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Abstract

Sparse autoencoders (SAEs) have emerged as a powerful tool for uncovering inter-1

pretable features in large language models (LLMs) through the sparse directions2

they learn. However, the sheer number of extracted directions makes comprehen-3

sive exploration intractable. While conventional embedding techniques such as4

UMAP can reveal global structure, they suffer from limitations including high-5

dimensional compression artifacts, overplotting, and misleading neighborhood6

distortions. In this work, we propose a focused exploration framework that pri-7

oritizes curated concepts and their corresponding SAE features over attempts to8

visualize all available features simultaneously. We present an interactive visual-9

ization system that combines topology-based visual encoding with dimensionality10

reduction to faithfully represent both local and global relationships among selected11

features. This hybrid approach enables users to investigate SAE behavior through12

targeted, interpretable subsets, facilitating deeper and more nuanced analysis of13

concept representation in latent space.14

1 Introduction15

Sparse autoencoders (SAEs) have emerged as a powerful technique for extracting interpretable fea-16

tures from large language models, decomposing superposed neural representations into disentangled17

components [1, 2, 3, 4, 5, 6]. Recent work has demonstrated remarkable scalability, extracting18

millions of interpretable features from state-of-the-art models [7, 8, 9, 10, 11, 12]. However, this19

success creates a paradox: the sheer number of learned sparse directions, often hundreds of thousands20

to millions, makes comprehensive exploration computationally and cognitively intractable. More-21

over, recent studies [13, 14] also reveal that many learned SAE features are polysemantic (encoding22

multiple, unrelated concepts) or low-quality, raising questions about whether visualizing all features23

simultaneously is even desirable.24

In this work, instead of attempting to visualize all the features in SAE [15, 16, 17] all at once, we25

advocate for a focused paradigm of carefully curated concept sets and only their corresponding26

SAE features. By concentrating on well-defined concepts, researchers can avoid confusion from the27

overwhelming number and potentially low-quality features and conduct targeted investigations of28

specific hypotheses about concept representation and feature relationships.29

Specifically, we address three interconnected analytical objectives that are central to understanding the30

relationships between SAE features and revealing the conceptual structure. First, we investigate how31

well cosine similarity among features corresponds to semantic similarity for validating whether SAEs32

capture meaningful semantic structure [18]. Second, we examine how well human-curated concept33

hierarchies are reflected in the SAE feature space, assessing whether models learn organizational34

structures aligned with human understanding [19, 12]. Third, we analyze how these local and global35
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Figure 1: SAE-Explorer interface. A. Data view. Left: SAE features, a concept set (words with
assigned categories), and a cosine similarity threshold for loading relevant features. Right: bar chart
of discovered concepts per layer. B. Category view. For the selected layer (23), each row shows a
category’s feature count and its overlap with the pinned category food, enabling comparison with
animal. C. UMAP view. Retrieved features for the selected layer, with food and animal highlighted.
D. Ball mapper view. Topological structure of food and animal features represented as a graph. E.
Feature view. Details of selected features via click or lasso. F. Concept query. Search interface for
specific concepts.

patterns evolve across model layers, as feature representations undergo systematic changes through36

network depth [9, 10].37

Although existing visualization of SAEs uses techniques such as UMAP [20], since they perform38

extreme compression from thousands of dimensions into two, they can cause severe structural39

distortions. These distortions often misrepresent neighborhood relationships [21], which are critical40

for interpretability and understanding semantic similarities between features. For example, similar41

features may appear separated, or different features may appear artificially clustered.42

To address this critical limitation of neighborhood misrepresentation in traditional embeddings, we43

introduce a novel topology-based visual encoding inspired by topological data analysis. Building44

on the Ball Mapper algorithm [22], our approach provides a network representation that better45

preserves both local and global structural properties. Unlike projection methods that force features46

into continuous 2D space, our topological representation maintains discrete feature clusters while47

accurately representing their interconnections, enabling more faithful communication of similarity48

relationships among SAE features. To support flexible exploration and the interactive nature of49

exploratory data analysis, we present a human-centered visual analytics system, SAE-Explorer, which50

facilitates qualitative analysis of feature relationships that are local, global, or across layers via51

multiple coordinated views. The system code, datasets, and video demonstration are available at52

https://anonymous.4open.science/r/SAEExploration-A57B.53

2 SAE-Explorer: A Visualization Tool for Exploring Curated Concepts54

Driven by analytical goals, as shown in Figure 1, we design a visual analytics system for inspecting55

