabolically driven
interactions beyond taxonomic profiles. We
present SIMBA, a novel framework that integrates
mechanistic metabolic simulations with a graph
neural network (GNN) to predict microbial abun-
dances and uncover cross-feeding relationships.
By simulating pairwise interactions among gut mi-
crobes using metabolic networks, we generate bio-
logically grounded graphs that capture metabolite
cross-feeding and functional relationships. Our
custom GNN, enhanced with edge-aware atten-
tion, is trained through a multi-stage pipeline
combining self-supervised learning, simulation-
based pretraining, and fine-tuning on real micro-
bial abundance data. SIMBA achieves state-of-
the-art performance (Spearman ρ = 0.85) and en-
ables interpretable insights into keystone taxa and
metabolic bottlenecks. This work demonstrates
the power of combining metabolic networks with
deep learning for precision microbiome analysis.

Keywords: Graph neural network, Heteroge-
neous graph transformer, Gut microbiome, Cross-
feeding, Metabolic networks, Edge-aware atten-
tion.

1. Introduction
The human gut microbiome is a dynamic ecosystem that
modulates host physiology and has been linked to various
diseases, from metabolic disorders to inflammatory and
neurodegenerative conditions. These associations stem not
from individual microbes in isolation, but from complex,
context-dependent interactions within the microbial com-
munity. Deciphering these interactions is key to uncovering
the mechanisms underlying microbiome-associated health

*Equal contribution . Correspondence to: Mohammad Mofrad
<mofrad@berkeley.edu>.

outcomes and guiding the development of targeted therapies
(Dong & Mayer, 2024; Cho et al., 2024).

Conventional approaches to microbiome analysis often rely
on static representations, such as taxonomic abundance
profiles or co-occurrence networks (Wang et al., 2021).
While useful, these methods are limited in capturing the
dynamic, nonlinear interactions, such as metabolic cross-
feeding and competition, that shape microbial community
behavior (Quinn-Bohmann et al., 2025; Aminian-Dehkordi
et al., 2022). Recent advances in machine learning, par-
ticularly graph neural networks (GNNs), offer a powerful
alternative for learning the structured, relational data inher-
ent to microbial ecosystems.

GNNs have shown remarkable success in various biologi-
cal applications, including modeling protein-protein inter-
actions, disease classifications from microbial abundance
profiles (Sun & Song, 2024; Zeng et al., 2024), and drug sus-
ceptibility prediction in microbiomes (Rehman et al., 2024).
Additionally, studies have shown the utility of GNNs in ana-
lyzing gut microbiome metaomic data, providing insights
into disease phenotypes (Irwin et al., 2024). Their ability
to learn directly from graph-structured data makes them
especially well-suited for analyzing microbial interaction
networks, where nodes represent species and edges encode
biological relationships.

However, current GNN-based approaches in microbiome
research face significant limitations. Many depend on pre-
defined or co-occurrence-based graphs that may not reflect
true biological interactions, lack integration with mechanis-
tic models, and exhibit limited generalizability beyond the
training context. Moreover, progress is constrained by a
shortage of high-quality, labeled datasets that capture micro-
bial interactions under physiologically relevant conditions
(Tian et al., 2023).

To address these challenges, we introduce SIMBA-GNN,
a novel framework that integrates mechanistic metabolic
simulations of microbial interactions with a GNN-based
learning algorithm to model and predict the behavior of
gut microbial communities. Specifically, we simulate pair-
wise interactions between microbial species under realistic
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dietary constraints to generate mechanistically grounded
datasets that capture emergent ecological phenomena such
as cross-feeding patterns. Each simulation yields a graph
where nodes represent microbial species, metabolic path-
ways, metabolites and edges encode the direction, microbe
similarity, and the probability of the metabolites being pro-
duced and consumed. These graphs form a basis of our
training data for a custom-designed GNN, which is trained
to predict community-level properties, including microbial
abundances and potential keystone interactions.

To ground this approach in real-world microbiome contexts,
we use a large dataset of fecal metagenomes from individ-
uals on a high-fiber diet, and simulate all pairwise inter-
actions among microbes using metabolic networks. These
simulations generate a rich interaction dataset under diet-
constrained conditions, enabling us to construct labeled
graphs capturing microbial cross-feeding dynamics. Our
GNN is then trained using these graphs and evaluated for
its ability to predict observed microbial community compo-
sitions and highlight critical cross-feeding relationships.

Our contributions are as follows:

• A novel computational pipeline that generates a large-
scale dynamic dataset of pairwise microbial cross-
feeding interactions using metabolic networks con-
strained by realistic dietary inputs.

• A custom GNN architecture tailored to learn from
simulation-derived microbial interactions for the pre-
diction of microbial abundances.

• Comprehensive evaluation of the model’s predic-
tive performance on microbial abundances and inter-
pretability, demonstrating the potential of integrating
metabolic networks with advanced deep learning for
understanding complex microbial ecosystems.

This study opens new avenues for personalized microbiome
modeling and precision therapeutics by providing a scal-
able, mechanistic approach to understanding the human gut
microbiome ecosystem.

2. Methods
2.1. Microbial abundance data and selection of GEMs

Microbial abundance profiles were obtained from 186 in-
dividuals participating in a high-fiber dietary intervention
study (Diener et al., 2020). This experimentally micro-
bial abundance data served as the target variable for our
GNN model. All identifiable microbial taxa from the co-
hort’s microbiome profiles were extracted. For each taxon,
corresponding genome-scale metabolic models (GEMs)
were retrieved from the AGORA database (version 1.03)
(Heinken et al., 2020), a manually curated repository of
semi-automatically reconstructed GEMs for common hu-

man gut microbes. This resulted in a collection of 76 unique
GEMs representing key members of the cohort’s gut mi-
crobial community. Each GEM encodes a stoichiometric
reconstruction of its corresponding organism’s metabolic
network, which enables simulation of metabolic fluxes. The
GEMs were processed using COBRApy.

2.2. Simulation of pairwise microbial interactions

To systematically investigate potential cross-feeding inter-
actions, we performed pairwise co-culture simulations for
all 2,850 unique combinations of the selected GEMs.

2.2.1. MODEL MERGING AND SHARED ENVIRONMENT

For each pair of microbes, their corresponding GEMs were
combined into a single multi-compartment model. Metabo-
lites and reactions from each organism were uniquely la-
beled to avoid conflicts, and a shared pool compartment was
introduced to facilitate metabolite exchange. For each over-
lapping exchange reaction present in both original models,
a corresponding metabolite was created in the pool compart-
ment. Transport reactions were added to allow each microbe
to secrete into or uptake from this shared metabolite pool,
allowing simulation of potential cross-feeding interactions.

2.2.2. DIETARY CONSTRAINTS

The simulations were constrained to mimic a high-fiber
diet. An averaged high-fiber diet profile, based on exper-
imental data (Diener et al., 2020), was used to define the
input metabolic fluxes into the shared lumen compartment.
Simulations were performed under anaerobic conditions, re-
flecting the dominant environment of the human colon. Non-
dietary exchange reactions were initially closed for uptake,
allowing only secretion into the lumen, unless a metabolite
was part of the defined medium. Metabolic byproducts were
allowed to exit the system to simulate realistic environmen-
tal turnover (upper bounds of exchange reactions typically
set to 1000).

2.2.3. OBJECTIVE FUNCTIONS AND FLUX SAMPLING

For each pairwise simulation, the objective was set to max-
imize the joint biomass production of the pair. To ensure
both microbes could grow, the individual biomass reaction
of each microbe was constrained to be at least 10% of its op-
timal growth rate when simulated in monoculture under the
same dietary conditions. Flux sampling was then performed
on the combined model using the ’optgp’ method (Megche-
lenbrink et al., 2014), generating 10,000 flux distributions
with a thinning factor of 100. This process explores the
feasible flux space under the given constraints and objective.
The Geweke diagnostic test was applied to the sampled flux
distributions for each reaction to ensure the convergence of
the sampling process.