SAE features that enable human-in-the-loop exploration.56

Data description and preprocessing. The input data includes SAE features (high-dimensional57

vectors) across layers, LLM auto-interpreted [23] textual explanations per feature, and a concept58

dataset with concept words and their categories (e.g., the category animal contains dog, cat, etc.,59

and a concept may belong to multiple categories). For each layer, we retrieve relevant features for60

each concept via the Neuropedia API [24] that relies on the cosine similarity between concept and61
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feature explanations in a sentence embedding space. By default, features with similarity above 0.562

are visualized, though users can adjust this threshold interactively.63

Embedding View Based on Ball Mapper. To better capture local structure and mitigate misleading64

distortions in traditional dimensionality reduction, we introduce an embedding view based on ball65

mapper. Ball mapper [22] encodes the topology of a high-dimensional point cloud as a graph, where66

nodes are local neighborhoods (balls) of points and edges indicate overlaps between them. Given a67

user-defined radius ϵ, the method selects a subset of points (e.g., via a greedy procedure) such that68

the entire dataset is covered by balls centered at these points. Each ball defines a node, and two nodes69

are connected if their balls share points. By default, ϵ is determined by computing all pairwise cosine70

distances and selecting the elbow point. To reduce visual clutter, we employ an adaptive variant: for71

a specified maximum node size, the ball radius is iteratively reduced by a factor η (default 0.9) until72

the constraint is met. In our system, the maximum node size defaults to 5, though users may adjust73

this and other parameters.74

Interface Design. The interface integrates multiple linked views. As shown in Figure 1, view A75

allows users to select SAE feature data, concept data, and a similarity threshold to retrieve concept-76

relevant features per layer. The resulting distribution of discovered concepts is displayed in a bar77

chart. Clicking a bar reveals the corresponding layer data in views B, C, and D.78

For a selected layer, view B lists category information, including the number of relevant features79

associated with each category. View C shows a UMAP projection of the features, supporting zoom,80

pan, hover, lasso, and selection, with the three nearest features highlighted on click. View D presents81

the ball mapper view, where users can drag, adjust parameters, and select nodes or edges. The ball82

mapper graph supports a smooth transition between two layouts: an anchored layout, in which nodes83

are positioned by the average location of their UMAP points for alignment, and a force-directed84

layout for a more aesthetically pleasing visualization.85

View E displays detailed information about selected features, including explanations, relevant con-86

cepts and categories, and nearby features within the same layer. Explanations are linked to the87

Neuropedia feature detail page [24]. View F provides a search interface for retrieving features88

associated with specific concepts.89

To aid navigation, tooltips are available throughout the interface. Selecting a category in view B90

highlights its corresponding features in both the UMAP and ball mapper views. To further explore91

category relationships, users can pin a category, after which other categories are sorted by shared92

features. When a comparison category is selected, features are consistently color-coded across UMAP93

and ball mapper to reveal overlaps and differences.94

3 Results95

In this section, we present the insights obtained through the proposed visualization framework in96

understanding the relationships between the learned SAE features and human-interpretable concepts.97

Concept Sets. We considered two hierarchical concept sets for our analysis: (1) THINGSplus [25],98

a human-curated set containing 1448 concepts organized into 53 categories (e.g., mammals, food,99

etc), where each category contains a list of relevant concepts (e.g., panda, cat, breadsticks); and100

(ii) Subjects, a field-of-study oriented set curated via an LLM. This set includes a total of 1683101

concepts across eight disciplines (e.g., math and physics) and the relevant concepts within each102

discipline (e.g., algebra, geometry, calculus for math). While most SAE visualization frameworks [8]103

attempt to provide the user with a view of the learned features, they often lack the ability to connect104

these features to specific concepts that a practitioner cares about. Instead, we address this gap by105

allowing users to load a concept set and retrieve features relevant to the concepts of interest thus106

enabling a more targeted exploration. To demonstrate the utility, we consider the open-source 65k107