2



Simulation-augmented Microbiome Abundance GNN

2.2.4. IDENTIFICATION OF CROSS-FEEDING
METABOLITES

Cross-feeding metabolites were identified from the sampled
flux distributions of the pairwise models. A metabolite was
classified as cross-fed if it was secreted by one microbe and
concurrently taken up by the other via the shared lumen
compartment. To quantify this interaction, Spearman cor-
relation analysis was performed on the exchange fluxes of
the paired microbes for each shared metabolite. A strong
negative correlation (e.g., threshold ¡ -0.5) was interpreted
as indicative of potential cross-feeding. For each event,
the directionality and frequency (i.e., number of samples
showing the exchange) were recorded. Only metabolites
with exchange fluxes exceeding a certain threshold and not
present in the initial dietary input were retained. The pres-
ence probability for each identified cross-fed metabolite,
quantified as the proportion of exchange events observed
across 10,000 flux samples, was computed and incorporated
as an edge feature for the next step.

2.2.5. PATHWAY ACTIVITY SCORING

To evaluate functional metabolic contributions, we quan-
tified pathway-level activity in each microbe based on
flux distributions from pairwise simulations. Reactions
were mapped to metabolic pathways using annotations
from the Virtual Metabolic Human (VMH) and KEGG
databases. Pathway activity scores, hereafter called pathway
fingerprints, were calculated by aggregating the fluxes of
constituent reactions, enabling pathway-level comparisons
across microbial interactions (Figures S1 and S2).

2.3. Graph Neural Network Architecture

2.3.1. MICROBIAL INTERACTION GRAPH
CONSTRUCTION

We constructed microbial interaction graphs based on 2,850
pairwise metabolic simulations. Each simulation yielded
metabolite fingerprints, capturing the probability of indi-
vidual metabolites being produced or consumed between
microbial pairs as well as pathway fingerprints, summariz-
ing pathway-level activities for each microbe.

Our heterogeneous graphs encoded three node
types—microbes, metabolites, and pathways—and multiple
biologically meaningful edge types. Microbe–metabolite
edges encode directional interactions based on metabolite
exchange probabilities inferred from simulations, effectively
modeling ecological interactions such as cross-feeding.
Microbe–pathway edges represent functional associations,
linking microbes to pathways with nonzero activity. In
addition, microbe–microbe edges were added based on
pathway profile similarity, using cosine similarity between
log-transformed pathway activity vectors. Only edges with

similarity score above 0.85 were retained to reduce spurious
connections and maintain graph sparsity. (Figure 2b)

2.3.2. NODE AND EDGE FEATURES

Microbe nodes were characterized using concatenated fea-
ture vectors incorporating:

• Protein-level embeddings, generated via the ESM-2
model (Lin et al., 2023), yielding 2,560-dimensional
vectors from the UHGG database (Almeida et al.,
2021), averaged across all proteins in each genome
(Elnaggar et al., 2023).

• Pathway fingerprints, log-transformed (log1p) to miti-
gate skewness.

• Metabolite fingerprints, representing binary indicators
of metabolite presence based on flux sampling data.

Pathway and metabolite nodes were initialized with ran-
domly learnable embeddings of dimensions 256 and 128,
respectively.

2.3.3. ENHANCED HETEROGENEOUS GRAPH
TRANSFORMER ARCHITECTURE

We extended the standard Heterogeneous Graph Trans-
former (HGT) (Hu et al., 2020) architecture by integrat-
ing scalar edge attributes directly into the attention mech-
anism. This enhancement allowed the attention weights to
weigh neighbor contributions by both node features and the
strength of interactions derived from metabolite fluxes and
microbial abundances. Our resulting model, (SIMBA), con-
sists of three transformer layers, each with 768-dimensional
hidden states and 12 attention heads—hyperparameters opti-
mized through grid search. To promote training stability and
reduce overfitting, we applied residual connections, layer
normalization, and a dropout rate of 0.2.

Task-specific output heads were designed to predict for mul-
tiple prediction objectives:

• Microbial presence was predicted using sigmoid-
activated binary classifier

• Microbial abundances were estimated using a PyTorch
Geometric-based softmax layer.

• Metabolite fingerprints were predicted as probabilistic
outputs over binary metabolite production capability

The presence head outputs binary labels indicating whether
a microbe is expected to occur in a given sample, while the
abundance and metabolite heads yield normalized proba-
bilities for species abundances and metabolite production
within experimental or simulated communities.

2.3.4. TRAINING STRATEGY AND LOSS FUNCTIONS

We structured our training pipeline into three distinct stages
to enhance learning efficacy:
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Figure 1. Overview of SIMBA Left – Data sources. A dietary intervention cohort of 186 individuals provides per-sample microbial
relative abundances, which are mapped to their corresponding metabolic networks. 2850 pairwise simulations using flux sampling yield
cross-feeding metabolites probabilities (used as metabolite fingerprints) and pathway activity scores (used as pathway fingerprints) between
microbial pairs. All three signals are integrated into a unified dataset capturing cross-feeding interactions and metabolic pathways. Middle-
left – Graph construction. We build a heterogeneous graph with three node types—microbe, metabolite, and pathway—connected by
seven directed edge types: (i) has/rev has (microbe–pathway membership), (ii) sim (microbe–microbe cosine similarity > 0.85 based
on pathway fingerprints), and (iii) prod, cons with their reverse edges, whose weights we = log1+ |flux| encode interaction strength.
Middle-right – Heterogeneous graph transformer. Node features are first projected to 768-d and passed through three layers of our
custom edge-aware HGT. Attention scores are modulated by scalar edge weight we.The model outputs feed three task-specific heads: a
BCE presence classifier, a per-sample softmax abundance regressor, and a BCE metabolite-probability estimator. Bottom – Training
schedule. The network is optimized in three stages: (i) Self-supervised GraphCL to initialize embeddings, (ii) Supervised pretraining on
simulated graphs with BCE, Tweedie (p=1.5) and metabolite BCE losses, and (iii) Fine-tuning on experimental graphs using only BCE
and Tweedie losses (ranking loss tested but not retained). Feature masking and edge dropout of 0.1 are applied throughout. Bottom-most
– Node features. Microbe vectors concatenate (i) averaged 2560-d ESM-2 protein embeddings, (ii) 72-d log1+ pathway scores, and (iii)
101-d metabolite fingerprints, yielding 2733 features before projection. Metabolite and pathway nodes start from random 128-d and 256-d
embeddings, respectively, that are linearly mapped to 768-d.
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Self-supervised learning (SSL): This initial stage employed
graph contrastive learning (GraphCL) (Yang et al., 2024)
with a temperature τ=0.10 and a large batch of 256 nega-
tives provides task-agnostic node embeddings.

Supervised pretraining: We utilized simulated data to train
the model on microbial abundances and metabolite presence
predictions. Microbial abundances were optimized using
the Tweedie loss with a power parameter of 1.5, selected
after comparing results with power values of 1.1, 1.5, and
1.8. The Tweedie loss is defined as:

LTw(y, ŷ; p) = 2

[
y2−p

(1− p)(2− p)
− yŷ1−p

1− p
+

ŷ2−p

2− p

]
,

(1)

where y denotes the true abundance, ŷ the predicted abun-
dance, and p the power parameter (p = 1.5). Metabolite
presence (metabolite cross-feeding probability) was opti-
mized with binary cross-entropy (BCE) during supervised
pretraining.

Fine-tuning: While our model supports joint training on
microbial and metabolite outputs, the BSE loss term for
metabolite cross-feeding was disabled (αflux = 0) for this
dataset due to the absence of metabolite-level labels.

We retained the BCE loss for microbial presence predic-
tion and the Tweedie loss for abundance regression. Also,
we evaluated a pairwise hinge ranking loss (margin 0.1)
with weighting factors αrank ∈ {0.05, 0.10, 0.20}. However,
using the ranking loss did not yield any improvements in
the validation Spearman correlation. As a results, the final
model was trained with αrank = 0.