SAE features for each layer of the gemma-2-2b model [26] provided by Gemma Scope [27] from the108

residual stream. Neuronpedia [24] provides a comprehensive set of features and textual explanations109

obtained via the Auto-Interp framework [28] for each feature across 26 layers of the model.110

Evolution of Concept Relationships Across Layers. Through our visualization framework, we111

make a number of interesting observations regarding how concept relationships evolve across layers.112

We observed that for the ThingsPlus concept set, the representations in UMAP are all clustered113

together in the early layers, while they gradually separate into two distinct clusters in the middle114
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layers and finally merge again in the later layers. This pattern suggests that the model initially115

learns general features, then refines them into more specific concepts, before finally integrating these116

concepts into a set of cohesive representations. These results are consistent with the observations117

made in [29] regarding the evolution of factual knowledge in LLMs. However, we also note that the118

ball mapper view reveals a more nuanced picture, with multiple smaller clusters emerging in the119

middle layers, indicating that the model is learning a diverse set of features that may not be fully120

captured by UMAP’s global structure. Moreover, we also observe that for the Subjects concept121

set, this behavior is less pronounced, with the UMAP representations remaining relatively clustered122

throughout the layers. We hypothesize that this is due to the more abstract nature of the concepts in123

this set, which may not lend themselves to clear separations in the feature space. In addition, we made124

another interesting observation regarding the local neighborhoods identified via ball mapper. We125

found that local semantic proximity often persists across layers, consistent with previous findings [30].126

For example, in Figure 2(A, bottom), querying Fox consistently returns features associated with Fox127

News, with Wolf appearing as the nearest neighbor in the same mapper node.128

Figure 2: A. Top: a mapper node containing features 1–3, all related to a music album; bottom:
querying fox across layers consistently yields Fox News, with wolf as the nearest neighbor. B. UMAP
and ball mapper views at layers 0 and 25, highlighting features of food and electronic devices. C. A
ball mapper path of subject concepts illustrating a transition from Mathematics to Computer Science.

Complementary Local and Global Analysis. Since our framework integrates both UMAP and ball129

mapper views, it supports local and global analysis of the feature space: ball mapper complements130

UMAP and helps reveal distortions introduced by dimensionality reduction. The complementary131

nature of the two views is illustrated in Figure 2(A, top), where features 1–3 within a ball mapper132

node all relate to music album. While Features 1 and 2 are true nearest neighbors, this proximity is133

distorted in UMAP. As noted earlier, our visualization also shows that local semantic proximity often134

persists across layers.135

At a global level, Figure 2(B) highlights category features of electronic device and food. In early136

layers, features appear mixed and scattered across both views, whereas later layers reveal clearer137

intra-category separation and stronger inter-category concentration. Overlaps between categories also138

emerge: for example, Figure 1(B) shows food-related features intersecting with breakfast and dessert.139

In Figure 1(D), the ball mapper view reveals a node containing sugar, honey, and bee, effectively140

marking a boundary between food and animal.141

Finally, our framework enables exploration of transitions between related concepts. In Figure 2(C), a142

path in the ball mapper graph (i.e., a sequence of interconnected local neighborhoods) progresses143

from Computer Science to Mathematics, illustrating how the model captures relationships between144

fields of study. This is consistent with the previous observation that mapper graph captures the145

evolution of linguistic phenomenon along a path in the embedding space [31].146

Overall, although we present only a few illustrative cases, our framework offers a powerful and much-147

needed tool for practitioners and researchers to scalably explore and understand the relationships148

between user-defined concepts and the knowledge encoded in an SAE at each layer. We believe this149

enhanced exploration will yield deeper insights and a more comprehensive understanding of model150

behavior, enabling targeted adaptations for downstream tasks such as intervention [32], editing [33],151

and unlearning [34].152
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