Feature masking and edge dropout of 0.1 are applied in
every stage.

The stage-specific total loss is

Ltotal = αconLCL+αpresLBCE+αabundLTw+αfluxLmet
BCE (2)

Table 1. Loss-weight schedule used in the final model.

Stage αcon αpres αabund αflux

Self-supervised (SSL) 1.0 0 0 0
Supervised pretraining – 1.0 1.0 1.0
Fine-tuning – 1.0 1.0 0

2.3.5. BASELINE GNN MODELS

We compared our enhanced heterogeneous model against
baseline homogeneous architectures, including Massage
Passign Graph Neural Network (MPGNN), Structured
World Models (SWM-GNN) (Kipf et al., 2019), Graph-
SAGE (Hamilton et al., 2017), and Simple-GNN. These

models utilized only microbial node features and metabolite
production fluxes, without explicit edge-value integration.
Due to their tendency to overfit, these baseline models were
maintained smaller than the heterogeneous model.

2.3.6. HYPERPARAMETER OPTIMIZATION AND
EVALUATION METRICS

Bayesian hyperparameter optimization was used to identify
optimal model configurations. Spearman’s rank correlation
served as our primary evaluation metric, as it effectively
captures the relative ordering of microbial abundances—an
essential aspect of ecological validity. The final model
configuration included a hidden dimension of 768, dropout
rate of 0.2, edge dropout of 0.1, feature masking rate of 0.1,
and 12 attention heads.

Performance evaluation encompassed additional metrics,
including presence detection and Spearman score, to en-
sure comprehensive assessment and biological interpretabil-
ity. All methods and computational resources are pub-
licly available on GitHub (https://github.com/
mofradlab/simba), with complete documentation for
reproducibility.

Figure 2. Microbial abundance patterns and metabolic interaction
landscape. (a) Presence/absence heatmap of microbes across sam-
ples, showing distinct distribution patterns. (b) Histogram of cosine
similarities between pathway scores profiles, indicating varying
degrees of similarity across samples. (c) Fraction of zero entries
(63.8%) in the microbial abundance matrix, illustrating data spar-
sity. (d) Distribution of nonzero relative abundances on a log scale,
showing a heavy-tailed distribution with a shape parameter of 3.7.
(e) Comparison of total simulated production versus consumption
for each metabolite, which highlights potential metabolic sources
and sinks in the microbial community.
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3. Results
3.1. Characterization of microbial community data and

interactions and baseline model performance

To build a comprehensive graphical representation of the
gut microbiome for predictive modeling, we first charac-
terized key aspects of our experimental samples and the
outputs from pairwise metabolic simulations. These data
collectively informed the structure and features of our het-
erogeneous graph. Figure 2 provides an overview of this
foundational data characterization.

The microbial landscape across the samples reveals distinct
presence and absence patterns for various microbes (Fig-
ure 2a). Understanding these abundance distributions is
important as they represent the primary predictive target for
our models. In addition, insights into metabolic interplay
were derived from pairwise simulations. Figure 2 contrasts
the net production and consumption capabilities per metabo-
lite across all microbes in the community which reveals the
potential sources and sinks within the simulated ecosystems
and underpins the microbe-metabolite interactions edges in
our graph.

Collectively, these analyses underscore the heterogeneity of
microbial membership, the complexity of functional similar-
ities, the challenging nature of abundance distributions, and
the intricate web of simulated metabolic interactions. This
rich, multi-modal information landscape motivated the use
of GNNs capable of integrating diverse data types to model
microbial community behavior.

To establish a performance benchmark, we initially evalu-
ated several established GNN architectures: SWM-GNN,
GraphSAGE, MPGNN, and GNN. As illustrated in Fig-
ure S3, the models showed modest performance in predict-
ing microbial abundances, with Spearman rank correlations
generally below 0.6. This highlighted the limitations of
standard GNNs for this complex task and motivated the
development of our specialized SIMBA architecture.

3.2. Performance across the training pipeline

To address the challenges identified, we propose SIMBA to
predict microbial community composition. This model is
developed to predict microbial presence and relative abun-
dances by leveraging information from simulated metabolic
cross-feeding interactions within an HGT framework. The
model’s performance was established through a three-stage
training regimen (self-supervised learning, supervised pre-
training, and fine-tuning) and its architecture was refined
via systematic hyperparameter optimizatrion.

3.2.1. PRETRAINING ON SIMULATED DATA

Following SSL, SIMBA was pretrained on a comprehen-
sive dataset of simulated pairwise microbial interactions,
enablinging the model to learn the fundamental patterns of
microbial metabolic cross-feeding. The convergence of the
training loss over epochs is shown in Figure S4. The total
training loss, alongside its components, BCE loss, Tweedie
loss, and rank loss, all showed a consistent decrease over
epochs of pretraining, indicating stable learning dynamics.
For the auxiliary task of predicting metabolite cross-feeding
presence, the model attained an accuracy of 0.96. The cor-
responding F1-score and recall for this task were 0.83 and
0.72, respectively, which further supports the model’s capa-
bility to identify these interactions in the simulated data.

Collectively, the results from the supervised pretraining
stage indicate that SIMBA successfully learned to model
key aspects of microbial ecology within the context of the
simulated data. This provided a strong foundation for the
subsequent fine-tuning stage on experimental data.

3.2.2. FINE-TUNING ON EXPERIMENTAL DATA

The final stage involved fine-tuning the pretrained SIMBA
model using experimental microbial abundance data. This
allowed the model to adapt its learned representations and
predict capabilities to real-world community contexts. The
fine-tuning loss progression is presented in Figure S5. Crit-
ically, the Spearman correlation of microbial abundance
prediction on the experimental validation set showed a con-
sistent improvement over fine-tuning epochs, reaching 0.85.
This highlights our model’s ability to effectively transfer
knowledge from simulated environments and adapt to ex-
perimental data complexities.

3.3. Development and optimization

The optimal configuration was obtained using Bayesian hy-
perparameter optimization, with the primary objective of
maximizing the Spearman rank correlation for microbial
abundance prediction. This process was done by tuning
key hyperparameters including model’s hidden dimension,
attention head, edge dropout, feature masking, the weight
of the rank loss component in the combined loss function.
The overall relationship between the hyperparameters and
the achieved Spearman correlation is shown in Figure S6.
Specifically, varying the feature masking revealed an opti-
mal range around 0.1, where higher masking led to a slight
decline in performance. Similarly, an edge dropout centered
around 0.2 was found to be most effective for microbial
abundance prediction. The influence of the rank loss weight
showed stable performance around zero.

Further investigation into play between hidden dimension
(D256, D512, D768, and D1024) and attention head (H8,
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Table 2. Final optimized hyperparameter configurations for SIMBA. Values were determined through Bayesian hyperparameter optimiza-
tion targeting Spearman correlation for microbial abundance.

Hyperparameter Hidden dim. Attn. head Edge dropout Feature mask Tweedie power Ranking loss weight

Optimized value 768 12 0.1 0.1 1.5 zero

H12, and H16) was performed, and SIMBA-D768-H12
outperformed others with a Spearman correlation above 0.8
(see Figure S7). The Spearman scores for all models showed
a trend of stabilizing after approximately 20 epochs. The
complete set of optimized hyperparameters employed for
SIMBA is detailed in Table 2.

A critical aspect of modeling microbial abundances is the
choice of an appropriate loss function, given the characteris-
tic zero-inflation and skewed distribution of such data. We
systematically evaluated several loss functions for the abun-
dance prediction task during the fine-tuning stage. From
Figure S8 that represents the Spearman correlation achieved
with different loss functions, the Tweedie loss with a power
parameter of 1.5 demonstrated superior performance in cap-
turing the abundance distribution, outperforming both KL
divergence and Huber loss functions.

3.4. Microbial and metabolite prediction insights

At an individual level, Figure 3 presents a detailed compari-
son of ground truth data and model predictions for a repre-
sentative sample from the experimental samples. The model
performs well in predicting both the presence of microbes
in the community and the metabolites cross-feeding among
them. Absence is indicated by gray circles, while colored
circles denote presence. Color intensity in the prediction cir-
cles reflects the concordance with ground truth abundance,
calculated as a ratio, where higher intensity signifies a closer
match. This visualization highlights SIMBA’s ability to ac-
curately identify present microbes and its general agreement
with actual abundance levels for many species in this ex-
ample. Also, the figure provides insight into the model’s
predictions related to metabolite cross-feeding probabilities.

4. Discussion
Modeling the human gut microbiome is particularly chal-
lenging due to the heterogeneous, zero-inflated, and compo-
sitionally biased nature of microbial abundance data. Mi-
crobial communities are governed not only by taxonomic
presence but also by metabolic behavior and ecological
interactions, such as cross-feeding, competition, and syn-
trophy. Traditional modeling approaches that rely solely on
abundance data or simplified interaction assumptions fail
to capture the underlying microbiological and ecological
richness.

To address these challenges, we combined experimental
data with mechanistic modeling and graph-based learning
to generate a multimodal representation of microbial com-
munities. By simulating 2,850 pairwise interactions using
metabolic networks, we captured a rich landscape of po-
tential metabolic cross-feeding—a crucial ecological signal
often inaccessible in experimental settings. These simulated
interactions were then used to construct a heterogeneous
interaction graph, integrating functional embeddings, path-
way annotations, and probabilistic metabolite cross-feeding
data.

Against this complex data backdrop, we developed a
simulation-augmented GNN framework tailored to the mi-
crobiome domain. Unlike standard models, which struggled
to exceed a Spearman correlation of 0.6, our approach inte-
grates domain-specific knowledge through a heterogeneous
graph transformer, modified to incorporate edge attributes
directly into the attention mechanism. This enhancement
enables biologically grounded modeling of both the strength
and directionality of simulated microbial interactions.

The training pipeline mirrors this complexity. By employ-
ing a three-stage strategy—self-supervised representation
learning, supervised pretraining on simulated data, and fine-
tuning on experimental abundance profiles—we facilitated
effective knowledge transfer between in silico simulations
and in vivo observations. This progression stabilized learn-
ing dynamics and yielded substantial performance gains,
ultimately achieving a Spearman correlation of 0.85 on ex-
perimental validation data.

Several architectural and training decisions contributed to
this success. Bayesian hyperparameter optimization iden-
tified an optimal configuration: moderately large hidden
dimensions (768), 12 attention heads, and low edge dropout
and feature masking rates (both 0.1). The Tweedie loss
(power = 1.5) was especially effective in modeling the zero-
inflated, skewed abundance distributions, outperforming
alternatives like KL divergence and Huber loss.

Beyond predictive accuracy, the framework also supports
microbiological interpretability. By combining species
presence with their metabolic capacities and cross-feeding
patterns, it enables identification of keystone taxa and
metabolic bottlenecks—offering a mechanistic foundation
for developing targeted therapeutic or dietary interventions.
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Figure 3. Comparison of ground truth and predictions for an exemplary sample; (a) SIMBA performance in predicting microbial presence
and abundance. Each pair of circles represents a microbe: the top (GT) shows ground truth and the bottom (PD) shows model prediction.
Gray circles indicate absence, while colored circles indicate presence. The color intensity reflects how well the predicted abundance
matches the ground truth, computed as a ratio between predicted and actual values. A higher intensity suggests a closer match. (b)
Comparison of ground truth probabilities and predicted probabilities for different metabolites. (GD: ground truth; PD: prediction)

5. Conclusion
Our results demonstrate that a biologically informed,
simulation-augmented GNN architecture can substantially
improve microbial abundance prediction. SIMBA represents
a step toward ecologically grounded, mechanistically inter-
pretable models of microbial communities. Using domain
knowledge, metabolic simulations, and advanced graph
learning, SIMBA offers a robust tool for both microbiome
prediction and hypothesis generation in microbial ecology.

Impact Statement
This paper presents SIMBA, a novel framework for pre-
dicting gut microbial interactions and community composi-
tion. The primary goal is to advance our understanding of
complex microbial ecosystems and their role in health and
disease. Potential societal benefits include improved person-
alized nutrition and therapeutic strategies for microbiome-
related conditions. In this work, we have focused on mecha-
nistic interpretability and robust evaluation.

References
Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Bera-

cochea, M., Shi, Z. J., Pollard, K. S., Sakharova, E.,
Parks, D. H., Hugenholtz, P., et al. A unified catalog of

204,938 reference genomes from the human gut micro-
biome. Nature biotechnology, 39(1):105–114, 2021.

Aminian-Dehkordi, J., Valiei, A., and Mofrad, M. R. Emerg-
ing computational paradigms to address the complex role
of gut microbial metabolism in cardiovascular diseases.
Frontiers in Cardiovascular Medicine, 9(7), 2022. ISSN
2297055X. doi: 10.3389/fcvm.2022.987104.

Cho, Y. S., Han, K., Xu, J., and Moon, J. J. Novel strategies
for modulating the gut microbiome for cancer therapy.
Advanced Drug Delivery Reviews, pp. 115332, 2024.

Diener, C., Gibbons, S. M., and Resendis-Antonio,
O. MICOM: Metagenome-Scale Modeling To
Infer Metabolic Interactions in the Gut Micro-
biota. mSystems, 5(1), 2 2020. ISSN 2379-
5077. doi: 10.1128/msystems.00606-19. URL
https://journals.asm.org/journal/
msystemshttps://journals.asm.org/doi/
10.1128/msystems.00606-19.

Dong, T. S. and Mayer, E. Advances in brain–gut–
microbiome interactions: a comprehensive update on
signaling mechanisms, disorders, and therapeutic impli-
cations. Cellular and molecular gastroenterology and
hepatology, 18(1):1–13, 2024.

8

https://journals.asm.org/journal/msystems https://journals.asm.org/doi/10.1128/msystems.00606-19
https://journals.asm.org/journal/msystems https://journals.asm.org/doi/10.1128/msystems.00606-19
https://journals.asm.org/journal/msystems https://journals.asm.org/doi/10.1128/msystems.00606-19


Simulation-augmented Microbiome Abundance GNN

Elnaggar, S. G., Elsemman, I. E., and Soliman, T. H. A.
Embedding-based deep neural network and convolutional
neural network graph classifiers. Electronics, 12(12):
2715, 2023.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pp. 1025–1035, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Heinken, A., Acharya, G., Ravcheev, D. A., Hertel, J.,
Nyga, M., Okpala, O. E., Hogan, M., Magnúsdóttir,
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Simulation-augmented Microbiome Abundance GNN

A. Appendix

Figure S1. Heat map representation of pathway scores for microbes involved in simulations. Rows represent metabolic pathways, columns
represent microbial strains, and cell intensity indicates pathway activity scores.
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Figure S2. Pathway distributions for strains obtained from pairwise simulations. Bar charts showing the number of microbes associated
with various metabolic pathways.
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Figure S3. Different GNN baseline model Spearman scores. The models show limited performance in microbial abundance prediction.

Figure S4. Performance of SIMBA during supervised pretraining on simulated data. (a) Convergence of training loss over epochs. (b-d)
Performance on the validation set for predicting the presence of metabolite cross-feeding presence over epochs, showing (b) accuracy, (c)
F1-score, and (d) recall.
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Figure S5. Performance SIMBA during fine-tuning on experimental data. (a) Fine-tuning validation performance of the model variants
for microbial abundance prediction. Spearman correlation trajectories on the experimental validation set are shown over the course of
fine-tuning epochs. (b) Convergence of fine-tuning loss over epochs. (c) Convergence of microbial abundance loss during fine-tuning.
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Figure S6. Relationship between key hyperparameters and the achieved Spearman scores for microbial abundance on the validation set
during Bayesian hyperparameter optimization.

Figure S7. Changes of Spearman scores for models with different hidden dimensions and attention heads.
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Figure S8. Comparison study of different loss functions used for the prediction of microbial abundances based on Spearman correlation
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